JP2006131056A - Marine steel structure and ship - Google Patents

Marine steel structure and ship Download PDF

Info

Publication number
JP2006131056A
JP2006131056A JP2004321238A JP2004321238A JP2006131056A JP 2006131056 A JP2006131056 A JP 2006131056A JP 2004321238 A JP2004321238 A JP 2004321238A JP 2004321238 A JP2004321238 A JP 2004321238A JP 2006131056 A JP2006131056 A JP 2006131056A
Authority
JP
Japan
Prior art keywords
steel structure
ship
thickness
value
marine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004321238A
Other languages
Japanese (ja)
Other versions
JP4898110B2 (en
Inventor
Kazuhiro Hirota
一博 廣田
Hiroshi Shirokibara
浩 白木原
Masuo Tada
益男 多田
Shinichi Nishimura
信一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004321238A priority Critical patent/JP4898110B2/en
Priority to PCT/JP2005/019984 priority patent/WO2006049119A1/en
Publication of JP2006131056A publication Critical patent/JP2006131056A/en
Application granted granted Critical
Publication of JP4898110B2 publication Critical patent/JP4898110B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B73/00Building or assembling vessels or marine structures, e.g. hulls or offshore platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2231/00Material used for some parts or elements, or for particular purposes
    • B63B2231/02Metallic materials
    • B63B2231/04Irons, steels or ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/14Hull parts
    • B63B3/48Decks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/14Hull parts
    • B63B3/48Decks
    • B63B3/54Hatch openings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/14Hull parts
    • B63B3/56Bulkheads; Bulkhead reinforcements

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel structure, which is used for a large-scaled ship such as a giant container ship, capable of attaining excellent in fragile crack propagation stopping characteristics. <P>SOLUTION: In this marine steel structure which has a specified yield strength larger than 390 N/mm<SP>2</SP>in a tensile test for the marine steel structure, a value K<SB>ca</SB>indicating arrest performance of more than 4,000 N/mm<SP>1.5</SP>at -10°C and a prescribed thickness, a fracture surface transition temperature is less than a fracture surface transition temperature indicated by steel plate having the thickness of more than the value K<SB>ca</SB>of 4,000 N/mm<SP>1.5</SP>at -10°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、脆性亀裂伝播停止特性に優れた船舶用鋼構造体に関するものである。特に本発明は、上甲板付近の船倉開口部が大きいコンテナ船やバルクキャリア等であって、これらの中でも大型の船舶において、上甲板付近の縦通部材として好適に用いられる船舶用鋼構造体に関するものである。   The present invention relates to a marine steel structure having excellent brittle crack propagation stopping characteristics. In particular, the present invention relates to a marine steel structure that is suitably used as a longitudinal member near the upper deck in a container ship, a bulk carrier, or the like that has a large cargo opening near the upper deck, among these large ships. Is.

コンテナ船は上甲板付近の船倉開口部が大きいため、船体を一本の梁と考えた時の縦曲げ強度を確保するために、上甲板付近の縦通部材を厚板化する必要がある。
図5及び図6は、コンテナ船の一例を示す図であり、図5はコンテナ船の左舷側を上から見た概略図、図6は図5の位置A上部の縦通部材を示した断面図である。
図中、符号1はコンテナ船、Cはコンテナ船の中心線、2は船側外板(アウターシェル)、3はアッパーデッキプレート(上甲板)、4はアッパーデッキプレート付ロンジ、5はロンジバルクヘッド(縦通隔壁)、6はハッチコーミング、6aはハッチコーミングプレート、6bはハッチコーミングプレート付ロンジ、6cはハッチコーミングトッププレート、6dはハッチコーミングトッププレート付ロンジをそれぞれ示している。
近年、6000TEU(20フィートコンテナ換算個数;以下同じ)クラスの大型コンテナ船の上甲板3付近の縦通部材には、板厚が60mm前後でかつ規格降伏強度が390N/mm級の鋼板が用いられている。また、8000TEU以上の大型コンテナ船では、上甲板3付近の縦通部材に板厚が70〜80mm前後でかつ規格降伏強度が390N/mm級の鋼板が用いられることがあり、上甲板3付近の縦通部材の厚板化が進んでいる。
特に、上甲板3の上方に位置するハッチコーミング6を構成する縦通部材(ハッチコーミングプレート6a、ハッチコーミングプレート付ロンジ6b、ハッチコーミングトッププレート6c、ハッチコーミングトッププレート付ロンジ6d)では縦曲げ応力が最大となるため、厚板化が顕著である。
The container ship has a large cargo opening near the upper deck, so it is necessary to thicken the longitudinal members near the upper deck in order to ensure the longitudinal bending strength when the hull is considered as a single beam.
5 and 6 are diagrams showing an example of a container ship. FIG. 5 is a schematic view of the port side of the container ship as viewed from above. FIG. 6 is a cross-sectional view showing a longitudinal member at an upper position A in FIG. FIG.
In the figure, reference numeral 1 is a container ship, C is a center line of the container ship, 2 is a ship side outer plate (outer shell), 3 is an upper deck plate (upper deck), 4 is a longe with an upper deck plate, and 5 is a longe bulkhead (Vertical partition wall), 6 is a hatch combing, 6a is a hatch combing plate, 6b is a long comb with a hatch combing plate, 6c is a hatch combing top plate, and 6d is a long comb with a hatch combing top plate.
In recent years, steel plates with a plate thickness of around 60 mm and a standard yield strength of 390 N / mm class 2 have been used for the longitudinal members near the upper deck 3 of a large container ship of the 6000 TEU (20-foot container equivalent). It has been. Moreover, in large container ships of 8000 TEU or more, steel plates having a plate thickness of about 70 to 80 mm and a standard yield strength of 390 N / mm class 2 may be used for the longitudinal members near the upper deck 3. The thickness of the longitudinal member is increasing.
In particular, the longitudinal bending stress of the longitudinal member (hatch combing plate 6a, long comb 6b with hatch combing plate, hatch combing top plate 6c, longi 6d with hatch combing top plate) constituting the hatch combing 6 located above the upper deck 3 is shown. Is maximized, so that thickening is remarkable.

