JPH0681032A - Heat treated ht590 steel excellent in uniform elongation and its production - Google Patents

Heat treated ht590 steel excellent in uniform elongation and its production

Info

Publication number
JPH0681032A
JPH0681032A JP18862393A JP18862393A JPH0681032A JP H0681032 A JPH0681032 A JP H0681032A JP 18862393 A JP18862393 A JP 18862393A JP 18862393 A JP18862393 A JP 18862393A JP H0681032 A JPH0681032 A JP H0681032A
Authority
JP
Japan
Prior art keywords
tempering
steel
uniform elongation
heat treatment
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18862393A
Other languages
Japanese (ja)
Inventor
Hidesato Mabuchi
秀里 間渕
Kentaro Okamoto
健太郎 岡本
Mutsuto Tanaka
睦人 田中
Yokika Kawashima
善樹果 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP18862393A priority Critical patent/JPH0681032A/en
Publication of JPH0681032A publication Critical patent/JPH0681032A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a heat treated HT590 steel excellent in uniform elongation by casting a slab with specific chemical composition, subjecting the resulting cast slab to thick plate rolling, and further specifying tempering temp. at the time of thermal refining treatment of hardening and tempering. CONSTITUTION:A slab having a composition consisting of, by weight, 0.03-0.20% C, 0.05-0.60% Si, 0.80-2.00% Mn, <=0.025% P, <=0.015% S, 0.10-1.0% Cu, 0.10-1.5% Ni, 0.05-0.30% Mo, 0.005-0.03% Nb, 0.01-0.09% V, 0.005-0.03% Ti, 0.010-0.10% Sol.Al, and the balance iron with inevitable impurities is cast, and the resulting cast slab is subjected, without delay or after reheating up to >=Ac3 point, to thick plate rolling. At the time of subsequent thermal refining treatment of hardening and tempering, tempering temp. is regulated to 670-730 deg.C to provide >=15% uniform elongation. By this method, the heat treated HT590 steel having carbides of a size of >=1mum in the lath interface of bainite and excellent in uniform elongation can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は建築・橋梁・海洋構造物
向け溶接構造用鋼、圧力容器用鋼等の強度部材として安
全設計上優れた一様伸び特性が要求されるHT590鋼
及びその製造方法に関するものである。尚、当該鋼材と
してはJIS G3106 SM570,G3115
SPV50,HBS G3104/G3106 HT5
70,ASTM A572/A537等の鋼材及び将来
規格化されるであろう建築構造用HT590等の鋼材が
代表例として挙げられる。
FIELD OF THE INVENTION The present invention relates to HT590 steel, which requires excellent uniform elongation characteristics for safety design, as a strength member such as welded structural steel for buildings, bridges and offshore structures, and steel for pressure vessels, and its production. It is about the method. The steel material is JIS G3106 SM570, G3115.
SPV50, HBS G3104 / G3106 HT5
70, ASTM A572 / A537 and other steel materials, and steel materials such as HT590 for building structures that will be standardized in the future are typical examples.

【0002】[0002]

【従来の技術】近年の構造物の大型化に伴い、従来より
上記した用途に使用される鋼材には、地震・台風等によ
る構造物の崩壊防止が重要な課題となっている。安全設
計上、使用鋼材には巨大な自然エネルギーを吸収しうる
塑性変形能が必要になってくる。そのため、降伏比(低
YR)、硬化勾配(N値)、更には一様伸び等の要求値
を厳格化しようとする動きがあるが、近年のTMCP鋼
又は調質熱処理技術の開発によりSM490からSM5
70クラスの低YR鋼のみがやっと実用化されたところ
である。例えば建設省総合技術開発プロジェクトでは、
鉄鋼メーカーとともに高性能鋼WGにおいてSM490
鋼について建築分野での一般使用を目指した検討が進め
られている。従って、一様伸びについては設計上の配慮
に頼り厳しい鋼材仕様に応えられていないのが実状であ
る。一方、鋼材の一様伸びは強度に逆比例するというの
が一般的な常識であったが、CAMP−ISIJ,Vo
l.6,P823(1993),住友金属Vol.4
3,No.7,P13(1991)及び日本鋼管技法N
o.122,P5(1988)にあるように上記規格の
調質熱処理に二相域からの急冷熱処理を導入する所謂、
三段熱処理により低YR特性を改善する結果、一様伸び
もやや改善するHT590鋼の製造技術が新しく報告さ
れている。
2. Description of the Related Art With the recent increase in the size of structures, it has been an important issue for steel materials conventionally used for the above-mentioned applications to prevent the structures from collapsing due to an earthquake, a typhoon, or the like. In terms of safety design, the steel material used must have plastic deformability capable of absorbing huge natural energy. Therefore, there is a movement to tighten the required values such as yield ratio (low YR), hardening gradient (N value), and even uniform elongation, but SM490 has been developed by the recent development of TMCP steel or temper heat treatment technology. SM5
Only 70-class low YR steel has finally been put to practical use. For example, in the Ministry of Construction Comprehensive Technology Development Project,
SM490 in high-performance steel WG together with steel manufacturers
Studies are underway for steel for general use in the construction field. Therefore, with respect to uniform elongation, the actual situation is that it cannot meet strict steel material specifications, relying on design considerations. On the other hand, it was a general common sense that the uniform elongation of steel is inversely proportional to the strength, but CAMP-ISIJ, Vo
l. 6, P823 (1993), Sumitomo Metals Vol. Four
3, No. 7, P13 (1991) and Nippon Steel Pipe Technique N
o. 122, P5 (1988), the so-called quenching heat treatment from the two-phase region is introduced into the heat treatment of the above standard.
As a result of improving the low YR characteristics by the three-step heat treatment, a new manufacturing technique for HT590 steel in which the uniform elongation is slightly improved has been newly reported.

【0003】[0003]

【発明が解決しようとする課題】上記の従来技術におい
ては、TMCP鋼の開発又は調質熱処理技術の開発によ
り鋼材の低YR化を達成したが、鋼材の一様伸びの十分
な向上には結びつかず設計上の配慮に頼るため、施工上
の損失は多大なものがあった。CAMP−ISIJ,V
ol.6,P823(1993),住友金属Vol.4
3,No.7,P13(1991)及び日本鋼管技法N
o.122,P5(1988)の技術では、上記の調質
熱処理に二相域からの急冷熱処理を導入する所謂、三段
熱処理化による経済的損失は多大なものであった。更
に、その三段熱処理化による一様伸びのレベルも厚手材
では20%未満にとどまっている結果、設計上の配慮に
頼らざるを得ずその自由度をも制約するものであった。
本発明の目的は、大型構造物の塑性変形能を向上して安
全設計と経済設計を両立させて、工期面かつ施工面での
競争力を強化するため、HT590鋼の一様伸びの飛躍
的な向上を達成するとともに一様伸びに優れた調質HT
590鋼及びその合理的な製造方法を提供することであ
る。
In the above-mentioned prior art, the low YR of the steel material was achieved by the development of TMCP steel or the heat treatment technology for tempering, but it was not possible to sufficiently improve the uniform elongation of the steel material. However, due to design considerations, there was a great deal of construction loss. CAMP-ISIJ, V
ol. 6, P823 (1993), Sumitomo Metals Vol. Four
3, No. 7, P13 (1991) and Nippon Steel Pipe Technique N
o. 122, P5 (1988), the so-called three-step heat treatment in which the quenching heat treatment from the two-phase region is introduced into the heat treatment for heat treatment described above causes a great economic loss. Further, the level of uniform elongation due to the three-step heat treatment is less than 20% in the thick material, and as a result, the degree of freedom is restricted because design considerations have to be relied upon.
The object of the present invention is to improve the plastic deformability of a large structure to achieve both safety design and economic design, and to enhance the competitiveness in terms of construction period and construction. Tempered HT with excellent uniform elongation
590 steel and its rational manufacturing method.

【0004】[0004]

