JPH04168218A - Manufacture of steel tube excellent in earthquake resistance, fire resistance and low temperature toughness - Google Patents

Manufacture of steel tube excellent in earthquake resistance, fire resistance and low temperature toughness

Info

Publication number
JPH04168218A
JPH04168218A JP29250190A JP29250190A JPH04168218A JP H04168218 A JPH04168218 A JP H04168218A JP 29250190 A JP29250190 A JP 29250190A JP 29250190 A JP29250190 A JP 29250190A JP H04168218 A JPH04168218 A JP H04168218A
Authority
JP
Japan
Prior art keywords
steel
resistance
low
steel tube
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29250190A
Other languages
Japanese (ja)
Inventor
Yasushi Yamamoto
康士 山本
Kazumasa Yamazaki
一正 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP29250190A priority Critical patent/JPH04168218A/en
Publication of JPH04168218A publication Critical patent/JPH04168218A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To improve the low temp. toughness of a steel tube by specifying heat treating conditions for a low carbon steel pipe having a specified chemical compsn. CONSTITUTION:A low carbon steel tube contg., by weight, 0.1 to 2.5% Mo and furthermore contg. 0.010 to 0.15% Nb and 0.010 to 0.30% V is heated to Ac3-250 to Ac3-20 deg.C, is successively subjected to rapid cooling at >=15 deg.C/sec cooling rate, is thereafter provided with >=0.05% cold working strain and is furthermore tempered in the temp. range of 200 to 600 deg.C. In this way, the steel tube excellent in earthquake resistance, fire resistance and low temp. toughness can be manufactured. It is effectively utilized for the manufacture of a steel having resistance till its collapse in case of generating an eqrthquake, having strength in case of a fire without fireproofing and furthermore withstanding use in a cold district.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、構造物の製作に用いられる鋼管を対象とし、
地震発生時に倒壊までの充分な抵抗力を有し、かつ耐火
材の被覆を簡略化あるいは省略しても、火災時に充分な
強度を有し、さらに寒冷地の使用にも耐えられる、耐震
特性と耐火特性と低温靭性に優れた鋼管の製造方法に関
するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention is directed to steel pipes used for manufacturing structures,
It has seismic properties that have sufficient resistance to collapse in the event of an earthquake, sufficient strength in the event of a fire even if the fireproof coating is simplified or omitted, and that it can withstand use in cold regions. This invention relates to a method for producing steel pipes with excellent fire resistance and low-temperature toughness.

(従来の技術) 近年鉄鋼材料を扱う各分野にわたって、競争力同上のた
めの使用特性の向上、製造コストの低減など各種の要求
が高まっている。
(Prior Art) In recent years, various demands have been increasing across various fields that handle steel materials, such as improving usage characteristics and reducing manufacturing costs in order to increase competitiveness.

このうち建築分野では、構造物の安全性向上のため、特
に耐震性向上のために降伏比の低下が望まれている。こ
れまでは主に厚板分野でこの要求が強かったが、最近で
は鋼管分野でこの要求がたかまっている。低降伏比を有
する厚鋼板の製造方法に関しては、種々の方法が検討さ
れているが、残念ながら鋼管の分野では、少なくとも建
築用として検討された例はほとんどないのが現状である
。例えば電縫鋼管は、ホットコイルを成形して製造する
が、成形の際の加工硬化により降伏比が上昇するため、
降伏比の低い鋼管の製造には、不利な製造方法とされて
ぃる。例えば、低降伏比油井用電縫鋼管の製造方法とし
て、特開昭57−16118号があるが、この方法では
低降伏比化のためにC量をかなり添加しているため(C
量: 0.26〜0.48%)、溶接性の観点からC0
Q上限の規定される建築構造用には通用できない。また
同様に、低降伏比高張力電縫鋼管の製造方法として、特
開昭57−16119号があるが、これはホットコイル
の段階で極低YR鋼を製造し、電縫鋼管を製造する際の
加工硬化を押えるために、歪量をかなり制限しているが
、実操業ではかなり困難が伴う。
Among these, in the field of construction, it is desired to reduce the yield ratio in order to improve the safety of structures, especially in order to improve their seismic resistance. Until now, this requirement has been strong mainly in the thick plate field, but recently it has become stronger in the steel pipe field. Various methods have been studied for manufacturing thick steel plates with a low yield ratio, but unfortunately, in the field of steel pipes, there are currently almost no examples of such methods being studied, at least for construction purposes. For example, ERW steel pipes are manufactured by forming hot coils, but the yield ratio increases due to work hardening during forming.
It is considered to be a disadvantageous manufacturing method for manufacturing steel pipes with a low yield ratio. For example, there is a method for manufacturing ERW steel pipes for oil wells with a low yield ratio in JP-A-57-16118, but in this method a considerable amount of C is added to achieve a low yield ratio (C
Amount: 0.26-0.48%), C0 from the viewpoint of weldability
It cannot be used for architectural structures where the upper limit of Q is regulated. Similarly, there is Japanese Patent Application Laid-Open No. 57-16119 as a manufacturing method for low yield ratio, high tensile resistance welded steel pipes, but this method involves manufacturing extremely low YR steel at the hot coil stage, and then manufacturing ERW steel pipes. In order to suppress work hardening, the amount of strain is considerably limited, but this is quite difficult in actual operation.

