JPH0387317A - Production of steel tube or square steel tube having low yield ratio - Google Patents

Production of steel tube or square steel tube having low yield ratio

Info

Publication number
JPH0387317A
JPH0387317A JP10796390A JP10796390A JPH0387317A JP H0387317 A JPH0387317 A JP H0387317A JP 10796390 A JP10796390 A JP 10796390A JP 10796390 A JP10796390 A JP 10796390A JP H0387317 A JPH0387317 A JP H0387317A
Authority
JP
Japan
Prior art keywords
low
yield ratio
steel tube
steel
low yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10796390A
Other languages
Japanese (ja)
Inventor
Yasushi Yamamoto
康士 山本
Matsuo Adaka
阿高 松男
Yukio Tomita
冨田 幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JPH0387317A publication Critical patent/JPH0387317A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a steel tube having low yield ratio by subjecting a steel tube made of low carbon steel to heating up to a specific temp. and then to water cooling under specific conditions. CONSTITUTION:A steel tube (or square steel tube) composed of low carbon steel or low carbon low alloy is heated up to >=Ac3, air-cooled, and then water- cooled from a temp. in the region between (Ar3-20 deg.C) and (Ar3-250 deg.C) at >=30 deg.C/sec cooling rate. Moreover, if the improvement of toughness is required, the tube is further tempered at 200-600 deg.C. By this method, the steel tube (or square steel tube) having low yield ratio as well as having strength as high as <= about 50kgf/mm<2> can be obtained at a low cost.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、降伏比の低い鋼管または角管の製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a steel pipe or square pipe with a low yield ratio.

(従来の技術) 近年鉄鋼材料を扱う各分野にわたって、競争力向上のた
めの使用特性の向上、製造コストの低減など各種の要求
が高まっている。
(Prior Art) In recent years, various demands have been increasing across various fields that handle steel materials, such as improving usage characteristics to improve competitiveness and reducing manufacturing costs.

このうち建築分野では、構造物の安全性向上のため、特
に耐震性向上のために降伏比の低下が望まれている。こ
れまでは主に厚板分野でこの要求が強かったが、最近で
は鋼管分野でこの要求かたかまっている。低降伏比を有
する厚鋼板の製造方法に関しては、種々の方法が検討さ
れているが、残念ながら鋼管の分野では、少なくとも建
築用として検討された例はほとんどないのが現状である
。例えば電縫鋼管は、ホットコイルを成形して製造する
が、成形の際の加工硬化により降伏比が上昇するため、
降伏比の低い鋼管の製造には、不利な製造方法とされて
いる。例えば、低降伏比油井用電縫鋼管の製造方法とし
て、特開昭57−18118号があるが、低降伏比、を
得るためにC量をかなり増加しており(C量: 0.2
8〜0.48%)、溶接性の観点からCeqに規定のあ
る建築構造用としては、適用できない。また同様に、低
降伏比高張力電縫鋼管の製造方法として、特開昭57−
16119号があるが、これはホットコイルの段階で極
低YR鋼を製造し、電縫鋼管を製造する際の加工硬化を
押えるために、歪量をかなり制限しているが、実操業で
はかなり困難が伴う。
Among these, in the field of construction, it is desired to reduce the yield ratio in order to improve the safety of structures, especially in order to improve their seismic resistance. Until now, this requirement has been strong mainly in the thick plate field, but recently this requirement has become stronger in the steel pipe field. Various methods have been studied for manufacturing thick steel plates with a low yield ratio, but unfortunately, in the field of steel pipes, there are currently almost no examples of such methods being studied, at least for construction purposes. For example, ERW steel pipes are manufactured by forming hot coils, but the yield ratio increases due to work hardening during forming.
It is considered to be a disadvantageous manufacturing method for manufacturing steel pipes with a low yield ratio. For example, there is a method for manufacturing ERW steel pipes for oil wells with a low yield ratio in JP-A-57-18118, but in order to obtain a low yield ratio, the amount of C is increased considerably (amount of C: 0.2
8 to 0.48%), it cannot be applied to architectural structures as specified by Ceq from the viewpoint of weldability. Similarly, as a method for manufacturing low yield ratio, high tensile resistance welded steel pipes, JP-A-57-
There is No. 16119, which manufactures ultra-low YR steel at the hot coil stage and limits the amount of strain considerably in order to suppress work hardening when manufacturing ERW steel pipes, but in actual operation it is considerably It is difficult.