【課題を解決するための手段】本発明は、ベイナイトの
ラス界面に析出した炭化物を1μ以上に限定することに
より、又は焼戻し温度を特定するとともに、低C−高C
u化による軟質ベイナイトの生成と軟質ε−Cuの析出
により、一様伸びの優れたHT590鋼及びその製造方
法である。即ち本発明の要旨は次の通りである。 (1)重量%でC:0.03〜0.20%、Si:0.
03〜0.60%、Mn:0.80〜2.0%、P:
0.025%以下、S:0.015%以下、Cu:0.
03〜1.0%、Ni:0.03〜1.5%、Mo:
0.03〜0.30%、Nb:0.005〜0.03
%、V:0.005〜0.10%、Ti:0.005〜
0.03%、Sol.Al:0.010〜0.10%を
含み、残部鉄及び不可避的不純物からなり、ベイナイト
のラス界面に1μ以上の炭化物を有することを特徴とす
る15%以上の一様伸びを有する調質HT590鋼。 (2)重量%でC:0.02〜0.08%、Si:0.
10〜0.60%、Mn:0.80〜2.0%、P:
0.015%以下、S:0.010%以下、Cu:0.
60〜2.5%、Ni:0.30〜2.5%、Mo:
0.03〜0.50%、Nb:0.005〜0.03
%、V:0.005〜0.10%、Ti:0.005〜
0.03%、Sol.Al:0.010〜0.10%を
含み、残部鉄及び不可避的不純物からなり、ベイナイト
のラス界面に1μ以上の炭化物を有することを特徴とす
る20%以上の一様伸びを有する調質HT590鋼。 (3)重量%でCr:0.03〜1.0%、B:0.0
003〜0.0020%、Ca:0.0015〜0.0
080%を一種又は二種以上を鋳片に含有せしめたこと
を特徴とする前記(1)又は(2)記載の一様伸びに優
れた調質HT590鋼。 (4)重量%でC:0.03〜0.20%、Si:0.
05〜0.60%、Mn:0.80〜2.00%、P:
0.025%以下、S:0.015%以下、Cu:0.
10〜1.0%、Ni:0.10〜1.5%、Mo:
0.05〜0.30%、Nb:0.005〜0.03
%、V:0.01〜0.09%、Ti:0.005〜
0.03%、Sol.Al:0.010〜0.10%を
含み残部鉄及び不可避的不純物からなる鋳片を鋳造後直
ちに又はAc点以上に再加熱後厚板圧延に引き続い
て、焼入れ焼戻しの調質熱処理を行うに際して焼戻し温
度を670℃以上で730℃以下とすることを特徴とす
る15%以上の一様伸びを有する調質HT590鋼の製
造方法。 (5)重量%でCr:0.03〜0.50%、B:0.
0003〜0.0015%、Ca:0.0015〜0.
0080%、REM:0.001〜0.0050%を一
種又は二種以上を鋳片に含有せしめたことを特徴とする
前記(4)記載の一様伸びに優れた調質HT590鋼の
製造方法。 (6)重量%でC:0.02〜0.08%、Si:0.
10〜0.60%、Mn:0.80〜2.0%、P:
0.015%以下、S:0.010%以下、Cu:0.
60〜2.5%、Ni:0.30〜2.5%、Mo:
0.03〜0.50%、Nb:0.005〜0.03
%、V:0.005〜0.10%、Ti:0.005〜
0.03%、Sol.Al:0.010〜0.10%を
含み、残部鉄及び不可避的不純物からなる鋳片を鋳造後
直ちに又はAc点以上に再加熱後厚板圧延に引き続い
て、焼入れ焼戻しの調質熱処理を行うに際して焼戻し温
度を670℃以上で730℃以下とすることを特徴とす
る20%以上の一様伸びを有する調質HT590鋼の製
造方法。 (7)重量%でCr:0.03〜0.50%、B:0.
0003〜0.0020%、Ca:0.0015〜0.
0080%、REM:0.001〜0.005%を一種
又は二種以上を鋳片に含有せしめたことを特徴とする前
記(6)記載の一様伸びに優れた調質HT590鋼の製
造方法。 (8)重量%でC:0.02〜0.08%、Si:0.
10〜0.60%、Mn:0.80〜2.0%、P:
0.015%以下、S:0.010%以下、Cu:0.
60〜2.5%、Ni:0.30〜2.5%、Mo:
0.03〜0.50%、Nb:0.005〜0.03
%、V:0.005〜0.10%、Ti:0.005〜
0.03%、Sol.Al:0.010〜0.10%を
含み、残部鉄及び不可避的不純物からなる鋳片を鋳造後
直ちに又はAc点以上に再加熱後厚板圧延に引き続い
て、焼入れ焼戻しの調質熱処理を行うに際して焼戻し温
度を670℃以上で730℃以下とすることを特徴とす
る20%以上の一様伸びを有する調質HT590鋼の製
造方法。 (9)重量%でC:0.02〜0.08%、Si:0.
10〜0.60%、Mn:0.80〜2.0%、P:
0.015%以下、S:0.010%以下、Cu:0.
60〜2.5%、Ni:0.30〜2.5%、Mo:
0.03〜0.50%、Nb:0.005〜0.03
%、V:0.005〜0.10%、Ti:0.005〜
0.03%、Sol.Al:0.010〜0.10%を
含み、残部鉄及び不可避的不純物からなる鋳片を鋳造後
直ちに又はAc点以上に再加熱後厚板圧延に引き続く
二相域からの直接焼入れ、焼戻しの調質熱処理、又は厚
板圧延に引き続く直接焼入れ、二相域からの焼入れ、焼
戻しの調質熱処理、又は厚板圧延終了後の焼入れ、二相
域からの焼入れ、焼戻しの調質熱処理を行うに際して、
焼戻し温度を670℃以上で730℃以下とすることを
特徴とする25%以上の一様伸びを有する調質HT59
0鋼の製造方法。 (10)重量%でCr:0.03〜1.0%、B:0.
0003〜0.0020%、Ca:0.0015〜0.
0080%、REM:0.001〜0.005%を一種
又は二種以上を鋳片に含有せしめたことを特徴とする前
記(8)又は(9)記載の一様伸びに優れたHT590
鋼の製造方法。
The present invention provides a low C-high C content by limiting the carbides precipitated at the lath interface of bainite to 1 μm or more, or by specifying the tempering temperature.
It is an HT590 steel excellent in uniform elongation due to the formation of soft bainite by the formation of u and the precipitation of soft ε-Cu, and a manufacturing method thereof. That is, the gist of the present invention is as follows. (1) C: 0.03 to 0.20% by weight%, Si: 0.
03-0.60%, Mn: 0.80-2.0%, P:
0.025% or less, S: 0.015% or less, Cu: 0.
03-1.0%, Ni: 0.03-1.5%, Mo:
0.03-0.30%, Nb: 0.005-0.03
%, V: 0.005-0.10%, Ti: 0.005-
0.03%, Sol. Al: Heat-treated HT590 having a uniform elongation of 15% or more, characterized by containing 0.010 to 0.10%, balance iron and unavoidable impurities, and having carbides of 1 μm or more at the lath interface of bainite. steel. (2) C: 0.02 to 0.08% by weight, Si: 0.
10 to 0.60%, Mn: 0.80 to 2.0%, P:
0.015% or less, S: 0.010% or less, Cu: 0.
60-2.5%, Ni: 0.30-2.5%, Mo:
0.03-0.50%, Nb: 0.005-0.03
%, V: 0.005-0.10%, Ti: 0.005-
0.03%, Sol. Al: Tempered HT590 having a uniform elongation of 20% or more, characterized by containing 0.010 to 0.10%, balance iron and unavoidable impurities, and having carbides of 1 μm or more at the lath interface of bainite. steel. (3) Cr: 0.03 to 1.0% by weight%, B: 0.0
003 to 0.0020%, Ca: 0.0015 to 0.0
The tempered HT590 steel excellent in uniform elongation according to the above (1) or (2), characterized in that one or more of 080% is contained in the slab. (4) C: 0.03 to 0.20% by weight%, Si: 0.
05-0.60%, Mn: 0.80-2.00%, P:
0.025% or less, S: 0.015% or less, Cu: 0.
10-1.0%, Ni: 0.10-1.5%, Mo:
0.05-0.30%, Nb: 0.005-0.03
%, V: 0.01 to 0.09%, Ti: 0.005 to
0.03%, Sol. Al: A slab containing 0.010 to 0.10% of balance iron and unavoidable impurities is immediately after casting or after being reheated to Ac 3 points or more, followed by thick plate rolling, followed by quenching and tempering heat treatment. At this time, the tempering temperature is set to 670 ° C. or higher and 730 ° C. or lower, and a method for producing a tempered HT590 steel having a uniform elongation of 15% or more. (5) Cr: 0.03 to 0.50% by weight, B: 0.
0003-0.0015%, Ca: 0.0015-0.
0080%, REM: 0.001 to 0.0050% of one or two or more kinds are contained in the slab, and the method for producing a tempered HT590 steel excellent in uniform elongation as described in (4) above. . (6) C: 0.02 to 0.08% and Si: 0.
10 to 0.60%, Mn: 0.80 to 2.0%, P:
0.015% or less, S: 0.010% or less, Cu: 0.
60-2.5%, Ni: 0.30-2.5%, Mo:
0.03-0.50%, Nb: 0.005-0.03
%, V: 0.005-0.10%, Ti: 0.005-
0.03%, Sol. Al: A slab containing 0.010 to 0.10% and the balance iron and unavoidable impurities is cast immediately after casting or after reheating to Ac 3 points or more, followed by thick plate rolling, followed by quenching and tempering heat treatment. A method for producing a tempered HT590 steel having a uniform elongation of 20% or more, characterized in that the tempering temperature is 670 ° C. or higher and 730 ° C. or lower when performing. (7) Cr: 0.03 to 0.50% by weight%, B: 0.
0003-0.0020%, Ca: 0.0015-0.
0080%, REM: 0.001 to 0.005% of one or two or more of them are contained in the slab, and the method for producing a tempered HT590 steel excellent in uniform elongation as described in (6) above. . (8) C: 0.02 to 0.08% by weight%, Si: 0.
10 to 0.60%, Mn: 0.80 to 2.0%, P:
0.015% or less, S: 0.010% or less, Cu: 0.
60-2.5%, Ni: 0.30-2.5%, Mo:
0.03-0.50%, Nb: 0.005-0.03
%, V: 0.005-0.10%, Ti: 0.005-
0.03%, Sol. Al: A slab containing 0.010 to 0.10% and the balance iron and unavoidable impurities is cast immediately after casting or after reheating to Ac 3 points or more, followed by thick plate rolling, followed by quenching and tempering heat treatment. A method for producing a tempered HT590 steel having a uniform elongation of 20% or more, characterized in that the tempering temperature is 670 ° C. or higher and 730 ° C. or lower when performing. (9) C: 0.02 to 0.08% by weight, Si: 0.
10 to 0.60%, Mn: 0.80 to 2.0%, P:
0.015% or less, S: 0.010% or less, Cu: 0.
60-2.5%, Ni: 0.30-2.5%, Mo:
0.03-0.50%, Nb: 0.005-0.03
%, V: 0.005-0.10%, Ti: 0.005-
0.03%, Sol. Al: A slab containing 0.010 to 0.10% and the balance of iron and inevitable impurities is cast immediately after casting or after being reheated to Ac 3 points or more and then directly quenched and tempered from a two-phase region following thick plate rolling. Tempering heat treatment, or direct quenching following thick plate rolling, quenching from the two-phase region, tempering heat treatment for tempering, or quenching after finishing thick plate rolling, quenching from the two-phase region, tempering heat treatment for tempering On the occasion,
Tempered HT59 having uniform elongation of 25% or more, characterized by tempering temperature of 670 ° C or more and 730 ° C or less
0 Steel manufacturing method. (10) Cr: 0.03 to 1.0% by weight, B: 0.
0003-0.0020%, Ca: 0.0015-0.
HT590 excellent in uniform elongation according to the above (8) or (9), characterized in that one or more of REM: 0.001 to 0.005% is contained in the slab.
Steel manufacturing method.