また一方、鉄骨構造等の構造物では、火災時においても
充分な強度を保証するため、鋼材にロックウール等の被
覆を施し、鋼材の温度が350℃以上に上昇しないよう
に義務付けられていた。
On the other hand, in structures such as steel structures, in order to ensure sufficient strength even in the event of a fire, it was required that the steel be coated with rock wool or the like to prevent the temperature of the steel from rising above 350°C.

近年、建築基準法が改正され、鋼材の高温における強度
に応じ耐火被覆を簡略あるいは省略できるようになった
。即ち、鋼材が600℃のような高温において、充分な
強度(常温の規格降伏強度の2/3以上)を有する場合
、耐火被覆を省略し、裸使用が可能になると言われてい
る。
In recent years, the Building Standards Act has been revised, and fireproof coatings can now be simplified or omitted depending on the strength of the steel material at high temperatures. That is, it is said that if a steel material has sufficient strength (2/3 or more of the standard yield strength at room temperature) at a high temperature such as 600° C., it is possible to omit the fireproof coating and use it bare.

鋼材の高温の強度についてはこれまでにもよく調べられ
ており、開発材はボイラー用鋼あるいは圧力容器用鋼と
して規格化されている。また、特公昭51−15188
号のように、現在でも種々の改良・開発等が継続実施さ
れている。これらは、高温で数万あるいは数十万時間と
いフた長時間使用の場合の強度、すなわちクリープ強度
の高い鋼材である。
The high-temperature strength of steel materials has been well studied, and the developed materials have been standardized as boiler steel or pressure vessel steel. In addition, special public service No. 51-15188
As shown in the issue, various improvements and developments are still being carried out even now. These steel materials have high strength when used for long periods of time, such as tens of thousands or hundreds of thousands of hours at high temperatures, that is, they have high creep strength.

(発明が解決しようとする課題) 建築用低降伏比鋼管として、引張り強さ40キロ以上で
降伏比75%以下という要求があるが、現状の製造方法
では製造が不可能である。
(Problems to be Solved by the Invention) As a low yield ratio steel pipe for construction, there is a requirement for a tensile strength of 40 kg or more and a yield ratio of 75% or less, but it is impossible to manufacture with the current manufacturing method.

つまり、ホットコイルを丸く成形しただけで製造する非
調質型、いわゆるアズロール型では、その成形時の加工
硬化のために、また調質型いわゆるQT型では、その組
織が焼戻しマルテンサイトとなるため、降伏比75%以
下は達成されていない。
In other words, in the non-tempered type, the so-called azurol type, which is manufactured by simply forming a hot coil into a round shape, the structure is due to work hardening during forming, and in the tempered type, so-called QT type, the structure becomes tempered martensite. , a yield ratio of 75% or less has not been achieved.

さらに最近耐震構造用として、低降伏比のみならず応力
−歪曲線の形状が規定されるようになフてきている。つ
まり、第1図、第2図で示すAoの面積の“大きい方が
、より塑性伸び能力が大きく、破壊に到達しにくいとい
うわけである。この時、第2図の方がより耐震構造用と
して優れていることは明らかであるが、その際Aeは降
伏比と降伏点伸びでほぼ決定されるといえる。つまり、
耐震構造用として、低降伏比でかつ降伏点伸びを有した
鋼材が要求されはじめている。
Furthermore, recently, not only low yield ratios but also the shape of stress-strain curves have been specified for use in earthquake-resistant structures. In other words, the larger the area of Ao shown in Figures 1 and 2, the greater the plastic elongation capacity and the harder it is to reach failure. It is clear that Ae is excellent as a material, but in this case, it can be said that Ae is almost determined by the yield ratio and the elongation at yield point.In other words,
Steel materials with low yield ratio and elongation at yield point are beginning to be required for earthquake-resistant structures.