(発明が解決しようとする課題) 建築用低降伏比鋼管または、角管として、弓張り強さ4
0〜60キロレベルで降伏比75%以下という要求があ
るが、現状の製造方法では製造が不可能である。つまり
、ホットコイルを丸く成形しただけで製造する非調質型
、いわゆるアズロール型では、その成形時の加工硬化の
ために、また調質型いわゆるQT型では、その組織が焼
戻しマルテンサイトとなるため、降伏比75%以下は達
成されていない。
(Problem to be solved by the invention) As a low yield ratio steel pipe for construction or a square pipe, the bow strength is 4.
There is a requirement for a yield ratio of 75% or less at the 0-60 kg level, but this is impossible with current manufacturing methods. In other words, in the non-tempered type, the so-called azurol type, which is manufactured by simply forming a hot coil into a round shape, the structure is due to work hardening during forming, and in the tempered type, so-called QT type, the structure becomes tempered martensite. , a yield ratio of 75% or less has not been achieved.

(課題を解決するための手段) そこで本発明者らは、降伏比を低下させるために、多数
の実験と詳細な検討を加えた結果、降伏比を低下させる
ためには、鋼のミクロ組織をフェライトと第2相の炭化
物の2相組織にする必要性を確認した。さらに、降伏比
を下げるためには、降伏点を下げ、引張り強さを高める
ことが重要であることも確認した。
(Means for Solving the Problems) Therefore, the present inventors conducted numerous experiments and detailed studies in order to reduce the yield ratio. The necessity of creating a two-phase structure consisting of ferrite and a second phase of carbide was confirmed. Furthermore, it was confirmed that in order to lower the yield ratio, it is important to lower the yield point and increase the tensile strength.

本発明は、このような知見に基き、低降伏比を有する鋼
管または角管の製造を可能にしたもので、その要旨とす
るところは、低炭素鋼または低炭素低合金鋼管(または
角管)をAc3以上に加熱し、その後空冷してArc−
20℃〜Ar3−250℃から30℃/see以上の冷
却速度で水冷し、その後必要に応じて200〜600℃
の温度範囲で焼き戻しすることを特徴とする、降伏比の
低い鋼管(または角管〉の製造方法である。
Based on this knowledge, the present invention has made it possible to manufacture steel pipes or square pipes with a low yield ratio. is heated to Ac3 or higher, then air cooled to create Arc-
Water cooling from 20°C to Ar3-250°C at a cooling rate of 30°C/see or higher, then 200 to 600°C as necessary
This is a method for manufacturing steel pipes (or rectangular pipes) with a low yield ratio, which is characterized by tempering at a temperature range of .

(作   用) 本発明においては、加熱温度を^C3変態点以上にして
、完全なオーステナイト1相にして、バイブ戒心やその
後の角管成形での加工硬化の影響を完全に除去し、その
後の^「3変態点以下までの空冷でフェライトを析出さ
せ、その後の水冷を組み合わせることによって、2相鋼
化を達成することに成功している。
(Function) In the present invention, the heating temperature is set to the C3 transformation point or higher to form a complete austenite single phase, completely eliminating the influence of work hardening in the vibrating process and subsequent square tube forming. ^ “By combining ferrite precipitation with air cooling to below the 3rd transformation point and subsequent water cooling, we have succeeded in achieving dual phase steel.

さらに焼き戻し温度を低くすることによって、第2相の
部分を必要以上に軟化させないことの相乗的効果により
、降伏比の低い鋼管(または角管)の製造を可能にした
ものである。
Furthermore, by lowering the tempering temperature, the synergistic effect of not softening the second phase part more than necessary makes it possible to manufacture steel pipes (or square pipes) with a low yield ratio.

次に本発明の鋼管成形・角管成形・加熱・冷却・テンパ
ーの条件について述べる。
Next, the conditions for steel pipe forming, square pipe forming, heating, cooling, and tempering of the present invention will be described.

