JP2004115871A - Method for producing electroseamed steel pipe for high strength line pipe excellent in hydrogen-crack resistant characteristic and toughness - Google Patents

Method for producing electroseamed steel pipe for high strength line pipe excellent in hydrogen-crack resistant characteristic and toughness Download PDF

Info

Publication number
JP2004115871A
JP2004115871A JP2002281537A JP2002281537A JP2004115871A JP 2004115871 A JP2004115871 A JP 2004115871A JP 2002281537 A JP2002281537 A JP 2002281537A JP 2002281537 A JP2002281537 A JP 2002281537A JP 2004115871 A JP2004115871 A JP 2004115871A
Authority
JP
Japan
Prior art keywords
pipe
toughness
less
steel pipe
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002281537A
Other languages
Japanese (ja)
Other versions
JP3823906B2 (en
Inventor
Yoshio Yamazaki
山崎 義男
Mitsuo Kimura
木村 光男
Takaaki Toyooka
豊岡 高明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002281537A priority Critical patent/JP3823906B2/en
Publication of JP2004115871A publication Critical patent/JP2004115871A/en
Application granted granted Critical
Publication of JP3823906B2 publication Critical patent/JP3823906B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an electroseamed steel pipe for a line pipe excellent in hydrogen-crack resistant characteristic and toughness with which a problem of quality deterioration at the pipe-making time can easily be resolved while effectively using uniform and fine hot-rolled steel sheet structure before the pipe-making. <P>SOLUTION: A base stock of steel contains 0.01-0.10% C, 0.05 - 0.5% Si, 0.5-2.0% Mn, ≤ 0.03% P, ≤ 0.005% S, 0.005-0.50% Al, ≤ 0.0050% N, ≤ 0.0030% O and one or more elements among 0.005-0.1% Nb, 0.005-0.1% V, 0.005-0.1% Ti, 0.005-0.5% Mo, 0.0001-0.0030% B and 0.0005-0.0060% Ca. This steel base stock is heated to ≥ 1100°C and the hot-rolling at ≥ 50% rolling reduction ratio, is performed in non-recrystallized range of ≥ Ar<SB>3</SB>point temperature. After coiling at ≤ 660°C, the steel pipe is produced through an electroseamed steel pipe process, and this pipe is heated to 650-850°C at ≥ 3°C/s heating speed continuously with a high frequency induction heating so that the γ fraction becomes ≤ 20% at ≥ Ac<SB>1</SB>point, and after holding for ≤ 60s, the cooling is applied at 5-30°C/s cooling speed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、耐水素割れ特性および靭性に優れる高強度ラインパイプ用電縫鋼管の製造方法に関し、詳しくは、肉厚25mm以下のAPI X60級以上の高強度ラインパイプ用電縫鋼管に、優れた耐水素割れ特性および低温靭性を効率的に付与しうる耐水素割れ特性および靭性に優れる高強度ラインパイプ用電縫鋼管の製造方法に関する。
【0002】
【従来の技術】
一般に、電縫鋼管は、UO鋼管と比べて造管方法の違いから同じ素材を用いても、耐水素割れ特性や低温靭性で劣ることから、造管ままでUO鋼管と同等の特性を得るためには、素材の特性がより優れたものを使用する必要があり、不利であった。
【0003】
この不利を、電縫鋼管に熱処理を施すことで解消しようとする技術として、電縫鋼管に耐サワー性、低温靭性、低降伏比を同時に付与するために、電縫鋼管全体を800 ℃以上で加熱し、その後鋼管を焼入するという方法が提案されている(特許文献1参照。)。この方法では、成分組成がC≦0.12% 、Mn:0.5 〜1.4%、Si:0.10〜0.25% 、P≦0.015%、S≦0.0020% 、Ca:0.0010〜0.0060% の範囲内にある低炭素鋼の電縫鋼管を、800 ℃以上のA3 変態点以上のオーステナイト状態にし、冷間歪を除去し、その後焼入れすることで、アシキュラーフェライトまたは低炭素型ベイナイト組織とし、焼戻しは行わないことを特徴としている。
【0004】
【特許文献1】
