JP4445161B2 - Manufacturing method of thick steel plate with excellent fatigue strength - Google Patents

Manufacturing method of thick steel plate with excellent fatigue strength Download PDF

Info

Publication number
JP4445161B2
JP4445161B2 JP2001185362A JP2001185362A JP4445161B2 JP 4445161 B2 JP4445161 B2 JP 4445161B2 JP 2001185362 A JP2001185362 A JP 2001185362A JP 2001185362 A JP2001185362 A JP 2001185362A JP 4445161 B2 JP4445161 B2 JP 4445161B2
Authority
JP
Japan
Prior art keywords
phase
hard
less
ferrite
fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001185362A
Other languages
Japanese (ja)
Other versions
JP2003003229A (en
Inventor
俊永 長谷川
昌紀 皆川
浩幸 白幡
敏彦 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001185362A priority Critical patent/JP4445161B2/en
Publication of JP2003003229A publication Critical patent/JP2003003229A/en
Application granted granted Critical
Publication of JP4445161B2 publication Critical patent/JP4445161B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は疲労強度が必要とされる溶接構造部材に用いられる、引張強さが400MPa級以上の厚鋼板の製造方法に関するものである。本発明鋼板は、例えば、海洋構造物、圧力容器、造船、橋梁、建築物、ラインパイプなどの溶接鋼構造物一般に用いることができるが、特に疲労強度を必要とする海洋構造物、造船、橋梁、建設構造物、等の構造物用鋼板として有用である。また、その他、構造部材として用いられ、疲労強度が要求される鋼管素材、あるいは形鋼にも適用可能である。
【0002】
【従来の技術】
溶接構造物の大型化と環境保全の要求の高まりに伴い、構造物部材に対して従来にも増した信頼性が要求されるようになってきている。現在の構造物は溶接構造が一般的であり、溶接構造物で想定される破壊形態としては、疲労破壊、脆性破壊、延性破壊などがあるが、これらの内、最も頻度が高い破壊形態は、初期欠陥からの脆性破壊あるいは疲労破壊、さらには疲労破壊の後に続く脆性破壊である。また、これらの破壊形態は、構造物の設計上の配慮だけでは防止が困難であり、また、突然の構造物の崩壊の原因となることが多く、構造物の安全確保の観点からはその防止が最も必要とされる破壊形態である。
【0003】
脆性破壊については、化学組成的にNiの添加や、変態組織の最適化等の改善手段があり、また製造方法的にも制御圧延や加工熱処理による組織微細化により改善が可能である。一方、疲労特性の場合、平滑部材に関しては強度向上等により改善することは可能であるが、溶接構造では溶接部の止端部形状に疲労強度が支配されるために、強度向上や組織改善による冶金的手段での疲労強度(継手疲労強度)向上は不可能であると考えられていた。すなわち、疲労強度が問題となる構造物では、高張力鋼を用いても設計強度を高めることができず、高張力鋼使用の利点が得られなかった。従って、従来このような溶接構造物においては、応力集中部となっている溶接止端部の形状を改善するための、いわゆる止端処理によって継手疲労強度の改善が図られてきた。例えば、グラインダーによって止端を削って止端半径を大きくする方法、TIG溶接によって止端部を再溶融させて止端形状を滑らかにする方法(例えば、特公昭54−30386号公報)、ショットピーニングによって止端部に圧縮応力を発生される方法等である。
【0004】
しかし、これらの止端処理は非常に手間がかかるものであるため、コスト低減、生産性改善のために、止端処理によらない、鋼材自体の継手疲労強度改善手段が待たれていた。
【0005】
最近、このような要求に応えて、いくつかの継手疲労強度の良好な鋼材が提案されている。例えば、溶接熱影響部(HAZ)の組織をフェライト(α)とすることによってHAZの疲労強度を向上できる技術(特開平8−73983号公報)が示されている。しかし、本技術はHAZ組織をフェライト組織とする必要性から、製造できる鋼材の強度レベルに限界があり、引張強さが780MPaを超えるような高強度鋼材を製造することはできない。
【0006】
引張強度が590MPa以上の高強度鋼の継手疲労強度を改善する手段もいくつか提案されており、HAZのベイナイト組織の疲労き裂の発生・伝播特性改善に高Si化(特開平8−209295号公報)、高Nb化(特開平10−1743号公報)が有効との報告がある。しかし、Si、Nbとも多量に添加すると、靭性を大幅に劣化する元素であり、また、鋼片の割れを生じる等、製造上の問題を生じる懸念もある。
【0007】
上記従来技術はいずれもHAZ組織の疲労き裂の発生及びHAZ中の疲労き裂伝播を改善する手段であるが、HAZは止端部の応力集中の影響を大きく受けるため、止端形状によっては効果が生じなかったり、小さかったりする場合がある。
【0008】
止端形状によらずに継手疲労強度を改善するためには、止端部から発生した疲労き裂の母材での伝播を遅延させることが有効である。このような考え方に基づいて、平均フェライト粒径が20μm以下の細粒組織中に、粗大フェライトを分散させた母材組織とすることによって、母材の疲労き裂進展特性を向上させる技術(特開平7−90481号公報)が開示されている。しかし、この場合も、フェライト主体組織とする必要性から、引張強度で580MPa級程度の鋼材までしか製造できない。
【0009】
さらに、母材の疲労き裂伝播を抑制することによって疲労強度を高める技術として、フェライトと硬質第二相からなる組織において、フェライトの硬さと硬質第二相の硬さとの間に一定の関係を規定した上で、第二相の形態(アスペクト比、間隔)、あるいは/及び、集合組織を規定した技術が、特開平11−1742号公報に開示されている。本技術は現在示されている技術の中では、疲労き裂伝播抑制に最も優れた手段の一つであるが、組織形成、集合組織発達のために、二相域〜フェライト域での累積圧下率を大きくすることが必要であるため、生産性の劣化、鋼板形状の悪化等の課題を有している。
【0010】
【発明が解決しようとする課題】
本発明は、溶接構造部材に用いられる引張強さが400MPa級以上の厚鋼板の製造方法において、止端形状によらずに継手疲労強度を向上させるために、母材の耐疲労き裂伝播特性が優れた厚鋼板を、特殊なあるいは高価な合金元素の多量添加や、生産性の劣る、あるいは複雑な製造方法によらずに疲労強度に優れた厚鋼板の製造方法を提供することを課題とする。
【0011】
【課題を解決するための手段】
本発明者らは、引張強さが400MPa級以上の鋼材において、母材の耐疲労き裂伝播特性を向上することにより、継手の止端形状に依存せずに継手疲労強度向上させるための手段を、疲労き裂の進展挙動と鋼材ミクロ組織との関係の詳細な実験結果から見いだした。すなわち、継手止端部の応力集中部から発生した疲労き裂が板厚方向に伝播する場合、フェライトと適正な形態及び特性を有する硬質第二相との混合組織においては、両組織の界面又は界面近傍で、疲労き裂の停滞、折れ曲がり、分岐等を生じる場合が多く、また、硬質第二相にき裂が伝播する場合には硬質第二相内での疲労き裂の進展が著しく抑制される。これらの総合的な効果によって、母材中のマクロな疲労き裂伝播速度は大幅に低減すること、そして、このような疲労き裂進展抑制のためには、フェライト相と硬質第二相の組織形態、特性が適正化されていれば、二相域圧延は必ずしも必須要件ではないことを知見した。
【0012】
さらに、本発明者らは、上記母材の耐疲労き裂伝播特性に好ましい組織形態を形成せしめるための、工業的に最も好ましい手段を詳細な実験に基づいて確立した。
【0013】
本発明は、以上の知見に基づいて発明したものであり、要旨は以下の通りである。
【0017】
(1) 質量%で、
C :0.04〜0.3%、
Si:0.01〜2%、
Mn:0.1〜3%、
Al:0.001〜0.1%、
N :0.001〜0.01%
を含有し、
P:0.02%以下、
S :0.01%以下
を含有し、残部が鉄及び不可避不純物からなる成分を有する鋼片をAC3変態点〜1250℃に再加熱し、開始温度が850℃以下、終了温度がAr3変態点以上で、累積圧下率が30%以上の圧延を含み、全圧下比が5以上の熱間圧延を行い、500℃以下まで5℃/s以下の冷却速度で冷却した後、さらに(AC1変態点+30℃)〜(AC3変態点−50℃)に再加熱し、400℃以下まで5〜100℃/sで冷却して、フェライトと硬質第二相とからなる組織を有し、鋼板長手方向に平行な板厚断面組織における前記フェライトと硬質第二相とが下記(1)〜(4)の条件を全て満たし、前記硬質第二相の組織がベイナイト、マルテンサイトのいずれか又は両者の混合組織とすることを特徴とする、疲労強度に優れた厚鋼板の製造方法。
(1)平均フェライト粒径:20μm以下
(2)硬質第二相の割合:10〜70%
(3)硬質第二相の平均ビッカース硬さ:230以上
(4)硬質第二相の平均アスペクト比(平均鋼板長手方向長さ/平均板厚方向長さ):10以上
(2) さらに、前記鋼片が質量%で、
Ni:0.01〜6%、
Cu:0.01〜1.5%、
Cr:0.01〜2%、
Mo:0.01〜2%、
W :0.01〜2%、
Ti:0.003〜0.1%、
V :0.005〜0.5%、
Nb:0.003〜0.2%、
Zr:0.003〜0.1%、
Ta:0.005〜0.2%、
B :0.0002〜0.005%
のうちの1種又は2種以上を含有することを特徴とする、上記(1)に記載の疲労強度に優れた厚鋼板の製造方法。
(3)さらに、前記鋼片が質量%で、
Mg:0.0005〜0.01%、
Ca:0.0005〜0.01%、
REM:0.005〜0.1%
のうちの1種又は2種以上を含有することを特徴とする、上記(1)又は(2)に記載の疲労強度に優れた厚鋼板の製造方法。
【0018】
(4) さらに、250〜600℃で焼戻すことを特徴とする、上記(1)〜(3)のいずれかに記載の疲労強度に優れた厚鋼板の製造方法。
【0019】
【発明の実施の形態】
本発明は、母材の疲労き裂伝播特性を向上することで継手疲労強度を確保することを目的としたものである。その最も重要な要件は、母材組織が、「フェライトと硬質第二相とからなる組織を有し、鋼板長手方向に平行な板厚断面組織において、該フェライトと硬質第二相とが、▲1▼平均フェライト粒径:20μm以下、▲2▼ベイナイトあるいはマルテンサイトあるいは両者の混合組織からなる硬質第二相の割合:10〜70%、▲3▼硬質第二相の平均ビッカース硬さ:230以上、▲4▼硬質第二相の平均アスペクト比(平均鋼板長手方向長さ/平均板厚方向長さ):10以上、の条件を満足する」ことにある。
【0020】
母材の疲労き裂伝播を抑制することによって疲労強度を高める技術として、フェライトと硬質第二相からなる組織において、フェライトの硬さと硬質第二相の硬さとの間に一定の関係を規定した上で、第二相の形態(アスペクト比、間隔)、あるいは/及び、集合組織を規定した技術が、すでに、特開平11−1742号公報に開示されている。本発明もフェライトと硬質第二相からなる組織によって疲労き裂伝播を抑制する点では同様であるが、フェライトと第二相の組織形態、特性と疲労き裂伝播挙動との関係を詳細に観察、検討した結果、上記技術とは異なった、前記▲1▼〜▲4▼に特徴を持った、フェライト、硬質第二相とすることで、一層の疲労強度特性改善が可能であることを新たに見いだした。すなわち、母材の疲労き裂伝播特性向上のためには、疲労き裂の屈曲、分岐を図るとともに、適正な特性を有する硬質第二相内にも高頻度に突入させることが、該硬質第二相内での疲労き裂進展速度が極端に小さいために、好ましく、そして、疲労き裂の確実な屈曲、分岐と硬質第二相内への疲労き裂の突入のためには、硬質第二相のアスペクト比を10以上と非常に大きくする必要があること、また、フェライトと硬質第二相の硬さの比よりも、硬質第二相の硬さ自体がより重要であることを見いだした。
【0021】
以上の、基礎的な知見をベースとして、詳細な実験に基づいて、具体的に、前記▲1▼〜▲4▼その組織要件を同時に満足する必要があることを導き出した。以下に各組織要件ごとに、さらに詳細に説明する。なお、本発明においては、組織の構成がフェライトと硬質第二相からなることを前提としている。これは、疲労き裂の屈曲、分岐を生じるためには、硬質第二相の形態、特性如何によらず、フェライトと硬質第二相との混合組織であることが必須であるためである。その際、硬質第二相としては、本発明の硬質第二相のみであることが好ましいが、本発明を満足する限り、他の相、例えば、パーライト、あるいは疑似パーライトが一部分含まれていても本発明の効果を阻害するものではない。
【0022】
▲1▼ 平均フェライト粒径が20μm以下:本要件は疲労特性向上に直接関わるものではないが、本発明の硬質第二相を含む組織においては、硬質相が基本的には脆く、靭性に悪影響を示すため、靭性の劣化が生じる懸念があり、鋼板全体としての靭性を確保するために平均フェライト粒径を20μm以下とする。平均フェライト粒径が20μm以下であれば、2mmVノッチシャルピー衝撃試験の破面遷移温度(vTrs)で0℃以下の良好な靭性が達成できる。一方、平均フェライト粒径が20μm超では、vTrsが室温以上に劣化する懸念があり、かつ、疲労中にも脆性破壊が生じて疲労き裂伝播特性が劣化する恐れも生じる。
【0023】
▲2▼ ベイナイトあるいはマルテンサイトあるいは両者の混合組織からなる硬質第二相の割合が10〜70%:先ず、硬質第二相としてはベイナイトあるいはマルテンサイト、各々の単相組織か、両者の混合組織とすることが必須でがある。該組織相はいずれも微細なラス組織で、ビッカース硬さが230以上であれば、炭化物が存在しても微細かつ高密度に存在するため、疲労き裂進展抑制の観点からは均一な組織形態と言え、き裂が概硬質第二相に突入した場合のき裂進展抑制に極めて有効である。また、低温で変態するベイナイトあるいはマルテンサイト相は、変態時に隣接するフェライト相との界面近傍に残留応力を生成し、疲労き裂の屈曲・分岐の確率を高める。一方、例えば、パーライトや疑似パーライトは、ミクロにはフェライトとセメンタイトの層状組織であるため、き裂が層間の軟質なフェライト中を選択して進展することも可能であり、また、セメンタイトは脆いため、進行するき裂先端近傍で我を生じてき裂抵抗にならない場合も多い等の理由により、ベイナイトやマルテンサイトに比べて疲労き裂進展遅延効果が小さい。本発明では、さらに、ベイナイトあるいはマルテンサイトあるいは両者の混合組織からなる硬質第二相の割合を10〜70%に限定する。疲労き裂進展を硬質第二相によって抑制しようとする場合、当然、き裂前縁部に硬質第二相が存在する確率が多いほど、き裂の屈曲、分岐、さらにはき裂が硬質第二相内を進展する頻度も高くなる。この硬質第二相による疲労き裂遅延効果が最終的な疲労寿命増加に明確に反映するためには、少なくとも硬質第二相は10%以上必要である。一方、ある程度までは硬質第二相の割合が多いほど疲労特性は向上するが、硬質第二相の量が過大になると、軟質相であるフェライトの割合が極端に少なくなって、実質的にフェライトと硬質第二相との二相組織とは言い難くなり、逆に疲労き裂の屈曲、分岐が生じ難くなる。また、硬質第二相は靭性に対しては好ましくなく、過剰に存在すると、フェライト粒径を20μm以下に微細化しても、靭性を大きく劣化させる懸念がある。以上の理由による硬質第二相の割合の上限は実験結果に基づいて検討し、本発明では70%とした。
【0024】
▲3▼ 硬質第二相の平均ビッカース硬さが230以上:フェライト/硬質第二相界面あるいは界面近傍でのき裂の屈曲、分岐、硬質第二相内でのき裂進展速度低減によって、き裂進展遅延効果を十分発揮するためには、硬質第二相の硬さ及び形態を適正化する必要がある。硬質第二相の硬さ、形態と疲労き裂進展挙動との関係を詳細に検討した結果、先ず、硬質第二相の硬さに関しては、フェライトとの硬さの差や比ではなく、硬質第二相の硬さ自体が最も重要で、ビッカース硬さで測定した平均硬さで230以上であることが必要との結論に至った。平均ビッカース硬さが230以上であれば、疲労き裂先端の塑性変形を確実に拘束することができ、き裂の屈曲、分岐に有効に働く。また、硬質第二相内での疲労き裂遅延も確実となる。平均ビッカース硬さが230未満では、これらの効果を確実に見込めなくなる。なお、用途によって、靭性確保をそれほど考慮する必要がない場合は、より疲労特性に効果がある条件として、平均ビッカース硬さを300以上とすることが好ましい。硬質第二相のビッカース硬さが300以上になると硬質相でのき裂遅延効果がより大きく発揮される。一方、靭性を重視する場合は、平均ビッカース硬さの上限を800とすることが、より好ましい。平均ビッカース硬さが800を超えるような硬質第二相は靭性も極端に劣るため、靭性への悪影響が避けられない場合が生じる。また、組成によっては、疲労試験中に硬質第二相が脆性破壊しやすくなり、疲労特性に関しても好ましくない。
【0025】
▲4▼ 硬質第二相の平均アスペクト比(平均鋼板長手方向長さ/平均板厚方向長さ)が10以上:進展中の疲労き裂先端に硬質第二相が存在する確率、き裂の屈曲や分岐をより確実とし、分岐き裂の長さや、迂回距離を大きくするために、硬質第二相をバンド状にすることが好ましい。継手止端で発生した疲労き裂は板厚方向に進展するため、鋼板の長手方向にバンド状組織を形成することが好ましい。バンド組織の形態の指標を、鋼板長手方向に平行な板厚断面組織における、平均アスペクト比(硬質第二相の平均鋼板長手方向長さ/平均板厚方向長さ)とした場合、上記効果を発揮するためには、該平均アスペクト比は10以上とする必要がある。平均アスペクト比が10未満であると、不可避的なミクロ組織の鋼板内のばらつきを考えた場合、き裂が硬質第二相以外の場所を、大きな迂回をせずに進展できる可能性が出てくるため、好ましくない。なお、硬質第二相の形態に関しては、割合とアスペクト比が規定された範囲であれば、多少個々のサイズが異なっても効果は十分発揮される。ただし、硬質相内でのき裂遅延効果をさらに有効利用しようとするならば、硬質第二相の平均厚さを1μm以上とすることが、より好ましい。
【0026】
以上のように、本発明が目的としている、母材の疲労き裂の遅延による疲労強度向上には、▲1▼〜▲4▼の組織要件が必須であるが、加えて各々の化学組成についても具体的に限定する必要がある。以下に、本発明における、化学組成の限定理由を述べる。
【0027】
先ず、Cは、硬質第二相の硬さを高めるのに有効な成分である。0.04%未満では、安定的にビッカース硬さが230以上の硬質第二相を10%以上存在させることが容易でないため、本発明ではCの下限を0.04%とする。ただし、0.3%を超える過剰の含有は母材及び溶接部の靭性や耐溶接割れ性を低下させるため、上限は0.3%とした。