また、本発明で問題としている耐火特性は火災時の高々
数時間以内での強度であり、これまで古くから開発の対
象であった高温強度とは全く別個のものであり、鉄骨構
造等の構造物において、耐火被覆を省略する場合の重要
な特性である600℃での強度が従来鋼より著しく改善
された鋼管を提供することにある。
In addition, the fire resistance property that is the subject of the present invention is strength within a few hours at most in the event of a fire, which is completely different from high-temperature strength, which has been the subject of development for a long time. The object of the present invention is to provide a steel pipe whose strength at 600° C., which is an important property when a fireproof coating is omitted, is significantly improved compared to conventional steel.

さらに、本発明が解決しようとする課題は、この耐震特
性と耐火特性の両方を満足する鋼管を提供することであ
る。
Furthermore, the problem to be solved by the present invention is to provide a steel pipe that satisfies both earthquake resistance and fire resistance.

(課題を解決するための手段) そこて木発明者らは、降伏比を低下させるために、多数
の実験と詳細な検討を加えた結果、降伏比を低下させる
ためには、鋼のミクロ組織をフェライトと第2相の炭化
物の2相組織にする必要性を確認した。さらに、降伏比
を下げるためには、降伏点を下げ、引張り強さを高める
ことが重要であることも確認した。
(Means for Solving the Problem) The inventors conducted numerous experiments and detailed studies to reduce the yield ratio, and found that in order to reduce the yield ratio, it is necessary to It was confirmed that it is necessary to have a two-phase structure consisting of ferrite and a second phase of carbide. Furthermore, it was confirmed that in order to lower the yield ratio, it is important to lower the yield point and increase the tensile strength.

さらに降伏点伸びを有するためには、2相組織になった
鋼管に冷間で歪を付与し、フェライト中に転位を導入し
、さらにテンパー処理によって、これら導入した転位を
固溶炭素、固溶窒素でただちに固着することが必要であ
ることを確認した。
Furthermore, in order to have a yield point elongation, the steel pipe that has become a two-phase structure is cold strained to introduce dislocations into the ferrite, and then tempered to remove these introduced dislocations from solid solution carbon and solid solution. It was confirmed that it was necessary to immediately fix with nitrogen.

さらに本発明者らは、以上の知見で得られた耐震特性に
優れた鋼管に耐火特性を与えるために、多数の実験と詳
細な検討を加えた結果、合金元素として、■MoとNb
の複合添加、■藺0とVの複合添加、■MoとNbとV
の複合添加、か効果的であることを見いだした。つまり
、材料が高温にさらされた時にMoの効果で固着転位の
消滅が遅れ、逆にその転位を核としてMoとNbや、M
oと■の複合炭化物が微細に分散析出し、高温で生成し
た転位の移動を阻害するという効果である。
Furthermore, in order to impart fire resistance to steel pipes with excellent seismic resistance obtained from the above findings, the present inventors conducted numerous experiments and detailed studies, and as a result of the alloying elements, ■Mo and Nb
Combined addition of Mo, Nb and V, ■Combined addition of Mo, Nb and V
It was found that the combined addition of In other words, when the material is exposed to high temperatures, the effect of Mo delays the disappearance of stuck dislocations, and conversely, the dislocations are used as nuclei to form Mo, Nb, and M
This has the effect that composite carbides of o and - are finely dispersed and precipitated, inhibiting the movement of dislocations generated at high temperatures.

本発明は、このような知見に基き、耐震特性と耐火特性
を有する鋼管の製造を可能にしたもので、その要旨とす
るところは、重量%にて、Moを0.1%〜2.5%含
有し、かつNb: 0.010%〜0.15%、V :
 0.010%〜0.30%の1種または2種を含む低
炭素鋼鋼管を、A C3−250〜A 、、−20℃に
加熱し、引き続き15℃/sec以上の冷却速度で急冷
した後、冷間で0.05%以上の歪を付与し、さらに2
00〜600℃の温度範囲で焼戻しすることを特徴とす
る、耐震特性と耐火特性と低温靭性に優れた鋼管の製造
方法である。
Based on this knowledge, the present invention has made it possible to manufacture steel pipes with earthquake resistance and fire resistance. %, and Nb: 0.010% to 0.15%, V:
A low carbon steel pipe containing one or two types of 0.010% to 0.30% was heated to -20°C, and then rapidly cooled at a cooling rate of 15°C/sec or more. After that, a strain of 0.05% or more is applied by cold, and further 2
This is a method for producing steel pipes with excellent seismic resistance, fire resistance, and low-temperature toughness, characterized by tempering at a temperature range of 00 to 600°C.