特公平6−63040号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記特許文献1所載の方法は、電縫鋼管全体を800 ℃以上のA3 変態点以上のオーステナイト状態にするため、制御圧延‐制御冷却によって折角微細化された造管前鋼板組織を全く活かすことができないという問題がある。また、管全体を加熱するには通常雰囲気炉加熱(所謂バッチ式加熱)が用いられるが、バッチ式加熱では、炉内温度の場所によるばらつきなどがあって、管全体を一様な温度にすることが難しく、そのため、組織を均一微細に制御することが困難であるという問題がある。
【0006】
本発明は、上記のような従来技術の問題点に鑑み、造管前の均一微細な熱延鋼板組織を有効に活用しつつ、造管時の材質劣化の問題を容易に解決しうる耐水素割れ特性および靭性に優れる高強度ラインパイプ用電縫鋼管の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、UO鋼管と同じ鋼成分組成の造管ままの電縫鋼管をAc1 点前後の温度域に急速加熱、短時間保持、急速冷却することにより、上記目的が達成できるのではないかと考え、次のような実験を行なった。
C:0.05% 、Si:0.25% 、Mn:1.2%、P:0.009%、S:0.002%、Al:0.033%、Nb:0.045%、Ti:0.009%、N:0.036%およびO:0.0018% 、Ca:0.0022% の鋼成分組成のスラブを、1200℃に加熱後、再結晶域圧延に次いで70% の未再結晶域圧延を施し、570 ℃で巻き取って熱延コイルとした。この熱延コイルを素材として外径24inch(×25.4mm/inch )×肉厚12.7mmの電縫鋼管を造管し、図2に示す3種類の熱処理を施して、その材料特性(強度、低温靭性)を調べた。短時間加熱は外表面から高周波誘導加熱にて行い、鋼管の外表面の温度を測定して加熱温度とした。
【0008】
熱処理後の鋼管の機械的性質を図1に示す。図1から明らかなように、短時間加熱では雰囲気炉を用いたバッチ熱処理による比較的長時間の加熱とは明らかに異なる特性を示した。すなわち、短時間加熱‐水冷(: A)することによって、通常(C:バッチ熱処理)なら強度低下してしまうような温度域への加熱でも強度をあまり変化させることなく、造管歪による低温靭性劣化を補って余りある靭性向上が得られることが判った。一方、短時間加熱しても冷却を空冷で行なう(:B)と、強度の低下が比較的低温側の加熱温度域で起こってしまうばかりか、歪時効と思われる時効により降伏伸びが発生してYR(降伏比)が劣化してしまう。
【0009】
これら特性に違いが出た理由の詳細は明らかでないが、短時間加熱の故に、造管歪や転位の緩和および組織変化と、侵入型固溶元素および置換型固溶元素の拡散などの時差が複雑に関係しあい、このような特性変化になったものと思われる。また、これら熱処理材の耐水素割れ特性を調査した結果、造管歪緩和などにより造管まま材よりも向上していることも判った。
【0010】
本発明は、以上のような知見に基づいてなされたもので、その要旨とするところは、質量% で、C:0.01〜0.10% 、Si:0.05〜0.5%、Mn:0.5 〜2.0%、P:0.03% 以下、S:0.005%以下、Al:0.005 〜0.050%、N:0.0050% 以下、O:0.0030% 以下を含み、かつNb:0.005 〜0.1%、V:0.005 〜0.1%、Ti:0.005 〜0.1%、Mo:0.05〜0.5%、B:0.0001〜0.0030% 、Ca:0.0005〜0.0060% の1 種または2 種以上を含み、残部Feおよび不可避的不純物からなる鋼素材を、1100℃以上に加熱し、Ar3 点以上の未再結晶域での圧下率が50% 以上になる熱間圧延を行い、600 ℃以下で巻き取ってコイルとした後、電縫鋼管プロセスにて鋼管とし、続いてこの鋼管を高周波加熱にて連続的に3℃/s以上の加熱速度で650 ℃以上850 ℃以下でかつAc1 点以上ではγ分率が20% 以下となる温度へ加熱し、60s 以下の保持の後、冷却速度5〜30℃/sの冷却を施すことを特徴とする耐水素割れ特性および靭性に優れる高強度ラインパイプ用電縫鋼管の製造方法にある。
【0011】
本発明では、前記鋼素材がさらに、質量% で、Ni:0.05〜1.0%、Cu:0.05〜1.0%、Cr:0.05〜1.0%の1 種または2 種以上を含むものであってもよい。
【0012】
【発明の実施の形態】
まず、本発明における鋼成分組成の限定理由を以下に述べる。
C:0.01〜0.10%
Cは強度確保のために0.01% 以上含有することが必要であり、一方で0.10% を超えると耐水素割れ特性および靭性が共に低下するため0.10%以下とする。API X60以上の高強度化と耐水素割れ特性および靭性をバランス良く達成させるためには、特に0.025 〜0.07% とすることが好ましい。
【0013】
Si:0.05〜0.5%
Siは脱酸剤および強度確保元素として最低0.05% を必要とするが、過剰に添加するとHAZ(溶接熱影響部)靭性を低下させ、溶接上好ましくないため上限は0.5%とした。
Mn:0.5 〜2.0%
Mnは高強度化のために必要な元素であり0.5%以上を添加するが、一方2.0%を超えると母材靭性が劣化するばかりか、硬質偏析相を形成して耐水素割れ特性を著しく劣化するため0.5 〜2.0%の範囲に限定する。特に優れた耐水素割れ性とするためには1.2%以下とすることが好ましい。
【0014】
P:0.03% 以下
Pは粒界に偏析して粒界強度を低下させる元素であり、母材および溶接部の靭性を低下させるため、粒界割れ防止のために0.03% を上限とした。特に高靭性を必要とする場合には、0.015%以下とすることが好ましい。
S:0.005%以下
SはMnS などの硫化物として鋼中に存在し、耐水素割れ特性および靭性を著しく劣化させる元素で、その影響を抑制するためには0.005%以下、好ましくは0.003%以下、にする必要がある。
【0015】
Al:0.005 〜0.050%
Alは脱酸およびN固定のために必要であり、0.005%以上添加する必要がある。一方、0.050%を超えるとアルミナ系介在物が増え、耐水素割れ特性および靭性を損なうため0.050%を上限とした。
N:0.0050% 以下
Nは0.0050% を超えて存在すると、粗大な窒化物を形成して耐水素割れ特性および靭性を劣化させるため0.0050% 以下とした。
【0016】
O:0.0030% 以下
Oは介在物として存在し、凝集粗大化した場合は水素割れの起点として働くため極力少ない方が好ましいが、0.0030% 以下であれば凝集粗大化しにくくなるため0.0030% 以下とした。特に優れた耐水素割れ特性を必要とする場合には、0.0020% 以下とすることが好ましい。
【0017】
さらに本発明では、以下の成分を耐水素割れ特性向上や靭性向上、強度上昇を目的に1種または2種以上添加する。
Nb:0.005 〜0.1%
Nbは微細な炭窒化物を形成し強度を増加させ、また熱間制御圧延の歪蓄積に有利に働き組織微細化により靭性も向上させる。しかし、0.005%未満ではその効果はなく、0.1%を超えると溶接部靭性に好ましくない影響があるため0.005 〜0.1%に限定する。