【0028】
次に、Siは、脱酸元素として、また、母材の強度確保に有効な元素であるが、0.01%未満の含有では脱酸が不十分となり、また強度確保に不利である。逆に2%を超える過剰の含有は粗大な酸化物を形成して延性や靭性の劣化を招く。そこで、Siの範囲は0.01〜2%とした。
【0029】
また、Mnは母材の強度、靭性の確保に必要な元素であり、最低限0.1%以上含有する必要があるが、過剰に含有すると、硬質相の生成や粒界脆化等により母材靭性や溶接部の靭性、さらに溶接割れ性など劣化させるため、材質上許容できる範囲で上限を3%とした。
【0030】
Alは脱酸、加熱オーステナイト粒径の細粒化等に有効な元素であるが、効果を発揮するためには0.001%以上含有する必要がある。一方、0.1%を超えて過剰に含有すると、粗大な酸化物を形成して延性を極端に劣化させるため、0.001%〜0.1%の範囲に限定する必要がある。
【0031】
NはAlやTiと結びついてオーステナイト粒微細化に有効に働くため、微量であれば機械的特性向上に有効である。また、工業的に鋼中のNを完全に除去することは不可能であり、必要以上に低減することは製造工程に過大な負荷をかけるため好ましくない。そのため、工業的に制御が可能で、製造工程への負荷が許容できる範囲として下限を0.001%とする。過剰に含有すると、固溶Nが増加し、延性や靭性に悪影響を及ぼす可能性があるため、許容できる範囲として上限を0.01%とする。
【0032】
Pは不純物元素であり、鋼の諸特性に対して有害であるため、極力低減する方が好ましいが、本発明においては、実用上悪影響が許容できる量として、上限を0.02%とする。
【0033】
Sも基本的には不純物元素であり、特に鋼の延性、靭性さらには疲労特性に悪影響が大きいため、低減が好ましい。実用上、悪影響が許容できる量として、上限を0.01%に限定する。ただし、Sは微量範囲では、微細硫化物を形成して溶接熱影響部(HAZ)靭性向上に寄与するため、HAZ靭性を考慮する場合は、0.0005〜0.005%の範囲で添加することは好ましい。
【0034】
以上が本発明の厚鋼板の基本成分の限定理由であるが、本発明においては、強度・靭性の調整のために、必要に応じて、Ni、Cu、Cr、Mo、W、Ti、V、Nb、Zr、Ta、Bの1種又は2種以上を含有することができる。
【0035】
Niは母材の強度と靭性を同時に向上でき、非常に有効な元素であるが、効果を発揮するためには0.01%以上の添加が必要である。Ni量が増加するほど母材の強度・靭性を向上させるが、6%を超えるような過剰な添加では、効果が飽和する一方で、HAZ靭性や溶接性の劣化を生じる懸念があり、また、高価な元素であるため、経済性も考慮して、本発明においてはNiの上限を6%とする。
【0036】
CuもNiとほぼ同様の効果を有する元素であるが、効果を発揮するるためには0.01%以上の添加が必要であり、1.5%超の添加では熱間加工性やHAZ靭性に問題を生じるため、本発明においては、0.01〜1.5%の範囲に限定する。
【0037】
Crは固溶強化、析出強化により強度向上に有効な元素であり、効果を生じるためには0.01%以上必要であるが、Crは過剰に添加すると焼き入れ硬さの増加、粗大析出物の形成等を通して、母材やHAZの靭性に悪影響を及ぼすため、許容できる範囲として、上限を2%に限定する。
【0038】
Mo、WもCrと同様に、固溶強化、析出強化によって強度を高めるに有効な元素であるが、各々、効果を発揮でき、他特性に悪影響を及ぼさない範囲として、Mo、Wともに、0.01〜2%に限定する。
【0039】
Tiはオーステナイト中に安定なTiNを形成して母材だけでなくHAZの加熱オーステナイト粒径微細化に寄与するため、強度向上に加えて靭性向上にも有効な元素である。ただし、その効果を発揮するためには、0.003%以上含有させる必要がある一方、0.1%を超えて過剰に含有させると、粗大なTiNを形成して靭性を逆に劣化させるため、本発明においては、0.003〜0.1%の範囲に限定する。
【0040】
Vは析出強化により母材の強度向上に有効な元素であるが、効果を発揮するためには0.005%以上必要である。添加量が多くなるほど強化量も増加するが、それに伴って、母材靭性、HAZ靭性が劣化し、かつ、析出物が粗大化して強化の効果も飽和する傾向となるため、強化量に対して靭性劣化が小さい範囲として、上限を0.5%とする。
【0041】
Nbは析出強化及び変態強化により微量で高強度化に有効な元素であり、また、オーステナイトの加工・再結晶挙動に大きな影響を及ぼすため、母材靭性向上にも有効である。さらには、HAZの疲労特性向上にも有効である。効果を発揮するためには、0.003%以上は必要である。ただし、0.2%を超えて過剰に添加すると、靭性を極端に劣化させるため、本発明においては、0.003〜0.2%の範囲に限定する。
【0042】
Zrも主として析出強化により強度向上に有効な元素であるが、効果を発揮するためには0.003%以上必要である。一方、0.1%を超えて過剰に添加すると粗大な析出物を形成して靭性に悪影響を及ぼすため、上限を0.1%とする。
【0043】
TaもNbと同様の効果を有し、適正量の添加により強度、靭性の向上に寄与するが、0.005%未満では効果が明瞭には生ぜず、0.2%を超える過剰な添加では粗大な析出物に起因した靭性劣化が顕著となるため、範囲を0.005〜0.2%とする。
【0044】
Bは極微量で焼入性を高める元素であり、高強度化に有効な元素である。Bは固溶状態でオーステナイト粒界に偏析することによって焼入性を高めるため、極微量でも有効であるが、0.0002%未満では粒界への偏析量を十分に確保できないため、焼入性向上効果が不十分となったり、効果にばらつきが生じたりしやすくなるため好ましくない。一方、0.005%を超えて添加すると、鋼片製造時や再加熱段階で粗大な析出物を形成する場合が多いため、焼入性向上効果が不十分となったり、鋼片の割れや析出物に起因した靭性劣化を生じる危険性も増加する。そのため、本発明においては、Bの範囲を0.0002〜0.005%とする。
【0045】
さらに、本発明においては、延性の向上、継手靭性の向上のために、必要に応じて、Mg、Ca、REMの1種又は2種以上を含有することができる。
【0046】
Mg、Ca、REMはいずれも硫化物の熱間圧延中の展伸を抑制して延性特性向上に有効である。酸化物を微細化させて継手靭性の向上にも有効に働く。その効果を発揮するための下限の含有量は、Mgは0.0005%、Caは0.0005%、REMは0.005%である。一方、過剰に含有すると、硫化物や酸化物の粗大化を生じ、延性、靭性、さらに疲労特性の劣化を招くため、上限を各々、Mg、Caは0.01%、REMは0.1%とする。
【0047】
以上が、本発明の基本要件である、ミクロ組織と化学組成の限定理由である。加えて、本発明においては、本発明の組織要件を満足させるための適切な製造方法についても提示する。ただし、本発明のミクロ組織については、その達成手段を問わず効果を発揮するものであり、本発明の、請求項1〜3に記載の疲労強度に優れた厚鋼板の製造方法は、請求項4、5に示した方法に限定されるものではない。
【0048】
本発明鋼において提示した製造方法は、本発明の化学組成を有する鋼片を、AC3変態点〜1250℃に再加熱し、開始温度が850℃以下、終了温度がAr3変態点以上で、累積圧下率が30%以上の圧延を含み、全圧下比が5以上の熱間圧延を行い、500℃以下まで5℃/s以下の冷却速度で冷却した後、さらに(AC1変態点+30℃)〜(AC3変態点−50℃)に再加熱し、400℃以下まで5〜100℃/sで冷却し、必要に応じて、250〜600℃で焼戻すことを特徴とする。以下、製造方法の種々限定理由について詳細に説明する。
【0049】
先ず、熱間圧延に先立って、鋼片をAC3変態点〜1250℃に再加熱する。再加熱温度がAC3変態点未満では、均一なオーステナイト化がなされず、未変態領域が不均一に残存し、最終的な組織形態の制御を阻害するため、好ましくない。また、析出物形成元素を含有する場合には、該元素の溶体化が十分でなく、強度上昇や靭性改善に有効に活用されない恐れが生じる。一方、加熱温度が1250℃超では加熱オーステナイト粒径が過度に粗大化する恐れがあり、その場合、熱間圧延によっても粗大オーステナイト組織が解消されず、最終組織において、本発明の要件、特に、▲1▼の平均フェライト粒径20μm以下、と▲4▼の硬質第二相の平均アスペクト比10以上を満足できない可能性が大きい。以上の理由によって、本発明においては、鋼片の再加熱温度をAC3変態点〜1250℃に限定する。
【0050】
鋼片をAC3変態点〜1250℃に再加熱した後、熱間圧延を施すが、本発明における熱間圧延の要件は、全圧下比(鋼片厚/鋼板厚)が5以上で、開始温度が850℃以下、終了温度がAr3変態点以上で、累積圧下率が30%以上の圧延を含むことにある。全圧下比を5以上とすることは、硬質第二相の組織形態を制御する上での要件であり、開始温度が850℃以下、終了温度がAr3変態点以上で、累積圧下率が30%以上の圧延を含むことは、硬質第二相の組織形態を制御するためと、フェライト粒径を20μm以下に制御するために必要な条件である。なお、本発明で言うところのの鋼片とは、鋳造・造塊ままインゴット、インゴットを分塊圧延により鋼片となしたもの、連続鋳造により製造された鋼片を包含する。
【0051】
硬質第二相は、最終的には、熱間圧延の後の熱処理の段階で形成されるが、熱処理の加熱段階でオーステナイト化し、その後の冷却段階で硬質第二相に変態する領域は、ほぼ圧延時にCが濃化していた第二相領域と対応する。従って、硬質第二相の形態は熱処理前の圧延段階で形成されている、種々の第二相、すなわち、ベイナイト、マルテンサイトに限らず、パーライトも含む第二相の形態でほぼ決定づけられる。本発明における圧延に関する要件は、熱処理前の第二相のアスペクト比を十分大きくして、熱処理後の硬質第二相のアスペクト比を確実に10以上とするための要件である。
【0052】
すなわち、熱間圧延時に形成される第二相は、フェライト変態が先行する程度の冷却速度であれば、合金組成の増加したミクロ偏析に沿って形成され、圧延によって、鋼片段階ではランダムに分布していたミクロ偏析部が圧延方向に平行にバンド状に伸張する。また、バンド状組織は、ミクロ偏析の状態が同じであれば、フェライト変態が促進されて未変態オーステナイトへCがより濃化することによって、より強調される。
【0053】
ミクロ偏析部を圧延方向に伸張させるためには、全圧下比を規定すればよく、開始温度が850℃以下、終了温度がAr3変態点以上で、累積圧下率が30%以上の圧延を含み、圧延後500℃以下まで5℃/s以下の冷却速度で冷却する条件の下では、全圧下比を5以上とすれば、最終組織の硬質第二相の平均アスペクト比を確実に10以上とすることができる。
【0054】
開始温度が850℃以下、終了温度がAr3変態点以上で、累積圧下率が30%以上の圧延は、フェライト変態を促進することによって、最終組織の平均フェライト粒径を20μm以下にするためと、熱間圧延段階でのバンド組織をより強調するために必要な条件で、再結晶オースイテナイトを細粒化するか、未再結晶状態で加工歪を導入することで、フェライトを細粒化し、かつフェライト変態を促進する。開始温度を850℃以下とするのは、開始温度が850℃超では、化学組成によっては再結晶オーステナイトが細粒化しないか、あるいは、未再結晶オーステナイトとならないため、フェライト細粒化とフェライト変態を促進する効果が小さいためである。また、終了温度をAr3変態点以上とするのは、終了温度がAr3変態点未満であると、オーステナイト/フェライト二相域での圧延となって、加工フェライトを含む組織となり、靭性に好ましくなく、また、最終の熱処理時に、加工フェライトからランダムにオーステナイトが核生成されてバンド状組織の形成が阻害されるためである。
【0055】
開始温度が850℃以下、終了温度がAr3変態点以上の圧延における累積圧下率は30%以上とする。累積圧下率が30%未満であると、再結晶によるオーステナイトの細粒化が不十分となるため、また、未再結晶域圧延となる場合には、加工歪の量が不十分なため、フェライトの細粒化が不十分となる。また、フェライト変態の促進も不十分となり、結果、アスペクト比の大きいバンド組織の形成が不十分となり、最終的な硬質第二相の平均アスペクト比が十分大きくならない恐れがある。
【0056】
なお、熱間圧延において、開始温度が850℃以下、終了温度がAr3変態点以上で、累積圧下率が30%以上の圧延を含んでいれば、板厚の調整のために、また、本発明の要件である、全圧下比を確保するために、別に850℃超での熱間圧延を含むことは許容される。本発明の要件を満足していれば、850℃超での圧延を含んでいても、本発明の目的とする、疲労強度や、構造材料の基本特性である強度や靭性に悪影響を及ぼすことはない。一方、開始温度が850℃以下、終了温度がAr3変態点以上で、累積圧下率が30%以上の圧延を含んでいる場合でも、Ar3変態点未満の圧延をさらに行うことは、前述した理由から明らかなように、悪影響を及ぼす場合がある。ただし、Ar3変態点未満の圧延も、累積圧下率が30%未満であれば、本発明の組織要件形成や材質への悪影響はほとんどないため許容される。
【0057】
本発明の製造方法においては、熱間圧延後引き続いて、さらに、500℃以下まで5℃/s以下の冷却速度で冷却することを必要とする。該冷却条件も最終の熱処理前の圧延段階での組織において、バンド状組織を明確に形成するための条件である。すなわち、冷却速度が5℃/sを超えて大となると、開始温度が850℃以下、終了温度がAr3変態点以上で、累積圧下率が30%以上の圧延によってフェライトの生成促進をあらかじめ図っていても、化学組成によっては、フェライトの生成が十分でなく、その結果、アスペクト比の大きいバンド組織の形成が阻害されるためである。ただし、500℃以下になればフェライトの変態及びバンド組織の形成はほぼ完了しているため、該冷却速度の制御は500℃以下までで構わない。500℃以下の冷却は、加速冷却でも、空冷でも、あるいは徐冷でも構わない。
【0058】
本発明の製造方法においては、本発明の化学組成を有する鋼片を、AC3変態点〜1250℃に再加熱し、開始温度が850℃以下、終了温度がAr3変態点以上で、累積圧下率が30%以上の圧延を含み、全圧下比が5以上の熱間圧延を行い、500℃以下まで5℃/s以下の冷却速度で冷却した後、さらに、再加熱温度が(AC1変態点+30℃)〜(AC3変態点−50℃)で、400℃以下まで5〜100℃/sで冷却する熱処理を施す。該熱処理は、最終的な鋼板組織中に、ベイナイトあるいはマルテンサイトあるいは両者の混合組織からなり、平均ビッカース硬さが230以上で、平均アスペクト比が10以上の硬質第二相を10〜70%形成するための工程である。
【0059】
熱処理に先立つ、熱間圧延によって、平均フェライト粒径が20μm以下で、第二相がアスペクト比の大きいバンド状組織となった組織が形成されるが、この段階では、第二相は必ずしも疲労強度向上に有効な、本発明を満足する硬質第二相にはなっていない。そこで、熱処理によって、フェライトを細粒に保ったままで第二相を必要な特性、形態を持ったものに変化させる。
【0060】
圧延段階で形成された細粒フェライトの極端な粗大化を招かずに、第二相のみを変態を利用して、硬質第二相とするためには、二相域に再加熱して、フェライトトとオーステナイトの二相組織とし、再加熱後、適正な冷却速度で冷却することによって、該オーステナイト相をベイナイトあるいはマルテンサイトあるいは両者の混合組織からなる硬質第二相に変態させる。その際、再加熱温度は(AC1変態点+30℃)〜(AC3変態点−50℃)とする必要がある。再加熱温度が(AC1変態点+30℃)未満であると、加熱段階でオーステナイト相に逆変態する割合が過少となり、硬質第二相を確実に10%以上確保することができない場合が生じる。一方、再加熱温度が(AC3変態点−50℃)を超えて高くなりすぎると、ア)加熱段階でオーステナイト相に逆変態する割合が過大となるため、硬質第二相の割合が70%超となる、イ)硬質第二相へのC濃化量が不十分で、硬質第二相の硬さが過少となる、ウ)硬質第二相のバンド状組織形態が崩れ、硬質第二相のアスペクト比を10以上にすることが困難となる、エ)フェライトが粒成長して平均粒径が20μmを超える等の様々な悪影響を生じる。以上の理由により、本発明では、最終の熱処理における再加熱温度を(AC1変態点+30℃)〜(AC3変態点−50℃)に限定する。なお、(AC1変態点+30℃)〜(AC3変態点−50℃)での保持時間は、工業的な範囲では特に規定する必要はないが、極端に長時間の保持は、特性向上に特別有利な点はなく、生産性が低下する上、フェライト粒径の粗大化の懸念もあるため、保持時間は10h以内程度にすることが推奨される。
【0061】
(AC1変態点+30℃)〜(AC3変態点−50℃)に再加熱した後、加熱段階でオーステナイト化した領域の全体あるいは一部を、本発明の要件となっているところの、平均ビッカース硬さが230以上で、平均アスペクト比が10以上の、ベイナイトあるいはマルテンサイトあるいは両者の混合組織からなる硬質第二相に変態させるために、400℃以下まで、5〜100℃/sで冷却する。すなわち、本発明の化学組成範囲においては、冷却速度が5℃/s未満では平均ビッカース硬さが230以上の硬質第二相を形成できない場合が生じる。冷却速度は、5℃/s以上であれば、大きいほど好ましいが、100℃/s超では、加速冷却の効果が飽和するのと、鋼板を100℃/s超で均一に冷却することが工業的に容易でないため、本発明では、冷却速度を5〜100℃/sに限定する。この冷却速度の制御は、オーステナイトからベイナイト、あるいはマルテンサイトへの変態がほぼ完了するまで行う必要がある。そのため、本発明では、400℃以下まで5〜100℃/sで冷却することとする。400℃未満の冷却については、硬質第二相の形態や、硬さに対する影響は非常に小さく、特に限定する必要はないが、400℃近傍を極端に徐冷すると、粗大析出物の形成による靭性劣化や、粒界脆化を助長する恐れがあるため、400〜200℃での平均冷却速度が1℃/分以下の極端な徐冷は避ける方が好ましい。
【0062】
以上が、本発明における製造方法に関する基本要件の限定理由であるが、強度調整や残留応力低減の目的で、二相域熱処理後にさらに焼戻しを施すことができる。ただし、焼戻し温度は250〜600℃に限定する。これは、焼戻し温度が250℃未満では、焼戻し効果が明確でなく、一方、600℃超では硬質第二相の軟化が大きく、ビッカース硬さが230未満となる可能性が大きくなるためである。焼戻しの保持時間、冷却条件は、焼戻し効果の享受と硬質第二相の硬さの確保とが両立する範囲であれば、特に規定する必要はないが、500℃以上で焼戻す場合は、硬質第二相の軟化の懸念が大きいため、保持時間は10h以内の短時間に止める方が好ましい。
【0063】
次に、本発明の効果を実施例によってさらに具体的に述べる。
【0064】
【実施例】
実施例に用いた供試鋼の化学組成を表1に示す。各供試鋼は造塊後、分塊圧延により、あるいは連続鋳造により鋼片となしたものである。表1の内、鋼片番号1〜10は本発明の化学組成範囲を満足しており、鋼片番号11〜15は本発明の化学組成範囲を満足していない。表1には合わせて加熱変態点(AC1、AC3)を示すが、これは、昇温速度が5℃/min.のときの実測値であるが、表3に示す、鋼板の熱処理における実際の昇温条件での変態点とほぼ合致している。
【0065】
【表1】