(作   用) 本発明は、熱処理条件を特定するとともに、2相域加熱
後急冷とテンパーという2種の熱処理の間に歪付与を行
うことを特徴とするものである。先ず熱処理条件につい
て述へると、加熱温度をA C5−250〜Ac5−2
0℃とし、その後急冷することによって、パイプ成形で
の加工硬化の影響を除去しつつ、2相鋼化を達成するこ
とに成功している。
(Function) The present invention is characterized by specifying the heat treatment conditions and applying strain between two types of heat treatment: rapid cooling after heating in a two-phase region and tempering. First, let's talk about the heat treatment conditions.The heating temperature ranges from AC5-250 to Ac5-2.
By cooling the steel to 0°C and then rapidly cooling it, they succeeded in creating a duplex steel while eliminating the effects of work hardening during pipe forming.

さらに、その後冷間で歪を付与することによって、組織
(フェライト)内に転位を導入し、その後焼戻しを行う
ことにより固溶窒素、固溶炭素で転位を固着して、降伏
伸びを持たせることに成功している。
Furthermore, by applying cold strain, dislocations are introduced into the structure (ferrite), and then tempering is performed to fix the dislocations with solid solution nitrogen and solid solution carbon, giving yield elongation. has been successful in

さらに焼戻しにより、第2相部分を軟化させることによ
り、低温靭性を充分回復させることに成功しているが、
この焼戻し温度を低くすることによって、第2相の部分
を必要以上に軟化させないことの相乗的効果により、耐
震特性と耐火特性と低温靭性に優れた鋼管の製造を可能
にしたものである。
Furthermore, by softening the second phase part through tempering, we succeeded in sufficiently recovering the low-temperature toughness.
By lowering this tempering temperature, the synergistic effect of not softening the second phase part more than necessary has made it possible to manufacture steel pipes with excellent earthquake resistance, fire resistance, and low-temperature toughness.

次に本発明の鋼管製造・加熱・冷却・歪付与・テンパー
の条件について述べる。
Next, the conditions for manufacturing, heating, cooling, imparting strain, and tempering the steel pipe of the present invention will be described.

まず、鋼管の製造については、特に規定はなくどのよう
な方法でも許容される。例えは鋼管はその製造方法から
、シームレス鋼管、電縫鋼管、UO鋼管、スパイラル鋼
管、鍛接管等に分類できるが、本発明はこれらどの製造
方法でも許容される。これは、その後の熱処理での加熱
温度を加工歪が除去される温度に規定するためである。
First, there are no particular regulations regarding the manufacture of steel pipes, and any method is acceptable. For example, steel pipes can be classified into seamless steel pipes, electric resistance welded steel pipes, UO steel pipes, spiral steel pipes, forge-welded pipes, etc. according to their manufacturing methods, and the present invention is acceptable with any of these manufacturing methods. This is to set the heating temperature in the subsequent heat treatment to a temperature at which processing strain is removed.

次に加熱温度をAc3−250〜Aea−2(1℃にし
たのは、この温度範囲に加熱することによって、冷却後
の2相鋼化を達成しつつ成形歪の除去を同時に狙ったた
めである。すなわち、Act直上に加熱後急冷すると、
2相鋼化するものの、フェライトに加工歪が残存するた
めにフェライトの強度が高く、結果的に低降伏比を達成
することができない。A c I−A C3の中間より
も高温、つまりA C3−250℃より高温に加熱する
ことによって、この2相鋼化と歪除去を両立できるため
、この温度を下限とした。加熱温度を高くしていくと、
降伏比最下限を通過して今度は逆に降伏比が増加し゛て
いく。これはフェライトの面積率が減少していくためで
、AC3に近づくと降伏比が急激に増加する。これはフ
ェライトの面積率がゼロに近づくためである。このこと
から、加熱温度の上限として、A C3−20℃を設定
した。
Next, the heating temperature was set to Ac3-250 to Aea-2 (1℃) because by heating to this temperature range, we aimed to simultaneously achieve duplex steel after cooling and eliminate forming distortion. In other words, when heated immediately above Act and then rapidly cooled,
Although it is made into a dual-phase steel, the strength of the ferrite is high due to residual processing strain in the ferrite, and as a result, a low yield ratio cannot be achieved. By heating the steel to a temperature higher than the middle of AC3-AC3, that is, higher than AC3-250°C, it is possible to achieve both duplex steel formation and strain removal, so this temperature was set as the lower limit. As the heating temperature increases,
After passing the lowest limit of yield ratio, the yield ratio increases. This is because the area ratio of ferrite decreases, and as AC3 approaches, the yield ratio increases rapidly. This is because the area ratio of ferrite approaches zero. From this, the upper limit of the heating temperature was set at AC3-20°C.