まず、鋼管の成形およびその後の角管成形については、
特に規定はなくどのような成形でも許容される。例えば
鋼管はその製造方法から、シームレス鋼管、電縫鋼管、
UOtI4管、スパイラル鋼管、鍛接管等に分類できる
が、本発明はこれらどの製造方法でも許容される。ホッ
トコイルのような板から直接角管に成形して溶接したも
のでも、もちろん許容される。これは、その後の熱処理
での加熱温度を加工歪が除去される温度に規定するため
である。次に成形後加熱温度をAc、以上にしたのは、
完全なオーステナイト1相組織として成形歪の完全除去
を狙ったためである。
First, regarding steel pipe forming and subsequent square tube forming,
There are no particular regulations, and any molding is acceptable. For example, steel pipes are manufactured using different manufacturing methods, such as seamless steel pipes, electric resistance welded steel pipes,
Although it can be classified into UOtI4 pipes, spiral steel pipes, forge welded pipes, etc., any of these manufacturing methods are acceptable in the present invention. Of course, it is also acceptable to directly form a square tube from a plate such as a hot coil and weld it. This is to set the heating temperature in the subsequent heat treatment to a temperature at which processing strain is removed. Next, the heating temperature after molding was set to Ac or higher.
This is because the aim was to completely eliminate molding strain by creating a complete austenite single-phase structure.

加熱後に空冷を行なうのは、冷却前に適量のフェライト
を析出させて、完全な2相鋼化を狙ったものである。
The purpose of performing air cooling after heating is to precipitate an appropriate amount of ferrite before cooling, with the aim of creating a complete duplex steel.

冷却開始温度の上限をAr3−2(1℃としたのは降伏
点を低くするためであり、下限をAr3−250℃とし
たのは、これ以下の低い温度から冷却すると加速冷却の
効果がうすく引張り強さが下がり、強度確保が困難なた
めである。
The reason why the upper limit of the cooling start temperature was set to Ar3-2 (1℃) was to lower the yield point, and the lower limit was set to Ar3-250℃ because the effect of accelerated cooling is weak when cooling from a lower temperature than this. This is because the tensile strength decreases and it is difficult to secure strength.

Ar3−20〜Ar5−25Qに空冷後の水冷は、再加
熱時にオーステナイト化してCの濃化した部分を焼入組
織とすることで充分硬化させ、引張り強さを高め低降伏
比を得るためである。水冷が不十分だと、焼入組織が充
分に硬化せず、結果として低降伏比が得られないため、
冷却速度を30℃/see以上に規定した。
Water cooling after air cooling for Ar3-20 to Ar5-25Q is done in order to fully harden the part by turning it into austenite during reheating and making the C-enriched part a quenched structure, increasing the tensile strength and obtaining a low yield ratio. be. If water cooling is insufficient, the quenched structure will not harden sufficiently, resulting in a low yield ratio.
The cooling rate was set at 30° C./see or higher.

ところで、鋼種によっては加熱後水冷だけでは靭性のよ
くないものがあり、靭性改善のために水冷後焼き戻し処
理の必要な場合がある。その際焼き戻し温度としては、
フェライトと第2相の炭化物の2相組織について、その
前の水冷で充分硬化した第2相部分をあまり高温で焼き
戻すと軟化しすぎ、これが引張り強さの低下つまり降伏
比の上昇の原因となるため、上限を600℃とした。し
かし焼き戻し温度が低くて、200℃未満になるとほと
んど焼き戻しの効果がなくなり、靭性が改善さ゛れない
場合があるため、その下限を200℃とした。
By the way, depending on the type of steel, there are some steels whose toughness is not good only by water cooling after heating, and it may be necessary to perform tempering treatment after water cooling in order to improve the toughness. At that time, the tempering temperature is
Regarding the two-phase structure of ferrite and second phase carbide, if the second phase part, which has been sufficiently hardened by water cooling, is tempered at too high a temperature, it will become too soft, which is the cause of the decrease in tensile strength and the increase in yield ratio. Therefore, the upper limit was set to 600°C. However, if the tempering temperature is too low to be less than 200°C, the tempering effect will be almost gone and the toughness may not be improved, so the lower limit was set at 200°C.