Figure 0004445161
【0066】
表1の化学組成の鋼片を、表2に示す条件の熱間圧延、表3に示す条件の熱処理、さらに一部は焼戻しを施して、板厚25mm又は50mmの鋼板に製造し、室温の引張特性、2mmVノッチシャルピー衝撃特性、さらに溶接継手の疲労特性を調査した。引張試験片及びシャルピー衝撃試験片は板厚中心部から圧延方向に直角(C方向)に採取した。引張特性は室温で測定し、シャルピー衝撃特性は50%破面遷移温度(vTrs)で評価した。疲労試験は、構造物の溶接止端部から疲労き裂が発生し、母材部を伝播する場合の疲労特性を評価するために、図1に示す廻し溶接継手について行った。試験片は、鋼板から鋼板長手方向長さ:300mm、幅方向長さ:80mm、板厚:25mm(25mm厚材については全厚、50mm厚材については表面から採取)、のサイズで試験板を採取し、幅:10mm、長さ:30mm、高さ:30mmのリブ板を炭酸ガス溶接(Co2溶接)により、試験板の中央に廻し溶接で溶接した。この際の炭酸ガス溶接は、化学組成が、C:0.06mass%、Si:0.5mass%、Mn:1.4mass%、である1.4mm径の溶接ワイヤを用いて、電流:270A、電圧:30V、溶接速度:20cm/min.で行った。疲労試験は、荷重支点Pのスパンを、下スパン:70mm、上スパン:220mmとして、最大荷重(Pmax):5500kgfで応力比(R):0.1の繰り返し応力負荷を加え、疲労寿命を測定した。
【0067】
【表2】
Figure 0004445161
【0068】
【表3】
Figure 0004445161
【0069】
表2、3における注)は以下の通りである。
注1) 本発明で必須の、「850℃以下、終了温度Ar以上、累積圧下率30%以上の圧延」に先立つ圧延
注2) 本発明で必須の「850℃以下、終了温度Ar以上、累積圧下率30%以上の圧延」及び比較例において本圧延に対応する条件での圧延
注3) 圧延後、空冷での実測値
注4) 手段は空冷(AC)または加速冷却(AcC)。空冷の場合は全て室温まで冷却。冷却速度は圧延終了から500℃までの平均。
注5) 加熱温度から冷却停止温度までの平均。
注6) 焼戻しの保持は、30分〜2時間の範囲。冷却は全て空冷。
【0070】
鋼板の組織形態(フェライト粒径、硬質第二相の種類、割合、ビッカース硬さ、アスペクト比)と機械的性質を表4に示す。なお、組織の定量は、鋼板長手方向に平行な板厚断面において、表面下1mm、板厚の1/4、板厚中心部の光学顕微鏡組織を撮影し、各位置での平均フェライト粒径、硬質第二相の割合、アスペクト比を求め、3観察位置の平均値を示した。硬質第二相の硬さは、表面下1mm、板厚の1/4、板厚中心部、各位置で荷重5〜10gのマイクロビッカース硬さを10点以上測定し、各位置での平均値をさらに平均した。
【0071】
【表4】
Figure 0004445161
【0072】
表2〜4の内の鋼板番号A1〜A13は、本発明の化学組成と組織に関する要件を全て満足している鋼板であり、いずれも構造用鋼として必要な強度、靭性(2mmVノッチシャルピー衝撃特性)を有しているだけでなく、良好な継手疲労特性も有していることが明らかである。
【0073】
一方、鋼板番号B1〜B11は、本発明のいずれかの要件を満足していない、比較の鋼板であり、本発明の鋼板に比べて、継手疲労特性や靭性が劣っていることが明白である。
【0074】
鋼板番号B1〜B5は、化学組成が本発明を満足していないために、本発明の組織要件を満足できないか、あるいは本発明の組織要件を満足しているにも関わらず、良好な特性を達成できなかった例である。
【0075】
すなわち、鋼板番号B1は、C量が過少ないため、硬質第二相の焼入性が低く、全面的にパーライトとベイナイトとの混合組織となり、硬質第二相の硬さが本発明の下限よりも低くなっている。そのため、本発明の鋼板に比べて継手疲労特性が大きく劣っている。
【0076】
鋼板番号B2は、逆にC量が過剰な比較例であり、硬質第二相の硬さが過剰で非常に脆いため、靭性が極めて劣位である。継手疲労特性は比較的良好であるが、疲労試験においても硬質相が脆性破壊する影響で、本発明に比べて、継手疲労特性は若干劣る。
【0077】
鋼板番号B3、B4は、各々Mn量、P量がが過剰なため、特に靭性の劣化が著しい。また、靭性の劣化に起因して、継手疲労試験においても、フェライト相、硬質相での脆性破壊が一部生じるために、本発明に比べて、継手疲労特性は劣る。
【0078】
鋼板番号B5も、S量が過剰なため、靭性、継手疲労特性が本発明に比べて劣る。特に継手疲労特性の劣化が大きい。
【0079】
鋼板番号B6〜B11は、化学組成は本発明を満足しているものの、組織要件が本発明を満足していないために、継手疲労特性が劣っているか、靭性が構造用鋼として十分でない例である。
【0080】
すなわち、鋼板番号B6は、最終の熱処理の加熱温度がAC3変態点超と、本発明の製造方法の上限を超えているため、フェライト相が残存せず、加速冷却後の組織が全面ベイナイトとマルテンサイトの混合組織となり、フェライトと硬質第二相との二相組織とはなっていないため、継手疲労特性の改善が全く認められない。
【0081】
一方、鋼板番号B7は、最終の熱処理の加熱温度が本発明の製造方法の下限未満のため、加熱段階において硬質相形成に必要な一定量のオーステナイト化がなされず、その結果、最終組織中に、本発明で必須のベイナイト、マルテンサイトから構成され、硬さが230以上の硬質第二相が形成されず、継手疲労特性が本発明に比べて極めて低い。
【0082】
また、鋼板番号B8は、全圧下比が小さいために、硬質第二相のアスペクト比が過小で、本発明を満足しておらず、本発明に比べて継手疲労特性が劣る。
【0083】
鋼板番号B9は、最終の熱処理の冷却速度が小さいため、硬質第二相の硬さが過小で、き裂伝播抑制に有効に機能せず、従って、継手疲労特性が顕著に劣る。
【0084】
鋼板番号B10は、熱間圧延において、850℃以下から開始する圧延行っていないため、フェライト粒界が本発明の範囲をはずれて過大であるため、靭性が劣り、また、硬質第二相の層状化が助長されないため、同程度の全圧下比で圧延された本発明鋼に比べて、硬質第二相のアスペクト比が本発明の範囲内ではあるが、わずかに小さくなっており、継手疲労特性は、比較例に比べれば十分優れているが、他の組織要件が類似の本発明鋼に比べてわずかながら劣る。
【0085】
鋼板番号B11は熱間圧延後に冷却速度の大きい加速冷却を施したために、圧延終了段階での第二相の層状化がほとんどなされておらず、そのため、最終熱処理後の硬質第二相のアスペクト比が過小となって、継手疲労特性が改善されていない。
【0086】
以上の実施例から、本発明によれば、構造用鋼として十分高い靭性を確保しながら、優れた継手疲労特性を得ることが可能であることが明白である。
【0087】
【発明の効果】
本発明は疲労強度が必要とされる溶接構造部材に用いられる、引張強さが400MPa級以上の厚鋼板において、従来、溶接部では向上が困難とされてきた、継手疲労特性の向上を特殊な合金元素や複雑な製造プロセスに頼ることなく製造できる点で、産業上の有用性は極めて大きい。
【図面の簡単な説明】
【図1】溶接継手疲労特性評価のための、廻し溶接4点曲げ試験方法の概念図である。
【符号の説明】
P:荷重支点[0001]
BACKGROUND OF THE INVENTION
  The present invention is a thick steel having a tensile strength of 400 MPa or more used for welded structural members that require fatigue strength.PlankIt relates to a manufacturing method. The steel sheet of the present invention can be used in general for welded steel structures such as marine structures, pressure vessels, shipbuilding, bridges, buildings, line pipes, etc., but especially marine structures, shipbuilding, bridges that require fatigue strength. It is useful as a structural steel plate for construction structures. In addition, the present invention can also be applied to steel pipe materials or shape steels that are used as structural members and require fatigue strength.
[0002]
[Prior art]
With the increase in the size of welded structures and the demand for environmental protection, there has been a demand for increased reliability of structural members. The current structure is generally a welded structure, and the failure modes assumed for welded structures include fatigue failure, brittle failure, ductile failure, etc. Of these, the most frequent failure modes are: Brittle fracture or fatigue fracture from initial defects, and further brittle fracture following fatigue fracture. In addition, these forms of destruction are difficult to prevent only by considering the design of the structure, and often cause sudden collapse of the structure. From the viewpoint of ensuring the safety of the structure, it is also possible to prevent it. Is the most required form of destruction.
[0003]
For brittle fracture, there are means for improving the chemical composition such as addition of Ni and optimization of the transformation structure, and the manufacturing method can be improved by refinement of the structure by controlled rolling or thermomechanical treatment. On the other hand, in the case of fatigue characteristics, it is possible to improve the smooth member by improving the strength. It was considered impossible to improve fatigue strength (joint fatigue strength) by metallurgical means. That is, in a structure where fatigue strength is a problem, the design strength cannot be increased even when high strength steel is used, and the advantage of using high strength steel cannot be obtained. Therefore, conventionally, in such a welded structure, joint fatigue strength has been improved by so-called toe treatment for improving the shape of the weld toe part that is a stress concentration part. For example, a method of cutting the toe by a grinder to increase the toe radius, a method of remelting the toe part by TIG welding to make the toe shape smooth (for example, Japanese Patent Publication No. 54-30386), shot peening In other words, a compressive stress is generated in the toe portion.
[0004]
However, since these toe treatments are very time-consuming, a means for improving the joint fatigue strength of the steel material itself has been awaited in order to reduce costs and improve productivity.
[0005]
Recently, several steel materials having good joint fatigue strength have been proposed in response to such demands. For example, a technique (Japanese Patent Laid-Open No. 8-73983) that can improve the fatigue strength of HAZ by setting the structure of the weld heat affected zone (HAZ) to ferrite (α) is shown. However, since the present technology requires that the HAZ structure be a ferrite structure, there is a limit to the strength level of the steel material that can be manufactured, and it is not possible to manufacture a high-strength steel material having a tensile strength exceeding 780 MPa.
[0006]
Several means for improving the joint fatigue strength of high-strength steel with a tensile strength of 590 MPa or more have been proposed. For improving the fatigue crack initiation and propagation characteristics of the HAZ bainite structure, high Si (Japanese Patent Laid-Open No. Hei 8-209295) is proposed. There are reports that high Nb (Japanese Patent Laid-Open No. 10-1743) is effective. However, when both Si and Nb are added in a large amount, it is an element that greatly deteriorates toughness, and there is also a concern that manufacturing problems such as cracking of a steel piece may occur.
[0007]
Each of the above prior arts is a means for improving the generation of fatigue cracks in the HAZ structure and the propagation of fatigue cracks in the HAZ. However, since HAZ is greatly affected by the stress concentration at the toe, depending on the shape of the toe The effect may not occur or may be small.
[0008]
In order to improve the joint fatigue strength regardless of the shape of the toe, it is effective to delay the propagation of the fatigue crack generated from the toe at the base material. Based on this concept, a technology for improving the fatigue crack growth characteristics of a base material by forming a base material structure in which coarse ferrite is dispersed in a fine grain structure with an average ferrite grain size of 20 μm or less (special feature). (Kaihei 7-90481) is disclosed. However, in this case as well, only a steel material having a tensile strength of about 580 MPa class can be manufactured because of the necessity for a ferrite main structure.
[0009]
Furthermore, as a technique to increase fatigue strength by suppressing fatigue crack propagation in the base metal, in a structure consisting of ferrite and a hard second phase, there is a certain relationship between the hardness of the ferrite and the hardness of the hard second phase. Japanese Patent Application Laid-Open No. 11-1742 discloses a technique for defining the second phase form (aspect ratio, interval) or / and texture. This technology is one of the best methods for suppressing fatigue crack propagation among the currently shown technologies. However, the cumulative reduction in the two-phase region to the ferrite region is necessary for the formation of microstructure and texture. Since it is necessary to increase the rate, there are problems such as deterioration of productivity and deterioration of the steel plate shape.
[0010]
[Problems to be solved by the invention]
  The present invention relates to a thick steel plate having a tensile strength of 400 MPa or more used for welded structural members.Manufacturing methodIn order to improve the joint fatigue strength regardless of the shape of the toe, a thick steel plate with excellent fatigue crack propagation characteristics of the base metal is added in a large amount of special or expensive alloy elements and the productivity is inferior. Or without complicated manufacturing methodsA manufacturing method for thick steel plates with excellent fatigue strengthThe issue is to provide.
[0011]
[Means for Solving the Problems]
Means for improving joint fatigue strength without depending on the shape of the toe of the joint by improving the fatigue crack propagation characteristics of the base material in a steel material having a tensile strength of 400 MPa class or more. From the detailed experimental results of the relationship between fatigue crack growth behavior and steel microstructure. That is, when a fatigue crack generated from the stress concentration part of the joint toe portion propagates in the thickness direction, in the mixed structure of ferrite and the hard second phase having an appropriate form and characteristics, the interface between both structures or In many cases, fatigue crack stagnation, bending, branching, etc. occur in the vicinity of the interface, and when the crack propagates to the hard second phase, the progress of the fatigue crack in the hard second phase is remarkably suppressed. Is done. These comprehensive effects greatly reduce the macro fatigue crack propagation rate in the base metal, and in order to suppress such fatigue crack growth, the structure of the ferrite phase and the hard second phase It has been found that two-phase rolling is not necessarily an essential requirement if the form and properties are optimized.
[0012]
Furthermore, the present inventors have established, based on detailed experiments, industrially most preferable means for forming a microstructure suitable for the fatigue crack propagation characteristics of the base material.
[0013]
This invention is invented based on the above knowledge, and the summary is as follows.
[0017]
  (1)% By mass
C: 0.04-0.3%
Si: 0.01-2%
Mn: 0.1 to 3%
Al: 0.001 to 0.1%,
N: 0.001 to 0.01%
Containing
P: 0.02% or less,
S: 0.01% or less
The balance consists of iron and inevitable impuritiesSteel slab with componentsThreeReheated to transformation temperature to 1250 ° C, start temperature is 850 ° C or less, end temperature is ArThreeAfter rolling at a transformation point or higher and including a rolling with a cumulative reduction ratio of 30% or more and a total rolling ratio of 5 or more, the steel is cooled to 500 ° C. or less at a cooling rate of 5 ° C./s or less, and then (AC1Transformation point + 30 ° C) to (ACThreeTransformation point-50 ° C) and cooled to 400 ° C or less at 5-100 ° C / sThe ferrite and the hard second phase in the plate thickness cross-sectional structure parallel to the longitudinal direction of the steel sheet satisfy all the following conditions (1) to (4). The hard second phase structure is either bainite, martensite or a mixed structure of bothA method for producing a thick steel plate having excellent fatigue strength.
(1) Average ferrite particle size: 20 μm or less
(2) Ratio of hard second phase: 10 to 70%
(3) Average Vickers hardness of hard second phase: 230 or more
(4) Average aspect ratio of hard second phase (average length in the longitudinal direction of steel sheet / average length in the thickness direction): 10 or more
(2) Furthermore, the steel slab is mass%,
Ni: 0.01-6%,
Cu: 0.01 to 1.5%,
Cr: 0.01-2%
Mo: 0.01-2%
W: 0.01-2%
Ti: 0.003 to 0.1%,
V: 0.005-0.5%
Nb: 0.003 to 0.2%,
Zr: 0.003 to 0.1%,
Ta: 0.005 to 0.2%,
B: 0.0002 to 0.005%
The manufacturing method of the thick steel plate excellent in the fatigue strength as described in said (1) characterized by containing 1 type, or 2 or more types.
(3) Further, the steel slab is mass%,
Mg: 0.0005 to 0.01%,
Ca: 0.0005 to 0.01%,
REM: 0.005-0.1%
The manufacturing method of the thick steel plate excellent in the fatigue strength as described in said (1) or (2) characterized by containing 1 type, or 2 or more types.
[0018]
  (4) Furthermore,Tempering at 250 to 600 ° C.Any of 1) to (3)The manufacturing method of the thick steel plate excellent in the fatigue strength of description.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
An object of the present invention is to secure joint fatigue strength by improving fatigue crack propagation characteristics of a base material. The most important requirement is that the base material structure is “having a structure composed of ferrite and a hard second phase, and in the plate thickness cross-sectional structure parallel to the longitudinal direction of the steel sheet, the ferrite and the hard second phase are 1) Average ferrite particle size: 20 μm or less, 2) Hard second phase ratio consisting of bainite, martensite, or a mixed structure of both: 10 to 70%, 3) Average Vickers hardness of hard second phase: 230 As described above, (4) the average aspect ratio of the hard second phase (average length in the longitudinal direction of the steel sheet / average length in the thickness direction): satisfies the condition of 10 or more.
[0020]