A e、−250〜A C3−20℃に加熱後の急冷は
、再加熱時にオーステナイト化してCの濃化した部分を
焼入組織とすることで充分硬化さ せ、引張り強さを高め低降伏比を得るためである。急冷
が不十分だと、焼入組織が充分に硬化せず、結果として
低降伏比が得られないため、冷却速度を15℃/sec
以上に規定した。また冷却については通常は水冷である
が、冷却速度が確保できれば方法にはこだわらない。
A e, -250 ~ A C3 - Rapid cooling after heating to -20°C is austenitized during reheating, and the C-enriched area becomes a quenched structure, which hardens the area sufficiently, increasing tensile strength and achieving a low yield ratio. This is to obtain. If the rapid cooling is insufficient, the quenched structure will not harden sufficiently, resulting in a low yield ratio. Therefore, the cooling rate is set to 15°C/sec.
As stipulated above. As for cooling, water cooling is usually used, but the method does not matter as long as the cooling rate can be secured.

急冷後の冷間での歪付与については特に規定はない。通
常はサイジング処理であるが、歪さえ付与できれば方法
は問わない。また、0.05%以上というのは、長手方
向に換算した総歪て計算するものとする。
There are no particular regulations regarding the imparting of cold strain after rapid cooling. Usually, sizing processing is used, but any method is acceptable as long as distortion can be imparted. Moreover, 0.05% or more is calculated based on the total strain converted in the longitudinal direction.

焼戻しは、冷間の歪付与で導入した転位を固溶窒素、固
溶炭素て固着して、降伏伸びを持たせるのと、靭性改善
のために行う。その際焼戻し温度としては、フェライト
と第2相の炭化物の2相組織について、その前の急冷で
充分硬化した第2相部分をあまり高温で焼戻すと軟化し
すぎ、これが引張り強さの低下つまり降伏比の上昇の原
因となるため、上限を600℃とした。
Tempering is performed to fix dislocations introduced by cold straining with solid solute nitrogen and solid solute carbon, to provide yield elongation, and to improve toughness. At this time, the tempering temperature should be determined as follows: Regarding the two-phase structure of ferrite and second phase carbide, if the second phase part, which has been sufficiently hardened by the previous rapid cooling, is tempered at too high a temperature, it will become too soft, which will cause a decrease in tensile strength. Since this causes an increase in yield ratio, the upper limit was set at 600°C.

しかし焼戻し温度が低くて、 200℃未満になるとほ
とんど焼戻しの硬化がなくなり、靭性が改善されない場
合があるため、その下限を200℃とした。
However, if the tempering temperature is too low to be less than 200°C, the tempering will hardly harden and the toughness may not be improved, so the lower limit was set at 200°C.

また、冷間で歪付与後テンパー処理を行うのは、IAo
m加鋼に耐火特性を持たせるために、必要不可欠である
。つまり、材料が高温にさらされた時にMoの硬化で転
位の消滅が遅れ、逆にその転位を核にしてMoとNbや
■の複合炭化物を微細に分散析出させ、それによって高
温で生成した転位の移動を阻害するという効果である。
In addition, performing tempering treatment after applying cold strain is IAo
This is essential for imparting fire-resistant properties to m-processed steel. In other words, when the material is exposed to high temperatures, the disappearance of dislocations is delayed due to the hardening of Mo, and conversely, composite carbides of Mo, Nb, and This has the effect of inhibiting the movement of

もし歪付与とテンパーを省略した場合、析出核がないた
め、炭化物が粗大に析出し、析出物が高温強度に寄与し
なくなる。
If strain imparting and tempering are omitted, since there are no precipitation nuclei, carbides will coarsely precipitate, and the precipitates will no longer contribute to high-temperature strength.

本発明法は低炭素鋼またはこれに特殊元素を添加した低
炭素低合金鋼に適用して好結果を得ることがてきる。好
ましい成分組成としては、C:  0.03〜0.30
% St :  0.02〜0.50% Mn :  0.20〜2.00% Al : 0.001〜0.100% N  :  0.0005〜0.0100%Mo : 
 0.10〜2.5  % Nb :  0.010 〜0.15%V  :  0
.010 〜0.3 %を成分とする低炭素鋼である。
The method of the present invention can be applied to low carbon steel or low carbon low alloy steel to which special elements are added with good results. A preferred component composition is C: 0.03 to 0.30.
%St: 0.02-0.50% Mn: 0.20-2.00% Al: 0.001-0.100% N: 0.0005-0.0100% Mo:
0.10~2.5% Nb: 0.010~0.15%V: 0
.. It is a low carbon steel containing 0.010 to 0.3%.