【0005】[0005]

【作用】本発明者はHT590鋼の一様伸びに関して仔
細に調査したところ、引張り試験における均一塑性歪領
域の加工硬化即ち、ベイナイト中の炭化物の存在状態と
一様伸びとの間に密接な関係があることを見い出した。
その結果、ベイナイトのラス界面における炭化物を1μ
以上に析出させることが一様伸び向上に極めて効果的で
あるとともに、調質高張力鋼の焼戻し温度は650℃以
下、TMCP(DQ)鋼の焼戻し温度は600℃以下が
一般的であるが、更に高温度の焼戻し即ち670℃〜7
30℃の焼戻しが上記析出物を得るために必要であるこ
とを知見するに至った。
The present inventor has made a detailed investigation on the uniform elongation of the HT590 steel. As a result, the work hardening in the uniform plastic strain region in the tensile test, that is, the close relation between the existence state of carbides in bainite and the uniform elongation. Found that there is.
As a result, the carbide at the lath interface of bainite was
Precipitation is extremely effective in improving uniform elongation, and tempering temperature of tempered high-strength steel is generally 650 ° C or lower, and tempering temperature of TMCP (DQ) steel is generally 600 ° C or lower, Higher temperature tempering: 670 ° C-7
It has been found that tempering at 30 ° C. is necessary to obtain the above precipitate.

【0006】更に、低C化におけるε−Cuの析出によ
る強化が高温焼戻しに伴う強度低下を補うとともに、一
様伸び向上に飛躍的な複合効果があることを見い出し
た。即ち、低C化及び高温焼戻しによるベイナイトのラ
ス界面における1μ以上の炭化物の析出及び軟質ベイナ
イトの生成と、軟質ε−Cuの生成を利用することによ
り高強度化という逆境の中で、一様伸びを更に効果的に
向上する技術を発明するに至ったものである。
Further, it was found that the strengthening by precipitation of ε-Cu in the low carbon content compensates for the strength reduction due to high temperature tempering and has a dramatic combined effect in improving the uniform elongation. That is, even if the precipitation of carbides of 1 μm or more and the formation of soft bainite at the lath interface of bainite due to the low carbon content and high temperature tempering and the formation of soft ε-Cu are utilized, the uniform elongation is achieved in the adversity of strengthening. The present invention has led to the invention of a technique for more effectively improving

【0007】以下に本発明を詳細に説明する。本発明が
対象とする調質HT590鋼には種々の熱処理が加えら
れるのが通常であり、鋳片鋳造後の圧延又は加熱・圧延
(制御圧延を含む)に引き続く熱処理には焼入れ(Q,
DQ)及び焼戻し(熱処理T)の組合せが一般的であ
る。又、本発明鋼のように低YR特性を要求される場合
には、二相域からの焼入れ(L,DL)が前記熱処理に
導入される。更に、大型構造物用の極厚HT590鋼に
は、加熱前又は熱処理の前後で脱水素を目的とした徐冷
又は保温(脱水素T)が組合される場合がある。
The present invention will be described in detail below. The heat-treated HT590 steel targeted by the present invention is usually subjected to various heat treatments, and the heat treatment subsequent to the rolling or heating / rolling (including controlled rolling) after the cast slab is quenched (Q,
A combination of DQ) and tempering (heat treatment T) is common. Further, when low YR characteristics are required like the steel of the present invention, quenching (L, DL) from the two-phase region is introduced into the heat treatment. Further, the extremely thick HT590 steel for large-scale structures may be combined with slow cooling or heat retention (dehydrogenation T) for the purpose of dehydrogenation before heating or before and after heat treatment.

【0008】Cは0.20%を超えると低温靭性及び溶
接性を損ない、0.03%未満では必要な強度が容易に
確保できないために0.03〜0.20%と限定した。
尚、更に高い一様伸びが要求されるCu≧0.60%の
高Cu材では0.08%を超えると低温靭性及び溶接性
を損ない、0.02%未満では必要な強度が確保できな
いため0.02〜0.08%に制約される。
If C exceeds 0.20%, the low temperature toughness and weldability are impaired, and if it is less than 0.03%, the required strength cannot be easily ensured, so the content is limited to 0.03 to 0.20%.
In addition, in a high Cu material of Cu ≧ 0.60%, which requires a higher uniform elongation, if it exceeds 0.08%, the low temperature toughness and weldability are impaired, and if it is less than 0.02%, the required strength cannot be secured. It is restricted to 0.02-0.08%.

【0009】Siは脱酸上及び強度上から0.03%以
上、好ましくは0.05%以上必要で、0.60%超の
添加は低温靭性及び溶接性を著しく損なうために0.0
3〜0.60%に限定され、好ましくは0.05〜0.
60%に制約される。更に、ー様伸びの向上を図るため
にC≦0.08%の低Cとする高Cu材(Cu≧0.6
0%)の場合には強度上から0.10%以上必要で、
0.10〜0.60%に限定する。
From the standpoint of deoxidation and strength, Si is required to be 0.03% or more, preferably 0.05% or more, and addition of more than 0.60% significantly impairs low temperature toughness and weldability, so 0.0
It is limited to 3 to 0.60%, preferably 0.05 to 0.
Limited to 60%. Further, in order to improve the elongation, a high Cu material with a low C of C ≦ 0.08% (Cu ≧ 0.6
0%) requires 0.10% or more in terms of strength,
It is limited to 0.10 to 0.60%.

【0010】Mnは強度上0.80%以上必要で、2.
0%超の添加は低温靭性、溶接性がともに劣化するので
0.80〜2.0%に限定した。Pは溶接性、低温靭性
から0.025%以下に限定したが、大型構造物や高層
建築物の大入熱溶接時の溶接欠陥防止の観点からはでき
るだけ低い方が好ましく0.015%以下に制約され
る。Sは低温靭性から0.015%以下に限定したが、
低いほど好ましく0.010%に制約される。更には、
構造物の形状から耐ラメラーテア性が要求される場合に
は、Sは0.003%以下に管理され、CaやREMに
よるMnSの形態制御が必要となる。
Mn must be 0.80% or more in terms of strength, and 2.
Since the addition of more than 0% deteriorates both the low temperature toughness and the weldability, it is limited to 0.80 to 2.0%. Although P is limited to 0.025% or less from the viewpoint of weldability and low temperature toughness, it is preferably as low as possible from the viewpoint of preventing welding defects during large heat input welding of large structures and high-rise buildings, and is preferably 0.015% or less. Be restricted. Although S is limited to 0.015% or less due to low temperature toughness,
A lower value is preferably restricted to 0.010%. Furthermore,
When lamellar tear resistance is required due to the shape of the structure, S is controlled to 0.003% or less, and morphology control of MnS by Ca or REM is required.

【0011】C,Si,Mn,P,Sの含有量は所定の
熱処理での必要特性(強度及び低温靭性)から調質HT
590鋼の板厚を考慮して成分設計される。大型構造物
や高層建築用の極厚調質HT590鋼製造の場合には、
上記五元素の他にCu,Ni,Mo,Nb,V,Tiの
必要量を適宜決定して成分設計されるが、以下にその限
定理由を述べる。Cuは低温靭性向上のためCeq低減
を目的としてC,Si,Mnに置換して添加して強度確
保を図るために0.03%以上添加し、好ましくは0.
10%以上添加されるが、1.0%超では熱間脆性を助
長するとともに溶接性が劣化するために0.03〜1.
0%に限定され、好ましくは0.10〜1.0%に制約
される。更に、C≦0.08%の時に軟質ε−Cuの析
出による一様伸びの向上を図るためには0.60%以上
の添加が必要であるが、2.5%超では熱間脆性を助長
し等量のNi添加が必要となるとともに溶接性が劣化す
るために0.60〜2.5%に限定した。
The contents of C, Si, Mn, P, and S depend on the necessary characteristics (strength and low temperature toughness) in a predetermined heat treatment, and the temper HT.
The composition is designed in consideration of the plate thickness of 590 steel. For the production of extra-thick tempered HT590 steel for large structures and high-rise buildings,
In addition to the above five elements, the necessary amounts of Cu, Ni, Mo, Nb, V, and Ti are appropriately determined to design the components. The reasons for the limitation will be described below. Cu is added by substituting C, Si and Mn for the purpose of reducing Ceq in order to improve the low temperature toughness, and is added in an amount of 0.03% or more in order to secure the strength, and preferably 0.00.
10% or more is added, but if it exceeds 1.0%, hot brittleness is promoted and weldability deteriorates, so 0.03 to 1.
It is limited to 0% and is preferably restricted to 0.10 to 1.0%. Further, when C ≦ 0.08%, it is necessary to add 0.60% or more in order to improve uniform elongation due to precipitation of soft ε-Cu, but if it exceeds 2.5%, hot brittleness may occur. The amount of Ni is limited to 0.60 to 2.5% because it promotes the addition of an equal amount of Ni and deteriorates the weldability.