As a technology to increase fatigue strength by suppressing fatigue crack propagation in the base metal, in the structure consisting of ferrite and hard second phase, a certain relationship was defined between the hardness of ferrite and the hardness of hard second phase. In the above, a technique defining the form of the second phase (aspect ratio, spacing) and / or texture has already been disclosed in JP-A-11-1742. The present invention is also similar in that it suppresses fatigue crack propagation by the structure consisting of ferrite and hard second phase, but the relationship between the structure and properties of ferrite and second phase and fatigue crack propagation behavior is observed in detail. As a result of the study, it was newly found that the fatigue strength characteristics can be further improved by using ferrite and a hard second phase characterized by the above (1) to (4), which are different from the above techniques. I found it. In other words, in order to improve the fatigue crack propagation characteristics of the base material, bending and branching of the fatigue cracks and the frequent entry into the hard second phase having appropriate characteristics can be achieved. The fatigue crack growth rate in the two phases is preferable because it is extremely small, and for the reliable bending, branching and penetration of the fatigue crack into the hard second phase, It has been found that the aspect ratio of the two phases needs to be very large as 10 or more, and that the hardness of the hard second phase is more important than the ratio of the hardness of the ferrite and the hard second phase. It was.
[0021]
Based on the above basic knowledge, based on detailed experiments, it was specifically derived that it is necessary to satisfy the organizational requirements (1) to (4) at the same time. The following is a more detailed explanation for each organizational requirement. In the present invention, it is assumed that the structure is composed of ferrite and a hard second phase. This is because in order to cause bending and branching of a fatigue crack, a mixed structure of ferrite and hard second phase is essential regardless of the form and characteristics of the hard second phase. In this case, it is preferable that the hard second phase is only the hard second phase of the present invention. However, as long as the present invention is satisfied, other phases such as pearlite or pseudo-pearlite may be partially included. The effect of the present invention is not inhibited.
[0022]
(1) Average ferrite grain size of 20 μm or less: Although this requirement is not directly related to improvement of fatigue characteristics, in the structure containing the hard second phase of the present invention, the hard phase is basically brittle and adversely affects toughness. In order to secure toughness as a whole steel sheet, the average ferrite grain size is set to 20 μm or less. If the average ferrite grain size is 20 μm or less, good toughness of 0 ° C. or less can be achieved at the fracture surface transition temperature (vTrs) in the 2 mmV notch Charpy impact test. On the other hand, when the average ferrite particle size exceeds 20 μm, there is a concern that vTrs deteriorates to a room temperature or more, and there is also a possibility that brittle fracture occurs during fatigue and fatigue crack propagation characteristics deteriorate.
[0023]
(2) The ratio of hard second phase consisting of bainite or martensite or a mixed structure of both is 10 to 70%: First, the hard second phase is bainite or martensite, each single-phase structure, or a mixed structure of both. Is essential. The structure phase is a fine lath structure, and if the Vickers hardness is 230 or more, it exists in a fine and high density even if carbide is present. However, it is extremely effective for suppressing crack growth when the crack enters the almost hard second phase. In addition, the bainite or martensite phase that transforms at a low temperature generates residual stress near the interface with the adjacent ferrite phase during transformation, increasing the probability of bending and branching of fatigue cracks. On the other hand, for example, pearlite and pseudo-pearlite have a layered structure of ferrite and cementite in the micro, so cracks can be selected and propagated in soft ferrite between layers, and cementite is brittle. The fatigue crack growth delay effect is smaller than that of bainite or martensite because, in many cases, cracks are not generated due to the occurrence of cracks near the crack tip. In the present invention, the ratio of the hard second phase composed of bainite, martensite, or a mixed structure of both is further limited to 10 to 70%. When trying to suppress fatigue crack growth by the hard second phase, naturally, the greater the probability that a hard second phase exists at the crack leading edge, the more the crack bends, branches, and even the cracks harder. The frequency of progress in the two phases will also increase. In order for the fatigue crack delay effect due to the hard second phase to be clearly reflected in the final increase in fatigue life, at least 10% of the hard second phase is required. On the other hand, to a certain extent, the fatigue properties improve as the proportion of the hard second phase increases. However, if the amount of the hard second phase is excessive, the proportion of the ferrite that is the soft phase becomes extremely small and substantially ferrite. It is difficult to say a two-phase structure of a hard second phase, and conversely, bending and branching of a fatigue crack are difficult to occur. Further, the hard second phase is not preferable for toughness, and if it exists in excess, there is a concern that the toughness is greatly deteriorated even if the ferrite grain size is reduced to 20 μm or less. The upper limit of the ratio of the hard second phase for the above reasons was examined based on the experimental results, and was set to 70% in the present invention.
[0024]
(3) The average Vickers hardness of the hard second phase is 230 or more: cracks and branches at the ferrite / hard second phase interface or in the vicinity of the interface, and the crack growth rate in the hard second phase is reduced. In order to sufficiently exhibit the crack propagation delay effect, it is necessary to optimize the hardness and form of the hard second phase. As a result of examining the relationship between the hardness and form of the hard second phase in detail and the fatigue crack propagation behavior, first, regarding the hardness of the hard second phase, it is not the hardness difference or ratio with ferrite, but the hardness The conclusion was that the hardness of the second phase itself is the most important, and it is necessary that the average hardness measured by Vickers hardness is 230 or more. If the average Vickers hardness is 230 or more, the plastic deformation at the tip of the fatigue crack can be reliably restrained, and it works effectively for bending and branching of the crack. Also, fatigue crack delay in the hard second phase is ensured. If the average Vickers hardness is less than 230, these effects cannot be expected with certainty. In addition, when it is not necessary to consider toughness so much depending on the application, it is preferable that the average Vickers hardness is 300 or more as a condition that is more effective in fatigue characteristics. When the Vickers hardness of the hard second phase is 300 or more, the crack retarding effect in the hard phase is more exhibited. On the other hand, when placing importance on toughness, it is more preferable to set the upper limit of the average Vickers hardness to 800. Since the hard second phase having an average Vickers hardness exceeding 800 has extremely poor toughness, an adverse effect on toughness may be unavoidable. In addition, depending on the composition, the hard second phase tends to brittle fracture during the fatigue test, which is not preferable for fatigue characteristics.
[0025]
(4) The average aspect ratio of the hard second phase (average length in the longitudinal direction of the steel sheet / average length in the thickness direction) is 10 or more: Probability that the hard second phase is present at the tip of the developing fatigue crack, In order to make bending and branching more reliable and to increase the length of the branch crack and the detour distance, it is preferable to form the hard second phase in a band shape. Since the fatigue crack generated at the joint toe propagates in the plate thickness direction, it is preferable to form a band-like structure in the longitudinal direction of the steel plate. When the index of the form of the band structure is the average aspect ratio (average length of the second steel plate in the longitudinal direction / average length in the thickness direction) in the thickness cross-sectional structure parallel to the longitudinal direction of the steel plate, the above effect is obtained. In order to exhibit, the average aspect ratio needs to be 10 or more. If the average aspect ratio is less than 10, considering the inevitable variation of the microstructure in the steel sheet, there is a possibility that the crack can propagate to a place other than the hard second phase without making a large detour. Therefore, it is not preferable. In addition, regarding the form of the hard second phase, as long as the ratio and the aspect ratio are in the specified range, the effect is sufficiently exhibited even if the individual sizes are somewhat different. However, it is more preferable that the average thickness of the hard second phase be 1 μm or more in order to further effectively utilize the crack retardation effect in the hard phase.
[0026]
As described above, the structural requirements (1) to (4) are essential for improving the fatigue strength by delaying the fatigue crack of the base material, which is the object of the present invention. Need to be specifically limited. The reasons for limiting the chemical composition in the present invention will be described below.
[0027]
First, C is an effective component for increasing the hardness of the hard second phase. If it is less than 0.04%, it is not easy to stably present 10% or more of the hard second phase having a Vickers hardness of 230 or more. Therefore, in the present invention, the lower limit of C is 0.04%. However, excessive content exceeding 0.3% lowers the toughness and weld crack resistance of the base metal and the welded portion, so the upper limit was made 0.3%.
[0028]
Next, Si is an element effective as a deoxidizing element and for securing the strength of the base material. However, if it is less than 0.01%, deoxidation is insufficient, and it is disadvantageous for securing the strength. On the other hand, an excessive content exceeding 2% forms a coarse oxide and causes deterioration of ductility and toughness. Therefore, the range of Si is set to 0.01 to 2%.
[0029]
Mn is an element necessary for ensuring the strength and toughness of the base material, and it is necessary to contain at least 0.1% or more. In order to deteriorate the toughness of the material, the toughness of the welded portion, and the weld cracking property, the upper limit was made 3% within the allowable range of the material.
[0030]
Al is an element effective for deoxidation, refinement of the heated austenite grain size, etc., but in order to exert the effect, it is necessary to contain 0.001% or more. On the other hand, if it exceeds 0.1% and excessively contained, a coarse oxide is formed and the ductility is extremely deteriorated. Therefore, it is necessary to limit it to the range of 0.001% to 0.1%.
[0031]
N is effective in refining austenite grains in combination with Al and Ti, so that it is effective for improving mechanical properties if it is in a very small amount. Further, it is impossible to remove N in steel completely industrially, and reducing it more than necessary is not preferable because it places an excessive load on the manufacturing process. Therefore, the lower limit is set to 0.001% as a range that can be industrially controlled and the load on the manufacturing process is allowable. If excessively contained, solid solution N increases, which may adversely affect ductility and toughness, so the upper limit is made 0.01% as an acceptable range.
[0032]
P is an impurity element and is harmful to various properties of the steel. Therefore, it is preferable to reduce it as much as possible.
[0033]
S is basically an impurity element, and is particularly preferably reduced because it has a significant adverse effect on the ductility, toughness and fatigue properties of steel. For practical purposes, the upper limit is limited to 0.01% as the amount of adverse effects. However, in the trace amount range, S forms fine sulfides and contributes to improvement of the weld heat affected zone (HAZ) toughness. Therefore, when considering HAZ toughness, S is added in a range of 0.0005 to 0.005%. It is preferable.
[0034]
The above is the reason for limiting the basic components of the thick steel plate of the present invention. In the present invention, for the adjustment of strength and toughness, Ni, Cu, Cr, Mo, W, Ti, V, One or more of Nb, Zr, Ta and B can be contained.
[0035]
Ni is a very effective element that can simultaneously improve the strength and toughness of the base material, but it needs to be added in an amount of 0.01% or more in order to exert its effect. As the amount of Ni increases, the strength and toughness of the base material are improved. However, when the addition exceeds 6%, the effect is saturated, but there is a concern that the HAZ toughness and weldability may be deteriorated. Since it is an expensive element, the upper limit of Ni is set to 6% in the present invention in consideration of economy.
[0036]
Cu is an element having almost the same effect as Ni. However, in order to exert the effect, addition of 0.01% or more is necessary, and if it exceeds 1.5%, hot workability and HAZ toughness are required. In the present invention, the content is limited to 0.01 to 1.5%.
[0037]
Cr is an element effective for improving the strength by solid solution strengthening and precipitation strengthening, and 0.01% or more is necessary to produce the effect. However, if Cr is added excessively, the quenching hardness increases and coarse precipitates. Since the base material and the toughness of the HAZ are adversely affected through the formation of the metal, etc., the upper limit is limited to 2% as an acceptable range.
[0038]
Like Cr, Mo and W are effective elements for increasing the strength by solid solution strengthening and precipitation strengthening. However, each of Mo and W is 0 as a range in which the effect can be exerted and other characteristics are not adversely affected. Limited to 0.01-2%.
[0039]
Since Ti forms stable TiN in austenite and contributes not only to the base material but also to the refinement of the heated austenite grain size of HAZ, it is an element effective for improving toughness in addition to improving strength. However, in order to exert its effect, it is necessary to contain 0.003% or more, but when it is contained excessively exceeding 0.1%, coarse TiN is formed and the toughness is deteriorated conversely. In the present invention, the content is limited to a range of 0.003 to 0.1%.