【0018】
V:0.005 〜0.1%
VはNbとほぼ同じ効果をもつ元素であるが、Nbに比べて析出硬化能はやや劣る。0.005%未満では硬化能に乏しく、0.1%を超えると溶接部靭性劣化を招くため、0.005 〜0.1%とする。
Ti:0.005 〜0.1%
Tiは強い窒化物形成元素であり、N当量である(N%×(48/14) )程度の添加でN時効を抑制する。またさらに添加することで微細な炭化物を形成して強度を増加させ、Bが鋼中NによりBNとして析出固定されるが、その効果が抑制されないように添加する。0.005%未満では効果なく、とくに(N%×(48/14) )以上添加するのが好ましい。一方、0.1%を超えて添加すると、粗大な窒化物を形成しやすくなり靭性を劣化するため0.1%以下とする。
【0019】
Mo:0.05〜0.5%
Moは固溶しあるいは炭化物を形成して大きな靭性劣化を伴わずに強度を上昇する効果があるが、1.0%を超えるとその効果が飽和してくるばかりか、高価となるので1.0%以下の範囲で添加しても良い。なお強度上昇効果を発揮するためには0.05% 以上添加することが好ましい。
【0020】
B:0.0001〜0.0030%
BはNbと同様に圧延材の組織制御に重要であり、その効果を発揮するには0.0001% 以上の添加が必要である。とくにNbと併用して添加すると相乗効果を示す。また粒界強化元素として粒界割れを抑制して靭性向上に寄与する。一方、過剰に添加してもその効果は飽和するばかりか、溶接部靭性を劣化するので0.0030% を上限とする。
【0021】
Ca:0.0005〜0.0060%
Caは水素割れの起点となる介在物の形態を球状に制御することを目的に添加するが、その効果を発揮するには0.0005% 以上必要で、一方0.0060% を超えるとその効果は飽和するばかりか、粗大介在物を形成するので、0.0005〜0.0060% の範囲とする。
【0022】
さらに本発明では、強度上昇を主目的として以下の元素を1種または2種以上添加することも可能である。
Ni:0.05〜1.0%
Niは強度、靭性を向上させるに有効な元素である。またCuを添加した場合には圧延時のCu割れを防止するにも有効であるが、高価である上、過剰に添加してもその効果が飽和するため0.05〜1.0%の範囲に限定する。特にCu割れの観点からは(Cu% ×0.3 )以上添加するのが好ましい。
【0023】
Cu:0.05〜1.0%
Cuは強度、耐水素割れ特性を向上させるために添加するが、その効果を発揮するには0.05% 以上添加する必要があり、一方1.0%を超えると熱間脆化を引き起こしやすく、また靭性も低下するので0.05〜1.0%の範囲とする。
Cr:0.05〜1.0%
Crは強度上昇に有効であるが過剰に添加すると靭性を低下するため1.0%以下の範囲で添加しても良い。ただし0.05% 未満ではその効果を発揮しないため0.05% 以上添加することが好ましい。
【0024】
次に、工程条件の限定理由を以下に述べる。
まず製鋼法については、常法に従って行なえばよく、それらの条件は特に限定されないが、介在物の浮上処理や凝集抑制などの低減対策をとることが好ましい。また鋳造時の鍛圧や均熱保持炉により、中心偏析の低減を図っても良い。
圧延については、本発明の特徴である耐水素割れ特性向上や靭性向上のためには、圧延前に炭化物を固溶させるべく1100℃以上の加熱が必要であり、再結晶域での圧延は常法によればよいが、制御圧延として圧延仕上温度をAr3 点以上とする圧下率50% 以上の未再結晶域圧延を必要とする。このとき鋳造後の鋳片を1100℃未満に冷却することなく引き続いて圧延するか、もしくは1100℃から常温までの冷却途上から1100℃以上に加熱− 均熱後に圧延しても、本発明の特徴を損なうことはない。
【0025】
さらに制御圧延の効果を有効に発揮すべく圧延後に600 ℃以下の巻取温度でコイル化する必要がある。このとき、圧延終了から巻取り開始までの冷却方法および冷却速度は特に限定されないが、10℃/s以上の冷却速度を確保することが靭性向上に好ましく、組織の単相化が図れて耐水素割れ特性向上も期待できる。
得られた熱延コイルを常法の電縫鋼管プロセスに従い鋼管とするが、このときに必然的に生じる造管ひずみのため、熱延コイル特性に対して大きく耐水素割れ特性や靭性が劣化する。これを抑制するために、造管ひずみを低減する造管方法(例えば、CBR法など)を用いてもかまわない。
【0026】
造管された鋼管はそのライン内で連続もしくは然るべき後に、本発明の特徴である短時間加熱‐冷却処理を行なう。加熱速度はひずみ緩和と侵入型固溶元素および置換型固溶元素拡散による組織変化などの時差を有効に活用すべく、3℃/s以上の加熱速度を必要とする。高速加熱を実施するために必然的に高周波加熱が必要となる。この平均加熱速度で特性改善を目的に650 ℃以上、850 ℃以下に60s以内の均熱時間で加熱する。650 ℃未満では靭性の向上が得られないばかりかYRの劣化が起こりAPI規格を満たすことができない。一方、850 ℃超では強度が低下してしまうため、上限を850 ℃とする。ただし、850 ℃がAc1 点以上の場合は、加熱時のγ(オーステナイト)分率が体積率で20% 以下となる温度を上限とする。これは、γ分率が20% 超では、その後の急冷により著しく靭性が劣化するためγ分率20% 以下の温度を上限とした。高周波による加熱の方法は特に問わないが、生産性の観点から外面よりの一方向加熱でも良い。この場合、高速加熱ゆえに加熱時に鋼管の内外面に必然的に温度差を生じるが、冷却開始時には温度差が50℃以内であることが材料特性上好ましい。
【0027】
加熱後の鋼管は5〜30℃/sの冷却速度で冷却する必要がある。冷却速度が5℃/s未満では強度の低下とYRの上昇が起こるばかりか、靭性の向上代も小さい。また冷却速度30℃/s超の冷却は設備的に多大な費用を必要とし、また均一冷却も困難であるため30℃/sを上限とした。
また、本発明によって得られるラインパイプは、施工のためのメッキ処理など、通常行なわれる表面改質などを施しても、その特徴を損ねることはないのでかまわない。
【0028】
【実施例】
表1に示す成分組成になる鋼スラブを表2に示す加熱‐圧延‐冷却‐巻取り条件で熱間圧延し、得られた熱延コイルを素材として電縫鋼管プロセスにより鋼管を造管し、造管ままの鋼管、および造管後に表3に示す条件で熱処理を施した鋼管について、下記の試験要領によりYS(降伏強度)、TS(引張強度)、YR(降伏比=YS/TS )、DWTT85%FATT (DWTT85% 延性破面遷移温度)、CLR(耐水素割れ特性指標である割れ長さ率)を測定した。
【0029】
YS,TS,YR:API 5Lによる試験方法にて測定
DWTT85%FATT :API RP 5L3による試験方法にて測定
CLR:NACE TM−02−84に従い実施
試験溶液:SolutionA(0.5%酢酸+5%NaCl水溶液、pH2.7 ±0.1 )
ガス:100%H
試験温度:25℃± 3℃
試験時間:96時間
結果を表3に示す。
【0030】
【表1】