【0012】Niは低温靭性向上のためCeq低減を目
的としてC,Si,Mnに置換して0.03%以上添加
し、強度確保を図るために0.10%以上が好ましく、
1.5%以上ではその効果が飽和するために0.03〜
1.5%に限定され、好ましくは0.10〜1.5%に
制約される。更に、C≦0.08%の時に軟質ε−Cu
の析出による一様伸びの向上を図るCuを0.60%以
上添加する場合には、Cuによる熱間脆性を防止するに
はCu添加量の少なくとも1/2以上の添加が必要とな
るために0.30%以上添加し、2.5%超ではその効
果が飽和するために0.30〜2.5%に限定した。
Ni is added to 0.03% or more by substituting C, Si and Mn for the purpose of reducing Ceq in order to improve low temperature toughness, and 0.10% or more is preferable for ensuring strength.
If it is 1.5% or more, the effect is saturated, so 0.03 ~
It is limited to 1.5% and is preferably restricted to 0.10 to 1.5%. Furthermore, when C ≦ 0.08%, soft ε-Cu
When Cu is added in an amount of 0.60% or more for the purpose of improving the uniform elongation due to the precipitation of Cu, it is necessary to add at least 1/2 or more of the Cu addition amount in order to prevent hot embrittlement due to Cu. 0.30% or more was added, and the effect was saturated at more than 2.5%, so the content was limited to 0.30 to 2.5%.

【0013】Moは焼入れ性向上による強度確保のため
に0.03%以上、好ましくは0.05%以上添加さ
れ、0.50%超の添加では低YR性、一様伸び確保が
困難となり、C≧0.08%の場合には0.30%超の
添加でも更に不利となるために0.03〜0.30%に
限定され、C≧0.08%の場合には0.03〜0.3
0%、好ましくは0.05〜0.30%に制約される。
Mo is added in an amount of 0.03% or more, preferably 0.05% or more in order to secure the strength by improving the hardenability. Addition of more than 0.50% makes it difficult to secure low YR property and uniform elongation. In the case of C ≧ 0.08%, the addition of more than 0.30% is further disadvantageous, so the content is limited to 0.03 to 0.30%, and in the case of C ≧ 0.08%, 0.03 to 0.30%. 0.3
It is restricted to 0%, preferably 0.05 to 0.30%.

【0014】Nbは強度向上及び結晶粒制御のために
0.005%以上添加されるが、0.03%超の添加は
溶接性、低温靭性、低YR性及び一様伸びが劣化するた
めに0.005〜0.03%に限定した。Vは強度向上
のために0.005%以上、好ましくは0.01%以上
添加され、0.10%超、好ましくは0.09%超の添
加では溶接性、低温靭性が劣化するために0.005〜
0.10%に限定され、0.01〜0.09%が好まし
い。
Nb is added in an amount of 0.005% or more for the purpose of improving strength and controlling crystal grains, but addition of more than 0.03% deteriorates weldability, low temperature toughness, low YR property and uniform elongation. It was limited to 0.005-0.03%. V is added in an amount of 0.005% or more, preferably 0.01% or more for improving the strength, and if it is added over 0.10%, preferably over 0.09%, weldability and low temperature toughness are deteriorated. 0.005-
It is limited to 0.10%, preferably 0.01 to 0.09%.

【0015】Tiは鋳片鋳造時の割れ防止、大入熱溶接
時の継手靭性向上のために0.005%以上添加される
が、0.03%超の添加は低温靭性、溶接性、低YR性
及び一様伸びの確保が困難となるために0.005〜
0.03%に限定した。TiはNに対して原子数で等量
(N×3.4)になるように添加するのが最も好まし
い。Sol.Alは脱酸上、粒度調整上0.010%以
上必要で、溶接性の観点から0.10%以下とする必要
があり、0.010〜0.10%に限定した。なお、
B,Ca,REMが添加される場合はSol.Alを
0.030%以上添加することが好ましい。
Ti is added in an amount of 0.005% or more in order to prevent cracking during cast slab casting and to improve joint toughness during high heat input welding. Addition of more than 0.03% results in low temperature toughness, weldability, and low weldability. Since it becomes difficult to secure YR property and uniform elongation, 0.005
It was limited to 0.03%. Most preferably, Ti is added so that the number of atoms is equal to that of N (N × 3.4). Sol. Al needs to be 0.010% or more for deoxidation and particle size adjustment, and needs to be 0.10% or less from the viewpoint of weldability, and is limited to 0.010 to 0.10%. In addition,
When B, Ca and REM are added, Sol. It is preferable to add 0.030% or more of Al.

【0016】上記基本成分の鋼に他の元素(Cr,B,
Ca,REM)を強度、低温靭性、耐ラメラーテア性等
の特性向上のために一種又は二種以上複合して添加して
も本発明の効果はいささかも損なわれない。Crは焼入
れ性向上による強度確保のために0.03%以上添加さ
れ、1.0%超の添加では低YR性、一様伸びの確保が
困難となるために0.03〜1.0%に限定し、更にC
≧0.08%の場合には0.50%超の添加で更に低Y
R性、一様伸びが不利となるために0.03〜0.50
%の制約が好ましい。
Other elements (Cr, B,
(Ca, REM) may be added singly or in combination of two or more in order to improve properties such as strength, low temperature toughness, lamellar tear resistance, etc., but the effect of the present invention is not impaired to some extent. Cr is added in an amount of 0.03% or more to secure the strength by improving the hardenability, and if it exceeds 1.0%, it becomes difficult to secure low YR property and uniform elongation, so 0.03 to 1.0%. Limited to C
When ≧ 0.08%, addition of more than 0.50% further lowers Y
0.03 to 0.50 because R property and uniform elongation are disadvantageous
A% constraint is preferred.

【0017】Bは強度、低温靭性向上のため必要に応じ
て0.0003%以上添加され、0.0020%超、好
ましくは0.0015%超の添加では低YR性が損なわ
れるために0.0003〜0.0020%、好ましくは
0.0003〜0.0015%が好ましい。Caは低温
靭性、耐ラメラーテア性が必要な場合には0.0015
%以上添加されるが、0.008%超の添加では介在物
が増加するために0.0015〜0.0080%に制約
するのが望ましい。
If necessary, B is added in an amount of 0.0003% or more to improve strength and low temperature toughness, and if added in excess of 0.0020%, preferably in excess of 0.0015%, low YR property is impaired, so that B. 0003 to 0.0020%, preferably 0.0003 to 0.0015% is preferable. Ca is 0.0015 when low temperature toughness and lamellar tear resistance are required.
%, But inclusions exceeding 0.008% increase the inclusions, so it is desirable to limit the content to 0.0015 to 0.0080%.

【0018】REMは低温靭性、耐ラメラーテア性、大
入熱溶接時の継手靭性向上から必要に応じてCaに代わ
って0.001%以上添加され、0.0050%超の添
加では介在物が増加するために0.0050%以下に限
定し、0.001〜0.005%の制約が好ましい。
REM is added in an amount of 0.001% or more in place of Ca as needed in order to improve low temperature toughness, lamellar tear resistance, and joint toughness during high heat input welding, and inclusions exceeding 0.0050% increase inclusions. Therefore, the content is limited to 0.0050% or less, and the constraint of 0.001 to 0.005% is preferable.

【0019】次に本発明で最も重要な技術思想であるベ
イナイトのラス界面における炭化物の大きさを限定する
理由について述べる。ベイナイトのラス界面に析出した
炭化物の大きさが1μ未満では25%以上の一様伸びを
有するHT590鋼が得られないために1μ以上に限定
する。一様伸びの観点からは炭化物の大きさの上限を制
約する必要はないが、低温靭性の観点からは20μ以下
にすることが好ましい。
Next, the reason for limiting the size of the carbide at the lath interface of bainite, which is the most important technical idea in the present invention, will be described. If the size of the carbides precipitated at the lath interface of bainite is less than 1 μ, HT590 steel having a uniform elongation of 25% or more cannot be obtained. From the viewpoint of uniform elongation, it is not necessary to limit the upper limit of the size of the carbide, but from the viewpoint of low temperature toughness, it is preferably 20 μm or less.

【0020】次に本発明で低YR化とともに一様伸びを
向上する熱処理の限定理由について述べる。焼入れ
(Q,DQ)はHT590鋼の強度・靭性を確保するた
めに行われている一般的な焼入れでよく、その焼入れ温
度は完全なオーステナイト域から焼入れるためにQの場
合はAc以上、DQの場合はAr以上とし、950
℃超ではオーステナイト組織の粗大化による延性、低温
靭性が劣化するためにAc〜950℃(Ar〜95
0℃)に限定する。
Next, the reasons for limiting the heat treatment for improving the uniform elongation as well as the YR reduction in the present invention will be described. Quenching (Q, DQ) may be general quenching that is performed to secure the strength and toughness of HT590 steel, and the quenching temperature is Ac 3 or more in the case of Q for quenching from the complete austenite region, In case of DQ, Ar 3 or more, 950
Above 3 ° C, the ductility and low temperature toughness deteriorate due to the coarsening of the austenite structure, so Ac 3 to 950 ° C (Ar 3 to 95 ° C).
0 ° C).