ただし、Nbと■については、そのどちらかが添加され
ていればよい(もちろん両方でもよい)。さらに、前記
成分の他に強度鋼の要求特性によって、Cu:2.0%
以下 Ni・9.5%以下 Cr:5.5%以下 Ti : 0.15%以下 B  :  0.0003〜0.0030%Ca : 
0.0080%以下 の1種または2種以上添加してもよい。
However, regarding Nb and ■, it is sufficient if either one of them is added (of course, both may be added). Furthermore, in addition to the above ingredients, Cu: 2.0%
Below Ni・9.5% or less Cr: 5.5% or less Ti: 0.15% or less B: 0.0003 to 0.0030% Ca:
One or more types may be added in an amount of 0.0080% or less.

Moは上記で述べたように、鋼が高温にさらされた時、
固着転位の導入されたフェライト中に、炭化物として微
細分散析出し、高温で生成した転位の移動を阻害させる
ために必要不可欠であり、その効果を出すために0.1
0%以上必要であるが、添加量が多すぎると溶接性を阻
害するため含有量は2.5%を上限とする。
As mentioned above, when steel is exposed to high temperatures, Mo
It is essential to inhibit the movement of dislocations that are finely dispersed and precipitated as carbides in the ferrite into which fixed dislocations have been introduced, and are generated at high temperatures, and in order to achieve this effect, 0.1
0% or more is required, but if the amount added is too large, weldability will be impaired, so the upper limit of the content is 2.5%.

NbとMoとの複合炭化物を生成させるために添加され
、またオーステナイト粒の細粒化や強度上昇に有用で添
加され、その結果を出すために0.010%以上必要で
あるが、添加量が多すぎると溶接性を阻害するので含有
量の上限は0.15%とする。
It is added to generate a composite carbide of Nb and Mo, and is also useful for refining austenite grains and increasing strength. 0.010% or more is required to achieve this result, but the amount added is If it is too large, weldability will be impaired, so the upper limit of the content is set at 0.15%.

■はNbと同様に、Moとの複合炭化物を生成させるた
めに添加され、また析出強化に有用であり、その効果を
出すために0010%以上必要であるか、添加量が多す
ぎると溶接性を阻害するため、含有量は0.3%を上限
とする。
Similar to Nb, ■ is added to form a composite carbide with Mo, and is also useful for precipitation strengthening, and if it is necessary to achieve this effect by 0.10% or more, or if the amount added is too large, weldability will deteriorate. In order to inhibit this, the upper limit of the content is 0.3%.

Cuは強度上昇、耐食性向上に有用で添加されるが、2
.0%を越えて添加しても強度の上昇代がほとんとなく
なるので、含有量の上限は2.0%とする。
Cu is added because it is useful for increasing strength and improving corrosion resistance, but 2
.. Even if it is added in excess of 0%, there is almost no increase in strength, so the upper limit of the content is set at 2.0%.

Niは低温靭性の改善に有用で添加されるが、高価な元
素であるため含有量は9.5%を上限とする。
Ni is added because it is useful for improving low-temperature toughness, but since it is an expensive element, the upper limit of the content is 9.5%.

Crは強度上昇や耐食性向上に有用で添加されるが、多
くなると低温靭性、溶接性を阻害するため含有量は5.
5%を上限とする。
Cr is added because it is useful for increasing strength and improving corrosion resistance, but if it increases, it impedes low temperature toughness and weldability, so the content should be 5.
The upper limit is 5%.

Tiはオーステナイト粒の細粒化に有用で添加されるが
、多くなると溶接性を阻害するため、含有量は0.15
%を上限とする。
Ti is added because it is useful for refining austenite grains, but if it increases, it inhibits weldability, so the content is 0.15
The upper limit is %.

Bは微量の添加によって、鋼の焼入性を著しく高める効
果を有する。この効果を有効に得るためには、少なくと
も0.0003%を添加することが必要である。しかし
過多に添加するとB化合物を生成して、靭性を劣化させ
るので、上限は0.0030%とする。
B has the effect of significantly increasing the hardenability of steel when added in a small amount. In order to effectively obtain this effect, it is necessary to add at least 0.0003%. However, if added in excess, B compounds are generated and the toughness is deteriorated, so the upper limit is set to 0.0030%.

Caは硫化物系介在物の形態制御に有用で添加されるが
、多くなると鋼中介在物を形成し鋼の性質を悪化させる
ため、含有量はo、ooao%を上限とする。
Ca is added because it is useful for controlling the form of sulfide-based inclusions, but if it increases, it forms inclusions in the steel and deteriorates the properties of the steel, so the upper limit of the content is set at o, ooao%.