Figure 2004115871
【0031】
【表2】
Figure 2004115871
【0032】
【表3】
Figure 2004115871
【0033】
【表4】
Figure 2004115871
【0034】
本発明要件を満たす製造方法で製造された鋼管(発明例)はいずれも、APIX60〜X80の要求強度特性を満たしながら、優れた耐水素割れ特性および靭性を示した。
【0035】
【発明の効果】
本発明によれば、造管前の均一微細な熱延鋼板組織を有効に活用しつつ、造管時の材質劣化の問題を容易に解決しうる耐水素割れ特性および靭性に優れる高強度ラインパイプ用電縫鋼管が得られるという優れた効果を奏する。
【図面の簡単な説明】
【図1】電縫溶接後の熱処理条件と強度、靭性の関係の例を示すグラフである。
【図2】熱処理条件の例を示す温度パターン図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a high-strength ERW steel pipe for line pipes having excellent hydrogen cracking resistance and toughness, and more particularly, to an ERW steel pipe for high-strength line pipes having a thickness of 25 mm or less and an API X60 class or higher. The present invention relates to a method for producing an electric resistance welded steel pipe for a high-strength line pipe having excellent hydrogen cracking resistance and toughness capable of efficiently imparting hydrogen cracking resistance and low-temperature toughness.
[0002]
[Prior art]
In general, ERW steel pipe is inferior in hydrogen cracking resistance and low-temperature toughness even if the same material is used due to the difference in pipe making method compared to UO steel pipe. In this case, it is necessary to use a material having better properties, which is disadvantageous.
[0003]
As a technique to solve this disadvantage by subjecting the ERW pipe to heat treatment, in order to simultaneously provide the ERW pipe with sour resistance, low temperature toughness, and a low yield ratio, the entire ERW pipe is heated at 800 ° C or higher. A method of heating and then quenching a steel pipe has been proposed (see Patent Document 1). In this method, the component composition is C ≦ 0.12%, Mn: 0.5 to 1.4%, Si: 0.10 to 0.25%, P ≦ 0.015%, S ≦ 0.0020%, Ca: the electric resistance welded steel pipe of low carbon steel in the 0.0010 to 0.0060% in the range, and the austenitic state of the above a 3 transformation point or higher 800 ° C., to remove the cold distortion, it then quenching , An acicular ferrite or a low carbon bainite structure, and no tempering is performed.
[0004]
[Patent Document 1]
Japanese Patent Publication No. 6-63040
[Problems to be solved by the invention]
However, the method of Patent Document 1 Shosai, since the entire electric resistance welded steel pipe austenitic state more than 3 transformation point or higher 800 ° C. A, controlled rolling - the pipe-making before steel tissue much trouble miniaturized by controlled cooling There is a problem that it cannot be used at all. In general, atmosphere furnace heating (so-called batch heating) is used to heat the entire tube. However, in batch heating, the temperature in the furnace varies depending on the location, and the entire tube is heated to a uniform temperature. Therefore, there is a problem that it is difficult to control the structure uniformly and finely.
[0006]
The present invention has been made in view of the above-mentioned problems of the prior art, and effectively utilizes a uniform fine hot-rolled steel sheet structure before pipe forming, and can easily solve the problem of material deterioration during pipe forming. An object of the present invention is to provide a method of manufacturing an electric resistance welded steel pipe for a high-strength line pipe having excellent cracking characteristics and toughness.
[0007]
[Means for Solving the Problems]
The present inventors can achieve the above object by rapidly heating, short-time holding, and rapidly cooling an as-formed ERW steel pipe having the same steel component composition as the UO steel pipe to a temperature range around Ac 1 point. I wondered if there were any, and conducted the following experiment.
C: 0.05%, Si: 0.25%, Mn: 1.2%, P: 0.009%, S: 0.002%, Al: 0.033%, Nb: 0.045%, Ti : A slab having a steel composition of 0.009%, N: 0.036%, O: 0.0018%, and Ca: 0.0022% was heated to 1200 ° C, and then 70% It was rolled in the recrystallization zone and wound at 570 ° C. to form a hot-rolled coil. Using this hot-rolled coil as a material, an ERW steel pipe having an outer diameter of 24 inch (× 25.4 mm / inch) × 12.7 mm in thickness is formed, and subjected to three types of heat treatment shown in FIG. , Low temperature toughness). Short-time heating was performed by high-frequency induction heating from the outer surface, and the temperature of the outer surface of the steel pipe was measured to be the heating temperature.
[0008]
FIG. 1 shows the mechanical properties of the steel pipe after the heat treatment. As is clear from FIG. 1, the characteristics of the short-time heating were clearly different from those of the relatively long-time heating by the batch heat treatment using the atmosphere furnace. That is, the short-time heating-water cooling (: A) does not significantly change the strength even when heated to a temperature range in which the strength is normally reduced (C: batch heat treatment), and the low-temperature toughness due to pipe-forming strain. It has been found that a considerable improvement in toughness can be obtained to compensate for the deterioration. On the other hand, if cooling is performed by air cooling even after heating for a short period of time (: B), not only does the strength decrease occur in the heating temperature range on the relatively low temperature side, but yield elongation occurs due to aging considered to be strain aging. As a result, YR (yield ratio) deteriorates.
[0009]
It is not clear why these properties differed, but because of the short heating time, the difference in time between tube forming strain, relaxation of dislocations and structural change, and diffusion of interstitial solid solution elements and substitutional solid solution elements. It seems that such changes in characteristics were complicatedly related. In addition, as a result of investigating the hydrogen cracking resistance of these heat-treated materials, it was found that pipe-forming strains were improved as compared with the as-tube-formed materials due to relaxation of pipe-forming distortion.
[0010]
The present invention has been made based on the above findings, and the gist of the present invention is as follows: C: 0.01 to 0.10%; Si: 0.05 to 0.5%; Mn: 0.5 to 2.0%, P: 0.03% or less, S: 0.005% or less, Al: 0.005 to 0.050%, N: 0.0050% or less, O: 0. 0030% or less, and Nb: 0.005 to 0.1%, V: 0.005 to 0.1%, Ti: 0.005 to 0.1%, Mo: 0.05 to 0.5% , B: 0.0001% to 0.0030%, Ca: 0.0005% to 0.0060%, a steel material containing at least one of Fe and inevitable impurities is heated to 1100 ° C. or more. performs hot rolling reduction rate at the pre-recrystallization region at least the Ar 3 point is 50% or more, coiled at 600 ° C. or less After the coil I, a steel pipe by electric resistance welded steel pipe process, followed by the steel pipe at a high frequency heating continuously 3 ° C. / s or more in the heating rate of 650 ° C. or higher 850 ° C. or less and Ac 1 point or more A high-strength line pipe excellent in hydrogen cracking resistance and toughness characterized by heating to a temperature at which the γ fraction becomes 20% or less, holding the same for 60 s or less, and then cooling at a cooling rate of 5 to 30 ° C./s. Manufacturing method of electric resistance welded steel pipe.
[0011]
In the present invention, the steel material may further include one or more of Ni: 0.05 to 1.0%, Cu: 0.05 to 1.0%, and Cr: 0.05 to 1.0% by mass%. It may contain two or more types.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
First, the reasons for limiting the steel composition in the present invention will be described below.
C: 0.01 to 0.10%
C must be contained in an amount of 0.01% or more to secure the strength. On the other hand, if it exceeds 0.10%, both the hydrogen cracking resistance and the toughness are reduced, so the content of C is 0.10% or less. In order to achieve a high balance of API X60 or higher and a good balance of hydrogen cracking resistance and toughness, the content is particularly preferably 0.025 to 0.07%.
[0013]
Si: 0.05-0.5%
Si requires at least 0.05% as a deoxidizing agent and a strength securing element. However, excessive addition lowers the HAZ (welding heat affected zone) toughness and is not preferable for welding, so the upper limit is set to 0.5%. .
Mn: 0.5 to 2.0%
Mn is an element necessary for increasing the strength, and 0.5% or more is added. On the other hand, if it exceeds 2.0%, not only the base material toughness is deteriorated, but also a hard segregated phase is formed to prevent hydrogen cracking. Since the characteristics are significantly deteriorated, the content is limited to the range of 0.5 to 2.0%. In order to obtain particularly excellent hydrogen cracking resistance, the content is preferably 1.2% or less.
[0014]
P: 0.03% or less P is an element that segregates at the grain boundary and lowers the grain boundary strength, and lowers the toughness of the base metal and the welded portion. And In particular, when high toughness is required, the content is preferably 0.015% or less.
S: 0.005% or less S is an element that exists in steel as a sulfide such as MnS and significantly deteriorates hydrogen cracking resistance and toughness. To suppress the effect, 0.005% or less, preferably Must be 0.003% or less.
[0015]
Al: 0.005 to 0.050%
Al is necessary for deoxidation and N fixation, and it is necessary to add 0.005% or more. On the other hand, if the content exceeds 0.050%, alumina-based inclusions increase and the hydrogen cracking resistance and toughness are impaired, so 0.050% was made the upper limit.
N: 0.0050% or less If N exceeds 0.0050%, coarse nitrides are formed to deteriorate the hydrogen cracking resistance and toughness.
[0016]
O: 0.0030% or less O is present as an inclusion, and when it is coagulated and coarsened, it acts as a starting point for hydrogen cracking, so that it is preferably as small as possible. .0030% or less. When particularly excellent hydrogen cracking resistance is required, the content is preferably 0.0020% or less.
[0017]