【0021】フェライト分率の向上又は軟質ベイナイト
を助長して一様伸びを改善する二相域からの焼入れ
(L,DL)は低YR鋼の製造で一般的な二相域焼入れ
でよく、その焼入れ温度は完全に(γ+α)二相域とす
るために、Lの場合には(Ac+40℃)〜(Ac
−30℃)とし、DLの場合には板厚の1/4tにおけ
る温度が(Ar+70℃)〜(Ar−60℃)に限
定する。
Quenching (L, DL) from the two-phase region which improves the ferrite fraction or promotes the soft bainite to improve the uniform elongation may be the two-phase region quenching which is common in the production of low YR steel. In order to completely set the quenching temperature to the (γ + α) two-phase region, in the case of L, (Ac 1 + 40 ° C.) to (Ac 3
-30 ° C.), and in the case of DL, the temperature at 1/4 t of the plate thickness is limited to (Ar 1 + 70 ° C.) to (Ar 3 −60 ° C.).

【0022】焼戻し温度は、一般的には強度−靭性バラ
ンスを最適にするために決定されるが、本発明では焼入
れ(Q,DQ,L,DL)された状態では、ベイナイト
のラス界面に微細に析出している炭化物を、1μ以上に
粗大化させるために670℃以上とし、730℃超では
一様伸びは飽和してその効果が向上しない割には降伏点
・低温靭性が低下するために670℃〜730℃に限定
した。
The tempering temperature is generally determined in order to optimize the strength-toughness balance, but in the present invention, in the quenched (Q, DQ, L, DL) state, the bainite lath interface is finely divided. In order to coarsen the carbides precipitated in 1 μm or more to 670 ° C. or more, and above 730 ° C., the uniform elongation is saturated and the effect is not improved, but the yield point and low temperature toughness decrease. It was limited to 670 ° C to 730 ° C.

【0023】1μ以上の炭化物がベイナイトのラス界面
に析出(凝集、粗大化)する時に安定した一様伸びが得
られる理由は、転位の移動の妨げとなるベイナイトのラ
ス界面に微細析出した炭化物が減少又は消失するととも
に、マトリクス中に過飽和に存在する固溶炭素が低減す
るとともに、ラスの転位密度も減少する結果、塑性変形
能が改善するためと考えられる。尚、焼戻し温度上昇に
伴う強度低下は成分設計で補償する必要があることは言
うまでもない。
The reason why a stable uniform elongation can be obtained when carbides of 1 μm or more are precipitated (aggregated or coarsened) at the lath interface of bainite is that carbides finely precipitated at the lath interface of bainite which hinder the movement of dislocations. It is considered that the plastic deformability is improved as a result of the decrease or disappearance of the solid solution carbon existing in the matrix in a supersaturated state and the decrease of the dislocation density of the lath. Needless to say, it is necessary to compensate the decrease in strength due to the increase in tempering temperature in the component design.

【0024】一様伸びはJIS4号引張り試験片等で最
高荷重を超えて5%ダウンした時の(95%荷重におけ
る)伸びとする。尚、最高時荷重時の伸びを一様伸びと
定義する場合もあるが、この値は本発明の一様伸びより
概ね5%低くなる。
The uniform elongation is defined as the elongation when the load is reduced by 5% over the maximum load in a JIS No. 4 tensile test piece (at 95% load). The elongation at the highest load may be defined as uniform elongation, but this value is about 5% lower than the uniform elongation of the present invention.

【0025】[0025]

【実施例】【Example】

〔実施例1〕焼入れ(Q,DQ)後焼戻しの調質熱処理
における本発明の実施例を比較例とともに表1及び表2
に示す。表1は本発明例(鋼A,B,D)及び比較例
(鋼C)の化学成分であり、鋼AとDには耐ラメラーテ
ア性向上のためCa又はREMが添加されている。鋼C
はCrとMoが本発明の成分範囲上限を超えている。
[Example 1] Examples of the present invention in a heat treatment for tempering after quenching (Q, DQ) and comparative examples, together with Tables 1 and 2
Shown in. Table 1 shows the chemical composition of the examples of the present invention (Steels A, B, D) and the comparative example (Steel C). Steels A and D are added with Ca or REM for improving the lamellar tear resistance. Steel C
Cr and Mo exceed the upper limit of the component range of the present invention.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】引張試験及び衝撃試験をともにJIS4号
試験片で行った本発明例と比較例の製造実績(t=40
〜80mm)を表2に示す。本発明例(鋼A,B,D)
では一様伸びが焼戻し温度の上昇とともに向上するが、
730℃以上では飽和してそれ以上の向上は認められな
い。又、低温靭性は焼戻し温度が730℃を超えると急
激に悪化する。
Production results (t = 40) of the example of the present invention and the comparative example in which both a tensile test and an impact test were performed on JIS No. 4 test pieces.
˜80 mm) is shown in Table 2. Examples of the present invention (Steels A, B, D)
The uniform elongation improves with increasing tempering temperature.
Saturation occurs at 730 ° C or higher, and no further improvement is observed. Further, the low temperature toughness rapidly deteriorates when the tempering temperature exceeds 730 ° C.

【0029】従って、一様伸びを15%以上確保する観
点から焼戻し温度は670℃以上に限定され、低温靭性
確保の観点から焼戻し温度は730℃以下に限定され
る。
Therefore, the tempering temperature is limited to 670 ° C. or more from the viewpoint of ensuring uniform elongation of 15% or more, and the tempering temperature is limited to 730 ° C. or less from the viewpoint of ensuring low temperature toughness.

【0030】一方、比較例(鋼C)では焼戻し温度が本
発明の範囲内であるにも拘らずYR及び一様伸びの特性
が本発明例に比較して劣っている。
On the other hand, in Comparative Example (Steel C), although the tempering temperature is within the range of the present invention, the characteristics of YR and uniform elongation are inferior to those of the present invention.

【0031】ベイナイトのラス界面に析出した炭化物は
焼戻し温度の上昇とともに大きくなり、670℃以上で
1μ以上となり一様伸びも向上しているが、730℃超
では二相域焼戻しとなって炭化物はマトリクスに溶け込
んで1μ以下になるがフェライトの面積率が増加して一
様伸びの劣化は見掛け上少ない。尚、塑性変形能として
もう一つの重要な評価指標である降状比(YR)も最近
の厳しい要求値である80%以下を本発明例はいずれも
満足しているが、特に710℃以上の焼戻しでのYR改
善効果が著しい。
The carbides precipitated on the lath interface of bainite increased with the increase of the tempering temperature and increased to 1 μ or more at 670 ° C or higher, and the uniform elongation was also improved. It dissolves in the matrix and becomes 1 μm or less, but the area ratio of ferrite increases and the deterioration of uniform elongation is apparently small. Incidentally, the yield ratio (YR), which is another important evaluation index for plastic deformability, is 80% or less, which is a recently severely required value. The YR improvement effect by tempering is remarkable.

【0032】〔実施例2〕高Cu材による焼入れ(Q,
DQ)後焼戻しの調質熱処理における本発明の実施例
(鋼E)を比較のため実施例1の鋼Bとともにその製造
実績(t=80mm)を表3及び表4に示す。鋼Bに比
べ、高Cu材に本発明を適用した実施例Eは20%以上
の一様伸びとともにHT590鋼の全ての特性を満足
し、ベイナイトのラス界面に析出した炭化物の大きさも
1μ以上となっている。
Example 2 Quenching with a high Cu material (Q,
Table 3 and Table 4 show the production results (t = 80 mm) of the example of the present invention (steel E) in the heat treatment of tempering after DQ) together with the steel B of example 1 for comparison. Compared with Steel B, Example E in which the present invention was applied to a high Cu material satisfied all the properties of HT590 steel with a uniform elongation of 20% or more, and the size of the carbide precipitated at the lath interface of bainite was 1 μm or more. Has become.

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【表4】 [Table 4]

【0035】〔実施例3〕二相域からの焼入れを導入す
る調質熱処理における本発明の実施例を比較例とともに
表5及び表6に示す。表5は本発明例(鋼F,G,I)
及び比較例(鋼H)の化学成分であり、鋼G,H,Iに
は耐ラメラーテア性向上のためCa又はREMが添加さ
れている。鋼HはNb,Tiが本発明の成分範囲の上限
を超えている。
[Example 3] Tables 5 and 6 show examples of the present invention in a tempering heat treatment in which quenching is introduced from a two-phase region, together with comparative examples. Table 5 shows examples of the present invention (steels F, G, I)
Further, as a chemical composition of Comparative Example (Steel H), Ca or REM is added to Steels G, H, and I to improve lamellar tear resistance. Steel H has Nb and Ti exceeding the upper limit of the composition range of the present invention.

【0036】表5に示す鋼をt=45〜80mmに圧延
した鋼板に本発明の調質熱処理を施し、炭化物の大きさ
とともに機械試験結果(引張試験及び衝撃試験はJIS
4号試験片)について本発明の実施例と比較例の実績を
併せて表6に示す。鋼I−2を除き、いずれの鋼も一般
のHT590鋼としては十分な強度特性、低温靭性を有
している。
Steels obtained by rolling the steels shown in Table 5 to t = 45 to 80 mm were subjected to the heat treatment for tempering of the present invention, and the mechanical test results (tensile test and impact test were carried out according to JIS
Table 6 shows the results of Examples of the present invention and Comparative Examples for No. 4 test piece). Except for Steel I-2, all of the steels have sufficient strength characteristics and low temperature toughness as general HT590 steel.