本発明法は低炭素鋼またはこれに特殊元素を添加した低
炭素低合金鋼に適用して好結果を得ることができる。好
ましい成分組成としては、C: 0.05〜0.30% St : 0.02〜0.50% Mn : 0.50〜2.00% A!l: 0.001〜0.100% N : 0.0005〜0.0100%を基本成分とす
る低炭素鋼、または前記基本成分の他に強度鋼の要求特
性によって、 Cu:2.0%以下 Nl : 9.5%以下 Cr : 5.5%以下 Mo:2.0%以下 Nb : 0.15%以下 V : 0.3%以下 Ti : 0.15%以下 B  :  0.0003〜0.0030%Ca : 
0.0080%以下 の1種または2種以上添加してもよい。
The method of the present invention can be applied to low carbon steel or low carbon low alloy steel to which special elements are added with good results. Preferred component compositions include: C: 0.05-0.30% St: 0.02-0.50% Mn: 0.50-2.00% A! L: 0.001-0.100% N: Low carbon steel with a basic component of 0.0005-0.0100%, or depending on the required characteristics of the strength steel in addition to the basic components, Cu: 2.0% or less Nl: 9.5% or less Cr: 5.5% or less Mo: 2.0% or less Nb: 0.15% or less V: 0.3% or less Ti: 0.15% or less B: 0.0003 to 0. 0030%Ca:
One or more types may be added in an amount of 0.0080% or less.

Cuは強度上昇、耐食性向上に有用で添加されるが、2
.0%を越えて添加しても強度の上昇代がほとんどなく
なるので、含有量の上限は2.0%とする。
Cu is added because it is useful for increasing strength and improving corrosion resistance, but 2
.. Even if it is added in excess of 0%, there is almost no increase in strength, so the upper limit of the content is set at 2.0%.

Niは低温靭性の改善に有用で添加されるが、高価な元
素であるため含有量は9.5%を上限とする。
Ni is added because it is useful for improving low-temperature toughness, but since it is an expensive element, the upper limit of the content is 9.5%.

C「は強度上昇や耐食性向上に有用で添加されるが、多
くなると低温靭性、溶接性を阻害するため含有量は5.
5%を上限とする。
C is added because it is useful for increasing strength and improving corrosion resistance, but if too much it impedes low-temperature toughness and weldability, so the content is 5.
The upper limit is 5%.

Moは強度上昇に有用であるが、多くなると溶接性を阻
害するため含有量は2.0%を上限とする。
Mo is useful for increasing strength, but if too much Mo inhibits weldability, the upper limit of the content is 2.0%.

Nbはオーステナイト粒の細粒化や強度上昇に有用で添
加されるが、多くなると溶接性を阻害するので含有量の
上限は0.15%とする。
Nb is added because it is useful for refining austenite grains and increasing strength, but if too much, it impedes weldability, so the upper limit of the content is set to 0.15%.

■は析出強化に有用であるが、多くなると溶接性を阻害
するため、含有量は0.3%を上限とする。
(2) is useful for precipitation strengthening, but if too large, it impedes weldability, so the upper limit of content is 0.3%.

Tiはオーステナイト粒の細粒化に有用で添加されるが
、多くなると溶接性を阻害するため、含有量は0.3%
を上限とする。
Ti is added because it is useful for refining austenite grains, but if it increases, it inhibits weldability, so the content is limited to 0.3%.
is the upper limit.

Bは微量の添加によって、鋼の焼入性を著しく高める効
果を有する。この効果を有効に得るためには、少なくと
もQ、(1000%を添加することが必要である。しか
し過多に添加するとB化合物を生成して、靭性を劣化さ
せるので、上限は0.003Q%とする。
B has the effect of significantly increasing the hardenability of steel when added in a small amount. In order to effectively obtain this effect, it is necessary to add at least Q (1000%).However, if too much is added, B compounds are generated and the toughness is deteriorated, so the upper limit is 0.003Q%. do.

Caは硫化物系介在物の形態制御に有用で添加されるが
、多くなると鋼中介在物を形成し鋼の性質を悪化させる
ため、含有量はo、ooa%を上限とする。
Ca is added because it is useful for controlling the form of sulfide-based inclusions, but if too much Ca forms inclusions in the steel and deteriorates the properties of the steel, the upper limit of the content is set at o, ooa%.

(実 施 例) 第1表に供試材の化学成分を示し、第2表に鋼管または
角管のサイズ、熱処理条件と、得られた鋼管の11&械
的性質を示す。
(Example) Table 1 shows the chemical composition of the test materials, and Table 2 shows the size of the steel pipe or square pipe, heat treatment conditions, and mechanical properties of the obtained steel pipe.

第2表で示しに鋼管No、AI、Bl、C1゜1)1.
El、Fl、Gl、)11.I 1.Jl。
Table 2 shows the steel pipe No., AI, Bl, C1゜1)1.
El, Fl, Gl,)11. I 1. Jl.

Kl、Ll、Ml、Nl、01.Pi、Ql。Kl, Ll, Ml, Nl, 01. Pi, Ql.