Further, in the present invention, one or more of the following components are added for the purpose of improving hydrogen cracking resistance, improving toughness, and increasing strength.
Nb: 0.005 to 0.1%
Nb forms fine carbonitrides and increases strength, and also works favorably in strain accumulation in hot controlled rolling to improve toughness by making the structure finer. However, if the content is less than 0.005%, there is no effect, and if it exceeds 0.1%, the toughness of the weld is unfavorably affected, so that the content is limited to 0.005 to 0.1%.
[0018]
V: 0.005 to 0.1%
V is an element having almost the same effect as Nb, but has a slightly lower precipitation hardening ability than Nb. If it is less than 0.005%, the hardening ability is poor, and if it exceeds 0.1%, the toughness of the weld is deteriorated, so the content is made 0.005 to 0.1%.
Ti: 0.005 to 0.1%
Ti is a strong nitride-forming element, and suppresses N aging by the addition of N equivalent (N% × (48/14)). Further, further addition forms fine carbides to increase the strength, and B is precipitated and fixed as BN by N in the steel, but is added so that its effect is not suppressed. If it is less than 0.005%, there is no effect, and it is particularly preferable to add (N% × (48/14)) or more. On the other hand, if added in excess of 0.1%, coarse nitrides are likely to be formed and the toughness is deteriorated.
[0019]
Mo: 0.05-0.5%
Mo has the effect of increasing the strength without causing significant toughness degradation by forming a solid solution or forming carbides. However, if it exceeds 1.0%, the effect is not only saturated but also becomes expensive. You may add in the range of 0% or less. In order to exhibit the strength increasing effect, it is preferable to add 0.05% or more.
[0020]
B: 0.0001 to 0.0030%
B, like Nb, is important for controlling the structure of the rolled material, and its effect requires the addition of 0.0001% or more. In particular, when added in combination with Nb, a synergistic effect is exhibited. Further, as a grain boundary strengthening element, it suppresses grain boundary cracking and contributes to improvement in toughness. On the other hand, even if it is added excessively, the effect is not only saturated, but also the toughness of the weld is deteriorated, so the upper limit is 0.0030%.
[0021]
Ca: 0.0005 to 0.0060%
Ca is added for the purpose of controlling the shape of the inclusions that are the starting points of hydrogen cracking into a sphere, but 0.0005% or more is required to exhibit its effect. Is not only saturated, but also forms coarse inclusions, so the content is made 0.0005 to 0.0060%.
[0022]
Further, in the present invention, one or more of the following elements can be added for the purpose of increasing strength.
Ni: 0.05 to 1.0%
Ni is an element effective for improving strength and toughness. When Cu is added, it is effective in preventing Cu cracking during rolling, but it is expensive, and even if it is added excessively, its effect is saturated, so that it is in the range of 0.05 to 1.0%. Limited to. Particularly, from the viewpoint of Cu cracking, it is preferable to add (Cu% × 0.3) or more.
[0023]
Cu: 0.05-1.0%
Cu is added to improve the strength and the resistance to hydrogen cracking, but it is necessary to add 0.05% or more in order to exert its effects. On the other hand, if it exceeds 1.0%, hot embrittlement is likely to occur. Also, the toughness is reduced, so that the content is in the range of 0.05 to 1.0%.
Cr: 0.05-1.0%
Cr is effective in increasing the strength, but if added excessively, it reduces the toughness, so Cr may be added in a range of 1.0% or less. However, if the content is less than 0.05%, the effect is not exhibited, so it is preferable to add 0.05% or more.
[0024]
Next, the reasons for limiting the process conditions will be described below.
First, the steelmaking method may be performed according to a conventional method, and the conditions thereof are not particularly limited. However, it is preferable to take measures to reduce inclusions such as levitation treatment and aggregation suppression. The center segregation may be reduced by a forging pressure during casting or a soaking furnace.
Regarding rolling, in order to improve the hydrogen cracking resistance and toughness, which are the features of the present invention, heating at 1100 ° C. or more is required before solidifying the carbide before rolling. According to the method, non-recrystallization zone rolling at a rolling reduction temperature of 50% or more with a rolling finish temperature of 3 points or more is required as controlled rolling. At this time, even if the cast slab is continuously rolled without cooling to less than 1100 ° C., or is heated to 1100 ° C. or more while cooling from 1100 ° C. to room temperature, and then rolled after soaking, it is a feature of the present invention. Does not impair.
[0025]
Further, in order to effectively exert the effect of controlled rolling, it is necessary to form a coil at a winding temperature of 600 ° C. or less after rolling. At this time, the cooling method and the cooling rate from the end of rolling to the start of winding are not particularly limited, but it is preferable to secure a cooling rate of 10 ° C./s or more for improving toughness. An improvement in cracking characteristics can also be expected.
The obtained hot-rolled coil is made into a steel pipe in accordance with the conventional electric-resistance-welded steel pipe process. At this time, the pipe-forming strain inevitably occurs. . In order to suppress this, a pipe forming method (for example, a CBR method) that reduces pipe forming strain may be used.
[0026]
The formed steel pipe is subjected to a short-time heating-cooling process which is a feature of the present invention, continuously or after appropriate in the line. The heating rate requires a heating rate of 3 ° C./s or more in order to effectively utilize a time difference such as a structural change due to strain relaxation and diffusion of interstitial solid solution elements and substitutional solid solution elements. In order to perform high-speed heating, high-frequency heating is inevitably required. At this average heating rate, heating is performed at 650 ° C. or more and 850 ° C. or less for 60 seconds or less for the purpose of improving the characteristics. If the temperature is lower than 650 ° C., not only the improvement of toughness cannot be obtained, but also the deterioration of YR occurs and the API standard cannot be satisfied. On the other hand, if the temperature exceeds 850 ° C., the strength is reduced, so the upper limit is set to 850 ° C. However, when 850 ° C. is one point or more of Ac, the upper limit is the temperature at which the γ (austenite) fraction during heating becomes 20% or less by volume. When the γ fraction exceeds 20%, the toughness is significantly deteriorated by rapid quenching, so that the temperature at which the γ fraction is 20% or less is set as the upper limit. The method of heating by high frequency is not particularly limited, but unidirectional heating from the outer surface may be used from the viewpoint of productivity. In this case, a temperature difference is inevitably generated between the inner and outer surfaces of the steel pipe at the time of heating due to the high-speed heating.
[0027]
The steel pipe after heating needs to be cooled at a cooling rate of 5 to 30 ° C./s. If the cooling rate is less than 5 ° C./s, not only does the strength decrease and the YR increase, but also the improvement in toughness is small. Cooling at a cooling rate of more than 30 ° C./s requires enormous costs in terms of equipment, and uniform cooling is difficult, so the upper limit was set at 30 ° C./s.
Further, the line pipe obtained by the present invention may be subjected to a surface modification or the like which is usually performed, such as a plating process for construction, since its characteristics are not impaired.
[0028]
【Example】
A steel slab having the composition shown in Table 1 was hot-rolled under the heating-rolling-cooling-winding conditions shown in Table 2, and a steel pipe was formed by an electric resistance steel pipe process using the obtained hot-rolled coil as a material. For the as-cast steel pipe and the steel pipe that was heat-treated under the conditions shown in Table 3 after the pipe formation, YS (yield strength), TS (tensile strength), YR (yield ratio = YS / TS), DWTT 85% FATT (DWTT 85% ductile fracture transition temperature) and CLR (crack length ratio which is an index of hydrogen crack resistance characteristics) were measured.
[0029]
YS, TS, YR: Measured by the test method using API 5L DWTT 85% FATT: Measured by the test method using API RP 5L3 CLR: Performed according to NACE TM-02-84 Test solution: Solution A (0.5% acetic acid + 5% NaCl) Aqueous solution, pH 2.7 ± 0.1)
Gas: 100% H 2 S
Test temperature: 25 ° C ± 3 ° C
Test time: 96 hours The results are shown in Table 3.
[0030]
[Table 1]
Figure 2004115871
[0031]
[Table 2]
Figure 2004115871
[0032]
[Table 3]
Figure 2004115871
[0033]
[Table 4]
Figure 2004115871
[0034]
Each of the steel pipes (inventive examples) manufactured by the manufacturing method satisfying the requirements of the present invention exhibited excellent hydrogen cracking resistance and toughness while satisfying the required strength characteristics of APIX60 to X80.
[0035]
【The invention's effect】
Advantageous Effects of Invention According to the present invention, a high-strength line pipe excellent in hydrogen cracking resistance and toughness capable of easily solving the problem of material deterioration during pipe forming while effectively utilizing the uniform fine hot-rolled steel sheet structure before pipe forming. It has an excellent effect that an electric resistance welded steel pipe can be obtained.
[Brief description of the drawings]
FIG. 1 is a graph showing an example of a relationship between heat treatment conditions after electric resistance welding, strength, and toughness.
FIG. 2 is a temperature pattern diagram showing an example of a heat treatment condition.