[0040]
V is an element effective for improving the strength of the base material by precipitation strengthening, but it needs to be 0.005% or more in order to exert the effect. As the addition amount increases, the strengthening amount also increases, but with this, the base metal toughness and HAZ toughness deteriorate, and the precipitates become coarser and the strengthening effect tends to be saturated. The upper limit is 0.5% in a range where the toughness deterioration is small.
[0041]
Nb is an element effective for increasing the strength in a small amount by precipitation strengthening and transformation strengthening, and also has a large effect on the processing and recrystallization behavior of austenite, and is therefore effective for improving the toughness of the base metal. Furthermore, it is effective for improving the fatigue characteristics of HAZ. In order to exert the effect, 0.003% or more is necessary. However, if it is added excessively exceeding 0.2%, the toughness is extremely deteriorated. Therefore, in the present invention, it is limited to the range of 0.003 to 0.2%.
[0042]
Zr is also an element effective for improving the strength mainly by precipitation strengthening, but 0.003% or more is necessary to exert the effect. On the other hand, if it is added excessively exceeding 0.1%, coarse precipitates are formed and the toughness is adversely affected, so the upper limit is made 0.1%.
[0043]
Ta has the same effect as Nb, and contributes to the improvement of strength and toughness by adding an appropriate amount. However, if it is less than 0.005%, the effect is not clearly produced, and if it exceeds 0.2%, excessive addition is not possible. Since toughness deterioration due to coarse precipitates becomes significant, the range is made 0.005 to 0.2%.
[0044]
B is an element that enhances hardenability in a very small amount and is effective for increasing the strength. Since B is segregated at the austenite grain boundary in a solid solution state to enhance the hardenability, it is effective even with a very small amount. This is not preferable because the effect of improving the property is insufficient or the effect tends to vary. On the other hand, if added over 0.005%, coarse precipitates are often formed at the time of steel slab production or at the reheating stage, so the effect of improving hardenability becomes insufficient, There is also an increased risk of toughness degradation due to precipitates. Therefore, in the present invention, the range of B is set to 0.0002 to 0.005%.
[0045]
Furthermore, in this invention, 1 type, or 2 or more types of Mg, Ca, and REM can be contained as needed for the improvement of ductility and the improvement of joint toughness.
[0046]
Mg, Ca, and REM are all effective in improving ductility by suppressing the extension of sulfide during hot rolling. It effectively works to improve joint toughness by refining oxides. The lower limit content for exhibiting the effect is 0.0005% for Mg, 0.0005% for Ca, and 0.005% for REM. On the other hand, excessive content causes coarsening of sulfides and oxides, leading to deterioration of ductility, toughness, and fatigue properties. Therefore, the upper limit is 0.01% for Mg and Ca, and 0.1% for REM, respectively. And
[0047]
The above is the reason for limiting the microstructure and chemical composition, which are the basic requirements of the present invention. In addition, in the present invention, an appropriate manufacturing method for satisfying the organizational requirements of the present invention is also presented. However, for the microstructure of the present invention, the effect is exhibited regardless of the means for achieving it, and the method for producing a thick steel sheet having excellent fatigue strength according to claims 1 to 3 of the present invention is described in the claims. It is not limited to the methods shown in 4 and 5.
[0048]
In the production method presented in the steel of the present invention, the steel slab having the chemical composition of the present invention is converted into AC.ThreeReheated to transformation temperature to 1250 ° C, start temperature is 850 ° C or less, end temperature is ArThreeAfter rolling at a transformation point or higher and including a rolling with a cumulative reduction ratio of 30% or more and a total rolling ratio of 5 or more, the steel is cooled to 500 ° C. or less at a cooling rate of 5 ° C./s or less, and then (AC1Transformation point + 30 ° C) to (ACThreeIt is characterized by being reheated to a transformation point of −50 ° C., cooled to 400 ° C. or lower at 5 to 100 ° C./s, and tempered at 250 to 600 ° C. as necessary. Hereinafter, various reasons for limiting the manufacturing method will be described in detail.
[0049]
First, prior to hot rolling, the steel slab is ACThreeReheat to transformation point to 1250 ° C. Reheating temperature is ACThreeIf it is less than the transformation point, uniform austenitization is not achieved, and the untransformed region remains non-uniformly, which hinders control of the final structure. Moreover, when a precipitate forming element is contained, the solution of the element is not sufficient, and there is a possibility that it is not effectively used for increasing the strength or improving the toughness. On the other hand, when the heating temperature exceeds 1250 ° C., the heated austenite grain size may be excessively coarsened.In this case, the coarse austenite structure is not eliminated even by hot rolling, and in the final structure, the requirements of the present invention, in particular, There is a high possibility that (1) the average ferrite grain size is 20 μm or less and (4) the average aspect ratio of the hard second phase is 10 or more. For the above reasons, in the present invention, the reheating temperature of the steel slab is set to AC.ThreeThe transformation point is limited to 1250 ° C.
[0050]
AC steel billetThreeAfter reheating to the transformation point to 1250 ° C., hot rolling is performed. The requirements for hot rolling in the present invention are that the total reduction ratio (steel piece thickness / steel plate thickness) is 5 or more and the start temperature is 850 ° C. or less. The end temperature is ArThreeIt includes rolling with a cumulative rolling reduction of 30% or more above the transformation point. The total reduction ratio of 5 or more is a requirement for controlling the structure of the hard second phase, and the start temperature is 850 ° C. or less and the end temperature is Ar.ThreeThe inclusion of rolling at a transformation point or higher and a cumulative rolling reduction of 30% or more is a necessary condition for controlling the structure of the hard second phase and controlling the ferrite grain size to 20 μm or less. In addition, the steel slab as referred to in the present invention includes an ingot as cast and ingot, a steel slab made by ingot casting into a steel slab, and a steel slab produced by continuous casting.
[0051]
The hard second phase is finally formed in the heat treatment stage after hot rolling, but the region that is austenitized in the heating stage of the heat treatment and transformed into the hard second phase in the subsequent cooling stage is almost the same. Corresponds to the second phase region where C was concentrated during rolling. Therefore, the form of the hard second phase is almost determined not only by the various second phases formed in the rolling stage before the heat treatment, that is, not only by bainite and martensite but also by the form of the second phase including pearlite. The requirements for rolling in the present invention are requirements for ensuring that the aspect ratio of the second phase before heat treatment is sufficiently large and that the aspect ratio of the hard second phase after heat treatment is 10 or more.
[0052]
That is, the second phase formed during hot rolling is formed along the microsegregation with an increased alloy composition if the cooling rate is such that ferrite transformation precedes, and is randomly distributed at the billet stage by rolling. The micro-segregated portion that has been stretched in a band shape parallel to the rolling direction. Moreover, if the state of microsegregation is the same, the band-like structure is more emphasized by promoting the ferrite transformation and concentrating C into untransformed austenite.
[0053]
In order to extend the micro-segregation part in the rolling direction, the total reduction ratio may be specified, the start temperature is 850 ° C. or less, and the end temperature is Ar.ThreeUnder the condition of including the rolling at the transformation point or higher and the cumulative rolling reduction of 30% or higher, and cooling at a cooling rate of 5 ° C./s or lower to 500 ° C. or lower after rolling, if the total rolling ratio is 5 or higher, the final The average aspect ratio of the hard second phase of the structure can be reliably set to 10 or more.
[0054]
Start temperature is 850 ° C or less, end temperature is ArThreeRolling at a transformation point or higher and a cumulative reduction ratio of 30% or more promotes ferrite transformation, so that the average ferrite grain size of the final structure is 20 μm or less, and the band structure at the hot rolling stage is more emphasized. By refining recrystallized austenite under the conditions necessary to achieve this, or introducing processing strain in an unrecrystallized state, the ferrite is refined and ferrite transformation is promoted. The starting temperature is set to 850 ° C. or lower because when the starting temperature is higher than 850 ° C., the recrystallized austenite does not become fine grain or does not become non-recrystallized austenite depending on the chemical composition. This is because the effect of promoting the effect is small. The end temperature is ArThreeThe end temperature is set to Ar or higher than the transformation point.ThreeIf it is below the transformation point, it becomes rolled in the austenite / ferrite two-phase region, resulting in a structure containing processed ferrite, which is not preferable for toughness, and austenite is nucleated randomly from the processed ferrite during the final heat treatment. This is because the formation of band-like tissue is inhibited.
[0055]
Start temperature is 850 ° C or less, end temperature is ArThreeThe cumulative rolling reduction in rolling above the transformation point is 30% or more. If the cumulative rolling reduction is less than 30%, austenite is not sufficiently refined by recrystallization, and in the case of non-recrystallized zone rolling, the amount of work strain is insufficient. Is not sufficient. Further, the ferrite transformation is not sufficiently promoted, and as a result, the formation of a band structure having a large aspect ratio becomes insufficient, and the average aspect ratio of the final hard second phase may not be sufficiently increased.
[0056]
In hot rolling, the start temperature is 850 ° C. or less and the end temperature is Ar.ThreeIf the rolling point is equal to or higher than the transformation point and the cumulative reduction ratio is 30% or more, it is separately over 850 ° C. in order to adjust the sheet thickness and to secure the total reduction ratio, which is a requirement of the present invention. Including hot rolling at is acceptable. If the requirements of the present invention are satisfied, even if rolling above 850 ° C. is included, the object of the present invention is to adversely affect the fatigue strength and the strength and toughness that are the basic properties of structural materials. Absent. On the other hand, the start temperature is 850 ° C. or lower, and the end temperature is ArThreeEven when the rolling point is higher than the transformation point and the cumulative rolling reduction is 30% or more, ArThreeFurther rolling below the transformation point may have an adverse effect, as is apparent from the reasons described above. However, ArThreeRolling below the transformation point is allowed as long as the cumulative rolling reduction is less than 30%, since there is almost no adverse effect on the formation of structural requirements and the material of the present invention.
[0057]
In the production method of the present invention, after the hot rolling, it is necessary to further cool to 500 ° C. or less at a cooling rate of 5 ° C./s or less. The cooling condition is also a condition for clearly forming a band-like structure in the structure in the rolling stage before the final heat treatment. That is, when the cooling rate increases beyond 5 ° C./s, the start temperature is 850 ° C. or less and the end temperature is Ar.ThreeEven if the formation of ferrite is promoted in advance by rolling at a transformation point or higher and a cumulative reduction ratio of 30% or more, depending on the chemical composition, the formation of ferrite is not sufficient, resulting in the formation of a band structure with a large aspect ratio. It is because is inhibited. However, since the transformation of the ferrite and the formation of the band structure are almost completed when the temperature is 500 ° C. or lower, the cooling rate may be controlled to 500 ° C. or lower. Cooling at 500 ° C. or lower may be accelerated cooling, air cooling, or slow cooling.
[0058]
In the production method of the present invention, the steel slab having the chemical composition of the present invention is converted into AC.ThreeReheated to transformation temperature to 1250 ° C, start temperature is 850 ° C or less, end temperature is ArThreeAfter rolling at a transformation point or higher and a rolling reduction of 30% or more in cumulative reduction, the total rolling ratio is 5 or more, and after cooling at a cooling rate of 5 ° C./s or less to 500 ° C. or less, Heating temperature is (AC1Transformation point + 30 ° C) to (ACThreeAt a transformation point of −50 ° C.), heat treatment is performed at a cooling rate of 5 to 100 ° C./s up to 400 ° C. The heat treatment is composed of bainite, martensite, or a mixed structure of both in the final steel sheet structure, and forms 10 to 70% of a hard second phase having an average Vickers hardness of 230 or more and an average aspect ratio of 10 or more. It is a process for doing.
[0059]
By hot rolling prior to heat treatment, a structure in which the average ferrite grain size is 20 μm or less and the second phase becomes a band-like structure having a large aspect ratio is formed, but at this stage, the second phase does not necessarily have fatigue strength. It is not a hard second phase that is effective for improvement and satisfies the present invention. Therefore, the second phase is changed to the one having the necessary characteristics and form while the ferrite is kept fine by heat treatment.
[0060]