(実施例) 第1表に供試材の化学成分を示し、第2表に鋼管のサイ
ズ、熱処理条件と、得られた鋼管の機械的性質を示す。
(Example) Table 1 shows the chemical composition of the test materials, and Table 2 shows the size of the steel pipe, heat treatment conditions, and mechanical properties of the obtained steel pipe.

第2表で示した鋼管No、A 1、B1、cl、Dl、
Hl、11、Jl、K1、Ll、Ml、N1、ol、P
l、Ql、R1、Sl、T1、Ul、V1実施鋼であり
、本発明の狙いとする低降伏比(降伏比70%以下)と
高AC(AC> 75 kgf/mm2・%)を達成し
ており、かつ高い高温強度(YSao。/Y S >0
.500 )を同時に達成している。
Steel pipe No. shown in Table 2, A1, B1, cl, Dl,
Hl, 11, Jl, K1, Ll, Ml, N1, ol, P
1, Ql, R1, Sl, T1, Ul, and V1 steels, which achieve the low yield ratio (yield ratio 70% or less) and high AC (AC > 75 kgf/mm2・%) that are the aim of the present invention. and high high temperature strength (YSao./Y S >0
.. 500) at the same time.

これに対し、A2は歪付与を熱処理の前に実施したため
、降伏比は低いが降伏点伸びがまったく出す、Aoが低
くなっている。A3は加熱温度か高すきるため降伏比か
高くなっている。
On the other hand, in A2, since the strain was applied before heat treatment, the yield ratio was low, but no elongation at the yield point was achieved, and the Ao was low. A3 has a high yield ratio due to its high heating temperature.

A4は加熱温度か低すぎるため降伏比が高くなっている
。A5は加熱後の冷却速度か不足のため降伏比が高くな
っている。A6は焼戻し温度が高すぎるため降伏比が高
くなっている。
A4 has a high yield ratio because the heating temperature is too low. A5 has a high yield ratio due to an insufficient cooling rate after heating. A6 has a high yield ratio because the tempering temperature is too high.

また、B2は焼戻し温度が低すぎるため低温靭性が改善
されていない。C2は冷却速度が不足のため降伏比が高
くなっている。B2は加熱温度が低すぎるため降伏比が
高くなっている。
In addition, B2 has a too low tempering temperature, so low-temperature toughness is not improved. C2 has a high yield ratio due to insufficient cooling rate. B2 has a high yield ratio because the heating temperature is too low.

El、FlはMoが添加されていないために、高温強度
が低い。
Since Mo is not added to El and Fl, their high temperature strength is low.

G1はMoが添加されているものの、Nbと■のどちら
も添加されていないために、高温強度が低い。
G1 has Mo added, but neither Nb nor ■ is added, so its high temperature strength is low.

(発明の効果) 以上詳細に説明したとおり、本発明は特別に高価な合金
元素を使用することなく、40kgf/mm”以上の高
強度を有する耐震特性と耐火特性及び低温靭性に優れた
鋼管を安価に製造可能としたもので、産業上その効果は
犬である。
(Effects of the Invention) As explained in detail above, the present invention provides a steel pipe that has high strength of 40 kgf/mm or more, excellent seismic resistance, fire resistance, and low-temperature toughness without using any particularly expensive alloying elements. It can be manufactured at a low cost, and its industrial effects are outstanding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は鋼材のストレス−ストレインの関係を
示す図であり、本文中で述べたように、第2図のような
ストレス−ストレインの関係を有する鋼材の方が、塑性
伸び能力に優れ、すなわち耐震特性に優れることを示し
ている。 第1図 第2図
Figures 1 and 2 are diagrams showing the stress-strain relationship of steel materials. As mentioned in the text, steel materials with the stress-strain relationship shown in Figure 2 have better plastic elongation capacity. This indicates that it has excellent seismic properties. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 重量%にて、Moを0.1%〜2.5%含有し、か
つNb:0.010%〜0.15%、V:0.010%
〜0.30%の1種または2種を含む低炭素鋼鋼管を、
A_c_3−250〜A_c_3−20℃に加熱し、引
き続き15℃/sec以上の冷却速度で急冷した後、冷
間で0.05%以上の加工歪を付与し、さらに200〜
600℃の温度範囲で焼戻しすることを特徴とする、耐
震特性と耐火特性と低温靭性に優れた鋼管の製造方法。
1% by weight, contains 0.1% to 2.5% of Mo, and Nb: 0.010% to 0.15%, V: 0.010%
Low carbon steel pipes containing ~0.30% of type 1 or type 2,
A_c_3-250~A_c_3-20℃, followed by rapid cooling at a cooling rate of 15℃/sec or more, cold processing strain of 0.05% or more, and further 200~
A method for producing steel pipes with excellent seismic resistance, fire resistance, and low-temperature toughness, characterized by tempering in a temperature range of 600°C.
JP29250190A 1990-10-30 1990-10-30 Manufacture of steel tube excellent in earthquake resistance, fire resistance and low temperature toughness Pending JPH04168218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29250190A JPH04168218A (en) 1990-10-30 1990-10-30 Manufacture of steel tube excellent in earthquake resistance, fire resistance and low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29250190A JPH04168218A (en) 1990-10-30 1990-10-30 Manufacture of steel tube excellent in earthquake resistance, fire resistance and low temperature toughness