上記縦通部材として用いられる鋼板も含め、船舶の構造部材として用いられる鋼構造体については、脆性亀裂の発生を防止すべく破壊靭性値が船級協会によって規定されている。例えば、船体の長さ方向の中央部付近では船長方向の曲げモーメント(縦曲げモーメント)が大きく,同部の上甲板では、船長方向の応力(縦曲げ応力)が高いため、板厚が30mmを超える場合は高靭性のE級鋼を用いることが規定されている(破壊靭性の等級はアルファベットで表され、破壊靭性値の低い方からアルファベット順で規定されている)。破壊靭性値は、溶接部についても同様に規定されている。   For steel structures used as ship structural members, including steel plates used as longitudinal members, fracture toughness values are defined by the classification societies to prevent the occurrence of brittle cracks. For example, the bending moment (longitudinal bending moment) in the ship length direction is large near the center of the length of the hull, and the thickness in the upper deck of the same section is high because the stress in the ship length direction (longitudinal bending stress) is high. When exceeding, it is specified to use a high toughness class E steel (the grade of fracture toughness is expressed in alphabetical order and is specified in alphabetical order from the lowest fracture toughness value). Fracture toughness values are similarly defined for welds.

ところで、上述のように、船舶用鋼構造体の脆性亀裂の発生については船級協会によって規定されているが、万一亀裂が発生した際の停止性能(以下、「脆性亀裂伝播停止特性」または「アレスト性」と呼称する)については規定がない。
一方で、一般に厚い鋼板ほど脆性亀裂伝播停止特性の高いものを製造するのが難しいため、船舶の大型化に伴う厚板化は脆性亀裂伝播停止特性の低下を招くおそれがあった。また、鋼板の厚板化は、溶接性の低下を招き、溶接部の溶接品質確保が困難になる問題があった。さらに、上甲板付近の縦通部材を厚板化した場合、船舶の重心が高くなるため、船舶の復元力が低下し、その結果コンテナ等の積載物の積載可能量が低下する問題があった。また、脆性亀裂伝播特性と溶接性を確保する為に大幅な厚板化を避けた場合は、上甲板付近の縦通部材よりも船体梁の中性軸に近く補強効率の悪い縦通部材も厚板化して縦曲げ強度を確保する必要がある為、大幅な重量増加となり、コンテナ等の積載物の積載可能量が大幅に低下する問題があった。
Incidentally, as described above, the occurrence of brittle cracks in marine steel structures is regulated by the classification society. However, in the unlikely event that cracks occur, the stopping performance (hereinafter referred to as “brittle crack propagation stopping characteristics” or “ There is no provision for “arrest”.
On the other hand, in general, it is difficult to produce a thicker steel plate having a higher brittle crack propagation stop characteristic, and therefore, the thickening accompanying the increase in the size of the ship may lead to a decrease in the brittle crack propagation stop characteristic. Further, increasing the thickness of the steel plate has a problem in that it deteriorates the weldability and makes it difficult to ensure the weld quality of the welded portion. Furthermore, when the longitudinal members near the upper deck are made thicker, the ship's center of gravity becomes higher, so the resilience of the ship is lowered, and as a result there is a problem that the loadable amount of loads such as containers is lowered. . In addition, when avoiding significant thickening to ensure brittle crack propagation characteristics and weldability, there is also a longitudinal member with poor reinforcement efficiency that is closer to the neutral axis of the hull than the longitudinal member near the upper deck. Since it is necessary to secure the longitudinal bending strength by increasing the thickness of the plate, there has been a problem that the weight increases greatly, and the loadable amount of a load such as a container is greatly reduced.

特開2004−232052号公報JP 2004-232052 A

上記のように、船舶の大型化に伴う鋼構造体の厚板化には種々の問題点があり、船舶の安全性の確保等の理由から、脆性亀裂伝播停止に必要なアレスト性能を設定し、板厚の上限値を規定する必要がある。板厚を一定の上限値以下に保ったまま船舶の大型化に対処するには、船舶の設計上のディメンションを変更するか、より強度の高い鋼構造体を用いる方策が考えられる。
しかし、船舶の設計上のディメンションを変更した場合には、船舶の使い勝手が悪くなったり、重量の増加を招いたりすることになり、好ましくない。
また、より高強度の鋼構造体を用いるためには、従来の規格降伏強度390N/mm級を超える高強度の鋼構造体を開発する必要がある。しかし、船舶の建造にあたって必要な船舶協会の規定は、規格降伏強度390N/mm級の鋼構造体までしか定めていない。
As mentioned above, there are various problems in increasing the thickness of the steel structure as the size of the ship increases, and the arrest performance necessary to stop the propagation of brittle cracks is set for reasons such as ensuring the safety of the ship. It is necessary to specify the upper limit of the plate thickness. In order to cope with an increase in the size of the ship while keeping the plate thickness below a certain upper limit value, it is conceivable to change the design dimension of the ship or to use a steel structure with higher strength.
However, if the dimensions of the ship design are changed, it is not preferable because the convenience of the ship is deteriorated or the weight is increased.
In order to use a higher strength steel structure, it is necessary to develop a high strength steel structure exceeding the conventional standard yield strength of 390 N / mm 2 grade. However, the provisions of the ship Association required when construction of the ship is not defined only up to standard yield strength 390N / mm 2 class of the steel structure.

本発明は、このような事情に鑑みてなされたものであって、大型コンテナ船等の大型船舶に用いられる鋼構造体を提供することを目的とする。   This invention is made | formed in view of such a situation, Comprising: It aims at providing the steel structure used for large ships, such as a large container ship.