Claims (2)

質量% で、
C:0.01〜0.10% 、Si:0.05〜0.5%、Mn:0.5 〜2.0%、P:0.03% 以下、S:0.005%以下、Al:0.005 〜0.050%、N:0.0050% 以下、O:0.0030% 以下
を含み、かつ
Nb:0.005 〜0.1%、V:0.005 〜0.1%、Ti:0.005 〜0.1%、Mo:0.05〜0.5%、B:0.0001〜0.0030% 、Ca:0.0005〜0.0060%
の1種または2種以上を含み、残部Feおよび不可避的不純物からなる鋼素材を、1100℃以上に加熱し、Ar3 点以上の未再結晶域での圧下率が50% 以上になる熱間圧延を行い、600 ℃以下で巻き取ってコイルとした後、電縫鋼管プロセスにて鋼管とし、続いてこの鋼管を高周波加熱にて連続的に3℃/s以上の加熱速度で650 ℃以上850 ℃以下でかつAc1 点以上ではγ分率が20% 以下となる温度へ加熱し、60s 以下の保持の後、冷却速度5〜30℃/sの冷却を施すことを特徴とする耐水素割れ特性および靭性に優れる高強度ラインパイプ用電縫鋼管の製造方法。
Mass%
C: 0.01 to 0.10%, Si: 0.05 to 0.5%, Mn: 0.5 to 2.0%, P: 0.03% or less, S: 0.005% or less, Al : 0.005 to 0.050%, N: 0.0050% or less, O: 0.0030% or less, Nb: 0.005 to 0.1%, V: 0.005 to 0.1% , Ti: 0.005 to 0.1%, Mo: 0.05 to 0.5%, B: 0.0001 to 0.0030%, Ca: 0.0005 to 0.0060%
A steel material containing one or more of the following, with the balance being Fe and unavoidable impurities, is heated to 1100 ° C. or more, and the reduction ratio in the unrecrystallized region of Ar 3 points or more becomes 50% or more. After rolling and winding at 600 ° C. or less to form a coil, a steel pipe is formed by an electric resistance welded steel pipe process. Subsequently, the steel pipe is continuously heated by high frequency heating at a heating rate of 3 ° C./s or more to 650 ° C. to 850 ° C. C. or less and at one or more Ac, heating to a temperature at which the γ fraction is 20% or less, holding at 60 s or less, and then cooling at a cooling rate of 5 to 30 ° C./s. A method for manufacturing an electric resistance welded steel pipe for a high-strength line pipe having excellent properties and toughness.
前記鋼素材がさらに、質量% で、
Ni:0.05〜1.0%、Cu:0.05〜1.0%、Cr:0.05〜1.0%
の1種または2種以上を含むことを特徴とする耐水素割れ特性および靭性に優れる請求項1記載の高強度ラインパイプ用電縫鋼管の製造方法。
The steel material further comprises
Ni: 0.05 to 1.0%, Cu: 0.05 to 1.0%, Cr: 0.05 to 1.0%
The method for producing an electric resistance welded steel pipe for a high-strength line pipe according to claim 1, which comprises one or more of the following, and is excellent in hydrogen cracking resistance and toughness.
JP2002281537A 2002-09-26 2002-09-26 Manufacturing method of ERW steel pipe for high-strength line pipe with excellent hydrogen cracking resistance and toughness Expired - Lifetime JP3823906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002281537A JP3823906B2 (en) 2002-09-26 2002-09-26 Manufacturing method of ERW steel pipe for high-strength line pipe with excellent hydrogen cracking resistance and toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002281537A JP3823906B2 (en) 2002-09-26 2002-09-26 Manufacturing method of ERW steel pipe for high-strength line pipe with excellent hydrogen cracking resistance and toughness