In order to make only the second phase a hard second phase using transformation without inducing the excessive coarsening of the fine ferrite formed in the rolling stage, the ferrite is reheated to the two-phase region, By forming a two-phase structure of tote and austenite and cooling at an appropriate cooling rate after reheating, the austenite phase is transformed into a hard second phase composed of bainite, martensite, or a mixed structure of both. At that time, the reheating temperature is (AC1Transformation point + 30 ° C) to (ACThreeTransformation point −50 ° C.). The reheating temperature is (AC1If the temperature is less than the transformation point + 30 ° C., the ratio of reverse transformation to the austenite phase in the heating stage becomes too small, and it may be impossible to ensure 10% or more of the hard second phase. On the other hand, the reheating temperature is (ACThreeIf the transformation point is over 50 ° C), the ratio of a) reverse transformation to the austenite phase in the heating stage becomes excessive, so the ratio of the hard second phase exceeds 70%. The amount of C enrichment in the phase is insufficient, and the hardness of the hard second phase becomes too small. C) The band-like structure of the hard second phase collapses, and the aspect ratio of the hard second phase is 10 or more. D) Various adverse effects such as ferrite grain growth and an average grain size exceeding 20 μm are caused. For the above reasons, in the present invention, the reheating temperature in the final heat treatment is set to (AC1Transformation point + 30 ° C) to (ACThreeTransformation point-50 ° C). (AC1Transformation point + 30 ° C) to (ACThreeThe holding time at the transformation point −50 ° C. does not need to be specified in the industrial range, but holding for an extremely long time is not particularly advantageous for improving the characteristics, and the productivity is lowered. Since there is a concern about the coarsening of the ferrite grain size, it is recommended that the holding time be within about 10 hours.
[0061]
(AC1Transformation point + 30 ° C) to (ACThreeTransformation point −50 ° C.), and the whole or part of the region austenitized in the heating stage, which is a requirement of the present invention, has an average Vickers hardness of 230 or more and an average aspect ratio of In order to transform into a hard second phase composed of 10 or more bainite or martensite or a mixed structure of both, cooling is performed at 5 to 100 ° C./s to 400 ° C. or less. That is, in the chemical composition range of the present invention, a hard second phase having an average Vickers hardness of 230 or more cannot be formed at a cooling rate of less than 5 ° C./s. If the cooling rate is 5 ° C./s or higher, it is preferable that the cooling rate is larger. Therefore, in the present invention, the cooling rate is limited to 5 to 100 ° C./s. The cooling rate must be controlled until the transformation from austenite to bainite or martensite is almost completed. Therefore, in this invention, it shall cool at 5-100 degrees C / s to 400 degrees C or less. For cooling below 400 ° C, the influence on the form of the hard second phase and the hardness is very small, and it is not necessary to limit it in particular. However, if it is extremely slowly cooled around 400 ° C, the toughness due to the formation of coarse precipitates Since there is a risk of promoting deterioration and embrittlement of grain boundaries, it is preferable to avoid extreme slow cooling at an average cooling rate at 400 to 200 ° C. of 1 ° C./min or less.
[0062]
The above is the reason for limiting the basic requirements regarding the manufacturing method in the present invention. However, tempering can be further performed after the two-phase region heat treatment for the purpose of adjusting the strength and reducing the residual stress. However, the tempering temperature is limited to 250 to 600 ° C. This is because if the tempering temperature is less than 250 ° C., the tempering effect is not clear, while if it exceeds 600 ° C., the hard second phase is greatly softened and the Vickers hardness is likely to be less than 230. The tempering holding time and cooling conditions are not particularly required as long as the enjoyment of the tempering effect and the securing of the hardness of the hard second phase are compatible, but when tempering at 500 ° C. or higher, Since there is a great concern about the softening of the second phase, it is preferable to keep the holding time within a short time of 10 hours.
[0063]
Next, the effects of the present invention will be described more specifically with reference to examples.
[0064]
【Example】
Table 1 shows the chemical composition of the test steel used in the examples. Each test steel is made into a steel slab by ingot rolling, by ingot rolling, or by continuous casting. In Table 1, steel slab numbers 1 to 10 satisfy the chemical composition range of the present invention, and steel slab numbers 11 to 15 do not satisfy the chemical composition range of the present invention. Table 1 also shows the heating transformation point (AC1, ACThreeThis indicates that the rate of temperature rise is 5 ° C./min. The measured values at the time are substantially in agreement with the transformation points shown in Table 3 under the actual temperature rise conditions in the heat treatment of the steel sheet.
[0065]
[Table 1]
Figure 0004445161
[0066]
Steel strips having the chemical composition shown in Table 1 were manufactured into steel plates having a thickness of 25 mm or 50 mm by hot rolling under the conditions shown in Table 2, heat treatment under the conditions shown in Table 3, and partly tempering, Tensile properties, 2 mm V notch Charpy impact properties, and fatigue properties of welded joints were investigated. Tensile test pieces and Charpy impact test pieces were sampled perpendicularly to the rolling direction (C direction) from the center of the plate thickness. Tensile properties were measured at room temperature, and Charpy impact properties were evaluated at 50% fracture surface transition temperature (vTrs). The fatigue test was performed on the turn welded joint shown in FIG. 1 in order to evaluate the fatigue characteristics when a fatigue crack occurs from the weld toe of the structure and propagates through the base metal. The test piece is a test plate with a size from steel plate to steel plate longitudinal direction length: 300 mm, width direction length: 80 mm, plate thickness: 25 mm (total thickness for 25 mm thick material, sampled from the surface for 50 mm thick material). A rib plate having a width of 10 mm, a length of 30 mm, and a height of 30 mm was taken around the center of the test plate by carbon dioxide welding (Co2 welding) and welded by welding. In this case, carbon dioxide gas welding uses a 1.4 mm diameter welding wire having a chemical composition of C: 0.06 mass%, Si: 0.5 mass%, Mn: 1.4 mass%, current: 270A, Voltage: 30 V, welding speed: 20 cm / min. I went there. In the fatigue test, the span of the load fulcrum P was set to the lower span: 70 mm, the upper span: 220 mm, the maximum load (Pmax): 5500 kgf, and the stress ratio (R): 0.1 repeated stress load, and the fatigue life was measured. did.
[0067]
[Table 2]
Figure 0004445161
[0068]
[Table 3]
Figure 0004445161
[0069]
Notes in Tables 2 and 3 are as follows.
Note 1) “850 ° C. or lower, end temperature Ar essential for the present invention3Rolling prior to “rolling with a cumulative reduction of 30% or more”
Note 2) “850 ° C. or lower, end temperature Ar essential for the present invention3As described above, rolling under a cumulative reduction ratio of 30% or more and rolling under conditions corresponding to the main rolling in the comparative example
Note 3) Measured value by air cooling after rolling
Note 4) Means are air cooling (AC) or accelerated cooling (AcC). In the case of air cooling, cool to room temperature. The cooling rate is the average from the end of rolling to 500 ° C.
Note 5) Average from heating temperature to cooling stop temperature.
Note 6) Tempering retention is in the range of 30 minutes to 2 hours. All cooling is air cooling.
[0070]
Table 4 shows the structure of the steel sheet (ferrite particle size, hard second phase type, ratio, Vickers hardness, aspect ratio) and mechanical properties. In addition, the quantification of the structure was obtained by photographing an optical microscope structure of 1 mm below the surface, 1/4 of the plate thickness, and the center of the plate thickness in the plate thickness section parallel to the longitudinal direction of the steel plate, and the average ferrite particle size at each position, The ratio of the hard second phase and the aspect ratio were determined, and the average value at the three observation positions was shown. The hardness of the hard second phase is 1 mm below the surface, 1/4 of the plate thickness, the center of the plate thickness, and 10 or more micro Vickers hardnesses with a load of 5 to 10 g are measured at each position, and the average value at each position Were further averaged.
[0071]
[Table 4]
Figure 0004445161
[0072]
The steel plate numbers A1 to A13 in Tables 2 to 4 are steel plates that satisfy all the requirements regarding the chemical composition and structure of the present invention, all of which are necessary strength and toughness for structural steel (2 mm V notch Charpy impact properties). It is clear that it also has good joint fatigue properties.
[0073]
On the other hand, steel plate numbers B1 to B11 are comparative steel plates that do not satisfy any of the requirements of the present invention, and it is clear that joint fatigue properties and toughness are inferior to the steel plates of the present invention. .
[0074]
Steel plate numbers B1 to B5 have good characteristics even though they cannot satisfy the structural requirements of the present invention because the chemical composition does not satisfy the present invention, or satisfy the structural requirements of the present invention. This is an example that could not be achieved.
[0075]
That is, the steel plate number B1 has an excessively small amount of C, so the hard second phase has low hardenability, and the entire surface has a mixed structure of pearlite and bainite. The hardness of the hard second phase is lower than the lower limit of the present invention. Is also low. Therefore, compared with the steel plate of the present invention, joint fatigue characteristics are greatly inferior.
[0076]
Steel plate number B2 is a comparative example in which the amount of C is excessive, and the toughness is extremely inferior because the hardness of the hard second phase is excessive and very brittle. Although the joint fatigue properties are relatively good, the joint fatigue properties are slightly inferior to those of the present invention due to the brittle fracture of the hard phase in fatigue tests.
[0077]
Steel plates Nos. B3 and B4 have excessive amounts of Mn and P, respectively. Further, due to the deterioration of toughness, in the joint fatigue test, brittle fracture in the ferrite phase and the hard phase partially occurs, so the joint fatigue characteristics are inferior to those of the present invention.
[0078]
Steel plate number B5 is also inferior in toughness and joint fatigue properties compared to the present invention because the amount of S is excessive. In particular, the deterioration of joint fatigue characteristics is large.
[0079]
Steel plate numbers B6 to B11 are examples in which the chemical composition satisfies the present invention, but the structural requirements do not satisfy the present invention, so the joint fatigue characteristics are inferior or the toughness is not sufficient as structural steel. is there.
[0080]
That is, the steel plate number B6 has a final heating temperature of ACThreeSince it exceeds the upper limit of the transformation point and the production method of the present invention, the ferrite phase does not remain, the structure after accelerated cooling becomes a mixed structure of bainite and martensite on the entire surface, and the two phases of ferrite and hard second phase. Since it is not a phase structure, no improvement in joint fatigue characteristics is observed.
[0081]
On the other hand, the steel plate number B7 has a heating temperature of the final heat treatment lower than the lower limit of the production method of the present invention, so that a certain amount of austenite necessary for forming the hard phase is not formed in the heating stage, and as a result, In addition, a hard second phase composed of bainite and martensite essential in the present invention and having a hardness of 230 or more is not formed, and the joint fatigue characteristics are extremely low as compared with the present invention.
[0082]
Steel plate number B8 has a small total reduction ratio, so that the aspect ratio of the hard second phase is too small to satisfy the present invention, and the joint fatigue characteristics are inferior to the present invention.
[0083]
Steel plate No. B9 has a low cooling rate in the final heat treatment, so that the hardness of the hard second phase is too small to function effectively in suppressing crack propagation, and therefore the joint fatigue properties are significantly inferior.
[0084]
Steel plate number B10 is not rolled in hot rolling starting from 850 ° C. or less, and the ferrite grain boundary is excessively out of the scope of the present invention. Therefore, the aspect ratio of the hard second phase is within the scope of the present invention compared to the steel of the present invention rolled at the same total reduction ratio. Is sufficiently superior to the comparative example, but is slightly inferior to the steel of the present invention with other structural requirements that are similar.
[0085]
Steel plate number B11 was subjected to accelerated cooling with a high cooling rate after hot rolling, so that the second phase was hardly layered at the end of rolling, so the aspect ratio of the hard second phase after the final heat treatment was The joint fatigue characteristics are not improved.
[0086]
From the above examples, it is apparent that according to the present invention, it is possible to obtain excellent joint fatigue characteristics while ensuring sufficiently high toughness as structural steel.
[0087]
【The invention's effect】
The present invention is specially used for welded structural members that require fatigue strength, and has specially improved joint fatigue characteristics, which have been conventionally difficult to improve in welded parts, for thick steel sheets with a tensile strength of 400 MPa or higher. The industrial utility is extremely large in that it can be manufactured without resorting to alloying elements or complicated manufacturing processes.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a turn welding four-point bending test method for evaluating weld joint fatigue characteristics.
[Explanation of symbols]
P: Load fulcrum