【0037】[0037]

【表5】 [Table 5]

【0038】[0038]

【表6】 [Table 6]

【0039】本発明例(鋼F,G,I)ではベイナイト
のラス界面に析出した炭化物が大きくなるとともに一様
伸びは改善して、炭化物の大きさが1μ以上になると安
定して20%以上の一様伸びが得られる。従って、20
%以上の一様伸びを確保するためには、ベイナイトのラ
ス界面に析出した炭化物の大きさは1μ以上に限定され
る。
In the examples of the present invention (steels F, G, I), the carbides precipitated at the lath interface of bainite increased and the uniform elongation improved, and when the size of the carbides was 1 μ or more, it was stable at 20% or more. A uniform elongation of is obtained. Therefore, 20
%, The size of carbides precipitated at the lath interface of bainite is limited to 1 μm or more.

【0041】一方、比較例(鋼H)では1μ以上の炭化
物が析出しているにも拘らず、鋼Hは本発明の成分範囲
を超えてNb,Tiが添加されているためにアッパーベ
イナイト主体の塑性変形能、低温靭性の低い組織とな
り、YRも80%以上と高く且つ、20%以上の一様伸
びが得られていない。
On the other hand, in Comparative Example (Steel H), although the carbide of 1 μm or more is deposited, Steel H is mainly composed of upper bainite because Nb and Ti are added in excess of the composition range of the present invention. Has a low plastic deformability and low temperature toughness, and YR is as high as 80% or more, and uniform elongation of 20% or more is not obtained.

【0042】ベイナイトのラス界面に析出した炭化物は
焼戻し温度の上昇とともに大きくなり、670℃を超す
と1μ以上の炭化物が得られるが、730℃超では焼戻
し温度が二相域となって粗大化した炭化物はオーステナ
イトに溶体化して、焼入れられるために再び炭化物の大
きさは1μ未満となる。従って、本発明の1μ以上の炭
化物を確保するためには焼戻し温度は670℃以上で7
30℃以下に限定される。
The carbides deposited on the lath interface of bainite increased with the increase of the tempering temperature, and carbides of 1 μ or more were obtained at temperatures above 670 ° C., but above 730 ° C., the tempering temperature became coarse in the two-phase region. The carbide is solutionized into austenite and is quenched, so that the size of the carbide becomes again less than 1 μm. Therefore, in order to secure the carbide of 1 μm or more according to the present invention, the tempering temperature is 670 ° C. or more and 7
It is limited to 30 ° C or lower.

【0043】一様伸びは焼戻し温度の上昇とともに向上
するが、二相域熱処理となる730℃超では一様伸びは
再び低下している。又、焼戻し温度が730℃を超える
と二相域熱処理となって鋼、I−2のように低温靭性は
劣化し、低YR化しすぎる結果HT590鋼の降伏点に
不足する。従って、一様伸びを20%以上確保する観点
から焼戻し温度は670℃以上で730℃以下に限定さ
れる。
The uniform elongation improves as the tempering temperature rises, but the uniform elongation decreases again above 730 ° C., which is the two-phase heat treatment. On the other hand, if the tempering temperature exceeds 730 ° C., a two-phase region heat treatment is performed and the low temperature toughness of the steel, such as I-2, deteriorates, and the YR becomes too low, resulting in an insufficient yield point of the HT590 steel. Therefore, the tempering temperature is limited to 670 ° C. or more and 730 ° C. or less from the viewpoint of ensuring uniform elongation of 20% or more.

【0044】尚、塑性変形能としてもう一つの重要な評
価指標である降伏比(YR)も最近の厳しい要求値であ
る80%以下を本発明例はいずれも満足しているが、鋼
I−2を除く比較例ではYRは80%以下になっていな
い。即ち、従来の低YR化技術では低YR化は達成して
も必ずしも一様伸びの十分な向上に結び付かなかった
が、本発明の一様伸び向上技術では一様伸びの向上が低
YR化をも容易に達成している。
The yield ratio (YR), which is another important evaluation index for plastic deformability, is 80% or less, which is a recently severely required value. In the comparative examples except 2, YR is not less than 80%. That is, the conventional low YR technology does not necessarily lead to a sufficient improvement of uniform elongation even if the low YR is achieved, but the uniform elongation improvement technology of the present invention improves the uniform elongation to low YR. Is also easily achieved.

【0045】〔実施例4〕高Cu材による二相域からの
焼入れを導入する調質熱処理における本発明の実施例を
比較のため実施例3の鋼Gとともに表7及び表8に示
す。表7は本発明例(鋼J,K,L)及び鋼Gの化学成
分であり、鋼G,Lには耐ラメラーテア性向上のためC
a又はREMが添加されている。
Example 4 An example of the present invention in a heat treatment for heat treatment by introducing quenching from a two-phase region using a high Cu material is shown in Tables 7 and 8 together with the steel G of Example 3 for comparison. Table 7 shows the chemical composition of the invention examples (Steels J, K, L) and Steel G. Steels G, L are C for improving the lamellar tear resistance.
a or REM is added.

【0046】[0046]

【表7】 [Table 7]

【0047】[0047]

【表8】 [Table 8]

【0048】表7に示す鋼をt=45〜80mmに圧延
した鋼板に本発明の調質熱処理を施し、炭化物の大きさ
とともに機械試験結果(引張試験及び衝撃試験はJIS
4号試験片)について鋼Gの実績(t=80mm)を併
せて表8に示す。鋼L−2を除き、いずれの鋼も一般の
HT590鋼としては十分な強度特性、低温靭性を有し
ている。
Steels obtained by rolling the steels shown in Table 7 to t = 45 to 80 mm were subjected to the heat treatment for tempering according to the present invention, and the mechanical test results (the tensile test and the impact test were carried out according to JIS
Table 8 also shows the actual results (t = 80 mm) of Steel G for the No. 4 test piece. Except for steel L-2, all of the steels have sufficient strength characteristics and low temperature toughness as general HT590 steel.

【0049】本発明例(鋼J,K,L)ではベイナイト
のラス界面に析出した炭化物が大きくなるとともに一様
伸びは改善して、炭化物の大きさが1μ以上になると安
定して25%以上の一様伸びが得られる。従って、25
%以上の一様伸びを確保するためには、ベイナイトのラ
ス界面に析出した炭化物の大きさは1μ以上に限定され
る。鋼J−1及び鋼K−1のベイナイトのラス界面に析
出した炭化物の透過電子顕微鏡写真を図1に示す。一
方、鋼Gでは1μ以上の炭化物が析出しているにも拘ら
ず、低C化による軟質ベイナイトの生成と軟質ε−Cu
の析出が不十分で、25%以上の一様伸びが得られてい
ない。
In the examples of the present invention (steels J, K, L), the carbide precipitated at the lath interface of bainite increased and the uniform elongation improved, and when the size of the carbide was 1 μ or more, it was stable at 25% or more. A uniform elongation of is obtained. Therefore, 25
%, The size of carbides precipitated at the lath interface of bainite is limited to 1 μm or more. FIG. 1 shows transmission electron micrographs of carbides precipitated at the lath interface of bainite of steel J-1 and steel K-1. On the other hand, in Steel G, despite the precipitation of carbides of 1 μm or more, formation of soft bainite and soft ε-Cu due to low carbon content
Precipitation is insufficient and uniform elongation of 25% or more is not obtained.

【0050】ベイナイトのラス界面に析出した炭化物は
焼戻し温度の上昇とともに大きくなり、670℃を超す
と1μ以上の炭化物が得られるが、730℃超では焼戻
し温度が二相域となって粗大化した炭化物はオーステナ
イトに溶体化して、焼入れられるために再び炭化物の大
きさは1μ未満となる。従って、本発明の1μ以上の炭
化物を確保するためには焼戻し温度は670℃以上で7
30℃以下に限定される。
The carbides precipitated at the lath interface of bainite increased with the increase of the tempering temperature, and carbides of 1 μ or more were obtained at temperatures above 670 ° C., but above 730 ° C., the tempering temperature became a two-phase region and became coarse. The carbide is solutionized into austenite and is quenched, so that the size of the carbide becomes again less than 1 μm. Therefore, in order to secure the carbide of 1 μm or more according to the present invention, the tempering temperature is 670 ° C. or more and 7
It is limited to 30 ° C or lower.

【0051】一様伸びは焼戻し温度の上昇とともに向上
するが、二相域熱処理となる730℃超では一様伸びは
再び低下している。又、焼戻し温度が730℃を超える
と二相域熱処理となって、鋼L−2のように低温靭性は
劣化し、低YR化しすぎる結果HT590鋼の降伏点に
不足する。従って、一様伸びを25%以上確保する観点
から焼戻し温度は670℃以上で730℃以下に限定さ
れる。
The uniform elongation improves as the tempering temperature rises, but the uniform elongation decreases again above 730 ° C., which is the two-phase heat treatment. On the other hand, if the tempering temperature exceeds 730 ° C., a two-phase region heat treatment is performed and the low temperature toughness deteriorates like steel L-2, resulting in too low YR, resulting in an insufficient yield point of HT590 steel. Therefore, the tempering temperature is limited to 670 ° C. or more and 730 ° C. or less from the viewpoint of ensuring uniform elongation of 25% or more.

【0052】尚、塑性変形能としてもう一つの重要な評
価指標である降伏比(YR)も最近の厳しい要求値であ
る80%以下を本発明例はいずれも満足しているが、比
較例ではYRは80%以下になっても一様伸びは25%
以上になっていない。即ち、従来の低YR化技術では低
YR化は達成しても必ずしも一様伸びの十分な向上に結
び付かなかったが、本発明の一様伸び向上技術では一様
伸びの向上が低YR化をも容易に達成している。
The yield ratio (YR), which is another important evaluation index for plastic deformability, is 80% or less, which is a recently severely required value. Even if YR is 80% or less, uniform elongation is 25%
Not over. That is, the conventional low YR technology does not necessarily lead to a sufficient improvement of uniform elongation even if the low YR is achieved, but the uniform elongation improvement technology of the present invention improves the uniform elongation to low YR. Is also easily achieved.