上記課題を解決するために、本発明の船舶用鋼構造体は、以下の手段を採用する。
すなわち、本発明にかかる船舶用鋼構造体は、引張試験における規格降伏強度が390N/mmより大きく、かつアレスト性能を示す値Kca(以下、「Kca値」と呼称する)が−10℃で4000N/mm1.5以上である。
この船舶用鋼構造体は、引張試験における規格降伏強度が390N/mmより大きいので、船級協会で規定されている390N/mm級の鋼板より高強度であり、板厚を従来よりも薄くすることができる。また、Kca値を船舶の使用温度とされている−10℃において4000N/mm1.5以上とすることにより、船舶用構造部材として必要なアレスト性能を維持しながら十分な強度を発揮するように鋼構造体の板厚の上限値を定めることができる。
In order to solve the above problem, the marine steel structure of the present invention employs the following means.
That is, the marine steel structure according to the present invention has a standard yield strength in a tensile test of greater than 390 N / mm 2 and a value K ca indicating the arrest performance (hereinafter referred to as “K ca value”) of −10. It is 4000 N / mm 1.5 or more at ° C.
This marine steel structure has a higher yield strength in the tensile test than 390 N / mm 2 , so it is stronger than the 390 N / mm 2 grade steel plate specified by the classification society, and the plate thickness is thinner than before. can do. Further, by setting the K ca value to 4,000 N / mm 1.5 or more at −10 ° C., which is considered to be the operating temperature of the ship, it will exhibit sufficient strength while maintaining the arrest performance necessary as a structural member for ships. The upper limit value of the thickness of the steel structure can be determined.

また、本発明にかかる船舶用鋼構造体は、所定の厚さを有する船舶用鋼構造体であって、引張試験における規格降伏強度が390N/mmより大きく、かつシャルピー衝撃試験における破面遷移温度が、アレスト性能を示す値Kcaが−10℃で4000N/mm1.5の前記厚さを有する鋼板が示す破面遷移温度以下であってもよい。
この船舶用鋼構造体は、引張試験における規格降伏強度が390N/mmより大きいので、船級協会で規定されている390N/mm級の鋼板より高強度であり、板厚を従来よりも薄くすることができる。また、Kca値が船舶の使用温度とされている−10℃において4000N/mm1.5となる板厚と破面遷移温度との相関関係を予め求めておけば、容易に求めることができる破面遷移温度と板厚とを設定することにより、必要アレスト性能を満足する鋼構造体を簡易的に選択することができる。
Furthermore, marine steel structures according to the present invention is a marine steel structure having a predetermined thickness, standard yield strength in tensile testing is greater than 390 N / mm 2, and fracture appearance transition in Charpy impact test The temperature may be equal to or lower than the fracture surface transition temperature exhibited by the steel sheet having the thickness of 4000 N / mm 1.5 at −10 ° C., the value K ca indicating arrest performance.
This marine steel structure has a higher yield strength in the tensile test than 390 N / mm 2 , so it is stronger than the 390 N / mm 2 grade steel plate specified by the classification society, and the plate thickness is thinner than before. can do. Moreover, if the correlation between the plate thickness at which the K ca value is 4000 N / mm 1.5 at −10 ° C., at which the vessel is used, and the fracture surface transition temperature is obtained in advance, it can be easily obtained. By setting the fracture surface transition temperature and the plate thickness, a steel structure that satisfies the required arrest performance can be easily selected.

また、本発明にかかる船舶用鋼構造体は、所定の厚さを有する船舶用鋼構造体であって、引張試験における規格降伏強度が390N/mmより大きく、かつシャルピー衝撃試験における吸収エネルギー値が、アレスト性能を示す値Kcaが−10℃で4000N/mm1.5の前記厚さを有する鋼板が示す破面遷移温度に対応するシャルピー衝撃試験における吸収エネルギー値以上のものであってもよい。
この船舶用鋼構造体は、引張試験における規格降伏強度が390N/mmより大きいので、船級協会で規定されている390N/mm級の鋼板より高強度であり、板厚を従来よりも薄くすることができる。また、Kca値が船舶の使用温度とされている−10℃において4000N/mm1.5となる板厚と破面遷移温度との相関関係、並びに破面遷移温度とシャルピー衝撃吸収エネルギー値との相関関係から、板厚とシャルピー衝撃吸収エネルギーの下限値との関係を予め求めておけば、容易に求めることができるシャルピー衝撃吸収エネルギー値と板厚とを設定することにより、必要アレスト性能を満足する鋼構造体を簡易的に選択することができる。
The marine steel structure according to the present invention is a marine steel structure having a predetermined thickness, the standard yield strength in the tensile test is greater than 390 N / mm 2 , and the absorbed energy value in the Charpy impact test. However, even if the value K ca indicating the arrest performance is equal to or greater than the absorbed energy value in the Charpy impact test corresponding to the fracture surface transition temperature exhibited by the steel sheet having the thickness of 4000 N / mm 1.5 at −10 ° C. Good.
This marine steel structure has a higher yield strength in the tensile test than 390 N / mm 2 , so it is stronger than the 390 N / mm 2 grade steel plate specified by the classification society, and the plate thickness is thinner than before. can do. In addition, the correlation between the plate thickness and the fracture surface transition temperature at which the K ca value is set to 4000 N / mm 1.5 at −10 ° C., which is the use temperature of the ship, and the fracture surface transition temperature and the Charpy impact absorption energy value If the relationship between the plate thickness and the lower limit value of the Charpy impact absorption energy is determined in advance, the necessary arrest performance can be reduced by setting the Charpy impact absorption energy value and the plate thickness that can be easily obtained. A satisfactory steel structure can be selected easily.

また、本発明の船舶は、前記鋼構造体を備えている。
この船舶は、必要アレスト性能を考慮して高強度鋼構造体の板厚が設定されているので、船舶が大型化しても鋼構造体を大幅に厚板化せずに強度が確保される。
Moreover, the ship of this invention is equipped with the said steel structure.
In this ship, the thickness of the high-strength steel structure is set in consideration of the necessary arrest performance, so that the strength is ensured without greatly increasing the thickness of the steel structure even if the ship is enlarged.