Publications (1)

Publication Number Publication Date
JPH04168218A true JPH04168218A (en) 1992-06-16

Family

ID=17782640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29250190A Pending JPH04168218A (en) 1990-10-30 1990-10-30 Manufacture of steel tube excellent in earthquake resistance, fire resistance and low temperature toughness

Country Status (1)

Country Link
JP (1) JPH04168218A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115871A (en) * 2002-09-26 2004-04-15 Jfe Steel Kk Method for producing electroseamed steel pipe for high strength line pipe excellent in hydrogen-crack resistant characteristic and toughness
JP2004124228A (en) * 2002-10-07 2004-04-22 Jfe Steel Kk Method for producing electric resistance welded tube having low yield ratio for building and square column
JP2017057692A (en) * 2015-09-18 2017-03-23 新日鐵住金株式会社 Steel-pipe axial-force member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115871A (en) * 2002-09-26 2004-04-15 Jfe Steel Kk Method for producing electroseamed steel pipe for high strength line pipe excellent in hydrogen-crack resistant characteristic and toughness
JP2004124228A (en) * 2002-10-07 2004-04-22 Jfe Steel Kk Method for producing electric resistance welded tube having low yield ratio for building and square column
JP2017057692A (en) * 2015-09-18 2017-03-23 新日鐵住金株式会社 Steel-pipe axial-force member

Similar Documents

Publication Publication Date Title
JPS61270355A (en) High strength steel excelling in resistance to delayed fracture
JPH0499128A (en) Production of martensitic stainless steel line pipe
JPH04168218A (en) Manufacture of steel tube excellent in earthquake resistance, fire resistance and low temperature toughness
JPS6164815A (en) Manufacture of high strength steel excellent in delay breakdown resistance
JP2001247930A (en) Rolled shape steel excellent in earthquake resistance and fire resistance and its producing method
JPH04168219A (en) Manufacture of steel tube excellent in earthquake resistance, fire resistance and low temperature toughness
JPH0387317A (en) Production of steel tube or square steel tube having low yield ratio
JPH04165017A (en) Production of square tube having superior earthquake and fire resistance and superior toughness at low temperature
JPH04128316A (en) Production of square pipe having excellent aseismic characteristic, fire resistance characteristic and low-temperature toughness
JP4570221B2 (en) Martensitic stainless steel with excellent fire resistance
JPH04176821A (en) Production of steel tube or square tube excellent in earthquake resistance and refractoriness characteristic
JPH04128315A (en) Production of steel pipe having excellent aseismic characteristic, fire resistance characteristic and low-temperature toughness
JPS58136715A (en) Production of steel for oil well
JPH04218616A (en) Production of steel tube excellent in earthquake resistance and refractoriness
JPH04165016A (en) Production of square tube having superior earthquake and fire resistance and superior toughness at low temperature
JPH04176819A (en) Production of steel tube or square tube excellent in earthquake resistance and refractoriness characteristic
JP2655956B2 (en) Manufacturing method of low yield ratio refractory steel sheet for building structure
JPH04218615A (en) Production of square tube excellent in earthquake resistance and refractoriness
JPH07113126B2 (en) Method for producing stainless steel with excellent resistance to stress corrosion cracking
JPH04218620A (en) Production of square tube excellent in erathquake resistance, refractoriness, and toughness at low temperature
JPS6210240A (en) Steel for seamless drawn oil well pipe excellent in corrosion resistance and collapsing strength
JPH05339633A (en) Production of fire-proof steel plate for building having low yield ratio
JPH0681032A (en) Heat treated ht590 steel excellent in uniform elongation and its production
JPH04176818A (en) Production of steel tube or square tube excellent in earthquake resistance
JPH04272129A (en) Production of high tension steel having low yield ratio