R1,31,TI、tJl、Vlはそれぞれ本発明実施
鋼であり、本発明の狙いとする低降伏比(降伏比70%
以下)を達成している。
R1, 31, TI, tJl, and Vl are steels according to the present invention, and have a low yield ratio (yield ratio of 70%), which is the aim of the present invention.
The following) have been achieved.

これに対し、A2は水冷開始温度が高すぎるため降伏比
が高くなっている。A3は水冷開始温度が低すぎるため
強度が低くなっている。
On the other hand, A2 has a high yield ratio because the water cooling start temperature is too high. A3 has low strength because the water cooling start temperature is too low.

A4は加熱後の冷却速度が不足のため降伏比が高くなっ
ている。A5は焼き戻し温度が高すぎるため降伏比が高
くなっている。
A4 has a high yield ratio because the cooling rate after heating is insufficient. A5 has a high yield ratio because the tempering temperature is too high.

また、B2は焼き戻し温度が高すぎるため降伏比が高く
なっている。C2は冷却速度が不足のため降伏比が高く
なっている。B2は加熱温度と冷却開始温度が低すぎる
ため強度が低くなっている。
Further, B2 has a high yield ratio because the tempering temperature is too high. C2 has a high yield ratio due to insufficient cooling rate. B2 has low strength because the heating temperature and cooling start temperature are too low.

(発明の効果) 以上詳細に説明した通り、本発明は特別に高価な合金元
素を使用することなく、50kgf/u+m2以上の高
強度を有する低降伏比鋼管または角管を、安価に製造可
能としたもので、産業上その効果は大である。
(Effects of the Invention) As explained in detail above, the present invention enables low yield ratio steel pipes or rectangular pipes having a high strength of 50 kgf/u+m2 or more to be manufactured at low cost without using particularly expensive alloying elements. As a result, the industrial effects are significant.

他4名4 others

Claims (1)

【特許請求の範囲】 1 低炭素鋼または低炭素低合金鋼管を、 Ac_3以上に加熱し、その後空冷してAr_3−20
℃〜Ar_3−250℃から30℃/sec以上の冷却
速度で水冷することを特徴とする、降伏比の低い鋼管の
製造方法。2 低炭素鋼または低炭素低合金鋼管を、 Ac_3以上に加熱し、その後空冷してAr_3−20
℃〜Ar_3−250℃から30℃/sec以上の冷却
速度で水冷し、その後200〜600℃の温度範囲で焼
き戻しすることを特徴とする、降伏比の低い鋼管の製造
方法。 3 低炭素鋼または低炭素低合金鋼管を、 Ac_3以上に加熱し、その後空冷してAr_3−20
℃〜Ar_3−250℃から30℃/sec以上の冷却
速度で水冷することを特徴とする、降伏比の低い角管の
製造方法。4 低炭素鋼または低炭素低合金鋼管を、 Ac_3以上に加熱し、その後空冷してAr_3−20
℃〜Ar_3−250℃から30℃/sec以上の冷却
速度で水冷し、その後200〜600℃の温度範囲で焼
き戻しすることを特徴とする、降伏比の低い角管の製造
方法。
[Claims] 1. Low carbon steel or low carbon low alloy steel pipe is heated to Ac_3 or higher and then air cooled to Ar_3-20.
A method for manufacturing a steel pipe with a low yield ratio, characterized by water cooling from ℃ to Ar_3-250℃ at a cooling rate of 30℃/sec or more. 2. Heat low carbon steel or low carbon low alloy steel pipe to Ac_3 or higher, then air cool to Ar_3-20.
A method for manufacturing a steel pipe with a low yield ratio, characterized by water cooling from ℃~Ar_3-250℃ at a cooling rate of 30℃/sec or more, and then tempering in a temperature range of 200 to 600℃. 3. Heat low carbon steel or low carbon low alloy steel pipe to Ac_3 or higher, then air cool to Ar_3-20.
A method for manufacturing a rectangular tube with a low yield ratio, characterized by water cooling from ℃ to Ar_3-250℃ at a cooling rate of 30℃/sec or more. 4. Heat low carbon steel or low carbon low alloy steel pipe to Ac_3 or higher, then air cool to Ar_3-20.
A method for manufacturing a rectangular tube with a low yield ratio, characterized by water-cooling from °C to Ar_3-250 °C at a cooling rate of 30 °C/sec or more, and then tempering in a temperature range of 200 to 600 °C.
JP10796390A 1989-06-13 1990-04-24 Production of steel tube or square steel tube having low yield ratio Pending JPH0387317A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP15017989 1989-06-13
JP1-150179 1989-06-13