この船舶は、前記鋼構造体を上甲板付近の縦通部材として用いたものとすることができる。
前記鋼構造体を上甲板付近の縦通部材として用いた船舶は、必要アレスト性能を考慮して前記縦通部材の板厚が設定されているので、船舶が大型化しても、縦通部材を大幅に厚板化せずに強度が確保される。従って、船舶の重心が高くなるのを防ぐことができる。
This ship can use the steel structure as a longitudinal member near the upper deck.
A ship using the steel structure as a longitudinal member in the vicinity of the upper deck has the thickness of the longitudinal member set in consideration of the required arrest performance. Strength is secured without significantly increasing the thickness. Therefore, it is possible to prevent the ship's center of gravity from increasing.

本発明によれば、船舶が大型化しても、その構造部材として好適な強度とアレスト性能を有する鋼構造体を、大幅に厚板化することなく提供することができる。従って、この鋼構造体を用いれば、溶接性を損なうことがないので、船舶を建造する際に溶接部の溶接品質を確保することができる。
また、この鋼構造体を採用した船舶は、強度を維持したまま構造部材が大幅に厚板化するのを防ぐことができる。特にこの鋼構造体をコンテナ船等の船倉開口部が大きい船舶の上甲板付近の縦通部材に採用した場合は、船舶の重心が高くなるのを防ぐことができるので、船舶の復元力を高くすることができ、その結果、本発明の船舶は、上甲板付近の縦通部材を大幅に厚板化して強度を確保した船舶に比べ、コンテナ等の積載物をより多く積載することが可能である。
ADVANTAGE OF THE INVENTION According to this invention, even if a ship enlarges, the steel structure which has the intensity | strength and arrest performance suitable as the structural member can be provided, without significantly increasing thickness. Therefore, if this steel structure is used, the weldability is not impaired, so that the weld quality of the welded portion can be ensured when the ship is constructed.
Moreover, the ship which employ | adopted this steel structure can prevent that a structural member significantly thickens while maintaining intensity | strength. In particular, when this steel structure is used as a longitudinal member near the upper deck of a ship with a large cargo opening, such as a container ship, it is possible to prevent the ship's center of gravity from becoming high, so the resilience of the ship is increased. As a result, the ship of the present invention can load more loads such as containers compared to a ship that has a long plate member near the upper deck and has secured its strength. is there.

本発明の船舶用鋼構造体は、厚板化の可能性がある船舶の構造部材として好適に用いられるものである。特に、本発明の船舶用鋼構造体は、大きい縦曲げ応力がかかるために厚板化される傾向がある、コンテナ船の上甲板付近の縦通部材に好適に用いられる。中でも、積載可能量が8000TEUを超えるコンテナ船に最も好適に用いられる。
また、本発明の船舶用鋼構造体は、コンテナ船に限らず、厚板化の可能性の高い船舶(例えば、バルクキャリア、LNGキャリア等)にも適用可能である。
The marine steel structure of the present invention is suitably used as a structural member of a marine vessel that may be thickened. In particular, the marine steel structure of the present invention is suitably used for a longitudinal member in the vicinity of the upper deck of a container ship that tends to be thickened due to a large longitudinal bending stress. Among them, it is most suitably used for a container ship having a loadable capacity exceeding 8000 TEU.
Moreover, the steel structure for ship of this invention is applicable not only to a container ship but to ships (for example, a bulk carrier, an LNG carrier, etc.) with high possibility of thickening.

本発明の鋼構造体の引張試験における規格降伏強度は、船級協会で高強度鋼板として規定されている390N/mm級よりも高く、より好ましくは460N/mm以上である。
これにより、本発明の鋼構造体は、390N/mm級の鋼板に比べ、厚さを約10〜20%低減することが可能である。
The standard yield strength in the tensile test of the steel structure of the present invention is higher than the 390 N / mm 2 class defined as a high-strength steel sheet by the Ship Classification Society, and more preferably 460 N / mm 2 or more.
Thereby, the steel structure of this invention can reduce thickness about 10 to 20% compared with a 390 N / mm 2 grade steel plate.

本発明の鋼構造体のKca値は、−10℃において4000N/mm1.5以上であるが、これは以下のようにして定めた。
アレスト性能を示すKca値が約2000〜60000N/mm1.5の種々の鋼板を供試材として用いて、大型混成ESSO試験あるいは大型混成二重引張試験が以下の条件で行われている。(参考文献: 日本造船研究協会第193研究部会、日本造船研究協会報告第100号 1985年)
供試材:
船舶用鋼板(HT50)
グレード EH36
板厚 35mm
応力:
(0.4〜0.83)×規定降伏強度
温度:
−60〜+4℃
The K ca value of the steel structure of the present invention is not less than 4000 N / mm 1.5 at −10 ° C., which is determined as follows.
A large-scale hybrid ESSO test or a large-scale hybrid double tensile test is performed under the following conditions using various steel sheets having K ca values of about 2000 to 60000 N / mm 1.5 indicating arrest performance as test materials. (Reference: Japan Shipbuilding Research Association 193 Research Group, Japan Shipbuilding Research Association Report No. 100, 1985)
Test material:
Steel plate for ship (HT50)
Grade EH36
Plate thickness 35mm
stress:
(0.4-0.83) x specified yield strength Temperature:
-60 to + 4 ° C

この大型混成ESSO試験の結果を図1に示す。
図1の結果から、大型混成ESSO試験において、供試材のKca値がその試験温度で4000N/mm1.5以上であれば、長大亀裂の伝播を停止できることが分かった。
船舶の使用温度は−10℃と規定されているので、本発明の鋼構造体のKca値は−10℃で4000N/mm1.5以上とした。
The results of this large hybrid ESSO test are shown in FIG.
From the results of FIG. 1, it was found that in the large-scale hybrid ESSO test, if the K ca value of the test material is 4000 N / mm 1.5 or more at the test temperature, the propagation of the long crack can be stopped.
Since the operating temperature of the ship is defined as −10 ° C., the K ca value of the steel structure of the present invention is set to 4000 N / mm 1.5 or more at −10 ° C.

船舶用鋼構造体のKca値が上述の本発明の範囲を満たすかどうか評価するために、以下に説明するESSO試験によってKca値を求めることができる。なお,Kca値は二重引張試験等他の試験方法でも求められるが,ここではESSO試験を代表に説明する。
(i)試験片形状、寸法
ESSO試験片の形状、寸法を図2に示す。図2(a)はESSO試験片の全体形状を示すものであり、図2(b)はESSO試験片の切欠き部形状を示すものである。
(ii)試験方法
まず、図2に示す試験片の応力をかける両端に溶接によりタブを取り付け、これを大型試験機にセットする。
次に試験片に所定の温度分布を与えるとともに、所定の引張応力を加える。その状態で切欠き部にくさびを打撃して十分な衝撃エネルギーを与え、脆性亀裂を発生させる。発生した脆性亀裂が伝播し、停止した点の温度と脆性亀裂の長さおよび応力を記録する。
In order to evaluate whether the K ca value of the marine steel structure satisfies the above-described scope of the present invention, the K ca value can be obtained by an ESSO test described below. The K ca value can also be obtained by other test methods such as a double tensile test, but here, the ESSO test will be described as a representative.
(I) Test piece shape and dimensions The shape and dimensions of the ESSO test piece are shown in FIG. FIG. 2A shows the overall shape of the ESSO test piece, and FIG. 2B shows the notch shape of the ESSO test piece.
(Ii) Test method First, tabs are attached by welding to both ends to which stress is applied to the test piece shown in FIG.
Next, a predetermined temperature distribution is given to the test piece and a predetermined tensile stress is applied. In that state, a wedge is struck on the notch to give a sufficient impact energy to generate a brittle crack. Record the temperature of the point where the brittle cracks have propagated and stopped and the length and stress of the brittle cracks.

(iii)結果の表示
まず、脆性亀裂の長さと応力を次式に代入して、脆性亀裂伝播抵抗値Kcaを算出する。
ca=σ(2Btan(πc/2B))1/2
ただし、
σ:伝播部グロス応力
c:伝播部入口から脆性亀裂先端までの長さ
B:試験片幅
(Iii) Display of result First, the length and stress of the brittle crack are substituted into the following equation to calculate the brittle crack propagation resistance value K ca.
K ca = σ (2B tan (πc / 2B)) 1/2
However,
σ: Gross stress of propagation part c: Length from propagation part inlet to brittle crack tip B: Specimen width

次に本発明者らは、必要アレスト性能、すなわち船舶の使用温度とされている−10℃において4000N/mm1.5以上、を確保するために必要な遷移温度と板厚との関係を見出した。さらに、遷移温度とシャルピー衝撃吸収エネルギー値との間にも相関関係があることを見出した。そこで、これら相関関係を組み合わせることにより、所定板厚の鋼構造体が必要アレスト性能を満足するか否かを、シャルピー衝撃吸収エネルギー値を用いて簡易的に判定する方法を検討した。 Next, the present inventors have found the relationship between the transition temperature and the plate thickness necessary for ensuring the required arrest performance, that is, the use temperature of the ship, which is 4000 N / mm 1.5 or more at −10 ° C. It was. Furthermore, it has been found that there is a correlation between the transition temperature and the Charpy impact absorption energy value. Therefore, by combining these correlations, a method for simply determining whether or not a steel structure having a predetermined thickness satisfies the required arrest performance using the Charpy impact absorption energy value was studied.

まず本発明者らは、簡易的に必要アレス性能を検証する方法を検討するために、アレスト性能(Kca)と破面遷移温度(vTrs)との関係を調べた。図3は、板厚40mm、50mm、60mm、65mm及び70mmのそれぞれの鋼板について、破面遷移温度(vTrs)(℃)と、Kca値が4000N/mm1.5を示す温度(T(Kca=4000))(℃)との関係を示すグラフである。
図3のグラフから、船舶の使用温度とされている気温−10℃において必要アレスト性能(Kca)4000N/mm−1.5を確保するために必要な板厚と破面遷移温度(vTrs)との関係が分かる。
従って、鋼板のアレスト性能(Kca)が分からない場合でも、容易に得られる破面線温度(vTrs)と板厚から、鋼板のアレスト性能(Kca)を判定することができる。
First, the present inventors examined the relationship between arrest performance (K ca ) and fracture surface transition temperature (vTrs) in order to examine a method for simply verifying the required ares performance. FIG. 3 shows the fracture surface transition temperature (vTrs) (° C.) and the temperature at which the K ca value is 4000 N / mm 1.5 (T (K) for each steel plate having a thickness of 40 mm, 50 mm, 60 mm, 65 mm and 70 mm. ca = 4000)) (° C.).
From the graph of FIG. 3, the plate thickness and fracture surface transition temperature (vTrs) necessary to ensure the required arrest performance (K ca ) of 4000 N / mm −1.5 at an air temperature of −10 ° C., which is the use temperature of the ship. You can see the relationship.
Therefore, even when the arrest performance (K ca ) of the steel sheet is not known, the arrest performance (K ca ) of the steel sheet can be determined from the easily obtained fracture surface temperature (vTrs) and the plate thickness.

次に、鋼板の破面遷移温度(vTrs)とシャルピー衝撃吸収エネルギー値(vE)との関係を調べた。図4は鋼板の破面遷移温度(vTrs)(℃)と−40℃におけるシャルピー衝撃吸収エネルギー(vE(−40℃))(J)との関係を示すグラフである。
また、図4には、図3のグラフに示した各鋼板の板厚に対応する破面遷移温度(vTrs)(℃)を上向きの矢印で示した。
Next, the relationship between the fracture surface transition temperature (vTrs) of the steel sheet and the Charpy impact absorption energy value (vE) was examined. FIG. 4 is a graph showing the relationship between the fracture surface transition temperature (vTrs) (° C.) and the Charpy impact absorption energy (vE (−40 ° C.)) (J) at −40 ° C.
In FIG. 4, the fracture surface transition temperature (vTrs) (° C.) corresponding to the thickness of each steel plate shown in the graph of FIG. 3 is indicated by an upward arrow.

図4に示した破面遷移温度(vTrs)及びシャルピー衝撃吸収エネルギー値(vE)の関係を示す線と、各鋼板の板厚に対応する破面遷移温度(vTrs)を示す前述の矢印との交点におけるシャルピー衝撃吸収エネルギー値(vE)を読み取ることにより、所定の板厚を有する鋼板が必要アレスト性能(Kca)を確保するために要求されるシャルピー衝撃吸収エネルギー値(vE)を求めることができる。
従って、図3及び頭3のグラフを組み合わせることにより、鋼板のアレスト性能(Kca)が分からない場合でも、容易に得られるシャルピー吸収エネルギー値(vE)と板厚から、鋼板のアレスト性能(Kca)を判定することができる。
The line indicating the relationship between the fracture surface transition temperature (vTrs) and the Charpy impact absorption energy value (vE) shown in FIG. 4 and the aforementioned arrow indicating the fracture surface transition temperature (vTrs) corresponding to the plate thickness of each steel plate By reading the Charpy impact absorption energy value (vE) at the intersection, it is possible to obtain the Charpy impact absorption energy value (vE) required for the steel sheet having a predetermined thickness to ensure the required arrest performance (K ca ). it can.
Therefore, by combining the graph of FIG. 3 and the graph of the head 3, even when the arrest performance (K ca ) of the steel plate is not known, the arrest performance (K) of the steel plate can be obtained from the Charpy absorbed energy value (vE) and the plate thickness that can be easily obtained. ca ) can be determined.

次に、コンテナ船が大型化した場合の上甲板付近の縦通部材の板厚に関し、(1)コンテナ船の深さ、幅を変更する場合、(2)板厚をあげて対処する場合、(3)高強度材料を開発、採用する(アレスト性能を考慮しない)場合、及び(4)本発明の鋼構造体を採用する場合を、図6を参照しながら比較する。
なお、ここでは、一例として、上甲板付近の縦通部材が以下のグレード及び板厚を有する従来のコンテナ船を大型化する場合を想定する。
船側外板2: 60mm EH36
アッパーデッキプレート3: 60mm EH36
ロンジバルクヘッド5: 60mm EH36
ハッチコーミング6: 65mm EH40
Next, regarding the plate thickness of the longitudinal members near the upper deck when the container ship is enlarged, (1) When changing the depth and width of the container ship, (2) When dealing with increasing board thickness, A case where (3) a high-strength material is developed and adopted (without considering the arrest performance) and a case where (4) the steel structure of the present invention is adopted are compared with reference to FIG.
Here, as an example, it is assumed that a conventional container ship having a longitudinal member near the upper deck having the following grades and thicknesses is enlarged.
Ship side skin 2: 60mm EH36
Upper deck plate 3: 60mm EH36
Longi Bulkhead 5: 60mm EH36
Hatch combing 6: 65mm EH40

(1)コンテナ船の深さ、幅を変更する場合
縦通部材の材料強度及び厚さを変更せずに、コンテナ船の深さ、幅を変更する場合は、荷役への悪影響が懸念される。また、コンテナの重量の大幅な増加が予想される。
(1) When changing the depth and width of the container ship When changing the depth and width of the container ship without changing the material strength and thickness of the longitudinal members, there is a concern about adverse effects on cargo handling. . Also, a significant increase in container weight is expected.

(2)板厚をあげて対処する場合
一例として、上甲板付近の縦通部材のグレード及び板厚を以下のようにすることが想定される。
船側外板2: 75mm EH36
アッパーデッキプレート3: 75mm EH36
ロンジバルクヘッド5: 75mm EH36
ハッチコーミング6: 80mm EH40
この場合、厚板化により、アレスト性能が低下する。また、厚板化により重量が増加する。さらに、コンテナ船の重心が高くなるため、復元力が低下し、その結果コンテナの積載可能量が低下する。
(3)高強度材料を開発、採用する(アレスト性能を考慮しない)場合
一例として、上甲板付近の縦通部材のグレード及び板厚を以下のようにすることが想定される。
船側外板2: 55mm EH40
アッパーデッキプレート3: 75mm EH40
ロンジバルクヘッド5: 55mm EH40
ハッチコーミング6: 80mm 降伏強度460N/mm
この場合、上記(2)の材料を高強度化し、比較的縦曲げに対する強度への寄与度の小さい船側外板2及びロンジバルクヘッド5の板を薄くすることで、重量増加を抑えることが想定される。しかし、アレスト性能は考慮されていないので、アッパーデッキプレート3及びハッチコーミング6の板厚は低減されていない。
(4)本発明の鋼構造体を採用する場合
本発明に従ってアレスト性能を考慮して高強度材料を採用する場合の一例として、上甲板付近の縦通部材のグレード及び板厚を以下のようにすることが想定される。
船側外板2: 65mm EH40
アッパーデッキプレート3: 65mm EH40
ロンジバルクヘッド5: 65mm EH40
ハッチコーミング6: 65mm 降伏強度460N/mm
この場合、板厚は従来並みに抑えられ、必要アレスト性能が発揮される。
(2) When dealing with increased plate thickness As an example, it is assumed that the grade and thickness of the longitudinal members near the upper deck are as follows.
Ship side skin 2: 75mm EH36
Upper deck plate 3: 75mm EH36
Longi Bulkhead 5: 75mm EH36
Hatch combing 6: 80mm EH40
In this case, the arrest performance decreases due to the thickening. Also, the weight increases due to thickening. Further, since the center of gravity of the container ship is increased, the restoring force is reduced, and as a result, the container loadable capacity is reduced.
(3) In the case of developing and adopting a high-strength material (without considering the arrest performance) As an example, it is assumed that the grade and thickness of the longitudinal member near the upper deck are as follows.
Ship side skin 2: 55mm EH40
Upper deck plate 3: 75mm EH40
Longi Bulkhead 5: 55mm EH40
Hatch combing 6: 80mm Yield strength 460N / mm 2
In this case, it is assumed that the increase in weight is suppressed by increasing the strength of the material of (2) and reducing the thickness of the ship side outer plate 2 and the long bulkhead 5 which have a relatively small contribution to the strength against longitudinal bending. Is done. However, since the arrest performance is not considered, the plate thickness of the upper deck plate 3 and the hatch combing 6 is not reduced.
(4) When adopting the steel structure of the present invention As an example of adopting a high-strength material in consideration of arrest performance according to the present invention, the grade and thickness of the longitudinal member near the upper deck are as follows: It is assumed that
Ship side skin 2: 65mm EH40
Upper deck plate 3: 65mm EH40
Longi Bulkhead 5: 65mm EH40
Hatch combing 6: 65mm Yield strength 460N / mm 2
In this case, the plate thickness is suppressed as in the conventional case, and the necessary arrest performance is exhibited.

各種鋼板について行った大型混成ESSO試験の結果を示す図である。It is a figure which shows the result of the large sized hybrid ESSO test done about various steel plates. ESSO試験片の形状、寸法を示す図である。It is a figure which shows the shape and dimension of an ESSO test piece. 鋼板の破面遷移温度と、Kca値が4000N/mm1.5を示す温度との関係を示すグラフである。And fracture appearance transition temperature of the steel sheet, K ca value is a graph showing the relationship between the temperature showing a 4000 N / mm 1.5. 鋼板の破面遷移温度と−40℃におけるシャルピー衝撃吸収エネルギーとの関係を示すグラフである。It is a graph which shows the relationship between the fracture surface transition temperature of a steel plate, and the Charpy impact absorption energy in -40 degreeC. コンテナ船の左舷側を上から見た概略図である。It is the schematic which looked at the port side of the container ship from the top. 図5の位置A上部の縦通部材を示した断面図である。It is sectional drawing which showed the longitudinal member of the position A upper part of FIG.

符号の説明Explanation of symbols

1 コンテナ船
2 船側外板
3 アッパーデッキプレート(上甲板)
4 アッパーデッキプレート付ロンジ
5 ロンジバルクヘッド
6 ハッチコーミング
1 Container ship 2 Ship side skin 3 Upper deck plate (upper deck)
4 Longe with upper deck plate 5 Longe bulkhead 6 Hatch combing

Claims (5)

引張試験における規格降伏強度が390N/mmより大きく、かつ
アレスト性能を示す値Kcaが−10℃で4000N/mm1.5以上である、船舶用鋼構造体。
A marine steel structure having a standard yield strength in a tensile test of greater than 390 N / mm 2 and a value K ca indicating arrest performance of 4,000 N / mm 1.5 or more at −10 ° C.
所定の厚さを有する船舶用鋼構造体であって、
引張試験における規格降伏強度が390N/mmより大きく、かつ
破面遷移温度が、アレスト性能を示す値Kcaが−10℃で4000N/mm1.5の前記厚さを有する鋼板が示す破面遷移温度以下である、船舶用鋼構造体。
A marine steel structure having a predetermined thickness,
Fracture surface exhibited by a steel sheet having a standard yield strength in a tensile test of greater than 390 N / mm 2 and a fracture surface transition temperature of 4,000 ° C / 1.5 at a value K ca of -10 ° C. indicating arrest performance A marine steel structure having a transition temperature or lower.
所定の厚さを有する船舶用鋼構造体であって、
引張試験における規格降伏強度が390N/mmより大きくであり、かつ
シャルピー衝撃試験における吸収エネルギー値が、アレスト性能を示す値Kcaが−10℃で4000N/mm1.5の前記厚さを有する鋼板が示す破面遷移温度に対応するシャルピー衝撃試験における吸収エネルギー値以上である、船舶用鋼構造体。
A marine steel structure having a predetermined thickness,
Standard yield strength in tensile testing is greater than 390 N / mm 2, and absorbed energy value at the Charpy impact test is, the value K ca showing an arrest performance having the thickness of 4000 N / mm 1.5 at -10 ° C. A marine steel structure that is equal to or higher than an absorbed energy value in a Charpy impact test corresponding to a fracture surface transition temperature indicated by a steel plate.
請求項1ないし3のいずれか一項に記載の鋼構造体を備えた船舶。   A ship provided with the steel structure according to any one of claims 1 to 3. 前記鋼構造体を上甲板付近の縦通部材として用いた請求項4記載の船舶。   The marine vessel according to claim 4, wherein the steel structure is used as a longitudinal member near the upper deck.
JP2004321238A 2004-11-04 2004-11-04 Ship steel structure selection method and ship Active JP4898110B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004321238A JP4898110B2 (en) 2004-11-04 2004-11-04 Ship steel structure selection method and ship
PCT/JP2005/019984 WO2006049119A1 (en) 2004-11-04 2005-10-31 Steel structure for ship and ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004321238A JP4898110B2 (en) 2004-11-04 2004-11-04 Ship steel structure selection method and ship

Publications (2)

Publication Number Publication Date
JP2006131056A true JP2006131056A (en) 2006-05-25
JP4898110B2 JP4898110B2 (en) 2012-03-14

Family

ID=36319126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004321238A Active JP4898110B2 (en) 2004-11-04 2004-11-04 Ship steel structure selection method and ship

Country Status (2)

Country Link
JP (1) JP4898110B2 (en)
WO (1) WO2006049119A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008074188A (en) * 2006-09-20 2008-04-03 Ihi Marine United Inc Hatch coaming of container vessel
JP2010195330A (en) * 2009-02-26 2010-09-09 Mitsubishi Heavy Ind Ltd Method for selecting steel plate for hull, and ship
KR200477411Y1 (en) * 2010-11-17 2015-06-05 대우조선해양 주식회사 Escape way of marine structure
KR20210029442A (en) * 2019-09-06 2021-03-16 삼성중공업 주식회사 A system for supplying fuel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5144053B2 (en) * 2006-05-12 2013-02-13 Jfeスチール株式会社 Welded structure with excellent brittle crack propagation stop properties

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157794A (en) * 1995-12-06 1997-06-17 Nippon Steel Corp High damping alloy and its production
JPH1017981A (en) * 1996-06-28 1998-01-20 Nippon Steel Corp High tensile strength steel material with low yield ratio for construction use, excellent in brittle crack arrest property, and its production
JP2000160680A (en) * 1998-11-30 2000-06-13 Nippon Steel Corp Architectural structure member using steel member excellent in arrest property and architectural structure thereof
JP2000328177A (en) * 1999-05-24 2000-11-28 Kobe Steel Ltd Steel sheet excellent in arresting characteristic and ductile fracture characteristic
JP2003226931A (en) * 2002-02-05 2003-08-15 Nippon Steel Corp Direct-quenched high tensile strength thick steel plate having excellent arrest property

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09302445A (en) * 1996-05-09 1997-11-25 Sumitomo Metal Ind Ltd Nickel-containing steel for low temperature use and its production
JP3387371B2 (en) * 1997-07-18 2003-03-17 住友金属工業株式会社 High tensile steel excellent in arrestability and weldability and manufacturing method
JPH1161249A (en) * 1997-08-27 1999-03-05 Nkk Corp Production of steel having tensile strength of 780 n/mm2 and excellent in toughness

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157794A (en) * 1995-12-06 1997-06-17 Nippon Steel Corp High damping alloy and its production
JPH1017981A (en) * 1996-06-28 1998-01-20 Nippon Steel Corp High tensile strength steel material with low yield ratio for construction use, excellent in brittle crack arrest property, and its production
JP2000160680A (en) * 1998-11-30 2000-06-13 Nippon Steel Corp Architectural structure member using steel member excellent in arrest property and architectural structure thereof
JP2000328177A (en) * 1999-05-24 2000-11-28 Kobe Steel Ltd Steel sheet excellent in arresting characteristic and ductile fracture characteristic
JP2003226931A (en) * 2002-02-05 2003-08-15 Nippon Steel Corp Direct-quenched high tensile strength thick steel plate having excellent arrest property

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008074188A (en) * 2006-09-20 2008-04-03 Ihi Marine United Inc Hatch coaming of container vessel
JP2010195330A (en) * 2009-02-26 2010-09-09 Mitsubishi Heavy Ind Ltd Method for selecting steel plate for hull, and ship
KR200477411Y1 (en) * 2010-11-17 2015-06-05 대우조선해양 주식회사 Escape way of marine structure
KR20210029442A (en) * 2019-09-06 2021-03-16 삼성중공업 주식회사 A system for supplying fuel
KR102605383B1 (en) * 2019-09-06 2023-11-23 삼성중공업 주식회사 A system for supplying fuel

Also Published As

Publication number Publication date
WO2006049119A1 (en) 2006-05-11
JP4898110B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
JP4410715B2 (en) Welding structure welding method and welded structure excellent in brittle crack propagation resistance
KR101105620B1 (en) Welded structure excellent in brittle-cracking propagation stopping characteristics
TWI523953B (en) A method and a test apparatus for evaluating a growth performance of a brittle crack propagation in a thick steel sheet having a thickness of 50 mm or more and a method for manufacturing the same,
JP4772921B2 (en) Welded structure with excellent brittle crack propagation resistance
JP4790364B2 (en) Welded structure with excellent brittle crack propagation resistance
BR112014025358B1 (en) welded structure
WO2013038686A1 (en) Welded structure
JP4537683B2 (en) Welded structure with excellent brittle fracture resistance
WO2006049119A1 (en) Steel structure for ship and ship
KR102258423B1 (en) Welded structure having excellent brittle crack arrestability
JP4074524B2 (en) Welded structure with excellent brittle fracture resistance
KR20140127363A (en) Method for evaluating long brittle crack arresting ability in thick steel plate, and testing device and method for manufacturing thick steel plate using same
CN106170440A (en) The hull construction of crash worthiness excellence and the method for designing of hull construction
JP7481703B2 (en) Collision evaluation test body, collision test method, collision test device, manufacturing method of hull structure, design method of hull structure, and hull structure
JP2006088184A (en) High heat input butt-welded joint having excellent brittle fracture generation resisting property and method for verifying brittle fracture generation resisting property of high heat input butt-welded joint
JP4818467B1 (en) Welded joint and welded structure excellent in brittle crack propagation resistance
KR102119175B1 (en) Welding structure
JP6562190B1 (en) Welded structure
CN109311126B (en) Welded structure having excellent brittle crack propagation stopping characteristics
JP5167918B2 (en) Barbusbau with excellent collision energy absorption capability
CN106314678B (en) A kind of structure preventing main hull brittle fracture
Toyoda et al. Safety of mega container ship focusing on brittle crack initiation and arrest behavior of heavy thickness plate
WO2023007860A1 (en) Welding structure, method for designing same, and method for constructing same
JP7006467B2 (en) Welded joint
Denev Verification the Stressed State of the Ships’ Hull during Separate Water Descent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111018

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

R151 Written notification of patent or utility model registration

Ref document number: 4898110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350