Publications (2)

Publication Number Publication Date
JP2004115871A true JP2004115871A (en) 2004-04-15
JP3823906B2 JP3823906B2 (en) 2006-09-20

Family

ID=32275961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002281537A Expired - Lifetime JP3823906B2 (en) 2002-09-26 2002-09-26 Manufacturing method of ERW steel pipe for high-strength line pipe with excellent hydrogen cracking resistance and toughness

Country Status (1)

Country Link
JP (1) JP3823906B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009324A (en) * 2005-05-30 2007-01-18 Jfe Steel Kk High strength steel product excellent in delayed fracture resistance and method for production thereof
JP2007307566A (en) * 2006-05-16 2007-11-29 Jfe Steel Kk Method for producing electric resistance welded tube for high-strength thick line pipe having excellent weld zone toughness
JP2012167336A (en) * 2011-02-15 2012-09-06 Sumitomo Metal Ind Ltd Steel sheet for high-strength steel pipe and high-strength steel pipe
JP2012172256A (en) * 2011-02-24 2012-09-10 Jfe Steel Corp Low yield ratio high strength hot rolled steel sheet having excellent low temperature toughness and method for manufacturing the same
WO2014002423A1 (en) * 2012-06-28 2014-01-03 Jfeスチール株式会社 High-strength electric-resistance-welded steel pipe of excellent long-term softening resistance in intermediate temperature ranges, and method for producing same
RU2667943C1 (en) * 2015-03-06 2018-09-25 ДжФЕ СТИЛ КОРПОРЕЙШН High test steel pipe produced by electrical welding by resistance method and method of manufacturing thereof
CN109023091A (en) * 2018-09-10 2018-12-18 武汉科技大学 A kind of good hot rolling ultra-high strength steel plate of processability and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2747083C1 (en) * 2020-11-02 2021-04-26 Акционерное Общество "Выксунский металлургический завод" (АО ВМЗ") Method for production of electro-welded pipe made of low-carbon steel, resistant to hydrogen cracking (options)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104623A (en) * 1980-12-19 1982-06-29 Nippon Kokan Kk <Nkk> Manufacture of high strength and high toughness steel pipe of large diameter
JPH04168218A (en) * 1990-10-30 1992-06-16 Nippon Steel Corp Manufacture of steel tube excellent in earthquake resistance, fire resistance and low temperature toughness
JPH1017981A (en) * 1996-06-28 1998-01-20 Nippon Steel Corp High tensile strength steel material with low yield ratio for construction use, excellent in brittle crack arrest property, and its production
JPH10265848A (en) * 1997-03-27 1998-10-06 Nkk Corp Production of high strength hot rolled steel plate excellent in low temp. toughness