【0053】[0053]

【発明の効果】本発明鋼はベイナイトのラス界面に析出
した炭化物を1μ以上に限定することにより、又は調質
熱処理における焼戻し温度を従来一般的な温度以上の高
温に特定するとともに、低C−高Cu化による軟質ベイ
ナイトの生成と軟質ε−Cuの析出により、調質HT5
90鋼の一様伸びを一層改善可能ならしめた。更に、塑
性変形能の二大要素である低YR化とともに、一様伸び
の高い調質HT590鋼及びその製造方法をも提供する
ものである。これにより、大型構造物の安全設計を施工
面だけでなく鋼材面からも可能とするばかりでなく、三
段熱処理に代わる高い一様伸びを有する調質HT590
鋼の合理的な製造をも可能とするものである。従って、
本発明により産業界が享受可能な安全設計と経済設計の
両立はもとより工期的、経済的利益は多大なものがある
ものと思料される。
INDUSTRIAL APPLICABILITY The steel of the present invention limits the carbides precipitated at the lath interface of bainite to 1 μm or more, or specifies the tempering temperature in the heat treatment for refining to a high temperature higher than the conventional temperature, and has a low C- Due to the formation of soft bainite and the precipitation of soft ε-Cu by increasing the Cu content, temper HT5
It was possible to further improve the uniform elongation of 90 steel. Further, the present invention also provides a tempered HT590 steel having a high uniform elongation and a method for producing the same as well as a reduction in YR which is the two major factors of plastic deformability. As a result, not only is the safety design of large-scale structures possible not only from the construction side but also from the steel side, a tempered HT590 with a high uniform elongation that replaces the three-step heat treatment.
It also enables the rational production of steel. Therefore,
According to the present invention, it is considered that not only the safety design and the economic design that can be enjoyed by the industrial world are compatible, but also the construction period and the economic profit are great.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明鋼(鋼J−1)、(b)は本発
明鋼(鋼K−1)の顕微鏡写真である。
FIG. 1 (a) is a micrograph of the present invention steel (steel J-1), and (b) is a micrograph of the present invention steel (steel K-1).

フロントページの続き (72)発明者 川島 善樹果 大分市大字西ノ洲1番地 新日本製鐵株式 会社大分製鐵所内Front page continuation (72) Inventor Yoshiki Kawashima 1 Nishinosu, Oita-shi, Oita-shi Nippon Steel Corporation Oita Works

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 重量%で C :0.03〜0.20%、 Si:0.03〜0.60%、 Mn:0.80〜2.0%、 P :0.025%以下、 S :0.015%以下、 Cu:0.03〜1.0%、 Ni:0.03〜1.5%、 Mo:0.03〜0.30%、 Nb:0.005〜0.03%、 V:0.005〜0.10%、 Ti:0.005〜0.03%、 Sol.Al:0.010〜0.10% 残部鉄及び不可避的不純物からなり、ベイナイトのラス
界面に1μ以上の炭化物を有し、15%以上の一様伸び
を有することを特徴とする一様伸びに優れた調質HT5
90鋼。
1. C: 0.03 to 0.20% by weight%, Si: 0.03 to 0.60%, Mn: 0.80 to 2.0%, P: 0.025% or less, S : 0.015% or less, Cu: 0.03 to 1.0%, Ni: 0.03 to 1.5%, Mo: 0.03 to 0.30%, Nb: 0.005 to 0.03% , V: 0.005-0.10%, Ti: 0.005-0.03%, Sol. Al: 0.010 to 0.10% A balance consisting of balance iron and unavoidable impurities, having a carbide of 1 μ or more at the lath interface of bainite, and having a uniform elongation of 15% or more. Excellent tempering HT5
90 steel.
【請求項2】 重量%で C :0.02〜0.08%、 Si:0.10〜0.60%、 Mn:0.80〜2.0%、 P :0.015%以下、 S :0.010%以下、 Cu:0.60〜2.5%、 Ni:0.30〜2.5%、 Mo:0.03〜0.50%、 Nb:0.005〜0.03%、 V :0.005〜0.10%、 Ti:0.005〜0.03%、 Sol.Al:0.010〜0.10% 残部鉄及び不可避的不純物からなり、ベイナイトのラス
界面に1μ以上の炭化物を有し、20%以上の一様伸び
を有することを特徴とする一様伸びに優れた調質HT5
90鋼。
2. C: 0.02 to 0.08%, Si: 0.10 to 0.60%, Mn: 0.80 to 2.0%, P: 0.015% or less, S by weight% : 0.010% or less, Cu: 0.60 to 2.5%, Ni: 0.30 to 2.5%, Mo: 0.03 to 0.50%, Nb: 0.005 to 0.03% , V: 0.005 to 0.10%, Ti: 0.005 to 0.03%, Sol. Al: 0.010 to 0.10% A balance consisting of balance iron and unavoidable impurities, having a carbide of 1 μ or more at the lath interface of bainite, and having a uniform elongation of 20% or more. Excellent tempering HT5
90 steel.
【請求項3】 重量%で Cr:0.03〜1.0%、 B :0.0003〜0.0020%、 Ca:0.0015〜0.0080%、 REM:0.001〜0.005% を一種又は二種以上を鋳片に含有せしめたことを特徴と
する請求項1又は2記載の一様伸びに優れた調質HT5
90鋼。
3. By weight%, Cr: 0.03-1.0%, B: 0.0003-0.0020%, Ca: 0.0015-0.0080%, REM: 0.001-0.005. %, One or two or more of them are contained in the slab, and the tempered HT5 excellent in uniform elongation according to claim 1 or 2, characterized in that
90 steel.
【請求項4】 重量%で C :0.03〜0.20%、 Si:0.05〜0.60%、 Mn:0.80〜2.00%、 P :0.025%以下、 S :0.015%以下、 Cu:0.10〜1.0%、 Ni:0.10〜1.5%、 Mo:0.05〜0.30%、 Nb:0.005〜0.03%、 V :0.01〜0.09%、 Ti:0.005〜0.03%、 Sol.Al:0.010〜0.10% 残部鉄及び不可避的不純物からなる鋳片を鋳造後直ちに
又はAc点以上に再加熱後厚板圧延に引き続いて、焼
入れ焼戻しの調質熱処理を行うに際して、焼戻し温度を
670℃以上で730℃以下とし、15%以上の一様伸
びを与えることを特徴とする調質HT590鋼の製造方
法。
4. C: 0.03 to 0.20% by weight%, Si: 0.05 to 0.60%, Mn: 0.80 to 2.00%, P: 0.025% or less, S : 0.015% or less, Cu: 0.10 to 1.0%, Ni: 0.10 to 1.5%, Mo: 0.05 to 0.30%, Nb: 0.005 to 0.03% , V: 0.01 to 0.09%, Ti: 0.005 to 0.03%, Sol. Al: 0.010 to 0.10% Immediately after casting of a slab composed of balance iron and unavoidable impurities, or after reheating to a point of Ac 3 or more and subsequent to thick plate rolling, when performing heat treatment for quenching and tempering, A method for producing a tempered HT590 steel, characterized in that the tempering temperature is 670 ° C. or higher and 730 ° C. or lower, and uniform elongation of 15% or more is given.
【請求項5】 重量%で Cr:0.03〜0.50%、 B :0.003〜0.0015%、 Ca:0.0015〜0.0080%、 REM:0.001〜0.0050% を一種又は二種以上を鋳片に含有せしめ、15%以上の
一様伸びを与えることを特徴とする請求項4記載の調質
HT590鋼の製造方法。
5. By weight%, Cr: 0.03 to 0.50%, B: 0.003 to 0.0015%, Ca: 0.0015 to 0.0080%, REM: 0.001 to 0.0050. 5. The method for producing a tempered HT590 steel according to claim 4, wherein the slab contains 1% or 2% or more of H 2 O 3 and gives a uniform elongation of 15% or more.
【請求項6】 重量%で C :0.03〜0.20%、 Si:0.03〜0.60%、 Mn:0.80〜2.0%、 P :0.025%以下、 S :0.015%以下、 Cu:0.03〜1.0%、 Ni:0.03〜1.5%、 Mo:0.03〜0.30%、 Nb:0.005〜0.03%、 V :0.005〜0.10%、 Ti:0.005〜0.03%、 Sol.Al:0.010〜0.10% 残部鉄及び不可避的不純物からなる鋳片を鋳造後直ちに
又はAc点以上に再加熱後厚板圧延に引き続く二相域
からの直接焼入れ、焼戻しの調質熱処理、又は厚板圧延
に引き続く直接焼入れ、二相域からの焼入れ、焼戻しの
調質熱処理、又は厚板圧延終了後の焼入れ、二相域から
の焼入れ、焼戻しの調質熱処理を行うに際して、焼戻し
温度を670℃以上で730℃以下とし、20%以上の
一様伸びを与えることを特徴とする調質HT590鋼の
製造方法。
6. C: 0.03 to 0.20% by weight%, Si: 0.03 to 0.60%, Mn: 0.80 to 2.0%, P: 0.025% or less, S : 0.015% or less, Cu: 0.03 to 1.0%, Ni: 0.03 to 1.5%, Mo: 0.03 to 0.30%, Nb: 0.005 to 0.03% , V: 0.005 to 0.10%, Ti: 0.005 to 0.03%, Sol. Al: 0.010 to 0.10% Immediately after casting of a slab consisting of balance iron and inevitable impurities or after reheating to Ac 3 points or more, direct quenching from a two-phase region following thick plate rolling, tempering When performing direct heat treatment after heat treatment or plate rolling, quenching heat treatment from two-phase region, temper heat treatment for tempering, or quenching after completion of plate rolling, quenching from two-phase region, temper heat treatment for tempering, tempering A method for producing a tempered HT590 steel, characterized in that the temperature is 670 ° C. or higher and 730 ° C. or lower and a uniform elongation of 20% or more is given.
【請求項7】 重量%で Cr:0.03〜0.50%、 B :0.0003〜0.0020%、 Ca:0.0015〜0.0080%、 REM:0.001〜0.005% を一種又は二種以上を鋳片に含有せしめ、20%以上の
一様伸びを与えることを特徴とする請求項6記載の調質
HT590鋼の製造方法。
7. By weight%, Cr: 0.03 to 0.50%, B: 0.0003 to 0.0020%, Ca: 0.0015 to 0.0080%, REM: 0.001 to 0.005. 7. The method for producing a heat-treated HT590 steel according to claim 6, wherein one or two or more types are contained in the slab to give a uniform elongation of 20% or more.
【請求項8】 重量%で C :0.02〜0.08%、 Si:0.10〜0.60%、 Mn:0.80〜2.0%、 P :0.015%以下、 S :0.010%以下、 Cu:0.60〜2.5%、 Ni:0.30〜2.5%、 Mo:0.03〜0.50%、 Nb:0.005〜0.03%、 V :0.005〜0.10%、 Ti:0.005〜0.03%、 Sol.Al:0.010〜0.10% 残部鉄及び不可避的不純物からなる鋳片を鋳造後直ちに
又はAc点以上に再加熱後厚板圧延に引き続いて、焼
入れ焼戻しの調質熱処理を行うに際して、焼戻し温度を
670℃以上で730℃以下とし、20%以上の一様伸
びを与えることを特徴とする調質HT590鋼の製造方
法。
8. C: 0.02 to 0.08%, Si: 0.10 to 0.60%, Mn: 0.80 to 2.0%, P: 0.015% or less, S by weight% : 0.010% or less, Cu: 0.60 to 2.5%, Ni: 0.30 to 2.5%, Mo: 0.03 to 0.50%, Nb: 0.005 to 0.03% , V: 0.005 to 0.10%, Ti: 0.005 to 0.03%, Sol. Al: 0.010 to 0.10% Immediately after casting of a slab composed of balance iron and unavoidable impurities, or after reheating to a point of Ac 3 or more and subsequent to thick plate rolling, when performing heat treatment for quenching and tempering, A tempering HT590 steel manufacturing method, characterized in that a tempering temperature is set to 670 ° C. or higher and 730 ° C. or lower and a uniform elongation of 20% or more is given.
【請求項9】 重量%で C :0.02〜0.08%、 Si:0.10〜0.60%、 Mn:0.80〜2.0%、 P :0.015%以下、 S :0.010%以下、 Cu:0.60〜2.5%、 Ni:0.30〜2.5%、 Mo:0.03〜0.50%、 Nb:0.005〜0.03%、 V :0.005〜0.10%、 Ti:0.005〜0.03%、 Sol.Al:0.010〜0.10% 残部鉄及び不可避的不純物からなる鋳片を鋳造後直ちに
又はAc点以上に再加熱後厚板圧延に引き続く二相域
からの直接焼入れ、焼戻しの調質熱処理、又は厚板圧延
に引き続く直接焼入れ、二相域からの焼入れ、焼戻しの
調質熱処理、又は厚板圧延終了後の焼入れ、二相域から
の焼入れ、焼戻しの調質熱処理を行うに際して、焼戻し
温度を670℃以上で730℃以下とし、25%以上の
一様伸びを与えることを特徴とする調質HT590鋼の
製造方法。
9. C: 0.02 to 0.08%, Si: 0.10 to 0.60%, Mn: 0.80 to 2.0%, P: 0.015% or less, S by weight% : 0.010% or less, Cu: 0.60 to 2.5%, Ni: 0.30 to 2.5%, Mo: 0.03 to 0.50%, Nb: 0.005 to 0.03% , V: 0.005 to 0.10%, Ti: 0.005 to 0.03%, Sol. Al: 0.010 to 0.10% Immediately after casting of a slab consisting of balance iron and inevitable impurities or after reheating to Ac 3 points or more, direct quenching from a two-phase region following thick plate rolling, tempering When performing direct heat treatment after heat treatment or plate rolling, quenching heat treatment from two-phase region, temper heat treatment for tempering, or quenching after completion of plate rolling, quenching from two-phase region, temper heat treatment for tempering, tempering A method for producing a tempered HT590 steel, characterized in that the temperature is 670 ° C. or higher and 730 ° C. or lower and a uniform elongation of 25% or more is given.
【請求項10】 重量%で Cr:0.03〜1.0%、 B :0.0003〜0.0020%、 Ca:0.0015〜0.0080%、 REM:0.001〜0.005% を一種又は二種以上を鋳片に含有せしめたことを特徴と
する請求項8又は9のいずれかに記載の調質HT590
鋼の製造方法。
10. By weight%, Cr: 0.03 to 1.0%, B: 0.0003 to 0.0020%, Ca: 0.0015 to 0.0080%, REM: 0.001 to 0.005. %, One or two or more of them are contained in the cast slab, and the temper HT590 according to claim 8 or 9, characterized in that
Steel manufacturing method.
JP18862393A 1992-06-22 1993-06-21 Heat treated ht590 steel excellent in uniform elongation and its production Pending JPH0681032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18862393A JPH0681032A (en) 1992-06-22 1993-06-21 Heat treated ht590 steel excellent in uniform elongation and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-162691 1992-06-22
JP16269192 1992-06-22
JP18862393A JPH0681032A (en) 1992-06-22 1993-06-21 Heat treated ht590 steel excellent in uniform elongation and its production