Publications (1)

Publication Number Publication Date
JPH0387317A true JPH0387317A (en) 1991-04-12

Family

ID=15491232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10796390A Pending JPH0387317A (en) 1989-06-13 1990-04-24 Production of steel tube or square steel tube having low yield ratio

Country Status (1)

Country Link
JP (1) JPH0387317A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192741A (en) * 1992-12-28 1994-07-12 Kubota Corp Method for heat-treating thick walled cast steel pipe
JPH06192739A (en) * 1992-12-25 1994-07-12 Kubota Corp Method for heat-treating thick welled cast steel pipe
JPH06192740A (en) * 1992-12-28 1994-07-12 Kubota Corp Method for heat-treating thick walled cast steel pipe
JP2012021181A (en) * 2010-07-12 2012-02-02 Nippon Steel Corp Heat treatment method and heat treating facility for steel pipe
EP2853615A1 (en) * 2003-06-12 2015-04-01 JFE Steel Corporation Low yield ratio, high strength, high toughness, thick steel plate and welded steel pipe, and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192739A (en) * 1992-12-25 1994-07-12 Kubota Corp Method for heat-treating thick welled cast steel pipe
JPH06192741A (en) * 1992-12-28 1994-07-12 Kubota Corp Method for heat-treating thick walled cast steel pipe
JPH06192740A (en) * 1992-12-28 1994-07-12 Kubota Corp Method for heat-treating thick walled cast steel pipe
EP2853615A1 (en) * 2003-06-12 2015-04-01 JFE Steel Corporation Low yield ratio, high strength, high toughness, thick steel plate and welded steel pipe, and method for manufacturing the same
JP2012021181A (en) * 2010-07-12 2012-02-02 Nippon Steel Corp Heat treatment method and heat treating facility for steel pipe

Similar Documents

Publication Publication Date Title
JPH0387317A (en) Production of steel tube or square steel tube having low yield ratio
JPH064889B2 (en) Method for manufacturing thick ultra high strength steel
JPS5952687B2 (en) Manufacturing method of tempered high-strength steel plate with excellent low-temperature toughness
JP4461589B2 (en) Manufacturing method of high yield strength steel with low yield ratio 780N / mm2 excellent in weld crack sensitivity
JPH048486B2 (en)
JPH10287957A (en) High strength pc steel bar and its manufacture
JPH01172516A (en) Manufacture of acicular ferritic stainless steel having excellent stress corrosive cracking resistance
JPH0397811A (en) Production of square tube reduced in yield ratio and excellent in toughness at low temperature
JPH0387318A (en) Production of steel tube or square steel tube having low yield ratio
JPH04321A (en) Production of steel tube having yield point elongation, reduced in yield ratio, and excellent in toughness at low temperature
JPH01172517A (en) Manufacture of stainless steel having excellent stress corrosive cracking resistance
JPH08283836A (en) Production of steel excellent in weldability and acoustic anisotropy
JPH05163527A (en) Manufacture of high tension steel superior in weldability
JPH03219015A (en) Production of square tube having yield point elongation, reduced in yield ratio, and excellent in toughness at low temperature
JPH04176820A (en) Production of steel tube or square tube excellent in earthquake resistance
JPH03219016A (en) Production of square tube having yield point elongation, reduced in yield ratio, and excellent in toughness at low temperature
JPH03219018A (en) Production of steel tube having yield point elongation, reduced in yield ratio, and excellent in toughness at low temperature
JPH03219019A (en) Production of square tube having yield point elongation, reduced in yield ratio, and excellent in toughness at low temperature
JPH04323318A (en) Production of square tube reduced in yield ratio
JPH04319A (en) Production of square tube having yield point elongation, reduced in yield ratio, and excellent in toughness at low temperature
JPH04176818A (en) Production of steel tube or square tube excellent in earthquake resistance
JPH03219017A (en) Production of steel tube having yield point elongation, reduced in yield ratio, and excellent in toughness at low temperature
JPH03211231A (en) Production of square tube having yield point elongation and reduced in yield ratio
JPH04323317A (en) Production of square tube reduced in yield ratio
JPH04323319A (en) Production of square tube reduced in yield ratio