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104623A (en) * 1980-12-19 1982-06-29 Nippon Kokan Kk <Nkk> Manufacture of high strength and high toughness steel pipe of large diameter
JPH04168218A (en) * 1990-10-30 1992-06-16 Nippon Steel Corp Manufacture of steel tube excellent in earthquake resistance, fire resistance and low temperature toughness
JPH1017981A (en) * 1996-06-28 1998-01-20 Nippon Steel Corp High tensile strength steel material with low yield ratio for construction use, excellent in brittle crack arrest property, and its production
JPH10265848A (en) * 1997-03-27 1998-10-06 Nkk Corp Production of high strength hot rolled steel plate excellent in low temp. toughness

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009324A (en) * 2005-05-30 2007-01-18 Jfe Steel Kk High strength steel product excellent in delayed fracture resistance and method for production thereof
JP2007307566A (en) * 2006-05-16 2007-11-29 Jfe Steel Kk Method for producing electric resistance welded tube for high-strength thick line pipe having excellent weld zone toughness
JP2012167336A (en) * 2011-02-15 2012-09-06 Sumitomo Metal Ind Ltd Steel sheet for high-strength steel pipe and high-strength steel pipe
JP2012172256A (en) * 2011-02-24 2012-09-10 Jfe Steel Corp Low yield ratio high strength hot rolled steel sheet having excellent low temperature toughness and method for manufacturing the same
WO2014002423A1 (en) * 2012-06-28 2014-01-03 Jfeスチール株式会社 High-strength electric-resistance-welded steel pipe of excellent long-term softening resistance in intermediate temperature ranges, and method for producing same
KR20150013861A (en) * 2012-06-28 2015-02-05 제이에프이 스틸 가부시키가이샤 High-strength electric-resistance-welded steel pipe of excellent long-term softening resistance in intermediate temperature ranges, and method for producing same
KR101663399B1 (en) 2012-06-28 2016-10-06 제이에프이 스틸 가부시키가이샤 High-strength electric-resistance-welded steel pipe of excellent long-term softening resistance in intermediate temperature ranges, and method for producing same
US9551047B2 (en) 2012-06-28 2017-01-24 Jfe Steel Corporation High-strength electric-resistance-welded steel pipe of excellent long-term softening resistance in intermediate temperature ranges
RU2667943C1 (en) * 2015-03-06 2018-09-25 ДжФЕ СТИЛ КОРПОРЕЙШН High test steel pipe produced by electrical welding by resistance method and method of manufacturing thereof
CN109023091A (en) * 2018-09-10 2018-12-18 武汉科技大学 A kind of good hot rolling ultra-high strength steel plate of processability and preparation method thereof

Also Published As

Publication number Publication date
JP3823906B2 (en) 2006-09-20

Similar Documents

Publication Publication Date Title
WO2012144248A1 (en) Electric resistance welded (erw) steel pipe for oil well use and process for producing erw steel pipe for oil well use
JP3344308B2 (en) Ultra-high-strength steel sheet for linepipe and its manufacturing method
JP3711896B2 (en) Manufacturing method of steel sheets for high-strength line pipes
JP2010070789A (en) Machine structural steel pipe having excellent fatigue characteristic and bending formability, and method of manufacturing the same
WO2013089095A1 (en) High-strength cold-rolled steel sheet having small variations in strength and ductility, and method for producing same
JP2007254797A (en) Thick electric resistance welded pipe having excellent toughness in base metal part and electric resistance weld zone and its production method
JP2004010991A (en) Method of producing ultrahigh strength cold rolled steel sheet having excellent spot weldability
JP6519024B2 (en) Method of manufacturing low yield ratio high strength hot rolled steel sheet excellent in low temperature toughness
JP4165292B2 (en) Manufacturing method of ERW steel pipe for high-strength line pipe with excellent hydrogen cracking resistance
JP7569928B2 (en) High strength thick hot rolled steel sheet with excellent elongation ratio and its manufacturing method
JP4205922B2 (en) High strength steel pipe excellent in deformation performance, low temperature toughness and HAZ toughness and method for producing the same
JP2001020039A (en) High strength hot rolled steel sheet excellent in stretch flanging property and fatigue characteristic and its production
JP3823906B2 (en) Manufacturing method of ERW steel pipe for high-strength line pipe with excellent hydrogen cracking resistance and toughness
JPH0920922A (en) Production of high toughness steel plate for low temperature use
JP4267375B2 (en) Wire material for high-strength steel wire, high-strength steel wire, and production method thereof
JPH08295934A (en) Production of high carbon electric resistance welded tube excellent in wear resistance
JP3888279B2 (en) Manufacturing method of low yield ratio electric resistance welded steel pipe and square column for construction
JP3539545B2 (en) High-tensile steel sheet excellent in burring property and method for producing the same
WO2011043287A1 (en) Steel for linepipe having good strength and malleability, and method for producing the same
JPH08319538A (en) Hot rolled steel plate excellent in toughness and having low yield ratio and high strength and its production
JP2000104116A (en) Production of steel excellent in strength and toughness
JPWO2020218244A1 (en) Hot-rolled steel strip for cold roll-formed square steel pipe and its manufacturing method, and cold roll-formed square steel pipe manufacturing method
JP3945373B2 (en) Method for producing cold-rolled steel sheet with fine grain structure and excellent fatigue characteristics
JP2005256023A (en) Method for producing high carbon steel rail excellent in ductility
JP2005232562A (en) Method for producing high tension steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060619

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4