Publications (1)

Publication Number Publication Date
JPH0681032A true JPH0681032A (en) 1994-03-22

Family

ID=26488391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18862393A Pending JPH0681032A (en) 1992-06-22 1993-06-21 Heat treated ht590 steel excellent in uniform elongation and its production

Country Status (1)

Country Link
JP (1) JPH0681032A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1062027C (en) * 1997-11-24 2001-02-14 武汉钢铁(集团)公司 Low carbon and super low carbon copper and boron bainite steel
JP2007241119A (en) * 2006-03-10 2007-09-20 Fuji Xerox Co Ltd Fixing roller, fixing device, and manufacturing method for fixing roller
CN111155029A (en) * 2019-12-27 2020-05-15 广西南宁三正工程材料有限公司 High-strength steel and method for preparing mesh sheet by using steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1062027C (en) * 1997-11-24 2001-02-14 武汉钢铁(集团)公司 Low carbon and super low carbon copper and boron bainite steel
JP2007241119A (en) * 2006-03-10 2007-09-20 Fuji Xerox Co Ltd Fixing roller, fixing device, and manufacturing method for fixing roller
CN111155029A (en) * 2019-12-27 2020-05-15 广西南宁三正工程材料有限公司 High-strength steel and method for preparing mesh sheet by using steel

Similar Documents

Publication Publication Date Title
CN108531808B (en) Low-yield-ratio weather-proof bridge structural steel with yield strength of more than or equal to 690MPa and production method thereof
CN111155025B (en) High-strength high-toughness high-speed impact-resistant bainite steel and preparation method thereof
CN109943771B (en) High-toughness weldable steel plate with fine grain structure and production method thereof
JPH07278656A (en) Production of low yield ratio high tensile strength steel
KR20010060760A (en) structural steel having High strength and method for menufactreing it
JPH09256037A (en) Production of thick high tensile strength steel plate for stress relieving annealing treatment
JP3228986B2 (en) Manufacturing method of high strength steel sheet
KR101018159B1 (en) High-strength steel sheet with excellent low temperature toughness and manufacturing method thereof
JPH0681032A (en) Heat treated ht590 steel excellent in uniform elongation and its production
CN114645125A (en) Method for reducing yield ratio of weather-resistant bridge steel
CN113897548A (en) Low-temperature-resistant easily-welded ultra-low-carbon steel thick plate and preparation method thereof
JPH01319629A (en) Production of cr-mo steel sheet having excellent toughness
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JP3756291B2 (en) Manufacturing method of high strength rebar
JP2706159B2 (en) Method for producing low yield ratio high strength steel with good weldability
JPH0717947B2 (en) Low yield ratio high strength steel sheet manufacturing method
JPH09256038A (en) Heat treatment before stress relieving annealing treatment for thick steel plate
JPH06128630A (en) Production of heat treated high tensile strength steel of more than 690 ht excellent in uniform elongation
JPH06128629A (en) Production of heat treated high tensile strength steel of more than 690ht excellent in uniform elongation
JPH10324918A (en) Manufacture of steel plate of low yield point for structural purpose
KR950003547B1 (en) Making method of low temperature ni-steel
JPH06340924A (en) Production of low yield ratio high tensile strength steel
JPH05112825A (en) Manufacture of 780n/mm2 class steel sheet extremely low in yield ratio
KR100368222B1 (en) THE METHOD OF MANUFACTURING 58kgf/㎟ GRADE BUILDING STEEL SHEETS WITH HIGH TEMPREATURE STRENGTH
JPH0625737A (en) Manufacture for thermalrefined ht 590 steel excellent in uniform elongation