Claims (4)

質量%で、
C :0.04〜0.3%、
Si:0.01〜2%、
Mn:0.1〜3%、
Al:0.001〜0.1%、
N :0.001〜0.01%
を含有し、
P:0.02%以下、
S :0.01%以下
を含有し、残部が鉄及び不可避不純物からなる成分を有する鋼片をAC3変態点〜1250℃に再加熱し、開始温度が850℃以下、終了温度がAr3変態点以上で、累積圧下率が30%以上の圧延を含み、全圧下比が5以上の熱間圧延を行い、500℃以下まで5℃/s以下の冷却速度で冷却した後、さらに(AC1変態点+30℃)〜(AC3変態点−50℃)に再加熱し、400℃以下まで5〜100℃/sで冷却して、フェライトと硬質第二相とからなる組織を有し、鋼板長手方向に平行な板厚断面組織における前記フェライトと硬質第二相とが下記(1)〜(4)の条件を全て満たし、前記硬質第二相の組織がベイナイト、マルテンサイトのいずれか又は両者の混合組織とすることを特徴とする、疲労強度に優れた厚鋼板の製造方法。
(1)平均フェライト粒径:20μm以下
(2)硬質第二相の割合:10〜70%
(3)硬質第二相の平均ビッカース硬さ:230以上
(4)硬質第二相の平均アスペクト比(平均鋼板長手方向長さ/平均板厚方向長さ):10以上
% By mass
C: 0.04-0.3%
Si: 0.01-2%
Mn: 0.1 to 3%
Al: 0.001 to 0.1%,
N: 0.001 to 0.01%
Containing
P: 0.02% or less,
S: 0.01% or less
Steel, the balance of which is composed of iron and inevitable impurities, is reheated to an AC 3 transformation point to 1250 ° C., the start temperature is 850 ° C. or less, the end temperature is the Ar 3 transformation point or more, and the cumulative reduction rate Includes rolling at 30% or more, hot rolling at a total reduction ratio of 5 or more, cooling to 500 ° C. or less at a cooling rate of 5 ° C./s or less, and then (AC 1 transformation point + 30 ° C.) to ( AC 3 transformation point-50 ° C.), cooled to 400 ° C. or less at 5-100 ° C./s , having a structure composed of ferrite and a hard second phase, and a plate thickness parallel to the longitudinal direction of the steel plate The ferrite and the hard second phase in the cross-sectional structure satisfy all the following conditions (1) to (4), and the structure of the hard second phase is either bainite, martensite, or a mixed structure of both. A method for producing thick steel plates with excellent fatigue strength
(1) Average ferrite particle size: 20 μm or less
(2) Ratio of hard second phase: 10 to 70%
(3) Average Vickers hardness of hard second phase: 230 or more
(4) Average aspect ratio of hard second phase (average length in the longitudinal direction of steel sheet / average length in the thickness direction): 10 or more
さらに、前記鋼片が質量%で、Furthermore, the steel slab is mass%,
Ni:0.01〜6%、Ni: 0.01-6%,
Cu:0.01〜1.5%、Cu: 0.01 to 1.5%,
Cr:0.01〜2%、Cr: 0.01-2%
Mo:0.01〜2%、Mo: 0.01-2%
W :0.01〜2%、W: 0.01-2%
Ti:0.003〜0.1%、Ti: 0.003 to 0.1%,
V :0.005〜0.5%、V: 0.005-0.5%
Nb:0.003〜0.2%、Nb: 0.003 to 0.2%,
Zr:0.003〜0.1%、Zr: 0.003 to 0.1%,
Ta:0.005〜0.2%、Ta: 0.005 to 0.2%,
B :0.0002〜0.005%B: 0.0002 to 0.005%
のうちの1種又は2種以上を含有することを特徴とする、請求項1に記載の疲労強度に優れた厚鋼板の製造方法。The manufacturing method of the thick steel plate excellent in the fatigue strength of Claim 1 characterized by including 1 type, or 2 or more types of these.
さらに、前記鋼片が質量%で、
Mg:0.0005〜0.01%、
Ca:0.0005〜0.01%、
REM:0.005〜0.1%
のうちの1種又は2種以上を含有することを特徴とする、請求項1又は2に記載の疲労強度に優れた厚鋼板の製造方法
Furthermore, the billet is mass%
Mg: 0.0005 to 0.01%,
Ca: 0.0005 to 0.01%,
REM: 0.005-0.1%
The manufacturing method of the thick steel plate excellent in the fatigue strength of Claim 1 or 2 characterized by including 1 type, or 2 or more types of these .
さらに、250〜600℃で焼戻すことを特徴とする、請求項1〜3のいずれかに記載の疲労強度に優れた厚鋼板の製造方法。 Furthermore, tempering at 250-600 degreeC, The manufacturing method of the thick steel plate excellent in the fatigue strength in any one of Claims 1-3 characterized by the above-mentioned.
JP2001185362A 2001-06-19 2001-06-19 Manufacturing method of thick steel plate with excellent fatigue strength Expired - Fee Related JP4445161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001185362A JP4445161B2 (en) 2001-06-19 2001-06-19 Manufacturing method of thick steel plate with excellent fatigue strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001185362A JP4445161B2 (en) 2001-06-19 2001-06-19 Manufacturing method of thick steel plate with excellent fatigue strength

Publications (2)

Publication Number Publication Date
JP2003003229A JP2003003229A (en) 2003-01-08
JP4445161B2 true JP4445161B2 (en) 2010-04-07

Family

ID=19024958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001185362A Expired - Fee Related JP4445161B2 (en) 2001-06-19 2001-06-19 Manufacturing method of thick steel plate with excellent fatigue strength

Country Status (1)

Country Link
JP (1) JP4445161B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110331328A (en) * 2019-08-02 2019-10-15 武汉钢铁集团鄂城钢铁有限责任公司 The ultra-thin anti-ammonia corrosion moving pressure container steel plate of one kind and its production method

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4687122B2 (en) * 2004-01-30 2011-05-25 Jfeスチール株式会社 Manufacturing method of steel with excellent strength uniformity in the thickness direction and fatigue crack propagation characteristics
US8815024B2 (en) 2004-02-19 2014-08-26 Nippon Steel & Sumitomo Metal Corporation Steel plate or steel pipe with small occurrence of Bauschinger effect and methods of production of same
JP4358707B2 (en) 2004-08-24 2009-11-04 新日本製鐵株式会社 High-tensile steel material having excellent weldability and toughness and tensile strength of 550 MPa class or higher and method for producing the same
EP1749895A1 (en) 2005-08-04 2007-02-07 ARCELOR France Manufacture of steel sheets having high resistance and excellent ductility, products thereof
JP4645462B2 (en) * 2006-01-27 2011-03-09 Jfeスチール株式会社 A high-strength steel material excellent in fatigue crack propagation characteristics with low strength dependence and a method for producing the same.
JP4645461B2 (en) * 2006-01-27 2011-03-09 Jfeスチール株式会社 High-strength steel material excellent in ductile crack initiation characteristics and fatigue crack propagation characteristics and method for producing the same
CN100447285C (en) * 2006-03-27 2008-12-31 宝山钢铁股份有限公司 Soft magnetic structural steel plate with excellent welding performance and its making process
JP2007314819A (en) * 2006-05-23 2007-12-06 Kobe Steel Ltd Steel sheet having excellent fatigue crack propagation resistance
JP4721956B2 (en) * 2006-06-06 2011-07-13 株式会社神戸製鋼所 Thick steel plate with excellent base metal toughness and fatigue crack growth characteristics
CN101611163B (en) * 2006-10-06 2013-01-09 埃克森美孚上游研究公司 Low yield ratio dual phase steel linepipe with superior strain aging resistance
JP5359160B2 (en) * 2008-09-30 2013-12-04 Jfeスチール株式会社 Manufacturing method of thick steel material with excellent fatigue crack resistance
JP5630125B2 (en) * 2009-08-06 2014-11-26 Jfeスチール株式会社 High strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
KR101412267B1 (en) 2012-04-25 2014-07-02 현대제철 주식회사 Steel sheet and method of manufacturing the same
KR101444750B1 (en) * 2012-08-31 2014-09-26 한국원자력연구원 the Ni-Cr-Mo low alloy steel improved resistance of temper embrittleness and the manufacturing method thereof
CN103215512B (en) * 2013-03-16 2016-01-27 南阳汉冶特钢有限公司 The production technique of a kind of pressure vessel steel 12Cr2Mo1R and 150mm slab thereof
JP6217234B2 (en) * 2013-08-21 2017-10-25 新日鐵住金株式会社 Thick steel plate and manufacturing method thereof
MX2016016159A (en) 2014-07-14 2017-03-08 Nippon Steel & Sumitomo Metal Corp Hot-rolled steel sheet.
JP6398452B2 (en) * 2014-08-12 2018-10-03 新日鐵住金株式会社 Steel for tank
GB201505774D0 (en) * 2015-04-02 2015-05-20 Cambridge Entpr Ltd Martensitic steel alloy with resistance to hydrogen embrittlement
KR101671508B1 (en) * 2015-06-19 2016-11-01 동국제강주식회사 Method of manufacturing thick plate applied skin pass
JP6470155B2 (en) * 2015-09-18 2019-02-13 株式会社神戸製鋼所 Explosion-proof container
KR101726082B1 (en) * 2015-12-04 2017-04-12 주식회사 포스코 Steel having superior brittle crack arrestability and resistance brittle crack initiation of welding point and method for manufacturing the steel
KR101736611B1 (en) * 2015-12-04 2017-05-17 주식회사 포스코 Steel having superior brittle crack arrestability and resistance brittle crack initiation of welding point and method for manufacturing the steel
KR101758513B1 (en) * 2015-12-22 2017-07-17 주식회사 포스코 Steel plate having high strength and excellent low-temperature toughness, and method for manufacturing the same
KR101799202B1 (en) * 2016-07-01 2017-11-20 주식회사 포스코 High-strength steel sheet having excellent low yield ratio property and low temperature toughness and method for manufacturing the same
KR101917451B1 (en) * 2016-12-21 2018-11-09 주식회사 포스코 Low-yield ratio steel sheet having excellent low-temperature toughness and method for manufacturing the same
JP6673320B2 (en) * 2017-02-16 2020-03-25 Jfeスチール株式会社 Thick steel plate and method for manufacturing thick steel plate
CN107389470B (en) * 2017-08-09 2020-07-14 中国石油天然气集团公司 Full-size rotating bending fatigue test device and method for oil well pipe
CN110241357B (en) * 2019-06-10 2021-03-26 江阴兴澄特种钢铁有限公司 800 MPa-grade tough weather-proof thick steel plate and preparation method thereof
CN110923548B (en) * 2019-12-10 2021-05-04 马鞍山钢铁股份有限公司 Steel hot-rolled steel strip with seawater erosion corrosion resistance for fastener and production method thereof
KR102487758B1 (en) * 2020-12-18 2023-01-12 주식회사 포스코 Steel plate having excellent low temperature impact toughness and method for manufacturing the same
JP7535028B2 (en) 2021-10-29 2024-08-15 株式会社神戸製鋼所 High strength steel plate and method for manufacturing same
KR20230089767A (en) * 2021-12-14 2023-06-21 주식회사 포스코 Steel plate having high strength and excellent impact toughness, and method for manufacturing the same
CN114657472B (en) * 2022-04-02 2022-09-16 鞍钢股份有限公司 Marine ultrahigh-strength low-temperature steel with excellent fatigue performance and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110331328A (en) * 2019-08-02 2019-10-15 武汉钢铁集团鄂城钢铁有限责任公司 The ultra-thin anti-ammonia corrosion moving pressure container steel plate of one kind and its production method
CN110331328B (en) * 2019-08-02 2020-06-30 武汉钢铁集团鄂城钢铁有限责任公司 Ultrathin ammonia corrosion resistant steel plate for movable pressure container and production method thereof

Also Published As

Publication number Publication date
JP2003003229A (en) 2003-01-08

Similar Documents

Publication Publication Date Title
JP4445161B2 (en) Manufacturing method of thick steel plate with excellent fatigue strength
JP3860763B2 (en) Thick steel plate with excellent fatigue strength and its manufacturing method
JP4358900B1 (en) High-strength steel sheet and steel pipe excellent in low-temperature toughness and method for producing them
JP4926406B2 (en) Steel sheet with excellent fatigue crack propagation characteristics
JP5509923B2 (en) Method for producing high-tensile steel sheet having a tensile strength of 1100 MPa or more for laser welding or laser-arc hybrid welding
JP5217385B2 (en) Steel sheet for high toughness line pipe and method for producing the same
JP2008208454A (en) High-strength steel excellent in delayed fracture resistance and its production method
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JP2007231312A (en) High-tensile-strength steel and manufacturing method therefor
JP5521712B2 (en) Ni-containing steel for low temperature excellent in strength, low temperature toughness and brittle crack propagation stopping characteristics, and method for producing the same
JP3499084B2 (en) Low yield ratio high tensile strength steel for construction with excellent brittle crack arrestability and method of manufacturing the same
JP3785392B2 (en) Thick steel with excellent fatigue crack propagation characteristics and its manufacturing method
JP2000129392A (en) High strength steel product excellent in fatigue crack propagation resistance, and its manufacture
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JP2005298877A (en) Steel plate with excellent fatigue crack propagation characteristic, and its manufacturing method
JP2022505840A (en) High-strength steel with excellent sulfide stress corrosion cracking resistance and its manufacturing method
JP7104370B2 (en) Thick steel plate and its manufacturing method
JP7070814B1 (en) Thick steel plate and its manufacturing method
JP2004162085A (en) Steel plate with excellent fatigue crack propagation resistance, and its manufacturing method
JP2541070B2 (en) Method for producing high nickel alloy clad steel sheet with excellent brittle fracture propagation stopping properties of base material
WO2011043287A1 (en) Steel for linepipe having good strength and malleability, and method for producing the same
JP4660363B2 (en) Manufacturing method of thick steel plate with excellent toughness
JP2002224835A (en) Method of welding high toughness high tension steel having excellent weld heat influence zone toughness
JP6673320B2 (en) Thick steel plate and method for manufacturing thick steel plate
KR20200047081A (en) High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees