JP3462943B2 - Steel sheet having high fatigue strength at welded portion and method for producing the same - Google Patents

Steel sheet having high fatigue strength at welded portion and method for producing the same

Info

Publication number
JP3462943B2
JP3462943B2 JP25664195A JP25664195A JP3462943B2 JP 3462943 B2 JP3462943 B2 JP 3462943B2 JP 25664195 A JP25664195 A JP 25664195A JP 25664195 A JP25664195 A JP 25664195A JP 3462943 B2 JP3462943 B2 JP 3462943B2
Authority
JP
Japan
Prior art keywords
rolling
fatigue strength
transformation point
fatigue
cumulative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25664195A
Other languages
Japanese (ja)
Other versions
JPH0995754A (en
Inventor
周二 粟飯原
龍治 植森
勝巳 榑林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP25664195A priority Critical patent/JP3462943B2/en
Publication of JPH0995754A publication Critical patent/JPH0995754A/en
Application granted granted Critical
Publication of JP3462943B2 publication Critical patent/JP3462943B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、建設機械・造船・
海洋構造物・橋梁、さらには自動車などの溶接構造物
で、長い疲労寿命が要求される構造部材に使用され、溶
接部から発生する疲労破壊の繰り返し寿命が長い鋼板お
よびその製造方法に関するものであり、特に鋼板とし
て、厚鋼板、中板、薄板(熱延、冷延鋼板)を対象とす
る。
TECHNICAL FIELD The present invention relates to construction machinery, shipbuilding,
The present invention relates to a steel plate which is used for a structural member that requires a long fatigue life in a welded structure such as an offshore structure / bridge, and an automobile, and has a long repeated life of fatigue fracture generated from a weld, and a manufacturing method thereof. In particular, as steel plates, thick steel plates, middle plates, and thin plates (hot rolled, cold rolled steel plates) are targeted.

【0002】[0002]

【従来の技術】環境保全に対する要求の高まり、人命の
尊重により、構造物は従来にも増した信頼性が要求され
るようになってきている。過酷な条件で使用される大型
の溶接構造物では、疲労破壊、脆性破壊、延性破壊など
の破壊が生じるおそれがあるが、この中でも疲労破壊は
低い繰り返し応力が作用することにより生じる破壊であ
り、最も頻繁に発生しやすいものである。疲労寿命を長
くするための対策としては、現状では部材に生じる負荷
応力が高くならないように板厚を厚くするなどの設計的
な配慮によるところが大きく、その結果、構造物の軽量
化が進まないなどの問題点が指摘されている。
2. Description of the Related Art Due to increasing demands for environmental protection and respect for human life, structures are required to have higher reliability than ever before. In a large welded structure used under severe conditions, fatigue fracture, brittle fracture, ductile fracture, and other fractures may occur, but among these, fatigue fracture is a fracture caused by the action of low repetitive stress, It is the one most likely to occur. As a measure to lengthen the fatigue life, at present, it is largely due to design consideration such as increasing the plate thickness so that the load stress generated in the member does not become high, and as a result, the weight reduction of the structure does not progress etc. Has been pointed out.

【0003】これまでに、疲労強度向上に関する技術が
多数公開されているが、そのほとんどは母材に関するも
のであり、本発明が対象とするような溶接部の疲労強度
向上を目的としたものは少ない。また、薄鋼板で広く用
いられるスポット溶接は、応力集中・残留応力など応力
状態が突き合わせ溶接のそれとは非常に異なるため、本
発明が対象とする鋼板突き合わせ溶接部の疲労強度向上
には適用できない。
Up to now, many techniques for improving fatigue strength have been disclosed, but most of them are related to the base metal, and those for the purpose of improving the fatigue strength of a welded portion, which is the object of the present invention, are not. Few. Further, spot welding, which is widely used for thin steel sheets, has a stress state such as stress concentration and residual stress that is very different from that of butt welding, and therefore cannot be applied to the improvement of the fatigue strength of steel sheet butt-welded portions targeted by the present invention.

【0004】特開昭57−108241号公報において
は、ベイナイトの面積率を5〜70%、マルテンサイト
の面積率を1〜30%とすることにより、伸びフランジ
性と疲労強度の向上が図れることが記載されている。ま
た、特公平1−46583号公報においては、熱延鋼板
の冷却速度と巻取温度を限定することにより、ベイナイ
トの面積率を5〜60%とし、疲労強度を向上できるこ
とが記載されている。
In JP-A-57-108241, it is possible to improve stretch flangeability and fatigue strength by setting the area ratio of bainite to 5 to 70% and the area ratio of martensite to 1 to 30%. Is listed. Further, Japanese Patent Publication No. 1-45833 describes that the area ratio of bainite can be set to 5 to 60% and fatigue strength can be improved by limiting the cooling rate and the winding temperature of the hot rolled steel sheet.

【0005】また、特公平4−24418号公報におい
ては、フェライト・ベイナイト・マルテンサイトの3相
混合組織で、ベイナイトの面積率を5〜60%、マルテ
ンサイトの面積率を1〜15%とすることにより、伸び
フランジ性と疲労強度の向上が図れることが記載されて
いる。また、厚鋼板の疲労強度を向上させるものとして
は、特開平5−148540号公報に、オーステナイト
・フェライト2相域で圧延を行うことにより、アスペク
ト比が4以上で、短径が10μm以下のフェライトを生
成させ、疲労き裂の成長に伴って板面に平行なセパレー
ションを生ぜしめ、疲労き裂の伝播を抑制する技術が記
載されている。
Further, in Japanese Examined Patent Publication (Kokoku) No. 4-24418, the area ratio of bainite is 5 to 60% and the area ratio of martensite is 1 to 15% in a three-phase mixed structure of ferrite, bainite and martensite. It is described that by doing so, stretch flangeability and fatigue strength can be improved. Further, as a method for improving the fatigue strength of a thick steel plate, a ferrite having an aspect ratio of 4 or more and a minor axis of 10 μm or less can be obtained by rolling in an austenite / ferrite two-phase region as disclosed in JP-A-5-148540. Has been described, and a technique of causing the generation of a crack parallel to the plate surface as the fatigue crack grows and suppressing the propagation of the fatigue crack.

【0006】[0006]

【発明が解決しようとする課題】これらのうち、特開昭
57−108241号公報は、ベイナイトとマルテンサ
イトの面積率を特定範囲に限定することにより疲労強度
を向上させるものであるが、これは薄鋼板母材の疲労強
度向上に関するものであり、本発明が対象とする溶接部
では残留応力が生じているなど応力条件が全く異なるた
めに、これを適用することはできない。
Among these, JP-A-57-108241 discloses that the fatigue strength is improved by limiting the area ratio of bainite and martensite to a specific range. The present invention relates to the improvement of fatigue strength of a thin steel sheet base material, and cannot be applied because the stress conditions are completely different such as residual stress occurring in the welded portion targeted by the present invention.

【0007】また、特公平1−46583号公報は、母
材の組織を制御することにより疲労強度の向上を図るも
のであり、鋼板溶接部の疲労強度向上には効果が限られ
る。また、特公平4−24418号公報が対象とするの
は、主に伸びフランジ性の向上を目的としたものであ
り、疲労強度に関しては応力集中の低いフラッシュバッ
ト溶接部の硬さの低下を抑制することにより疲労強度の
向上を図るものであり、応力集中が高い溶接部の疲労強
度向上には効果を期待できない。
Further, Japanese Patent Publication No. 1-46583 is intended to improve the fatigue strength by controlling the structure of the base material, and the effect is limited to the improvement of the fatigue strength of the welded portion of the steel sheet. Further, JP-B-4-24418 is intended mainly for the purpose of improving stretch-flangeability, and with regard to fatigue strength, suppression of decrease in hardness of flash butt welded portion where stress concentration is low is suppressed. By doing so, the fatigue strength is improved, and the effect cannot be expected to improve the fatigue strength of the welded portion where the stress concentration is high.

【0008】さらに、特開平5−148540号公報
は、板面に平行なセパレーションを生成させることによ
り疲労き裂の伝播を抑制しようとするものであり、本発
明のような溶接部の疲労き裂発生を抑制する効果は全く
なく、溶接部から発生したき裂が母材部に突入した後に
効果を発揮するだけであり、溶接部の疲労強度向上には
限度がある。
Further, Japanese Patent Laid-Open No. 148540/1993 attempts to suppress the propagation of fatigue cracks by generating a separation parallel to the plate surface. There is no effect of suppressing the generation, only the effect is exhibited after the crack generated from the welded portion penetrates into the base metal portion, and there is a limit to the improvement of the fatigue strength of the welded portion.

【0009】本発明は、鋼板溶接部の疲労強度の向上を
図ることを目的とする。疲労き裂は最も応力集中の厳し
い溶接部、特に溶接熱影響部(以下、HAZと称する)
から発生する。発生したき裂はHAZ内を伝播し、母材
に突入してさらに伝播する。従って、溶接部の疲労強度
を向上させるためには、HAZにおけるき裂発生・伝播
と母材部におけるき裂伝播の両者を制御することが必要
である。本発明は、HAZと母材部の組織制御によりき
裂の発生と伝播を抑制し、溶接部材の疲労強度の向上を
図るものである。
An object of the present invention is to improve the fatigue strength of welded portions of steel plates. Fatigue cracks are the most stress-concentrated welds, especially the weld heat-affected zone (hereinafter referred to as HAZ).
Arises from. The generated crack propagates in the HAZ, penetrates into the base metal, and further propagates. Therefore, in order to improve the fatigue strength of the welded portion, it is necessary to control both crack initiation / propagation in the HAZ and crack propagation in the base metal portion. The present invention suppresses the generation and propagation of cracks by controlling the structure of the HAZ and the base metal part, and improves the fatigue strength of the welded member.

【0010】[0010]

【課題を解決するための手段】本発明者らは、溶接部の
疲労き裂発生と伝播の形態をミクロ的に詳細に観察した
結果、溶接部の疲労強度を向上させるためには、HAZ
における疲労き裂発生と伝播の抑制、およびき裂が母材
部に突入した後のき裂伝播の抑制の相乗効果によって著
しく溶接部の疲労強度を向上できることを見出した。す
なわち、HAZにおけるき裂発生・伝播の抑制にはHA
Zのフェライト面積率を高くすることが効果的であり、
母材部におけるき裂伝播抑制には集合組織制御が有効で
あることを新たに知見した。
DISCLOSURE OF THE INVENTION As a result of microscopically observing the morphology of fatigue crack initiation and propagation in welds, the present inventors have found that in order to improve the fatigue strength of welds, HAZ
It was found that the fatigue strength of the welded part can be remarkably improved by the synergistic effect of suppressing fatigue crack initiation and propagation in, and suppressing crack propagation after the crack penetrates into the base metal part. That is, HA is used to suppress crack initiation and propagation in HAZ.
It is effective to increase the ferrite area ratio of Z,
It was newly found that texture control is effective in suppressing crack propagation in the base metal part.

【0011】本発明は、上記知見に基づいてなされたも
のであり、その要旨とするところは下記のとおりであ
る。 (1)重量%で、 0.015≦C≦0.10、 0.05≦Si≦2.0、 0.1≦Mn≦1.5、 P≦0.05、 S≦0.02 を含有し、残部Feおよび不可避的不純物よりなり、下
式に示すCeq(f)の値が Ceq(f)≦0.11 を満足し、かつX線で測定した板厚方向の(200)回
折強度比が2.0〜15.0で、かつ回復または再結晶
フェライトの面積率が15〜80%であることを特徴と
する溶接部の疲労強度が高い鋼板。
The present invention was made on the basis of the above findings, and the gist thereof is as follows. (1) In weight%, 0.015 ≦ C ≦ 0.10, 0.05 ≦ Si ≦ 2.0, 0.1 ≦ Mn ≦ 1.5, P ≦ 0.05, S ≦ 0.02 The balance of Fe and inevitable impurities, the value of Ceq (f) shown in the following formula satisfies Ceq (f) ≦ 0.11, and the (200) diffraction intensity ratio in the plate thickness direction measured by X-ray. Is 2.0 to 15.0, and the area ratio of the recovered or recrystallized ferrite is 15 to 80%.

【0012】ただし、 Ceq(f)=C−Si/57+Mn/13+(Cu+
Ni)/26+Cr/5+Mo/6+V/5+Nb/
1.5 (2)重量%で、母材強度上昇元素群の 0.1≦Cu≦2.0、 0.1≦Ni≦2.0、 0.05≦Cr≦0.5、 0.05≦Mo≦0.5、 0.005≦Nb≦0.10、 0.005≦V≦0.10 の1種または2種以上を含有することを特徴とする前項
(1)記載の溶接部の疲労強度が高い鋼板。
However, Ceq (f) = C-Si / 57 + Mn / 13 + (Cu +
Ni) / 26 + Cr / 5 + Mo / 6 + V / 5 + Nb /
1.5 (2)% by Weight, 0.1 ≦ Cu ≦ 2.0, 0.1 ≦ Ni ≦ 2.0, 0.05 ≦ Cr ≦ 0.5, 0.05 ≦ Mo ≦ 0.5, 0.005 ≦ Nb ≦ 0.10, 0.005 ≦ V ≦ 0.10 One kind or two or more kinds of welded parts according to the preceding paragraph (1) are contained. Steel plate with high fatigue strength.

【0013】(3)重量%で、 0.005≦Ti≦0.05、 0.002≦N≦0.015 を含有し、さらにTi/Nが2.0〜3.4であること
を特徴とする前項(1)または(2)記載の溶接部の疲
労強度が高い鋼板。
(3) 0.005≤Ti≤0.05, 0.002≤N≤0.015 by weight%, and Ti / N is 2.0 to 3.4. The steel sheet having high fatigue strength of the welded part according to (1) or (2) above.

【0014】(4)重量%で、 0.0005≦REM≦0.0050、 0.0005≦Ca≦0.0050 の1種または2種を含有することを特徴とする前項
(1)〜(3)の何れか1項に記載の溶接部の疲労強度
が高い鋼板。
(4) One or two of 0.0005 ≦ REM ≦ 0.0050 and 0.0005 ≦ Ca ≦ 0.0050 are contained in a weight percentage, and the above-mentioned (1) to (3) are included. The steel plate with high fatigue strength of the welded part of any one of 1).

【0015】(5)前項(1)〜(4)の何れか1項に
記載の化学成分を有する鋼塊を、Ac3 変態点〜130
0℃に加熱し、再結晶温度域で20〜90%の累積圧下
率で圧延し、引き続きAr3 変態点以上の未再結晶温度
域で10〜80%の累積圧下率で圧延し、さらにAr3
変態点以下、600℃以上で40〜90%の累積圧下率
で仕上圧延し、圧延後室温まで大気中放冷することを特
徴とする溶接部の疲労強度が高い鋼板の製造方法。
(5) A steel ingot having the chemical composition described in any one of the above items (1) to (4) is converted into an Ac 3 transformation point to 130.
It is heated to 0 ° C., rolled in a recrystallization temperature range with a cumulative reduction of 20 to 90%, and subsequently rolled with a cumulative reduction of 10 to 80% in an unrecrystallized temperature range of the Ar 3 transformation point or higher. 3
A method for producing a steel sheet having a high fatigue strength of a welded portion, which comprises finish rolling at a cumulative reduction of 40 to 90% at a transformation point or lower and 600 ° C. or higher, and then allowing to cool to room temperature in the atmosphere after rolling.

【0016】(6)前項(1)〜(4)の何れか1項に
記載の化学成分を有する鋼塊を、Ac3 変態点〜130
0℃に加熱し、再結晶温度域で20〜90%の累積圧下
率で圧延し、引き続きAr3 変態点以上の未再結晶温度
域で10〜80%の累積圧下率で圧延し、さらにAr3
変態点以下、600℃以上で40〜90%の累積圧下率
で仕上圧延し、圧延終了後、30〜300秒間大気中で
放冷し、しかる後に5〜100℃/秒の冷却速度で室温
〜600℃に制御冷却することを特徴とする溶接部の疲
労強度が高い鋼板の製造方法。
(6) A steel ingot having the chemical composition described in any one of the above items (1) to (4) is converted into an Ac 3 transformation point to 130.
It is heated to 0 ° C., rolled in a recrystallization temperature range with a cumulative reduction of 20 to 90%, and subsequently rolled with a cumulative reduction of 10 to 80% in an unrecrystallized temperature range of the Ar 3 transformation point or higher. 3
Finish rolling is performed at a cumulative rolling reduction of 40 to 90% below the transformation point at 600 ° C. or more, and after the rolling is finished, it is left to cool in the atmosphere for 30 to 300 seconds, and then at room temperature at a cooling rate of 5 to 100 ° C./sec. A method for producing a steel sheet having a high fatigue strength of a weld, which comprises controlled cooling to 600 ° C.

【0017】(7)前項(1)〜(4)の何れか1項に
記載の化学成分を有する鋼塊を、Ac3 変態点〜130
0℃に加熱し、再結晶温度域で20〜90%の累積圧下
率で圧延し、引き続きAr3 変態点以上の未再結晶温度
域で10〜80%の累積圧下率で圧延し、さらにAr3
変態点以下、600℃以上で40〜90%の累積圧下率
で仕上圧延した後、直ちに5〜100℃/秒の冷却速度
で室温〜600℃に制御冷却し、引き続き室温まで大気
中で放冷し、さらに500℃以上、Ac1 変態点以下に
加熱後、大気中で放冷することを特徴とする溶接部の疲
労強度が高い鋼板の製造方法。
(7) A steel ingot having the chemical composition described in any one of the above items (1) to (4) is converted into an Ac 3 transformation point to 130.
It is heated to 0 ° C., rolled in a recrystallization temperature range with a cumulative reduction of 20 to 90%, and subsequently rolled with a cumulative reduction of 10 to 80% in an unrecrystallized temperature range of the Ar 3 transformation point or higher. 3
After finish rolling at a temperature below the transformation point and at a cumulative rolling reduction of 40 to 90% at a temperature of 600 ° C. or higher, immediately control-cool to room temperature to 600 ° C. at a cooling rate of 5 to 100 ° C./second, and subsequently cool to room temperature in the atmosphere. Then, after further heating to 500 ° C. or higher and the Ac 1 transformation point or lower, it is allowed to cool in the atmosphere, and a method for producing a steel sheet having high fatigue strength of a welded part.

【0018】ここで、回復または再結晶フェライト粒と
は、光学顕微鏡組織を500倍で観察し、粒内にすべり
帯が観察されないフェライト粒であると定義し、粒内に
すべり帯が観察されないフェライトの占める面積率を測
定し、これを回復または再結晶粒の面積率と定義する。
Here, the term "recovered or recrystallized ferrite grains" is defined as a ferrite grain in which no slip band is observed in the grain by observing an optical microscope structure at a magnification of 500, and a ferrite in which no slip band is observed in the grain. The area ratio occupied by is measured and is defined as the area ratio of recovered or recrystallized grains.

【0019】[0019]

【作用】疲労破壊は、き裂の発生と伝播から構成され
る。き裂発生寿命とき裂伝播寿命の合計が疲労破壊に至
る全寿命となる。溶接部においては、き裂発生は最も応
力集中が厳しい溶接止端部に一致するHAZから発生す
る場合が多い。発生したき裂は、HAZ内を伝播した後
に母材部へ突入し、さらに伝播を継続して最終的に部材
の破断に至る。溶接部の疲労破壊寿命を向上させるため
には、HAZ内のき裂発生・伝播と母材における伝播と
を抑制することが必要である。これらのどちらか一方だ
けを抑制するよりも、両者を同時に抑制するほうが効果
が大であることは明白である。
[Function] Fatigue fracture consists of crack initiation and propagation. The sum of the crack initiation life and the crack propagation life is the total life leading to fatigue failure. In the welded portion, the crack initiation often occurs from the HAZ that coincides with the weld toe where the stress concentration is most severe. The generated crack propagates through the HAZ and then rushes into the base metal portion, and further propagates to finally break the member. In order to improve the fatigue fracture life of the weld, it is necessary to suppress crack initiation / propagation in the HAZ and propagation in the base metal. Obviously, it is more effective to suppress both of them at the same time than to suppress only one of them.

【0020】本発明者らは、まずHAZの疲労強度に及
ぼす組織の効果について系統的な実験を実施し、極めて
有用な知見を得た。すなわち、HAZの組織を熱サイク
ル再現装置で再現した試験片を疲労試験に供し、HAZ
組織の影響を調査したところ、高温変態組織ほど疲労限
応力と引張強さの比(以下、疲労限度比と称する)が向
上することを知見した。
The present inventors first conducted a systematic experiment on the effect of the structure on the fatigue strength of HAZ, and obtained extremely useful knowledge. That is, the HAZ structure was reproduced with a thermal cycler and a test piece was subjected to a fatigue test.
When the influence of the structure was investigated, it was found that the ratio of the fatigue limit stress to the tensile strength (hereinafter, referred to as the fatigue limit ratio) was improved as the high temperature transformation structure was obtained.

【0021】図1にその試験結果を示す。合金元素含有
量を変化させた各種の鋼に最高加熱温度が1400℃の
溶接再現熱サイクルを与え、この再現HAZ材より応力
集中係数が2.6の切欠きを有する3点曲げ試験片を加
工し、疲労試験に供した。横軸に再現HAZ材のフェラ
イト組織分率をとり、縦軸に疲労限度比をとってプロッ
トした。HAZ組織中のフェライト分率を高くすること
により疲労き裂の発生と伝播を抑制できることが明らか
となった。一般的な溶接構造用軟鋼および高張力鋼で
は、入熱が1.0〜2.0kJ/mm程度の低入熱溶接
を行うと、HAZはベイナイトとマルテンサイト主体の
組織となる。従って、HAZ内の疲労き裂発生と伝播の
観点からは好ましくない組織となる。これに対して、H
AZのフェライト組織面積率を60%以上にすると、H
AZの疲労限度比が高くなり、これに伴って疲労寿命も
長くなる。
FIG. 1 shows the test results. Various steels with different alloy element contents were subjected to a simulated welding heat cycle with a maximum heating temperature of 1400 ° C, and three-point bending test pieces with a notch with a stress concentration factor of 2.6 were machined from this reproduced HAZ material. Then, it was subjected to a fatigue test. The ferrite structure fraction of the reproduced HAZ material is plotted on the horizontal axis, and the fatigue limit ratio is plotted on the vertical axis. It has been clarified that the fatigue crack initiation and propagation can be suppressed by increasing the ferrite fraction in the HAZ structure. In general welded structural mild steel and high-strength steel, when low heat input welding with a heat input of about 1.0 to 2.0 kJ / mm is performed, HAZ becomes a structure mainly composed of bainite and martensite. Therefore, the structure becomes unfavorable from the viewpoint of fatigue crack initiation and propagation in the HAZ. On the other hand, H
When the area ratio of ferrite structure of AZ is 60% or more, H
The fatigue limit ratio of AZ increases, and the fatigue life also increases accordingly.

【0022】HAZのフェライト組織分率が高いほど疲
労限度比が高くなる理由は必ずしも明確でないが、軟ら
かい組織ほどき裂閉口が顕著となり、ミクロき裂伝播が
遅延すること、逆に転位密度が高いベイナイト・マルテ
ンサイト組織では、繰り返し変形により転位再配列が生
じ、転位強化が無効化されるために疲労限度比が低くな
るためと考えられる。
The reason why the fatigue limit ratio becomes higher as the ferrite structure fraction of the HAZ becomes higher is not clear. However, the softer the structure, the more prominent the crack closure becomes, and the microcrack propagation is delayed. On the contrary, the dislocation density becomes higher. It is considered that, in the bainite-martensite structure, dislocation rearrangement occurs due to repeated deformation and dislocation strengthening is invalidated, resulting in a low fatigue limit ratio.

【0023】本発明者らは、さらに鋼材化学成分とHA
Z組織の関係を詳細に検討した結果、図2に示す結果を
得た。すなわち、下式で表わされる炭素当量式でHAZ
のフェライト面積率を表わすことができる。 Ceq(f)=C−Si/57+Mn/13+(Cu+
Ni)/26+Cr/5+Mo/6+V/5+Nb/
1.5 ここで、溶接入熱は1.7kJ/mmとし、溶接融合線
(以下FLと称する)近傍の粗粒域HAZの組織を20
0倍の光学顕微鏡で観察してフェライト組織の面積率を
求めた。図2から明らかなように、Ceq(f)を0.
11以下とすることにより、HAZのフェライト面積率
を60%以上とすることができる。
The present inventors have further investigated the chemical composition of steel and HA.
As a result of detailed examination of the relationship of the Z structure, the results shown in FIG. 2 were obtained. That is, HAZ is represented by the following carbon equivalent formula.
The ferrite area ratio can be expressed. Ceq (f) = C-Si / 57 + Mn / 13 + (Cu +
Ni) / 26 + Cr / 5 + Mo / 6 + V / 5 + Nb /
1.5 Here, the welding heat input was set to 1.7 kJ / mm, and the structure of the coarse grain area HAZ in the vicinity of the welding fusion line (hereinafter referred to as FL) was set to 20.
The area ratio of the ferrite structure was determined by observing with a 0 × optical microscope. As is clear from FIG. 2, Ceq (f) is set to 0.
When it is 11 or less, the ferrite area ratio of HAZ can be 60% or more.

【0024】次に、母材組織と疲労き裂伝播挙動の関係
について詳細な実験を行った結果、集合組織と疲労き裂
伝播には密接な関係が存在することを知見するに至っ
た。本発明者らは、伝播する疲労き裂先端における塑性
変形に注目し、き裂先端における塑性変形を抑制すれ
ば、き裂伝播速度を低下できるとの考えに立脚し、疲労
き裂先端における塑性変形の抑制法について種々検討を
加えた。その結果、フェライトの結晶方位とき裂先端塑
性変形には密接な関係が存在することが明らかとなっ
た。
Next, as a result of detailed experiments on the relationship between the base metal structure and the fatigue crack propagation behavior, it was discovered that there is a close relationship between the texture and the fatigue crack propagation. The present inventors have focused on the plastic deformation at the propagating fatigue crack tip, and based on the idea that the crack propagation rate can be reduced by suppressing the plastic deformation at the crack tip, the plasticity at the fatigue crack tip is reduced. Various studies were made on the method of suppressing deformation. As a result, it was clarified that there is a close relationship between the crystal orientation of ferrite and plastic deformation of the crack tip.

【0025】一般に、bcc結晶構造を有するフェライ
トの結晶内のすべり変形は、すべり面が{110}面
で、すべり方向が<111>方向である。すべり面とす
べり方向の組み合わせで12とおりのすべり系が決定さ
れる。多数のすべり系のうち、結晶方位とき裂先端の応
力場との関係ですべり面とすべり方向で決定されるせん
断応力が最も高くなるすべり系(主すべり系と称する)
で転位が最も活発に活動し、そのすべり系ですべり変形
を生じる。主すべり系のせん断応力が二次以下のすべり
系のせん断応力よりはるかに大きい場合には、主すべり
系だけが活動し、他のすべり系における変形による干渉
がないために、主すべり系におけるすべり変形が容易に
生じ、その結果、き裂先端における塑性変形が容易とな
り、き裂進展の障害が少なく、き裂も容易に進展する。
In general, the slip deformation in the crystal of a ferrite having a bcc crystal structure is such that the slip plane is the {110} plane and the slip direction is the <111> direction. Twelve slip systems are determined by the combination of slip surface and slip direction. Among many slip systems, the slip system in which the shear stress determined by the slip plane and slip direction is the highest due to the relationship between the crystal orientation and the stress field at the crack tip (called the main slip system)
At this point, dislocations are most active and slip deformation occurs in the slip system. When the shear stress of the main slip system is much larger than that of the second or lower slip system, only the main slip system is active and there is no interference due to deformation in the other slip systems. Deformation easily occurs, and as a result, plastic deformation at the crack tip is facilitated, there are few obstacles for crack growth, and crack propagation is easy.

【0026】一方、主すべり系と二次以下のすべり系の
せん断応力の値が等しいか、あるいは差が小さい場合に
は、主すべり系とともに二次以下のすべり系においても
すべり変形が活動することになる。この場合、異なった
すべり面においてすべり変形を生じようとするために転
位同士の干渉が頻繁に起きて、すべり変形が非常に困難
となる。その結果、き裂先端における塑性変形が著しく
抑制されて、き裂の伝播が抑制されることになる。
On the other hand, when the values of the shear stresses of the main slip system and the slip system of the second order or lower are equal to or small, the slip deformation is active in the slip system of the second order or lower together with the main slip system. become. In this case, since slip deformations tend to occur on different slip planes, interference between dislocations frequently occurs, and slip deformation becomes extremely difficult. As a result, plastic deformation at the crack tip is significantly suppressed, and crack propagation is suppressed.

【0027】上記の観点に立ってフェライトの結晶方位
と疲労き裂伝播の関係をさらに詳細に検討した。上記の
とおり、溶接部材の疲労き裂は溶接止端部から発生し、
HAZを伝播した後に母材に突入するが、この場合のき
裂伝播方向は板厚方向である。従って、フェライト結晶
方位とき裂伝播速度との関係を検討する場合、き裂伝播
方向は板厚方向であることを前提とする。図3(a)に
示すように、フェライトの{100}面が板厚方向と垂
直な方位関係を有する結晶粒内をき裂が板厚方向に伝播
する場合には、主すべり系と二次以下のすべり系のせん
断応力の差が小さくなってすべりの干渉が生じ、き裂伝
播が最も抑制されることが明らかとなった。これを模式
的に図4(a)に示す。一方、上記以外の結晶方位、例
えば{111}面が板厚方向に垂直な方位を有する結晶
中をき裂が伝播する場合(図3(b)に図示する)に
は、主すべり系のせん断応力が二次以下のすべり系のそ
れより卓越して大きく、主すべり系のみですべり変形が
活動することになる。これを模式的に図4(b)に示
す。この場合には、き裂先端で塑性変形が容易に起きる
ためにき裂伝播速度は高い。
From the above viewpoint, the relationship between the crystal orientation of ferrite and fatigue crack propagation was examined in more detail. As described above, the fatigue crack of the welded member occurs from the weld toe,
After propagating through the HAZ, it penetrates into the base metal, and the crack propagation direction in this case is the plate thickness direction. Therefore, when examining the relationship between the ferrite crystal orientation and the crack propagation velocity, it is assumed that the crack propagation direction is the plate thickness direction. As shown in FIG. 3 (a), when a crack propagates in the plate thickness direction in a crystal grain in which the {100} plane of ferrite has an azimuth relationship perpendicular to the plate thickness direction, the main slip system and the secondary slip system It was clarified that the difference in shear stress between slip systems below became smaller and slip interference occurred, and crack propagation was most suppressed. This is schematically shown in FIG. On the other hand, when a crack propagates in a crystal having a crystal orientation other than the above, for example, a {111} plane having an orientation perpendicular to the plate thickness direction (illustrated in FIG. 3 (b)), shear of the main slip system is used. The stress is predominantly larger than that of a slip system of second order or less, and slip deformation is active only in the main slip system. This is schematically shown in FIG. In this case, the crack propagation speed is high because plastic deformation easily occurs at the crack tip.

【0028】上記の基礎的な新知見に基づいて、鋼板集
合組織と板厚方向の疲労き裂伝播速度との関係を検討し
た。表1に化学成分を示す実験室真空溶解鋼塊を115
0℃に加熱後、再結晶域および未再結晶域で圧延した
後、さらにAr3 変態温度以下のオーステナイト・フェ
ライト二相域あるいはフェライト単相域で圧延し、集合
組織を変化させた20mm厚の鋼板を作成した。これよ
り板厚10mm、幅18mm、長さ100mm、切欠き
深さが5mmの試験片を加工した。ここで、鋼板の板厚
方向がき裂伝播方向に一致し、試験片の長手方向が圧延
方向に平行となるようにした。最低荷重と最大荷重の比
が0.1の条件で試験片に繰り返し荷重を与え、き裂を
伝播させた。応力拡大係数範囲ΔKが70kgf・mm
-3/2におけるき裂伝播速度da/dNを測定した。一
方、X線で板厚方向の(200)回折強度を測定し、ラ
ンダム方位を有する比較材の(200)回折強度に対す
る比を求めた。ここで、(200)回折強度比は、上に
述べた{100}面が板厚方向と垂直な方位関係を有す
る結晶粒の存在確率に対応する。図5に、da/dNを
(200)回折強度比に対してプロットした結果を示
す。(200)回折強度比が2.0以上になると板厚方
向のき裂伝播速度が低下することがわかった。回折強度
比が高くなるほどき裂伝播速度は低下する傾向がある
が、(200)回折強度比を15.0以上とするために
は極めて強い低温圧延を施す必要があり、厚板圧延が実
際上極めて困難となる。(200)回折強度比を2.0
以上とすれば板厚方向のき裂伝播速度低下の効果が得ら
れるが、好ましくは4.0以上がよく、さらに圧延機の
能力を考慮すると15.0以下とすること、すなわち
4.0〜15.0とすることが望ましい。
Based on the above basic new knowledge, the relationship between the steel sheet texture and the fatigue crack propagation rate in the sheet thickness direction was examined. The laboratory vacuum-melted steel ingot whose chemical composition is shown in Table 1 is 115
After heating to 0 ° C., rolling in the recrystallized region and unrecrystallized region, and further rolling in the austenite / ferrite two-phase region or the ferrite single-phase region below the Ar 3 transformation temperature, the texture of 20 mm thick was changed. A steel plate was created. From this, a test piece having a plate thickness of 10 mm, a width of 18 mm, a length of 100 mm, and a notch depth of 5 mm was processed. Here, the plate thickness direction of the steel plate was made to coincide with the crack propagation direction, and the longitudinal direction of the test piece was made parallel to the rolling direction. A crack was propagated by repeatedly applying a load to the test piece under the condition that the ratio of the minimum load and the maximum load was 0.1. Stress intensity factor range ΔK is 70 kgf · mm
The crack propagation rate da / dN came in -3/2 was measured. On the other hand, the (200) diffraction intensity in the plate thickness direction was measured by X-ray, and the ratio to the (200) diffraction intensity of the comparative material having random orientation was determined. Here, the (200) diffraction intensity ratio corresponds to the existence probability of the crystal grains having the above-described {100} plane having an orientation relationship perpendicular to the plate thickness direction. FIG. 5 shows the result of plotting da / dN against the (200) diffraction intensity ratio. It was found that the crack propagation speed in the plate thickness direction decreased when the (200) diffraction intensity ratio was 2.0 or more. The crack propagation speed tends to decrease as the diffraction intensity ratio increases, but extremely strong low-temperature rolling is required to achieve the (200) diffraction intensity ratio of 15.0 or higher. It will be extremely difficult. (200) Diffraction intensity ratio of 2.0
Although the effect of lowering the crack propagation speed in the plate thickness direction can be obtained with the above, it is preferably 4.0 or more, and considering the capability of the rolling mill, 15.0 or less, that is, 4.0 to 4.0. It is desirable to set it to 15.0.

【0029】[0029]

【表1】 [Table 1]

【0030】上記のとおり、集合組織制御によりき裂伝
播の制御が可能であることが明らかとなったが、これに
加えて、同じ結晶方位を有するフェライトでも転位密度
が低く軟らかいフェライトのほうが上記の効果がより顕
著に現れることも明らかとなった。これは、すべり変形
の干渉が起きやすい方位のフェライトでも、前もって転
位が導入されているとその転位が容易に運動するために
すべり変形の抑制が起きにくくなるためであると予想さ
れる。さらに、き裂伝播はき裂開閉口挙動にも影響を受
け、軟らかい組織のほうがき裂閉口が顕著で、実効的な
応力拡大係数範囲を低下させるためにき裂伝播が遅くな
る。本発明では(200)回折強度比を発達させるため
に低温での圧延が必要であるが、低温圧延を施すと転位
密度の高いフェライトが生成する。このような低温圧延
を実施しても転位密度が低く軟らかいフェライトを生成
させるためには、回復あるいは再結晶を利用することが
効果的である。回復フェライトと再結晶フェライトのど
ちらでも転位密度が低下し、かつ高い(200)回折強
度比を維持していれば、き裂伝播抑制の効果は同様に発
揮される。
As described above, it has been clarified that the crack propagation can be controlled by controlling the texture. In addition to this, even the ferrite having the same crystal orientation has a lower dislocation density and is softer than the above. It was also revealed that the effect was more prominent. This is presumably because even if the ferrite is oriented so that interference of slip deformation is likely to occur, if dislocations are introduced in advance, the dislocations will easily move, and slip suppression will be less likely to occur. Furthermore, crack propagation is also affected by crack opening and closing behavior, and crack closure is more pronounced in soft tissues, and crack propagation slows down because the effective stress intensity factor range is reduced. In the present invention, rolling at a low temperature is necessary to develop the (200) diffraction intensity ratio, but when the low temperature rolling is performed, ferrite having a high dislocation density is generated. Even if such low temperature rolling is carried out, it is effective to utilize recovery or recrystallization in order to generate soft ferrite having a low dislocation density. If the dislocation density is reduced and the high (200) diffraction intensity ratio is maintained in both the recovered ferrite and the recrystallized ferrite, the crack propagation suppressing effect is similarly exhibited.

【0031】フェライトの結晶方位を制御することと、
フェライトの回復・再結晶を制御することの相乗効果に
より母材のき裂伝播を抑制する。以上のような新知見に
基づいて本発明が構成された。上記の知見を実現するた
めには、以下に説明するような限定が必要である。Cは
母材の強度上昇に効果がある。0.015%未満では鋼
板としての強度を確保できないので、下限を0.015
%とした。一方、0.10%を超えて含有すると、Ar
3 変態温度が著しく低下して圧延温度が低下し、圧延荷
重が上昇するために圧延が極めて困難となり、またパー
ライト分率が増加して疲労き裂伝播抑制効果が低下し、
さらに靱性低下も著しくなるので、Cの上限値を0.1
0%とした。
Controlling the crystal orientation of ferrite,
The crack propagation of the base metal is suppressed by the synergistic effect of controlling the recovery and recrystallization of ferrite. The present invention has been constructed based on the above new findings. In order to realize the above findings, the following limitations are necessary. C is effective in increasing the strength of the base material. If it is less than 0.015%, the strength as a steel sheet cannot be secured, so the lower limit is 0.015.
%. On the other hand, if the content exceeds 0.10%, Ar
(3) The transformation temperature is remarkably lowered, the rolling temperature is lowered, and the rolling load is increased, so that the rolling becomes extremely difficult, and the pearlite fraction is increased and the fatigue crack propagation suppressing effect is lowered,
Further, the toughness is significantly reduced, so the upper limit of C is set to 0.1.
It was set to 0%.

【0032】Siは母材強度上昇に効果があるだけでな
く、脱酸元素として重要な元素である。0.05%未満
では強度上昇が得られないし、脱酸が弱く、介在物を増
やし、これが疲労破壊の起点となりやすくなる。従っ
て、Siの下限値を0.05%とした。さらに、Siは
変態温度を上昇させてHAZのフェライト組織分率を上
昇させる。0.05%未満ではこの効果が顕著でない。
母材強度上昇とHAZフェライト分率上昇のためにはS
i含有量を高くすることが望ましいが、2.0%を超え
て含有すると靱性低下が著しくなる。従って、Siの上
限値を2.0%、好ましくは1.0%とした。
Si is not only effective in increasing the strength of the base material, but is an important element as a deoxidizing element. If it is less than 0.05%, strength increase cannot be obtained, deoxidation is weak, and inclusions increase, which easily becomes the starting point of fatigue fracture. Therefore, the lower limit of Si is set to 0.05%. Further, Si raises the transformation temperature to raise the ferrite structure fraction of HAZ. If it is less than 0.05%, this effect is not remarkable.
To increase the strength of the base metal and the fraction of HAZ ferrite, S
It is desirable to increase the i content, but if the content exceeds 2.0%, the toughness is significantly reduced. Therefore, the upper limit of Si is set to 2.0%, preferably 1.0%.

【0033】Mnは母材の強度を上昇させる効果を有す
る。0.1%未満では強度上昇効果が得られないので、
Mnの下限値を0.1%とした。逆に、1.5%を超え
て含有するとAr3 変態温度が低下しすぎて圧延が困難
となり、加えて靱性低下が著しくなるので、Mnの上限
値を1.5%とした。Pは不純物元素で粒界破壊を生じ
やすくするため、低いほうが好ましい。0.05%を超
えて含有すると粒界破壊による靱性低下が顕著となるの
で、Pの上限値を0.05%とした。
Mn has the effect of increasing the strength of the base material. If it is less than 0.1%, the strength increasing effect cannot be obtained, so
The lower limit of Mn was 0.1%. On the other hand, if the content of Al exceeds 1.5%, the Ar 3 transformation temperature becomes too low and rolling becomes difficult, and in addition, the toughness decreases significantly, so the upper limit of Mn was made 1.5%. Since P is an impurity element and easily causes grain boundary destruction, a lower P content is preferable. When the content exceeds 0.05%, the toughness is significantly reduced due to grain boundary fracture, so the upper limit of P was set to 0.05%.

【0034】SはMnSを生成して延性、特に板厚方向
の伸びを低下させる上に、疲労破壊の起点となって疲労
強度のバラツキを大きくするので、低いほうが好まし
い。0.02%を超えて含有するとこの影響が顕著とな
るので、Sの上限値を0.02%とした。選択的に含有
するCu、Ni、Cr、Mo、Nb、V、Ti、N、R
EM、Caは以下の理由で含有量を制限する。
Since S produces MnS to reduce ductility, particularly elongation in the sheet thickness direction, and causes a large variation in fatigue strength as a starting point of fatigue fracture, it is preferably low. This effect becomes remarkable when the content exceeds 0.02%, so the upper limit of S is set to 0.02%. Cu, Ni, Cr, Mo, Nb, V, Ti, N, R selectively contained
The content of EM and Ca is limited for the following reasons.

【0035】Cuは固溶強化と焼入れ性増加で母材強度
の上昇に効果を示す元素である。0.1%未満ではこの
効果が顕著でないので、Cuの下限値を0.1%とし
た。逆に、2.0%を超えて添加するとAr3 変態温度
が低下しすぎて圧延が困難となり、加えて靱性低下が著
しくなるので、Cuの上限値を2.0%とした。Niは
焼入れ性増加で母材の強度を上昇させるとともに靱性向
上に効果を示す。0.1%未満ではこの効果が顕著でな
いので、Niの下限値を0.1%とした。逆に、2.0
%を超えて添加するとAr3 変態温度が低下しすぎて圧
延が困難となるので、Niの上限値を2.0%とした。
Cu is an element effective in increasing the strength of the base material by strengthening the solid solution and increasing the hardenability. If it is less than 0.1%, this effect is not remarkable, so the lower limit of Cu is set to 0.1%. On the other hand, if added in excess of 2.0%, the Ar 3 transformation temperature will be too low and rolling will be difficult, and in addition, the toughness will be significantly reduced, so the upper limit of Cu was made 2.0%. Ni has the effect of improving the toughness as well as increasing the strength of the base material by increasing the hardenability. Since this effect is not remarkable when it is less than 0.1%, the lower limit of Ni is set to 0.1%. Conversely, 2.0
%, The Ar 3 transformation temperature becomes too low and rolling becomes difficult, so the upper limit of Ni was made 2.0%.

【0036】Crは焼入れ性増加で母材の強度を上昇さ
せる効果を示す。0.05%未満ではこの効果が顕著で
ないので、Crの下限値を0.05%とした。逆に、
0.5%を超えて添加すると、Ar3 変態温度が低下し
すぎて圧延が困難となり、加えて靱性の低下が著しくな
るので、Crの上限値を0.5%とした。Moは焼入れ
性増加で母材の強度を上昇させる効果を示す。0.05
%未満ではこの効果が顕著でないので、Moの下限値を
0.05%とした。逆に、0.5%を超えて添加する
と、高温の変形抵抗が上昇して圧延が困難となり、加え
て靱性の低下が著しくなるので、Moの上限値を0.5
%とした。
Cr has the effect of increasing the strength of the base material by increasing the hardenability. If less than 0.05%, this effect is not remarkable, so the lower limit of Cr was made 0.05%. vice versa,
If added in excess of 0.5%, the Ar 3 transformation temperature will be too low and rolling will be difficult, and in addition, the toughness will be significantly reduced, so the upper limit of Cr was made 0.5%. Mo has the effect of increasing the hardenability and increasing the strength of the base material. 0.05
If it is less than%, this effect is not remarkable, so the lower limit of Mo is set to 0.05%. On the other hand, if it is added in excess of 0.5%, the deformation resistance at high temperature increases and rolling becomes difficult, and in addition, the toughness deteriorates significantly. Therefore, the upper limit of Mo is 0.5.
%.

【0037】Nbは焼入れ性増加と析出硬化により母材
の強度を上昇させる効果を示す。0.005%未満では
この効果が顕著でないので、Nbの下限値を0.005
%とした。逆に、0.10%を超えて含有すると、析出
物を多量に生成して靱性を著しく低下させるので、Nb
の上限値を0.10%とした。Vは焼入れ性増加と析出
硬化により母材の強度を上昇させる効果を示す。0.0
05%未満ではこの効果が顕著でないので、Vの下限値
を0.005%とした。逆に、0.10%を超えて含有
すると、析出物を多量に生成して靱性を著しく低下させ
るので、Vの上限値を0.10%とした。
Nb has the effect of increasing the strength of the base material by increasing hardenability and precipitation hardening. If less than 0.005%, this effect is not remarkable, so the lower limit of Nb is set to 0.005%.
%. On the contrary, if the content of Ni exceeds 0.10%, a large amount of precipitates are formed and the toughness is remarkably deteriorated.
Was set to 0.10%. V shows the effect of increasing the strength of the base material by increasing the hardenability and precipitation hardening. 0.0
If it is less than 05%, this effect is not remarkable, so the lower limit of V is made 0.005%. On the other hand, if the content exceeds 0.10%, a large amount of precipitates are formed and the toughness is significantly reduced, so the upper limit of V was made 0.10%.

【0038】TiはTiNを生成し、これが圧延に先立
つスラブ加熱においてオーステナイト粒の成長を抑制
し、圧延後のフェライト粒微細化に効果がある。フェラ
イト粒径が小さいほうがき裂先端のすべり変形が起きに
くく、き裂伝播抑制に効果がある。0.005%未満で
はこの効果が顕著でないので、Tiの下限値を0.00
5%とした。逆に、0.05%を超えて含有すると、析
出物を多量に生成して靱性を著しく低下させるので、T
iの上限値を0.05%とした。
Ti produces TiN, which suppresses the growth of austenite grains during slab heating prior to rolling, and is effective in refining ferrite grains after rolling. A smaller ferrite grain size is less likely to cause slip deformation at the crack tip and is effective in suppressing crack propagation. If less than 0.005%, this effect is not significant, so the lower limit of Ti is 0.00
It was set to 5%. On the other hand, if the content exceeds 0.05%, a large amount of precipitates are formed and the toughness is remarkably reduced.
The upper limit of i was set to 0.05%.

【0039】NはTiと複合添加することによりTiN
を生成して上記の効果を示す。N含有量が0.002%
未満ではこの効果が顕著でないので、下限値を0.00
2%とした。逆に、0.015%を超えて含有すると、
フェライト中に固溶して靱性の低下を来すので、Nの上
限値を0.015%とした。N添加の目的はTiNを生
成させることである。従って、Ti/N比を2.0〜
3.4の範囲とする必要がある。Ti/N比が2.0未
満では、N過剰でフェライト中のN量が増加する。逆
に、Ti/N比が3.4を超えると、Ti過剰でTi炭
化物生成量が増加する。従って、この範囲外では靱性の
低下が顕著となる。
N is TiN when added in combination with Ti.
To produce the above effect. N content is 0.002%
If it is less than 1.0, this effect is not remarkable, so the lower limit is set to 0.00
It was set to 2%. On the contrary, when the content exceeds 0.015%,
Since it forms a solid solution in ferrite and causes deterioration in toughness, the upper limit of N is set to 0.015%. The purpose of N addition is to produce TiN. Therefore, the Ti / N ratio is 2.0 to
It must be in the range of 3.4. When the Ti / N ratio is less than 2.0, the amount of N in ferrite increases due to excess N. On the contrary, when the Ti / N ratio exceeds 3.4, the amount of Ti carbide produced increases due to excess Ti. Therefore, outside this range, the toughness is significantly reduced.

【0040】REMはSを固定してMnS生成を抑制
し、延性の向上と疲労強度のばらつき低下に効果を示
す。REMとしてはランタノイド系、アクチノイド系と
もに同様な効果を示すが、代表的なものはランタノイド
系のLa、Ceである。0.0005%未満ではこの効
果が顕著でないので、REMの下限値を0.0005%
とした。逆に、0.0050%を超えると粗大なREM
酸化物・硫化物を生成して延性が低下し、さらに疲労き
裂の起点となって疲労強度のばらつきを増やす。従っ
て、REMの上限値を0.0050%とした。
REM fixes S to suppress the formation of MnS, and is effective in improving ductility and reducing variations in fatigue strength. As REM, both lanthanoid series and actinoid series show similar effects, but typical ones are lanthanoid series La and Ce. If less than 0.0005%, this effect is not significant, so the lower limit of REM is 0.0005%.
And On the contrary, if it exceeds 0.0050%, the REM becomes coarse.
Ductility is reduced due to the formation of oxides and sulfides, and this also serves as the starting point for fatigue cracks, increasing the variation in fatigue strength. Therefore, the upper limit of REM is set to 0.0050%.

【0041】CaはREMと同様にSを固定してMnS
生成を抑制し、延性の向上と疲労強度のばらつき低下に
効果を示す。0.0005%未満ではこの効果が顕著で
ないので、Caの下限値を0.0005%とした。逆
に、0.0050%を超えると粗大なCa酸化物・硫化
物を生成して延性が低下し、さらに疲労き裂の起点とな
って疲労強度のばらつきを増やす。従って、Caの上限
値を0.0050%とした。
Ca is MnS by fixing S like REM.
It suppresses the generation and shows the effect of improving the ductility and reducing the variation in fatigue strength. If less than 0.0005%, this effect is not remarkable, so the lower limit of Ca was made 0.0005%. On the other hand, if it exceeds 0.0050%, coarse Ca oxides and sulfides are formed, the ductility is lowered, and it becomes the starting point of fatigue cracks and increases the variation of fatigue strength. Therefore, the upper limit of Ca is set to 0.0050%.

【0042】上記各成分を限定した上で、下式で示され
るCeq(f)の値を0.11以下とする必要がある。
これは、この範囲でHAZのフェライト面積率が60%
以上となり、HAZの疲労き裂発生・伝播の抑制効果が
顕著となるためである。 Ceq(f)=C−Si/57+Mn/13+(Cu+
Ni)/26+Cr/5+Mo/6+V/5+Nb/
1.5 次に、母材の疲労き裂伝播抑制のために必要な限定を述
べる。
After limiting each of the above components, the value of Ceq (f) expressed by the following equation must be 0.11 or less.
This is because the HAZ ferrite area ratio is 60% in this range.
This is because the effect of suppressing the fatigue crack initiation / propagation of HAZ becomes remarkable. Ceq (f) = C-Si / 57 + Mn / 13 + (Cu +
Ni) / 26 + Cr / 5 + Mo / 6 + V / 5 + Nb /
1.5 Next, the limitation necessary for suppressing the fatigue crack propagation of the base material will be described.

【0043】上記のとおり、X線で測定した板厚方向の
(200)回折強度比を2.0〜15.0としなければ
ならない。板厚方向の(200)回折強度比が2.0未
満では集合組織の発達が不十分で、伝播抑制効果が不十
分である。逆に、板厚方向の(200)回折強度比が1
5.0を超えると低温で強圧延を実施する必要があり、
実質上厚板圧延が不可能となるので、上限を15.0と
した。
As described above, the (200) diffraction intensity ratio in the plate thickness direction measured by X-ray must be 2.0 to 15.0. When the (200) diffraction intensity ratio in the plate thickness direction is less than 2.0, the development of texture is insufficient and the effect of suppressing propagation is insufficient. Conversely, the (200) diffraction intensity ratio in the plate thickness direction is 1
If it exceeds 5.0, it is necessary to carry out strong rolling at a low temperature,
Since it becomes substantially impossible to perform plate rolling, the upper limit was set to 15.0.

【0044】さらに、回復または再結晶フェライトの面
積率を15〜80%の範囲としなければならない。回復
・再結晶フェライト面積率が15%未満ではフェライト
中の可動転位密度が高く、き裂伝播が抑制に有利な結晶
方位でもすべり変形の抑制効果が弱くなる。逆に、80
%を超えると望ましくない方位のフェライト粒が成長
し、必然的に板厚方向(200)回折強度比が低下し、
き裂伝播抑制効果が減じる。従って、回復・再結晶フェ
ライト面積率の上限を80%とした。
Further, the area ratio of the recovered or recrystallized ferrite must be in the range of 15-80%. If the area ratio of recovered / recrystallized ferrite is less than 15%, the density of mobile dislocations in the ferrite is high, and the effect of suppressing slip deformation becomes weak even in the crystal orientation that is advantageous for suppressing crack propagation. Conversely, 80
%, Ferrite grains in an undesired direction grow, and the plate thickness direction (200) diffraction intensity ratio inevitably decreases.
The crack propagation suppression effect is reduced. Therefore, the upper limit of the area ratio of recovered / recrystallized ferrite is set to 80%.

【0045】次に、鋼板の圧延および冷却・熱処理条件
を限定した理由を以下に述べる。熱間圧延に先立ち、鋼
塊を100%オーステナイト化する必要があり、このた
めには鋼塊の温度をAc3 変態温度以上に加熱する必要
がある。しかし、1300℃を超えて加熱すると、オー
ステナイト粒が著しく粗大化するため、圧延後細粒フェ
ライトが得られなくなるので、加熱温度の上限は130
0℃とする。
Next, the reasons for limiting the rolling, cooling and heat treatment conditions of the steel sheet will be described below. Prior to hot rolling, the steel ingot needs to be austenitized to 100%, and for this purpose, the temperature of the steel ingot needs to be heated to the Ac 3 transformation temperature or higher. However, if heated above 1300 ° C., austenite grains are significantly coarsened, and fine-grained ferrite cannot be obtained after rolling. Therefore, the upper limit of the heating temperature is 130.
Set to 0 ° C.

【0046】鋼塊の加熱によりオーステナイト粒は粗大
化するので、再結晶温度域で圧延することにより未再結
晶温度域圧延前のオーステナイト粒径を小さくすること
が必要である。再結晶温度域圧延の累積圧下率が20%
未満では再結晶が十分に進行せず、再結晶粒は十分に小
さくならない。従って、この温度域での累積圧下率の下
限値を20%とした。また、再結晶粒を微細化するため
には累積圧下率を大きくするほうが望ましいが、あまり
大きくすると、引き続く低温での圧延における圧下を確
保できなくなる。従って、この温度域での累積圧下率の
上限を90%とした。
Since the austenite grains are coarsened by heating the steel ingot, it is necessary to reduce the austenite grain size before rolling in the non-recrystallization temperature region by rolling in the recrystallization temperature region. Cumulative rolling reduction of recrystallization temperature range rolling is 20%
If it is less than the above, recrystallization does not proceed sufficiently and the recrystallized grains are not sufficiently small. Therefore, the lower limit of the cumulative rolling reduction in this temperature range is set to 20%. Further, in order to make the recrystallized grains finer, it is desirable to increase the cumulative reduction ratio, but if it is too large, the reduction in the subsequent rolling at a low temperature cannot be secured. Therefore, the upper limit of the cumulative rolling reduction in this temperature range is set to 90%.

【0047】再結晶温度域圧延に引き続く未再結晶温度
域圧延は、オーステナイト中に変形体を導入して、変態
後のフェライト粒を微細化させる。未再結晶温度域圧延
の累積圧下率が10%未満ではこの効果が顕著でないの
で、下限値を10%とした。未再結晶温度域圧延の累積
圧下率自体は高いほうが結晶粒微細化のために好ましい
が、高すぎると引き続くAr3 変態温度以下の圧下を確
保できなくなる。従って、この温度域での累積圧下率の
上限を80%とした。
In the non-recrystallization temperature range rolling subsequent to the recrystallization temperature range rolling, a deformed body is introduced into austenite to refine ferrite grains after transformation. This effect is not significant when the cumulative rolling reduction in the non-recrystallization temperature range rolling is less than 10%, so the lower limit was made 10%. It is preferable that the cumulative rolling reduction itself in the non-recrystallization temperature region rolling is high in order to refine the crystal grains, but if it is too high, it is not possible to secure the subsequent rolling below the Ar 3 transformation temperature. Therefore, the upper limit of the cumulative rolling reduction in this temperature range is set to 80%.

【0048】本発明では板厚方向の(200)回折強度
比を上昇させることが必要であり、このためにAr3
態温度以下における仕上圧延が極めて重要な役割を果た
し、本発明で必須の工程である。Ar3 変態温度以下で
あればオーステナイト・フェライト二相域であっても、
あるいはフェライト単相域であってもかまわない。板厚
方向の(200)回折強度比を上昇させる観点だけから
は圧延温度は低いほうが望ましいが、低温ほど変形抵抗
が上昇するので圧延荷重が上昇し、圧延が困難となる。
さらに、圧延に引き続く鋼板の大気中放冷により回復ま
たは再結晶を生じさせる場合(請求項5、6)には、仕
上温度が600℃未満では回復・再結晶が生じにくくな
る。従って、圧延仕上温度の下限を600℃とした。
In the present invention, it is necessary to increase the (200) diffraction intensity ratio in the plate thickness direction. For this reason, finish rolling at an Ar 3 transformation temperature or lower plays an extremely important role and is an essential step in the present invention. Is. If the temperature is below the Ar 3 transformation temperature, even in the austenite-ferrite two-phase region,
Alternatively, it may be in the ferrite single phase region. A lower rolling temperature is desirable only from the viewpoint of increasing the (200) diffraction intensity ratio in the plate thickness direction, but the lower the temperature, the higher the deformation resistance, and the higher the rolling load and the more difficult the rolling.
Further, in the case where recovery or recrystallization is caused by cooling the steel sheet in the air following the rolling (claims 5 and 6), if the finishing temperature is less than 600 ° C., recovery / recrystallization is less likely to occur. Therefore, the lower limit of the rolling finishing temperature is set to 600 ° C.

【0049】Ar3 変態温度以下の累積圧下率は高いほ
うが板厚方向の(200)回折強度比が上昇し、疲労き
裂伝播抑制の観点からは望ましい。この温度域での累積
圧下率が40%未満では、板厚方向の(200)回折強
度比が十分に高くならないので、下限値を40%とし
た。逆に、この温度域での累積圧下率を90%超とする
ためには低温における強圧延が必要となり、実質上厚板
圧延が不可能となる。従って、この温度域での累積圧下
率の上限値を90%とした。
The higher the cumulative rolling reduction below the Ar 3 transformation temperature, the higher the (200) diffraction intensity ratio in the sheet thickness direction, which is desirable from the viewpoint of suppressing fatigue crack propagation. If the cumulative rolling reduction in this temperature range is less than 40%, the (200) diffraction intensity ratio in the plate thickness direction does not become sufficiently high, so the lower limit was made 40%. On the contrary, in order to make the cumulative reduction rate in this temperature range to be more than 90%, strong rolling at a low temperature is necessary, and substantially thick plate rolling becomes impossible. Therefore, the upper limit of the cumulative rolling reduction in this temperature range is set to 90%.

【0050】Ar3 変態温度以下の仕上圧延後、鋼板を
大気中で放冷することにより、回復または再結晶により
フェライト中の転位密度を低下させる必要がある。室温
まで大気中放冷する場合には、圧延後に回復・再結晶が
進行するので特に制御をする必要はない。ただし、冷却
速度が低いために、回復・再結晶が進行しすぎるおそれ
があるので、制御圧延を実施することが望ましい。室温
まで大気中放冷する処理は、板厚が薄い鋼板を製造する
場合に特に有効である。
After finish rolling below the Ar 3 transformation temperature, the dislocation density in the ferrite must be reduced by allowing the steel sheet to cool in the air to recover or recrystallize. When cooling to room temperature in the air, recovery / recrystallization proceeds after rolling, and therefore no particular control is required. However, since the cooling rate is low, recovery / recrystallization may proceed too much, so it is desirable to carry out controlled rolling. The process of allowing to cool to room temperature in the atmosphere is particularly effective when manufacturing a steel plate having a thin plate thickness.

【0051】仕上圧延後、制御冷却を施して母材の強度
上昇を図る場合には、仕上圧延後、制御冷却開始までの
放冷時間を確保し、回復・再結晶を進行させる必要があ
る。放冷時間が30秒未満では、転位密度が低いフェラ
イトの分率が15%以上とならないので、下限値を30
秒とした。放冷時間を長くするほど回復・再結晶が進行
して転位密度が低いフェライトの分率が上昇する。しか
しながら、放冷時間が300秒を超えると再結晶が進行
しすぎて板厚方向の(200)回折強度比が低下し、疲
労き裂伝播抑制効果が低下する。従って、放冷時間の上
限を300秒とした。
When the controlled cooling is performed after the finish rolling to increase the strength of the base material, it is necessary to secure the cooling time after the finish rolling until the start of the controlled cooling and to promote the recovery / recrystallization. If the cooling time is less than 30 seconds, the fraction of ferrite with a low dislocation density does not exceed 15%, so the lower limit is set to 30
Seconds The longer the cooling time, the more the recovery and recrystallization proceed, and the fraction of ferrite with a low dislocation density increases. However, if the cooling time exceeds 300 seconds, recrystallization proceeds too much, the (200) diffraction intensity ratio in the plate thickness direction decreases, and the fatigue crack propagation suppressing effect decreases. Therefore, the upper limit of the cooling time is set to 300 seconds.

【0052】回復・再結晶を生じさせるための大気中放
冷後に、フェライト組織を凍結するためと、未変態オー
ステナイトから変態して生成するフェライトの粒径を小
さくするためには制御冷却が必要である。制御冷却の冷
却速度が5℃/秒未満ではこの効果が得られないので、
下限を5℃/秒とした。逆に、この冷却速度が100℃
/秒を超えると、未変態オーステナイトがベイナイトま
たはマルテンサイトに変態し、疲労き裂伝播抑制効果が
弱くなるので、上限を100℃/秒とした。
Controlled cooling is necessary in order to freeze the ferrite structure after cooling in the atmosphere to cause recovery and recrystallization and to reduce the grain size of ferrite formed by transformation from untransformed austenite. is there. If the cooling rate of controlled cooling is less than 5 ° C / sec, this effect cannot be obtained.
The lower limit was 5 ° C / sec. Conversely, this cooling rate is 100 ℃
If it exceeds / sec, untransformed austenite transforms into bainite or martensite, and the effect of suppressing fatigue crack propagation is weakened, so the upper limit was made 100 ° C / sec.

【0053】また、変態が完全に終了し、回復・再結晶
が生じない温度まで制御冷却する必要があり、このため
に冷却停止温度の上限を600℃とした。特殊な冷却媒
体を用いて冷却することにより冷却停止温度を室温以下
としても、冷却停止後に変態・回復・再結晶は生じない
ので構わないが、通常の制御冷却においては温度が室温
とほぼ同じ水を用いるのが一般的であり、この場合、冷
却停止温度の下限は室温となる。従って、冷却停止温度
の下限を室温とした。
Further, it is necessary to perform controlled cooling to a temperature at which the transformation is completely completed and recovery / recrystallization does not occur. Therefore, the upper limit of the cooling stop temperature is set to 600 ° C. Even if the cooling stop temperature is kept below room temperature by cooling with a special cooling medium, transformation, recovery and recrystallization do not occur after the cooling is stopped, but in normal controlled cooling the temperature is almost the same as room temperature. Is generally used, and in this case, the lower limit of the cooling stop temperature is room temperature. Therefore, the lower limit of the cooling stop temperature is set to room temperature.

【0054】請求項7の方法では、制御冷却後、室温ま
で冷却することが必要である。特に、制御冷却の停止温
度が600℃以下であっても高い温度であると、引き続
く加熱処理前に回復が進行するおそれがある。このた
め、一旦、室温まで冷却しなければならない。上記のと
おり、疲労き裂伝播を抑制するためには回復・再結晶に
より転位密度が低いフェライトの分率を15〜80%と
することが必要である。このためには、圧延終了後直ち
に制御冷却し、その後に鋼板を加熱することによって回
復・再結晶フェライトの分率を15〜80%とすること
も可能である。このために加熱温度は500℃以上とす
ることが必要である。また、加熱中に変態を生じさせて
はならないので、この加熱温度はAc1 変態温度以下で
なければならない。
In the method of claim 7, it is necessary to cool to room temperature after the controlled cooling. In particular, even if the control cooling stop temperature is 600 ° C. or lower, if the temperature is high, recovery may proceed before the subsequent heat treatment. Therefore, it is necessary to once cool to room temperature. As described above, in order to suppress fatigue crack propagation, it is necessary to set the fraction of ferrite having a low dislocation density to 15 to 80% by recovery / recrystallization. For this purpose, it is possible to control the cooling immediately after the completion of rolling and then heat the steel sheet to set the fraction of the recovered / recrystallized ferrite to 15 to 80%. Therefore, the heating temperature needs to be 500 ° C. or higher. Further, since no transformation should occur during heating, the heating temperature must be below the Ac 1 transformation temperature.

【0055】上に述べたHAZの組織制御と母材の組織
制御の相乗効果による溶接部の疲労寿命向上の効果は、
厚鋼板溶接部において特に顕著な効果を発揮する。本発
明は、溶鋼の脱酸方法に依らず、効果を発揮するもので
あり、Si、Al、Ti等の元素により脱酸した鋼を用
いることができる。
The effect of improving the fatigue life of the welded portion by the synergistic effect of the HAZ structure control and the base metal structure control described above is as follows.
It exhibits a particularly remarkable effect in thick steel plate welded portions. INDUSTRIAL APPLICABILITY The present invention exerts an effect irrespective of the deoxidizing method of molten steel, and steel deoxidized with elements such as Si, Al and Ti can be used.

【0056】[0056]

【発明の実施の形態】DETAILED DESCRIPTION OF THE INVENTION

【0057】[0057]

【実施例】以下に、本発明の実施例を述べる。工場の転
炉により鋼を溶製し、連続鋳造により240mm厚のス
ラブに鋳造した。表2、表3(表2のつづき)に本発明
鋼および比較鋼の化学成分とCeq(f)の値を示す。
番号17と18の鋼は本発明の範囲内の化学成分を有す
るが、製造条件が本発明範囲外である。
EXAMPLES Examples of the present invention will be described below. Steel was melted by a converter in a factory and cast into a 240 mm thick slab by continuous casting. Tables 2 and 3 (continued from Table 2) show the chemical components and Ceq (f) values of the steels of the present invention and comparative steels.
Steels numbered 17 and 18 have chemical compositions within the scope of the invention, but manufacturing conditions are outside the scope of the invention.

【0058】表4、表5(表4のつづき)に鋼材の製造
条件を示す。請求項5、6、7に対応する製造方法で板
厚が15〜25mmの鋼板を製造した。番号17と18
はAr3 変態温度以下の累積圧下率が本発明範囲外であ
る。表6、表7(表6のつづき)に母材の引張特性、シ
ャルピー衝撃特性、集合組織強度、回復・再結晶フェラ
イト分率を示す。さらに、入熱が1.7kJ/mmの炭
酸ガス溶接でT字隅肉溶接継手を作成し、FL近傍HA
Zのフェライト分率を測定した。その結果を同じく表7
に示す。
Tables 4 and 5 (continued from Table 4) show the manufacturing conditions for steel materials. A steel plate having a plate thickness of 15 to 25 mm was manufactured by the manufacturing method corresponding to claims 5, 6, and 7. Numbers 17 and 18
The cumulative rolling reduction below the Ar 3 transformation temperature is outside the range of the present invention. Tables 6 and 7 (continued from Table 6) show the tensile properties, Charpy impact properties, texture strength, and recovered / recrystallized ferrite fraction of the base material. Furthermore, a T-shaped fillet welded joint was created by carbon dioxide welding with a heat input of 1.7 kJ / mm, and HA near FL was used.
The ferrite fraction of Z was measured. The results are also shown in Table 7
Shown in.

【0059】ここで、鋼板は15mmにそろえた。さら
に、この溶接継手から図6に示す疲労試験片を作成し、
疲労試験に供した。溶接止端部位置における曲げ応力範
囲が25kgf/mm2 における試験片破断寿命を測定
した。止端部から5mm離れた位置に歪みゲージを貼付
し、歪みゲージ出力が初期値から5%低下した時点をき
裂発生寿命と定義し、破断寿命からき裂発生寿命を差し
引いたものをき裂伝播寿命とした。なお、この定義によ
るき裂発生寿命は大略HAZ内のき裂発生と伝播に対応
し、き裂伝播寿命はき裂が母材に突入した後の伝播に対
応する。
Here, the steel plates were set to 15 mm. Further, a fatigue test piece shown in FIG. 6 was prepared from this welded joint,
It was subjected to a fatigue test. The fracture life of the test piece was measured when the bending stress range at the weld toe position was 25 kgf / mm 2 . A strain gauge is affixed at a position 5 mm away from the toe, and the point at which the strain gauge output drops by 5% from the initial value is defined as the crack initiation life. It was the life. The crack initiation life according to this definition roughly corresponds to the crack initiation and propagation in the HAZ, and the crack propagation life corresponds to the propagation after the crack rushes into the base metal.

【0060】[0060]

【表2】 [Table 2]

【0061】[0061]

【表3】 [Table 3]

【0062】[0062]

【表4】 [Table 4]

【0063】[0063]

【表5】 [Table 5]

【0064】[0064]

【表6】 [Table 6]

【0065】[0065]

【表7】 [Table 7]

【0066】本発明鋼1、2、4〜16は本発明に従っ
て製造したものであり、板厚方向の(200)回折強度
比は2.0以上となっている。化学成分は本発明の範囲
であるが製造法が本発明範囲外である比較鋼17、1
8、さらに化学成分も製造法も本発明範囲外である比較
鋼19〜21では、板厚方向の(200)回折強度比は
本発明鋼より低い。また、HAZフェライト分率は、本
発明範囲内の化学成分を有する本発明鋼1、2、4〜1
6と比較鋼17、18で60%以上となっている。
The steels 1 , 2, 4 to 16 of the present invention were produced according to the present invention, and the (200) diffraction intensity ratio in the plate thickness direction was 2.0 or more. Comparative steels 17 and 1 whose chemical composition is within the scope of the present invention but whose manufacturing method is outside the scope of the present invention
8. Further, in Comparative Steels 19 to 21 whose chemical composition and manufacturing method are out of the range of the present invention, the (200) diffraction intensity ratio in the plate thickness direction is lower than that of the present invention steel. Further, the HAZ ferrite fraction is the present invention steels 1 , 2, 4 to 1 having chemical components within the present invention range.
6 and comparative steels 17 and 18 are more than 60%.

【0067】T字隅肉溶接継手のき裂発生寿命は、HA
Zフェライト分率が高い本発明鋼1、2、4〜16と比
較鋼17、18で長い。また、疲労限は主にHAZの疲
労特性に依存し、母材の疲労特性には依存しないので、
HAZフェライト分率が高い本発明鋼1〜16と比較鋼
17、18で高い。一方、き裂伝播寿命は、板厚方向の
(200)回折強度比が2.0以上と高く、かつ回復・
再結晶フェライト分率が15〜80%の範囲内である本
発明鋼1、2、4〜16で長い。比較鋼17、18は疲
労限は比較的高いが、母材の伝播制御がないために疲労
寿命の向上は顕著でない。本発明鋼1、2、4〜16で
はき裂発生とき裂伝播の両寿命が長くなったことにより
破断寿命が著しく長くなっており、しかも、疲労限が高
いことが確認された。
The crack initiation life of a T-shaped fillet welded joint is HA
Inventive steels 1 , 2, 4 to 16 having a high Z ferrite fraction and comparative steels 17 and 18 are long. Further, since the fatigue limit mainly depends on the fatigue characteristics of HAZ and not on the fatigue characteristics of the base material,
Inventive Steels 1 to 16 and Comparative Steels 17 and 18 having high HAZ ferrite fractions are high. On the other hand, the crack propagation life is as high as (200) diffraction intensity ratio of 2.0 or more in the plate thickness direction, and recovery /
The recrystallized ferrite fraction of the present invention steels 1 , 2, 4 to 16 having a range of 15 to 80% is long. The comparative steels 17 and 18 have a relatively high fatigue limit, but the fatigue life is not significantly improved because the propagation control of the base metal is not performed. It was confirmed that the steels 1 , 2, 4 to 16 of the present invention had a significantly long fracture life due to the long life of both crack initiation and crack propagation, and also had a high fatigue limit.

【0068】次に、板厚が3mmの薄鋼板について本発
明による溶接部疲労強度向上の効果を確認した。表8、
表9(表8のつづき)に化学成分を示す。番号1〜3が
本発明鋼、番号4が比較鋼である。表10に母材の強
度、板厚方向のX線(200)回折強度比を示す。鋼板
表面に溶接ビードを置き、止端部における応力集中を有
する溶接試験体を作成した。溶接入熱は3kJ/cmと
した。溶接部より疲労試験片を加工し、完全両振りの繰
り返し曲げ荷重を与え、応力範囲が25kgf/mm2
における疲労寿命と疲労限を測定した。結果を同じく表
10に示す。併せて表10には、HAZのフェライト分
率も示す。本発明鋼は比較鋼に比べて寿命、疲労限とも
に向上していることが明らかである。
Next, the effect of improving the fatigue strength of the welded portion according to the present invention was confirmed for a thin steel plate having a plate thickness of 3 mm. Table 8,
Table 9 (continued from Table 8) shows the chemical components. Numbers 1 to 3 are steels of the present invention, and number 4 is a comparative steel. Table 10 shows the strength of the base material and the X-ray (200) diffraction intensity ratio in the plate thickness direction. A weld bead was placed on the surface of the steel plate to prepare a welded specimen having stress concentration at the toe. The welding heat input was 3 kJ / cm. Fatigue test piece is processed from the welded part and subjected to repeated bending load of full swing, the stress range is 25 kgf / mm 2
Fatigue life and fatigue limit were measured. The results are also shown in Table 10. Table 10 also shows the ferrite fraction of HAZ. It is clear that the steel of the present invention has improved life and fatigue limit as compared with the comparative steel.

【0069】[0069]

【表8】 [Table 8]

【0070】[0070]

【表9】 [Table 9]

【0071】[0071]

【表10】 [Table 10]

【0072】[0072]

【発明の効果】以上説明したように、本発明鋼では溶接
継手のHAZのき裂発生寿命が長く、同時に母材のき裂
伝播寿命が長いために、破断に至る寿命が従来鋼に比べ
て著しく長く溶接継手の疲労強度を著しく高めることが
可能となった。本発明鋼を用いれば、疲労破壊に対する
溶接構造物の信頼性を向上できるだけでなく、疲労寿命
を短くすることなく、板厚を薄くして設計応力を高くす
ることが可能であり、構造物の軽量化も可能となる。従
って、本発明は工業上極めて効果が大きい。
As described above, in the steel of the present invention, the HAZ of welded joints has a long crack initiation life, and at the same time, the crack propagation life of the base metal is long. It has become possible to significantly increase the fatigue strength of welded joints for an extremely long time. By using the steel of the present invention, not only can the reliability of the welded structure against fatigue fracture be improved, but it is also possible to reduce the plate thickness and increase the design stress without shortening the fatigue life. Weight reduction is also possible. Therefore, the present invention is extremely effective industrially.

【図面の簡単な説明】[Brief description of drawings]

【図1】疲労限度比に及ぼすHAZのフェライト組織分
率の影響を示す図である。
FIG. 1 is a diagram showing an influence of a ferrite structure fraction of HAZ on a fatigue limit ratio.

【図2】HAZのフェライト分率と炭素当量値の関係を
示す図である。
FIG. 2 is a diagram showing a relationship between a ferrite fraction of HAZ and a carbon equivalent value.

【図3】フェライトの結晶方位を表わす模式図である。FIG. 3 is a schematic diagram showing a crystal orientation of ferrite.

【図4】疲労き裂先端のすべり変形を表わす模式図であ
る。
FIG. 4 is a schematic view showing slip deformation of a fatigue crack tip.

【図5】疲労き裂伝播速度に及ぼす集合組織の影響を示
す図である。
FIG. 5 is a diagram showing the influence of the texture on the fatigue crack propagation rate.

【図6】T字隅肉溶接継手の形状を示す図である。FIG. 6 is a view showing the shape of a T-shaped fillet welded joint.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 C21D 8/02 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) C22C 38/00-38/60 C21D 8/02

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、 0.015≦C≦0.10、 0.05≦Si≦2.0、 0.1≦Mn≦1.5、 P≦0.05、 S≦0.02 を含有し、残部Feおよび不可避的不純物よりなり、下
式に示すCeq(f)の値が Ceq(f)≦0.11 を満足し、かつX線で測定した板厚方向の(200)回
折強度比が2.0〜15.0で、かつ回復または再結晶
フェライトの面積率が15〜80%であることを特徴と
する溶接部の疲労強度が高い鋼板。ただし、 Ceq(f)=C−Si/57+Mn/13+(Cu+
Ni)/26+Cr/5+Mo/6+V/5+Nb/
1.5
1. In weight%, 0.015 ≦ C ≦ 0.10, 0.05 ≦ Si ≦ 2.0, 0.1 ≦ Mn ≦ 1.5, P ≦ 0.05, S ≦ 0.02 Containing the balance Fe and unavoidable impurities, the value of Ceq (f) shown in the following formula satisfies Ceq (f) ≦ 0.11, and (200) diffraction in the plate thickness direction measured by X-ray. A steel sheet having a high fatigue strength in a welded portion, which has a strength ratio of 2.0 to 15.0 and an area ratio of recovered or recrystallized ferrite of 15 to 80%. However, Ceq (f) = C-Si / 57 + Mn / 13 + (Cu +
Ni) / 26 + Cr / 5 + Mo / 6 + V / 5 + Nb /
1.5
【請求項2】 重量%で、母材強度上昇元素群の 0.1≦Cu≦2.0、 0.1≦Ni≦2.0、 0.05≦Cr≦0.5、 0.05≦Mo≦0.5、 0.005≦Nb≦0.10、 0.005≦V≦0.10 の1種または2種以上を含有することを特徴とする請求
項1記載の溶接部の疲労強度が高い鋼板。
2. In% by weight, 0.1 ≦ Cu ≦ 2.0, 0.1 ≦ Ni ≦ 2.0, 0.05 ≦ Cr ≦ 0.5, 0.05 ≦ of the base metal strength increasing element group. Fatigue strength of the welded part according to claim 1, characterized in that it contains one or more of Mo ≦ 0.5, 0.005 ≦ Nb ≦ 0.10, 0.005 ≦ V ≦ 0.10. High steel plate.
【請求項3】 重量%で、 0.005≦Ti≦0.05、 0.002≦N≦0.015 を含有し、さらにTi/Nが2.0〜3.4であること
を特徴とする請求項1または2記載の溶接部の疲労強度
が高い鋼板。
3. The composition contains 0.005 ≦ Ti ≦ 0.05 and 0.002 ≦ N ≦ 0.015 by weight%, and Ti / N is 2.0 to 3.4. The steel sheet having high fatigue strength of the welded portion according to claim 1 or 2.
【請求項4】 重量%で、 0.0005≦REM≦0.0050、 0.0005≦Ca≦0.0050 の1種または2種を含有することを特徴とする請求項1
〜3の何れか1項に記載の溶接部の疲労強度が高い鋼
板。
4. One or two kinds of 0.0005 ≦ REM ≦ 0.0050 and 0.0005 ≦ Ca ≦ 0.0050 are contained by weight%.
The steel plate with high fatigue strength of the welded part as described in any one of 1-5.
【請求項5】 請求項1〜4の何れか1項に記載の化学
成分を有する鋼塊を、Ac3 変態点〜1300℃に加熱
し、再結晶温度域で20〜90%の累積圧下率で圧延
し、引き続きAr3 変態点以上の未再結晶温度域で10
〜80%の累積圧下率で圧延し、さらにAr3 変態点以
下、600℃以上で40〜90%の累積圧下率で仕上圧
延し、圧延後室温まで大気中放冷することを特徴とする
溶接部の疲労強度が高い鋼板の製造方法。
5. A steel ingot having the chemical composition according to claim 1 is heated to an Ac 3 transformation point to 1300 ° C. and a cumulative rolling reduction of 20 to 90% in a recrystallization temperature range. Rolling, and then 10 at the unrecrystallized temperature range above the Ar 3 transformation point.
Rolling a cumulative reduction rate of 80%, further Ar 3 or less transformation point, and finish rolling at 40% to 90% of the cumulative reduction rate at 600 ° C. or higher, characterized by cooling in air to room temperature after rolling welding Method for manufacturing steel sheet with high fatigue strength of the part.
【請求項6】 請求項1〜4の何れか1項に記載の化学
成分を有する鋼塊を、Ac3 変態点〜1300℃に加熱
し、再結晶温度域で20〜90%の累積圧下率で圧延
し、引き続きAr3 変態点以上の未再結晶温度域で10
〜80%の累積圧下率で圧延し、さらにAr3 変態点以
下、600℃以上で40〜90%の累積圧下率で仕上圧
延し、圧延終了後、30〜300秒間大気中で放冷し、
しかる後に5〜100℃/秒の冷却速度で室温〜600
℃に制御冷却することを特徴とする溶接部の疲労強度が
高い鋼板の製造方法。
6. A steel ingot having the chemical composition according to claim 1 is heated to an Ac 3 transformation point to 1300 ° C., and a cumulative rolling reduction of 20 to 90% in a recrystallization temperature range. Rolling, and then 10 at the unrecrystallized temperature range above the Ar 3 transformation point.
Rolling at a cumulative reduction of -80%, finish rolling at a cumulative rolling reduction of 40 to 90% at 600 ° C or higher at an Ar 3 transformation point or lower, and after standing to cool in the atmosphere for 30 to 300 seconds,
Then, at room temperature to 600 at a cooling rate of 5 to 100 ° C / sec.
A method for manufacturing a steel sheet having high fatigue strength of a weld, which is characterized by controlled cooling to ℃.
【請求項7】 請求項1〜4の何れか1項に記載の化学
成分を有する鋼塊を、Ac3 変態点〜1300℃に加熱
し、再結晶温度域で20〜90%の累積圧下率で圧延
し、引き続きAr3 変態点以上の未再結晶温度域で10
〜80%の累積圧下率で圧延し、さらにAr3 変態点以
下、600℃以上で40〜90%の累積圧下率で仕上圧
延した後、直ちに5〜100℃/秒の冷却速度で室温〜
600℃に制御冷却し、引き続き室温まで大気中で放冷
し、さらに500℃以上、Ac1変態点以下に加熱後、
大気中で放冷することを特徴とする溶接部の疲労強度が
高い鋼板の製造方法。
7. A steel ingot having the chemical composition according to claim 1 is heated to an Ac 3 transformation point to 1300 ° C. and a cumulative rolling reduction of 20 to 90% in a recrystallization temperature range. Rolling, and then 10 at the unrecrystallized temperature range above the Ar 3 transformation point.
After rolling at a cumulative rolling reduction of -80% and further finish rolling at a cumulative rolling reduction of 40 to 90% below the Ar 3 transformation point and at 600 ° C or higher, immediately at room temperature at a cooling rate of 5 to 100 ° C / sec.
After controlled cooling to 600 ° C., cooling to room temperature in the air, and heating to 500 ° C. or higher and Ac 1 transformation point or lower,
A method for producing a steel sheet having high fatigue strength of a weld, which is characterized by allowing to cool in the atmosphere.
JP25664195A 1995-10-03 1995-10-03 Steel sheet having high fatigue strength at welded portion and method for producing the same Expired - Fee Related JP3462943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25664195A JP3462943B2 (en) 1995-10-03 1995-10-03 Steel sheet having high fatigue strength at welded portion and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25664195A JP3462943B2 (en) 1995-10-03 1995-10-03 Steel sheet having high fatigue strength at welded portion and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0995754A JPH0995754A (en) 1997-04-08
JP3462943B2 true JP3462943B2 (en) 2003-11-05

Family

ID=17295431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25664195A Expired - Fee Related JP3462943B2 (en) 1995-10-03 1995-10-03 Steel sheet having high fatigue strength at welded portion and method for producing the same

Country Status (1)

Country Link
JP (1) JP3462943B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125571A1 (en) * 2006-04-26 2007-11-08 Kabushiki Kaisha Kobe Seiko Sho Steel sheet with less weld buckling deformation, and process for producing the same
WO2011035650A1 (en) * 2009-09-23 2011-03-31 贵州华科铝材料工程技术研究有限公司 Nickel-rare earth co-doped high-strength heat-proof aluminum alloy material and producing method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6258181B1 (en) 1998-08-05 2001-07-10 Nippon Steel Corporation Structural steel excellent in wear resistance and fatigue resistance property and method of producing the same
KR100568359B1 (en) * 2001-12-24 2006-04-05 주식회사 포스코 Steel plate having superior toughness in weld heat-affected zone and method for manufacturing thereof
WO2013095246A1 (en) * 2011-12-20 2013-06-27 Aktiebolaget Skf Method, ring & bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125571A1 (en) * 2006-04-26 2007-11-08 Kabushiki Kaisha Kobe Seiko Sho Steel sheet with less weld buckling deformation, and process for producing the same
WO2011035650A1 (en) * 2009-09-23 2011-03-31 贵州华科铝材料工程技术研究有限公司 Nickel-rare earth co-doped high-strength heat-proof aluminum alloy material and producing method thereof

Also Published As

Publication number Publication date
JPH0995754A (en) 1997-04-08

Similar Documents

Publication Publication Date Title
US6183573B1 (en) High-toughness, high-tensile-strength steel and method of manufacturing the same
JP3526576B2 (en) Manufacturing method of high-strength steel with excellent weld strength and weld strength
JP6198937B2 (en) HT550 steel sheet with ultra-high toughness and excellent weldability and method for producing the same
JP7262288B2 (en) High-strength low-yield-ratio thick steel plate with excellent toughness of base metal and weld heat-affected zone and small acoustic anisotropy, and its manufacturing method
JP2000129392A (en) High strength steel product excellent in fatigue crack propagation resistance, and its manufacture
US5634988A (en) High tensile steel having excellent fatigue strength at its weld and weldability and process for producing the same
JPH1017981A (en) High tensile strength steel material with low yield ratio for construction use, excellent in brittle crack arrest property, and its production
JPH1017982A (en) High tensile strength steel material with low yield ratio for construction use, excellent in fracture resistance, and its production
JP2005298877A (en) Steel plate with excellent fatigue crack propagation characteristic, and its manufacturing method
JP2015190008A (en) Non-heat treated low yield ratio high tensile thick steel sheet excellent in weld heat-affected zone toughness and production method therefor
JP3569314B2 (en) Steel plate for welded structure excellent in fatigue strength of welded joint and method of manufacturing the same
JP3383148B2 (en) Manufacturing method of high strength steel with excellent toughness
JP3462943B2 (en) Steel sheet having high fatigue strength at welded portion and method for producing the same
JP2004162085A (en) Steel plate with excellent fatigue crack propagation resistance, and its manufacturing method
JPH07292416A (en) Production of ultrahigh strength steel plate for line pipe
JP3434378B2 (en) Thick steel plate with low fatigue crack propagation speed in thickness direction and method of manufacturing the same
KR20230041060A (en) Thick steel plate and its manufacturing method
JPH10147845A (en) Steel plate with high fatigue strength, and its production
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JPH093591A (en) Extremely thick high tensile strength steel plate and its production
JP4559673B2 (en) Thick steel plate for welded structure excellent in fatigue strength of welded joint and method for producing the same
JPH0118967B2 (en)
JP3367388B2 (en) High ductility and high toughness steel sheet and manufacturing method thereof
JPH08311548A (en) Production of steel sheet for ultrahigh strength steel pipe excellent in toughness in weld zone
JP4456292B2 (en) Welded structural steel with excellent fatigue properties of welded parts and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees