JPH1161249A - Production of steel having tensile strength of 780 n/mm2 and excellent in toughness - Google Patents

Production of steel having tensile strength of 780 n/mm2 and excellent in toughness

Info

Publication number
JPH1161249A
JPH1161249A JP24483797A JP24483797A JPH1161249A JP H1161249 A JPH1161249 A JP H1161249A JP 24483797 A JP24483797 A JP 24483797A JP 24483797 A JP24483797 A JP 24483797A JP H1161249 A JPH1161249 A JP H1161249A
Authority
JP
Japan
Prior art keywords
steel
toughness
temperature
rolling
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24483797A
Other languages
Japanese (ja)
Inventor
Kazutaka Kobayashi
一貴 小林
Yutaka Moriya
豊 森谷
Kazuhide Takahashi
和秀 高橋
Toru Kawanaka
徹 川中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP24483797A priority Critical patent/JPH1161249A/en
Publication of JPH1161249A publication Critical patent/JPH1161249A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the steel excellent in weldability, sound anisotropy, large input heat weld joint property as well as toughness at a plate thickness center by subjecting a steel, in which a content of C, Ni, Nb and a value of Ceq are specified, to direct quenching and tempering treatments immediately after hot rolling at a specified temp. SOLUTION: The steel, which contains, by weight, >=0.06% C, 0.5-3.0% Ni, 0.02-0.04% Nb as an indispensable component and satisfies >=0.48% Ceq, is heated at a temp., at which a Nb quantity not entering into solid solution exists >=0.005%, or lower to >=950 deg.C and then is subjected to hot rolling. The Ceq is defined as C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14. The steel, after hot rolling, is subjected to direct quenching and then tempering at a temp. of the Ac transformation point or lower to >=600 deg.C. Further the steel contains 0.15-1.5% Mn, <=0.01% P, <=0.01% S, 0.1-0.8% Mo, 0.01-0.08% Al, 0.001-0.008% N and <=0.0002% B.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明は、橋梁、水門鉄管な
どの鋼構造物に使用される、低温での脆性破壊の伝播停
止特性に優れ、かつ溶接性、音響異方性、入熱量が5k
J/mmを越える大入熱サブマージアーク溶接(SA
W)における溶接継手特性に優れた引張強さ780N/
mm2級鋼の製造方法に関する。
TECHNICAL FIELD The present invention relates to a steel structure such as a bridge or a floodgate, which has excellent characteristics of stopping brittle fracture propagation at low temperatures, and has weldability, acoustic anisotropy and heat input of 5 k.
High heat input submerged arc welding exceeding J / mm (SA
W) Excellent tensile strength of 780 N /
a method of manufacturing a mm 2 class steel.

【0002】[0002]

【従来の技術】近年、引張強さ780N/mm2以上を
有する高張力鋼(以下「HT780鋼」という。)は、
球形タンク、橋梁、水門鉄管など、様々な鋼構造物に使
用されている。これは、HT780鋼が、普通鋼の約3
倍の降伏強度、約2倍の引張強度を有するため、構造物
として必要な設計強度を満たすための、鋼材の板厚を減
少でき、鋼構造物の重量を軽減できる利点があるからで
ある。
2. Description of the Related Art In recent years, high-strength steels having a tensile strength of 780 N / mm 2 or more (hereinafter referred to as “HT780 steels”) have been developed.
It is used for various steel structures such as spherical tanks, bridges, and floodgates. This is because HT780 steel is about 3 times less than ordinary steel.
This is because it has twice the yield strength and about twice the tensile strength, and thus has the advantages of reducing the thickness of the steel material and reducing the weight of the steel structure in order to satisfy the required design strength as a structure.

【0003】しかし、HT780鋼は、その高い強度を
実現するために、必然的に鋼に含有する合金元素量を多
くせざるを得ず、特に板厚が50mmを超えるような厚
物では、合金含有量が著しく高くなるため、鋼構造物を
施工する際の溶接性の改善が大きな課題であった。ま
た、当然のことながら、鋼構造物の安全性の点からの靭
性も必要であった。
[0003] However, in order to realize the high strength of HT780 steel, it is inevitable to increase the amount of alloying elements contained in the steel. Since the content is extremely high, improvement of weldability when constructing a steel structure has been a major issue. Naturally, toughness was also required in terms of safety of the steel structure.

【0004】こうした課題の解決に向けて、これまでに
種々の鋼種が提案されている。それらの大部分は、焼入
性を著しく向上させるBを微量含有し、焼入れ焼戻し処
理を行うことにより製造されてきた。Bを含有するHT
780鋼は、十分に焼入れされたマルテンサイト組織が
得られ、優れた母材強度と靭性を得ることが可能であ
る。
[0004] To solve these problems, various types of steel have been proposed. Most of them have been produced by quenching and tempering, containing a trace amount of B which significantly improves hardenability. HT containing B
In 780 steel, a sufficiently quenched martensitic structure can be obtained, and excellent base metal strength and toughness can be obtained.

【0005】一方、B含有に起因して溶接部の硬化性が
増加し、溶接部の低温割れ感受性を損ねるため、溶接施
工時に溶接割れ防止対策を十分に行う必要がある。一般
には、溶接割れを防止すべく、被溶接物を100℃以上
に予熱しているが、高温に加熱された作業環境は、安全
衛生上好ましいとはいえず、また作業効率も著しく低下
するのが実状である。
On the other hand, since the hardening of the welded portion is increased due to the B content and the susceptibility of the welded portion to low-temperature cracking is impaired, it is necessary to take sufficient measures for preventing weld cracking during welding. Generally, in order to prevent welding cracks, the work to be welded is preheated to 100 ° C. or higher. However, a work environment heated to a high temperature is not preferable in terms of safety and health, and the work efficiency is significantly reduced. Is the actual situation.

【0006】このようなB含有HT780鋼が有する問
題を解決するため、特開平4−333516号公報に
は、Bを含有しないHT780鋼が開示されている。こ
れは、溶接硬化性を高めるC量を0.043〜0.07
8%に制限し、かつ、溶接硬化性にあまり悪影響を及ぼ
さないCuを0.9〜1.8%と多量に含有し、Cuの
析出硬化を利用したものである。
[0006] In order to solve such a problem of the B-containing HT780 steel, Japanese Patent Application Laid-Open No. 4-333516 discloses an HT780 steel containing no B. This is because the amount of C that enhances the weld hardenability is 0.043 to 0.07.
It is limited to 8% and contains a large amount of Cu, which does not adversely affect the weld hardenability, as much as 0.9 to 1.8%, and utilizes precipitation hardening of Cu.

【0007】しかしながら、このCuを含有したB無添
加のHT780鋼は、溶接硬化性に優れるものの、Cu
の析出強化を活用して母材の強度を確保するため、焼戻
し温度を550℃〜600℃と、比較的低温に制限する
必要がある。従って、溶接を行うと、溶接部近傍は当該
温度以上に再加熱されるため、その部分の硬さが低下
し、溶接継手強度の不足が懸念される。また、600℃
以上の高温焼戻しを行うと、析出強化による強度上昇が
小さくなるので、母材強度が不足する可能性がある。
However, the HT780 steel containing no Cu and containing B has excellent weld hardening properties,
In order to secure the strength of the base material by utilizing the precipitation strengthening of the steel, it is necessary to limit the tempering temperature to a relatively low temperature of 550 ° C. to 600 ° C. Therefore, when welding is performed, the vicinity of the welded portion is reheated to the temperature or higher, so that the hardness of the portion is reduced and there is a concern that the strength of the weld joint is insufficient. 600 ° C
When the above-mentioned high-temperature tempering is performed, the strength increase due to precipitation strengthening is reduced, so that the base material strength may be insufficient.

【0008】一方、こうした溶接硬化性の課題に加え、
最近は、鋼構造物の施工の合理化の観点から、鋼板の音
響異方性が小さいこと及び大入熱溶接を行っても溶接部
の靭性が良好であることの、二つの新たな要求がHT7
80鋼に与えられている。
On the other hand, in addition to such a problem of weld hardening,
Recently, from the viewpoint of rationalization of construction of steel structures, HT7 has two new requirements that the acoustic anisotropy of the steel sheet is small and that the toughness of the welded portion is good even when large heat input welding is performed.
Given to 80 steel.

【0009】音響異方性の要求は、橋梁などの溶接構造
物の安全性確保のため、溶接欠陥の検出を、斜角による
超音波探傷により行うことに由来する。超音波探傷にお
いては、鋼板の最終圧延方向(L方向)と最終圧延方向
に直交する方向(C方向)で結晶粒の方向性、すなわち
圧延集合組織、に差がある場合、超音波を入射する方向
によって音速に差が生じ、このため欠陥の正確な検出が
困難となる。
The requirement for acoustic anisotropy stems from the fact that the detection of welding defects is performed by ultrasonic flaw detection at oblique angles in order to ensure the safety of welded structures such as bridges. In ultrasonic testing, if there is a difference in the directionality of crystal grains in the final rolling direction (L direction) of the steel sheet and a direction (C direction) orthogonal to the final rolling direction, that is, the rolling texture, ultrasonic waves are incident. There is a difference in sound speed depending on the direction, which makes it difficult to detect a defect accurately.

【0010】また、L方向の検査とC方向の検査とを区
別して評価判定することは技術的に限界がある。従っ
て、溶接欠陥と疑われるエコーが発見された場合、その
箇所はすべて補修しなければならならず、必要以上の欠
陥補修を余儀なくされ、施工費が莫大なものとなる。
In addition, there is a technical limit in evaluating and judging the inspection in the L direction and the inspection in the C direction separately. Therefore, if an echo that is suspected of a welding defect is found, it must be repaired at all locations, and repair of the defect more than necessary is unavoidable, and the construction cost becomes enormous.

【0011】音響異方性に関する問題を解決するため
に、例えば特開昭63−235431号公報には、音響
異方性の小さい鋼板の製造方法が開示されている。これ
は、炭素当量値が一定量以下の鋼を用いて、熱間圧延の
圧下率と圧延温度、圧延後の冷却速度を制御することに
より、音響異方性の低減を図るものである。しかし、こ
の方法は、引張強さ490N/mm2級鋼において実現
できるものであり、HT780鋼のように、合金含有量
が多い鋼で、強度、靭性、溶接性等の厳しい要求を全て
満足させる必要がある場合には、音響異方性を小さくす
るのは容易ではない。
In order to solve the problem concerning acoustic anisotropy, for example, Japanese Patent Application Laid-Open No. 63-235431 discloses a method for producing a steel sheet having small acoustic anisotropy. This is intended to reduce acoustic anisotropy by using a steel having a carbon equivalent value equal to or less than a certain amount and controlling the rolling reduction in hot rolling, the rolling temperature, and the cooling rate after rolling. However, this method can be realized with a tensile strength of 490 N / mm 2 grade steel, and satisfies all strict requirements such as strength, toughness, weldability, etc. in steels having a high alloy content such as HT780 steel. If necessary, it is not easy to reduce acoustic anisotropy.

【0012】一方、HT780鋼の大入熱溶接について
は、溶接時の大きな入熱のために、溶接継手部の強度が
大幅に低下したり、溶接熱影響部(HAZ)の靭性が大
幅に劣化するなど種々の問題点がある。従って、一般的
にはそうした問題を生じさせないような溶接入熱量、例
えば5kJ/mm以下、に制限せざるを得なかった。し
かし、水門鉄管等の溶接構造物の施工において、入熱量
が5kJ/mmを越えるような大入熱サブマージアーク
溶接(以下、「大入熱SAW」という。)法が採用でき
れば、施工の生産性が著しく向上し、コストを大幅に低
減することが可能となるため、実現の要望が大きい。
On the other hand, in the case of high heat input welding of HT780 steel, the strength of the welded joint portion is greatly reduced due to the large heat input during welding, and the toughness of the weld heat affected zone (HAZ) is significantly deteriorated. There are various problems. Therefore, generally, the welding heat input amount that does not cause such a problem has to be limited to, for example, 5 kJ / mm or less. However, if a large heat input submerged arc welding (hereinafter, referred to as "large heat input SAW") method can be adopted so that the heat input amount exceeds 5 kJ / mm in the construction of a welded structure such as a water gate iron pipe, the productivity of the construction will be increased. Is significantly improved, and the cost can be significantly reduced.

【0013】特開昭61−044161号公報には、H
T780鋼のこうした大入熱に伴う問題点を解決する方
法が開示されている。当該発明は、HT780鋼の合金
元素含有量の最適化を図り、かつ、低炭素(C:0.0
6%超え0.12%以下)及び高炭素等量(Ceq:
0.50以上)を特徴とする、Bを含有しない鋼であ
る。
JP-A-61-044161 discloses that H
A method for solving the problems associated with such a large heat input of T780 steel is disclosed. The present invention seeks to optimize the alloy element content of HT780 steel and to reduce the carbon content (C: 0.0
6% or more and 0.12% or less) and high carbon equivalent (Ceq:
0.50 or more).

【0014】この発明は、入熱量9kJ/mmのエレク
トロガス溶接法を用いて溶接されることを前提とし、優
れた溶接ボンド部の靭性を有しているが、発明者らの研
究では、この鋼でも、前述の大入熱SAWで溶接する
と、溶接部の靭性が不十分であることが判明した。すな
わち、溶接入熱量の大小は、溶接部近傍のオーステナイ
ト結晶粒の粗大化に大きな影響を及ぼすが、同時に、溶
接方法の相違により、再加熱後の冷却速度が異なり、生
成する組織が相違する。大入熱SAWは、エレクトロガ
ス溶接法に比べ、同一入熱量では溶接後の冷却速度が遅
いため、HAZの靭性に不利な組織が生成しやすい。
The present invention is based on the premise that welding is performed using an electrogas welding method with a heat input of 9 kJ / mm, and has excellent toughness of a weld bond portion. It has been found that when steel is welded with the above-described high heat input SAW, the toughness of the weld is insufficient. That is, the magnitude of the welding heat input greatly affects the coarsening of austenite crystal grains in the vicinity of the welded portion, but at the same time, the cooling rate after reheating differs due to the difference in welding method, and the generated structure differs. The large heat input SAW has a lower cooling rate after welding with the same heat input as compared with the electrogas welding method, and thus a structure disadvantageous to the toughness of the HAZ is likely to be generated.

【0015】このため、大入熱SAWの場合、溶接継手
強度および溶接熱影響部の靭性の確保が、エレクトロガ
ス溶接よりも困難であることがわかる。この対策とし
て、炭素当量値をさらに高めることも考えられるが、こ
れは、溶接性の劣化を招くとともに、コスト上昇となる
等の問題点がある。特に、板厚が50mm以上の厚物の
HT780鋼では、実現が容易ではない。
[0015] Therefore, it can be seen that in the case of large heat input SAW, it is more difficult to secure the strength of the weld joint and the toughness of the weld heat affected zone than by electrogas welding. As a countermeasure against this, it is conceivable to further increase the carbon equivalent value, but this causes problems such as deterioration of weldability and an increase in cost. In particular, it is not easy to realize HT780 steel having a thickness of 50 mm or more.

【0016】本発明者らの一部がした、特開平8−33
3626号公報には、これらの諸特性を改善した、板厚
50mm以上のHT780鋼が開示されている。当該発
明は、HT780鋼の合金元素含有量の更なる最適化を
図り、かつ、低炭素(C:0.055〜0.084%)
及びCeqを0.48以上とする、Bを含有しない鋼を
用いて、スラブ加熱後、圧延集合組織を生じない温度で
圧延を終了することにより、溶接性、大入熱継手特性及
び音響異方性に優れた鋼を製造する方法である。
Japanese Unexamined Patent Application Publication No. 8-33, filed by a part of the present inventors.
No. 3626 discloses an HT780 steel having a plate thickness of 50 mm or more in which these various properties are improved. The present invention aims at further optimizing the alloy element content of the HT780 steel, and has a low carbon content (C: 0.055 to 0.084%).
By using a steel not containing B having a Ceq of 0.48 or more, and after slab heating, rolling is completed at a temperature at which no rolling texture is generated, thereby improving weldability, large heat input joint characteristics, and acoustic anisotropy. This is a method for producing steel with excellent properties.

【0017】当該発明の実施例からは、HT780鋼に
必要な特性を全て満たしていることが窺える。しかし、
発明者らのその後の研究では、この方法でも、製造条件
によっては、板厚中心部での靭性が十分とはいえず、例
えば、低温での脆性破壊の伝播停止特性(アレスト特
性)については、改善の余地がある。
From the examples of the present invention, it can be seen that all the properties required for HT780 steel are satisfied. But,
According to the subsequent studies by the inventors, even with this method, the toughness at the center of the sheet thickness cannot be said to be sufficient depending on the manufacturing conditions. For example, the propagation arrest property (arrest property) of brittle fracture at low temperature is as follows: There is room for improvement.

【0018】HT780鋼における厚物材の要望は、特
に長大橋梁や、高落差の水門鉄管への適用を考慮したも
のであり、使用される鋼板の板厚が50mm以上、場合
によっては、100mm以上の極厚鋼板が必要とされる
場合がある。一般に、厚物の鋼板の製造においても、最
近は連続鋳造スラブを用いることが多い。このため圧延
開始厚から圧延を終える製品厚までの圧下量が制約さ
れ、1パスあたりの圧下率を大きく採るのが困難であ
る。
The demand for a thick material in the HT780 steel is particularly taken into consideration for application to a long bridge or a high-fall floodgate, and the steel plate used has a thickness of 50 mm or more, and in some cases, 100 mm or more. May be required. In general, continuous cast slabs are often used in the production of thick steel sheets. For this reason, the amount of reduction from the rolling start thickness to the finished product thickness is restricted, and it is difficult to obtain a large reduction ratio per pass.

【0019】また、鋼板の形状調整のため、1パスあた
り5%以下の軽圧下を加える必要もある。従って、熱間
圧延において、オーステナイトの再結晶による細粒化が
十分に行えず、結晶組織の微細化による靭性の改善は期
待し難い。
Further, in order to adjust the shape of the steel sheet, it is necessary to apply a light reduction of 5% or less per pass. Therefore, in hot rolling, grain refinement by recrystallization of austenite cannot be sufficiently performed, and it is difficult to expect improvement in toughness due to refinement of the crystal structure.

【0020】また、鋼板焼入れ時の冷却速度は、板厚中
心部は他の位置よりも当然に小さく、厚物HT780鋼
の場合、板厚方向の表層〜板厚1/4tの部分でマルテ
ンサイト組織が得られたにしても、板厚中心部は靭性に
好ましくない上部ベイナイト組織が生成しやすい。
The cooling rate at the time of quenching the steel sheet is naturally lower at the center of the sheet thickness than at other positions, and in the case of a thick HT780 steel, martensite is present in the portion from the surface layer to the sheet thickness of 1 / 4t in the thickness direction. Even when a structure is obtained, an upper bainite structure that is not favorable in toughness is likely to be generated in the central portion of the plate thickness.

【0021】こうしたことから、厚物HT780鋼の板
厚中心部の靭性の確保は容易ではない。また、衝撃試験
は、一般的には、JIS規格に則り(例えば、JIS
G3106、溶接構造用圧延鋼板:9.2.1(4)の
衝撃試験片の採取位置)、表面から厚さの1/4の位置
でなされる。前述の従来技術で示された優れた靭性(シ
ャルピ破面遷移温度)も、採取位置が明記された例で
は、1/4t位置であり、明記されていないものも当該
位置と推察される。
For these reasons, it is not easy to secure toughness at the center of the thickness of the thick HT780 steel. In addition, an impact test generally conforms to JIS standards (for example, JIS
G3106, rolled steel sheet for welded structure: sampling position of 9.2.1 (4) impact test specimen), which is made at a position 1/4 of the thickness from the surface. The excellent toughness (Charpy fracture surface transition temperature) shown in the above-mentioned prior art is also the 1 / 4t position in the example where the sampling position is specified, and the one not specified is presumed to be the position.

【0022】これに加え、橋梁、水門鉄管に使用される
綱材には、安全性確保の観点からアレスト特性が要求さ
れており、板厚中心部においても、高い破壊靭性値が必
要である。従って、衝撃試験のシャルピー吸収エネルギ
あるいは破面遷移温度だけでは必ずしも十分とはいえ
ず、脆性破壊の伝播停止特性を判断しうる試験法での靭
性が必要となる。こうした破壊靭性値については、先行
技術には開示されていない。
In addition, rope materials used for bridges and sluice gates are required to have arrest characteristics from the viewpoint of ensuring safety, and a high fracture toughness value is required even in the center of the plate thickness. Therefore, the Charpy absorbed energy or the fracture surface transition temperature alone in the impact test is not always sufficient, and a toughness by a test method capable of judging the propagation stopping characteristic of brittle fracture is required. Such fracture toughness values are not disclosed in the prior art.

【0023】[0023]

【発明が解決しようとする課題】以上述べたように溶接
性、音響異方性、大入熱溶接継手特性に優れた鋼に関す
る先行技術はあるものの、これらに加え、板厚中心部の
靭性に優れたHT780鋼を安定的に製造する方法につ
いては、需要家の要望が高いにもかかわらず、未だ実現
されていないのが現状である。本発明はこれらの問題を
解決するものであり、溶接性、音響異方性、大入熱溶接
継手特性に加え、板厚中心部の靭性にも優れた厚物のH
T780鋼の製造方法を提供することを目的とする。
As described above, although there are prior arts relating to steels having excellent weldability, acoustic anisotropy, and high heat input welding characteristics, in addition to these, the toughness at the center of the sheet thickness is also reduced. At present, a method for stably producing excellent HT780 steel has not yet been realized, despite high demands from consumers. The present invention is intended to solve these problems. In addition to the weldability, acoustic anisotropy, and high heat input welded joint properties, a thick material having excellent toughness in the central portion of the sheet thickness is obtained.
An object of the present invention is to provide a method for producing T780 steel.

【0024】[0024]

【課題を解決するための手段】本発明者らは、上記課題
に対し、HT780鋼の化学成分、熱間圧延時のスラブ
加熱温度、圧延仕上げ温度、圧延後の熱処理条件を総合
的に調査し、下記発明をした。すなわち、第1の発明
は、重量%で、C:0.06%以上、Ni:0.5〜
3.0%、Nb:0.02〜0.04%を含有し、か
つ、Ceq:0.48%以上を満たす鋼を、未固溶Nb
量が0.005%以上存在する温度以下950℃以上で
加熱した後、熱間圧延を行い、圧延終了後直ちに直接焼
入れし、その後Ac1変態点以下600℃以上の温度で
焼戻すことを特徴とする、靭性に優れたHT780鋼の
製造方法である。ここで、Ceq(%)は次式で定義さ
れる。 Ceq=C+Mn/6+Si/24+Ni/40+Cr
/5+Mo/4+V/14 本発明により、板厚中心部でも良好な靭性を有するHT
780鋼を得ることができる。
In order to solve the above-mentioned problems, the present inventors comprehensively investigated the chemical composition of HT780 steel, the slab heating temperature during hot rolling, the rolling finishing temperature, and the heat treatment conditions after rolling. The following invention was made. That is, in the first invention, C: 0.06% or more and Ni: 0.5 to
A steel containing 3.0%, Nb: 0.02 to 0.04% and satisfying Ceq: 0.48% or more is converted into undissolved Nb
After heating at 950 ° C. or higher at a temperature of 0.005% or higher, hot rolling is performed, and the steel is directly quenched immediately after the completion of rolling, and then tempered at a temperature of 600 ° C. or lower at an Ac1 transformation point or lower. HT780 steel with excellent toughness. Here, Ceq (%) is defined by the following equation. Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr
/ 5 + Mo / 4 + V / 14 According to the present invention, HT having good toughness even in the center of the plate thickness
780 steel can be obtained.

【0025】第2の発明は、重量%で、C:0.06〜
0.09%、Mn:0.5〜1.5%、P:0.01%
以下、S:0.01%以下、Ni:0.5〜3.0%、
Mo:0.1〜0.8%、Nb:0.02〜0.04
%、Al:0.01〜0.08%、N:0.001〜
0.008%、B:0.0002%以下を含有し、か
つ、Ceq:0.48%以上を満たし、残部が鉄及び不
可避的不純物である鋼を、未固溶Nb量が0.005%
以上存在する温度以下950℃以上で加熱した後、熱間
圧延をTF 〜1050℃の範囲内で終了させ、圧延終了
後直ちに直接焼入れし、その後Ac1変態点以下600
℃以上の温度で焼戻しをすることを特徴とする、靭性に
優れた引張強さ780N/mm2級鋼の製造方法であ
る。ここで、TF =20Mn+10Ni+15Cr+1
00Mo+1500Nb+15Cu+150V+500
(Ti−3.42N)−8√板厚(mm)+830
(℃) また、「√板厚(mm)」とは、板厚(mm)の0.5
乗を意味する。本発明により、溶接性、大入熱継手特
性、音響異方性に優れ、かつ板厚中心部でも良好な靭性
を有するHT780鋼を得ることができる。
According to a second aspect of the present invention, C: 0.06 to
0.09%, Mn: 0.5 to 1.5%, P: 0.01%
Hereinafter, S: 0.01% or less, Ni: 0.5 to 3.0%,
Mo: 0.1 to 0.8%, Nb: 0.02 to 0.04
%, Al: 0.01 to 0.08%, N: 0.001 to
Steel containing 0.008% or less, B: 0.0002% or less, and satisfying Ceq: 0.48% or more, with the balance being iron and unavoidable impurities.
After heating at a temperature not lower than the existing temperature of 950 ° C. or higher, the hot rolling is completed within the range of TF to 1050 ° C., and the steel sheet is directly quenched immediately after the end of the rolling.
This is a method for producing a 780 N / mm 2 grade steel having excellent toughness, characterized by tempering at a temperature of not less than ℃. Here, T F = 20Mn + 10Ni + 15Cr + 1
00Mo + 1500Nb + 15Cu + 150V + 500
(Ti-3.42N) -8√Thickness (mm) +830
(° C.) Further, “√plate thickness (mm)” means 0.5% of the plate thickness (mm).
Means square. According to the present invention, HT780 steel having excellent weldability, large heat input joint characteristics, and acoustic anisotropy and having good toughness even in the center of the thickness can be obtained.

【0026】第3の発明は、前記鋼が、重量%で、更
に、Si:0.O1〜0.5%、Cu:0.01〜0.
5%、Cr:0.01〜1.0%、V:0.01〜0.
1%、Ti:0.005〜0.02%の一種以上を含有
することを持徴とする、靭性に優れた引張強さ780N
/mm2級鋼の製造方法である。本発明により、溶接
性、大入熱継手特性及び板厚中心部の靭性をより向上す
ることができる。
According to a third aspect of the present invention, the steel is contained in a percentage by weight of Si: 0. O1-0.5%, Cu: 0.01-0.
5%, Cr: 0.01-1.0%, V: 0.01-0.
1%, Ti: 0.005 to 0.02% or more, characterized by having a toughness and excellent tensile strength of 780N
/ Mm This is a method for producing grade 2 steel. According to the present invention, weldability, large heat input joint characteristics, and toughness at the center of the sheet thickness can be further improved.

【0027】以下に、本発明の基本となる考え方につい
て述べる。前述のように、板厚が50mm以上、場合に
よっては、100mm以上の極厚のHT780鋼におい
ても、連続鋳造スラブを用いることが多い。従って、熱
間圧延において全圧下量が小さくなり、1パスあたりの
圧下率を大きく採れず、オーステナイトの再結晶細粒化
を通しての、組織微細化による靭性の改善は期待し難
い。
Hereinafter, the basic concept of the present invention will be described. As described above, a continuous cast slab is often used even for an extremely thick HT780 steel having a plate thickness of 50 mm or more, and in some cases, 100 mm or more. Therefore, in hot rolling, the total rolling reduction is small, and a large rolling reduction per pass cannot be taken, and improvement in toughness by refining the structure through refining of austenite cannot be expected.

【0028】そこで、発明者らは、強度上昇を目的とし
て含有させるNbを、熱間圧延前に一部を未固溶の状態
でスラブ中に残存させ、これにより、スラブ加熱中のオ
ーステナイト結晶粒の粗大化を抑制するとともに、特に
高温の圧延で再結晶したオーステナイト粒が、その後の
軽圧下の圧延パスで生じる結晶粒の成長を抑制させる機
能を持たせることで、課題の解決を実現した。
Therefore, the present inventors have made the Nb contained for the purpose of increasing the strength to remain partially undissolved in the slab before hot rolling, whereby the austenite crystal grains during the slab heating are reduced. The problem was solved by suppressing the coarsening of austenite, and in particular, by giving the austenite grains recrystallized by high-temperature rolling to have the function of suppressing the growth of crystal grains generated in the subsequent rolling pass under light pressure.

【0029】図1は、熱間圧延前の未固溶のNb量と、
板厚中心部から採取したNRL式落重試験の無延性遷移
温度(NDTT)の関係を示す図である。ここで、未固
溶Nb量は次式から求めた。 log{(Nb−未固溶Nb)・(C+12N/1
4)}=2.26−6770/(TH +273.15) TH :スラブ加熱温度 (℃)
FIG. 1 shows the amount of undissolved Nb before hot rolling,
It is a figure which shows the relationship of the no-ductility transition temperature (NDTT) of the NRL type drop weight test taken from the board thickness center part. Here, the amount of undissolved Nb was determined from the following equation. log @ (Nb-undissolved Nb). (C + 12N / 1
4)} = 2.26-6770 / (T H +273.15) T H: Slab heating temperature (℃)

【0030】また、NRL式落重試験は、厚さ25m
m、長さ360mm、幅90mmの試片の片面に溶接ビ
ードを盛り、幅1.5mm以下の切り込みを入れた試験
片を、種々の温度に冷却後、両端単純支持状態で試験機
に置き、その背面に重錘を落下させ試験片を破断させ
た。無延性遷移温度(NDTT)は、試験片が破断する
最高温度である。
In the NRL type drop test, the thickness was 25 m.
m, a weld bead was placed on one side of a test piece having a length of 360 mm and a width of 90 mm, and a test piece having a notch of 1.5 mm or less was cooled to various temperatures. The weight was dropped on the back surface to break the test piece. The ductile transition temperature (NDTT) is the maximum temperature at which a specimen will break.

【0031】図1から明らかなように、未固溶Nb量の
増加は、板厚中心部の靭性向上に有効である。HT78
0鋼が使用される環境を考慮すると、NDTTは少なく
とも一30℃以下が必要と考えられるが、これを満たす
には、未固溶Nb量を0.005%以上残存させる必要
があることが分かる。また、図1には、本発明の範囲外
の化学成分を有する鋼は、板厚中心部の靭性が不十分で
あることが窺える。
As is clear from FIG. 1, an increase in the amount of undissolved Nb is effective in improving the toughness in the center of the sheet thickness. HT78
Considering the environment where 0 steel is used, it is considered that NDTT is required to be at least 130 ° C. or less, but it is understood that the amount of undissolved Nb needs to remain 0.005% or more to satisfy this. . FIG. 1 also shows that steel having a chemical composition outside the range of the present invention has insufficient toughness at the center of the plate thickness.

【0032】以下に、本発明の化学成分及び製造条件の
限定理由を述べる. C:0.06〜0.09%とする。Cは、母材強度の確
保のために含有するものであるが、同時に、板厚中心部
でマルテンサイト組織を得て、靭性を確保するには、
0.06%以上の含有が必要であるが、0.09%を超
えると、溶接性、大入熱継手靭性が著しく劣化するた
め、上記範囲とする。
The reasons for limiting the chemical components and production conditions of the present invention are described below. C: 0.06 to 0.09%. C is included to ensure base material strength, but at the same time, to obtain a martensite structure at the center of the sheet thickness and secure toughness,
The content is required to be 0.06% or more, but if it exceeds 0.09%, the weldability and the large heat input joint toughness are significantly deteriorated.

【0033】Mn:0.5〜1.5%とする。Mnは母
材強度および溶接継手強度を向上させるために含有させ
るが、0.5%未満では強度向上に不十分であり、1.
5%を超えると溶接性が劣化する。
Mn: 0.5 to 1.5%. Mn is added to improve the base metal strength and the welded joint strength, but if it is less than 0.5%, it is insufficient to improve the strength.
If it exceeds 5%, the weldability deteriorates.

【0034】P:0.01%以下とする。不純物元素で
あるPは、母材の焼戻し脆化を促進し、また大入熱溶接
継手靭性を劣化させるため、その上限を0.01%とす
る。
P: 0.01% or less. P, which is an impurity element, promotes tempering embrittlement of the base material and degrades the toughness of a large heat input welded joint, so the upper limit is made 0.01%.

【0035】S:0.01%以下とする。不純物元素で
あるSは、0.01%を超えると大入熱溶接継手靭性を
著しく劣化させるので、0.01%以下、望ましくは
0.005%以下とする。
S: 0.01% or less. If the content of S, which is an impurity element, exceeds 0.01%, the toughness of a high heat input weld joint is significantly deteriorated. Therefore, the content of S is set to 0.01% or less, preferably 0.005% or less.

【0036】Ni:0.5〜3.0%とする。Niは、
母材強度、靭性のほか大入熱溶接継手部の強度、靭性を
向上させる。しかし、含有量が0.5%未満では靭性に
寄与せず、3.0%を超えると経済性を損なう。
Ni: 0.5 to 3.0%. Ni is
Improves base metal strength and toughness, as well as the strength and toughness of large heat input welded joints. However, if the content is less than 0.5%, it does not contribute to toughness, and if it exceeds 3.0%, economic efficiency is impaired.

【0037】Mo:0.1〜0.8%とする。Moは、
母材強度および大入熱溶接継手強度を向上させるために
含有させるが、0.1%未満では強度向上に不十分であ
り、0.8%を超える含有は溶接性が損なわれる。
Mo: 0.1 to 0.8%. Mo is
Although it is contained in order to improve the base metal strength and the strength of the large heat input welded joint, if it is less than 0.1%, it is insufficient to improve the strength, and if it exceeds 0.8%, the weldability is impaired.

【0038】Nb:0.02〜0.04%とする。スラ
ブ加熱時の未固溶Nbは軽圧下圧延時に起こる巨大結晶
粒の形成を抑制し、圧延後のミクロ組織を微細にして靭
性を向上させる。また、Nbは母材強度および大入熱溶
接継手強度も向上させる効果を有する。しかし、0.0
2%未満の含有では、未固溶Nbによる巨大粒抑制効果
が充分に得られず、靭性向上効果が小さい。また0.0
4%を超える添加は、特に溶接金属部の靭性が損なわれ
るので、その範囲を上記に限定した。
Nb: 0.02 to 0.04%. The undissolved Nb at the time of slab heating suppresses the formation of giant crystal grains that occur at the time of light reduction rolling, refines the microstructure after rolling, and improves toughness. Nb also has the effect of improving the strength of the base metal and the strength of the large heat input welded joint. However, 0.0
If the content is less than 2%, the effect of suppressing large grains due to undissolved Nb cannot be sufficiently obtained, and the effect of improving toughness is small. 0.0
If the addition exceeds 4%, the toughness of the weld metal part is particularly impaired, so the range is limited to the above.

【0039】Al:0.0l〜0.08%とする。Al
は、直接焼入れ材においては、主として脱酸のために含
有させるが、0.01%未満ではその効果が不充分であ
り、0.08%を超える含有は鋼の清浄性を害するた
め、かえって母材靭性を劣化させる。
Al: 0.01% to 0.08%. Al
Is contained mainly for deoxidation in the direct quenched material, but if its content is less than 0.01%, its effect is insufficient, and if it exceeds 0.08%, it impairs the cleanliness of the steel. Deteriorates material toughness.

【0040】N:0.001〜0.008%とする。N
は、一般的にはAlと結合して窒化物を形成し、オース
テナイト粒の粗大化を抑制して母材靭性を向上させるた
め含有するが、本発明においては、Nbと結合して、未
固溶Nbの好ましい効果を生じさせる。0.001%未
満では析出物の量が不足し、0.008%を超える含有
はかえって母材靭性、大入熱溶接継手靭性が劣化する。
N: 0.001 to 0.008%. N
Is generally contained in combination with Al to form a nitride, suppresses coarsening of austenite grains, and improves base metal toughness. A favorable effect of dissolved Nb is produced. If the content is less than 0.001%, the amount of the precipitate is insufficient. If the content exceeds 0.008%, the base material toughness and the large heat input welded joint toughness are rather deteriorated.

【0041】B:0.0002%以下とする。Bは、ご
く微量の含有で焼入性を著しく向上させ、溶接部の硬化
性が増加し、溶接部の低温割れ感受性が高くなるため、
その上限を0.0002%とする。
B: 0.0002% or less. B contains a very small amount, significantly improves hardenability, increases the hardening of the weld, and increases the low-temperature cracking susceptibility of the weld.
The upper limit is set to 0.0002%.

【0042】Ceq(炭素等量値):0.48%以上と
する。Ceqは、溶接硬化性の指標であるとともに、焼
入性の指標でもあり、母材強度および靭性、大入熱溶接
継手強度および靭性に寄与する。特に、板厚中心部で十
分に焼きが入った組織を確保するためには、0.48%
以上が必要である。
Ceq (carbon equivalent value): not less than 0.48%. Ceq is an index of hardenability as well as an index of weld hardening, and contributes to base metal strength and toughness, large heat input welded joint strength and toughness. In particular, in order to secure a sufficiently hardened structure at the center of the sheet thickness, 0.48%
The above is necessary.

【0043】スラブ加熱温度:未固溶Nb量が0.00
5%以上残存する温度以下950以上とする。 合金元
素の固溶を図り充分な焼入れ性を確保するため、加熱温
度は950℃以上とする必要がある。しかし、スラブ加
熱温度が高温になり、未固溶Nb量が0.005%より
少なくなると、軽圧下圧延時に生じる巨大粒形成を抑制
する効果が充分に得られず母材靭性が低下するので、上
記温度範囲とする。
Slab heating temperature: undissolved Nb content is 0.00
5% or more and the remaining temperature is 950 or more. The heating temperature needs to be 950 ° C. or higher in order to achieve a solid solution of the alloy element and secure sufficient hardenability. However, when the slab heating temperature is high and the amount of undissolved Nb is less than 0.005%, the effect of suppressing the formation of giant grains generated during light rolling is not sufficiently obtained, and the base material toughness decreases. The above temperature range is set.

【0044】なお、未固溶Nb量は、温度、C量、N量
に依存する。次式は、それを示す一例であるが、このほ
かに、化学分析により、直接求めることもできる。 log{(Nb一未固溶Nb)・(C+12N/1
4)}=2.26−6770/(TH +273.15) TH :スラブ加熱温度 (℃)
The amount of undissolved Nb depends on the temperature, the amount of C, and the amount of N. The following equation is an example to show this, but it can also be directly obtained by chemical analysis. log {(Nb-undissolved Nb) · (C + 12N / 1
4)} = 2.26-6770 / (T H +273.15) T H: Slab heating temperature (℃)

【0045】圧延仕上温度:鋼板の表面温度でTF 〜1
050℃の範囲内とする。ここで、 TH =20Mn+10Ni+15Cr+100Mo+1
500Nb+15Cu+150V+500(Ti−3.
42N)−8√板厚(mm)+830 (℃)
Rolling finishing temperature: T F 11 at the surface temperature of the steel sheet
The temperature is in the range of 050 ° C. Here, T H = 20Mn + 10Ni + 15Cr + 100Mo + 1
500Nb + 15Cu + 150V + 500 (Ti-3.
42N) -8√plate thickness (mm) +830 (℃)

【0046】本発明において、圧延仕上温度は母材の強
度、靭性のほか、特に音響異方性に影響を及ぼす因子で
あり、合金元素の含有量に応じて厳密に限定する必要が
ある。上記の式は、HT780鋼の圧延集合組織の形成
に及ぼす合金元素の影響を、経験的に求めたものであ
る。圧延仕上温度がTF ℃より低くなると母材靭性は低
下し、音響異方性は増大する。一方、圧延仕上温度が1
050℃を超えるとミクロ組織が粗大化し、母材靭性の
劣化が著しくなる。
In the present invention, the rolling finishing temperature is a factor that affects not only the strength and toughness of the base material but also particularly the acoustic anisotropy, and must be strictly limited according to the content of the alloying element. The above equation empirically determines the effect of alloying elements on the formation of the rolling texture of HT780 steel. If the rolling finish temperature is lower than TF ° C., the base material toughness decreases and the acoustic anisotropy increases. On the other hand, when the rolling finish temperature is 1
If the temperature exceeds 050 ° C., the microstructure becomes coarse, and the deterioration of the base material toughness becomes significant.

【0047】焼戻し温度:Acl変態点以下600℃以
上とする。焼戻し温度は、強度の最適化、靭性及び大入
熱継手強度確保のため600℃以上にする必要がある。
しかし、焼戻し温度がAc1変態点を越えると、過度の
強度低下を引き起こすので、上記温度範囲とした。
Tempering temperature: lower than the Acl transformation point and higher than 600 ° C. The tempering temperature needs to be 600 ° C. or more to optimize strength, secure toughness and high heat input joint strength.
However, if the tempering temperature exceeds the Ac1 transformation point, an excessive decrease in strength is caused.

【0048】本発明では、上記の合金元素の他に、さら
にSi、Cu、Cr、V、Tiの各合金元素の一種以上
を含有しても好ましい結果が得られる。 Si:0.01〜0.3%とする。Siは母材強度およ
び溶接継手強度を向上させるために含有する。0.01
%未満ではその効果は小さく、0.3%を超えると溶接
性および大入熱溶接継手靭性が著しく劣化する。
In the present invention, preferable results can be obtained by further containing one or more of the alloy elements of Si, Cu, Cr, V and Ti in addition to the above alloy elements. Si: 0.01 to 0.3%. Si is contained to improve the strength of the base material and the strength of the weld joint. 0.01
If it is less than 0.3%, the effect is small, and if it exceeds 0.3%, the weldability and the large heat input weld joint toughness are significantly deteriorated.

【0049】Cu:0.01〜0.5%とする。Cuは
母材強度、靭性および大入熱溶接継手強度を向上させる
ために含有する。0.01%未満ではその効果は小さ
く、0.5%を超える含有は大入熱溶接時の溶接金属の
高温割れが発生しやすくなる。
Cu: 0.01 to 0.5%. Cu is contained in order to improve the strength of the base material, the toughness, and the strength of the large heat input welded joint. If the content is less than 0.01%, the effect is small, and if the content exceeds 0.5%, hot cracking of the weld metal during large heat input welding tends to occur.

【0050】Cr:0.01〜1.0%とする。Crは
母材強度、靭性および大入熱溶接継手強度を向上させる
ために含有する。0.01%未満ではその効果は小さ
く、1.0%を超える含有は溶接性が損なわれる。
Cr: 0.01 to 1.0%. Cr is contained to improve the base metal strength, toughness, and high heat input weld strength. If it is less than 0.01%, the effect is small, and if it exceeds 1.0%, the weldability is impaired.

【0051】V:0.01〜0.1%とする。Vは母材
強度および大入熱溶接継手強度を向上させるために含有
する。0.01%未満ではその効果は小さく、0.1%
を超える含有は母材靭性および溶接性が損なわれる。
V: 0.01 to 0.1%. V is contained to improve the strength of the base material and the strength of the high heat input welded joint. Less than 0.01%, the effect is small, 0.1%
If the content exceeds 3, the base metal toughness and weldability are impaired.

【0052】Ti:0.003〜0.02%とする。T
iはミクロ組織の微細化を通じて、母材靭性および溶接
継手靭性をともに向上させるために含有する。0.00
3%未満ではその効果は小さく、0.02%を超える含
有はかえって母材靭性および大入熱溶接継手靭性を劣化
させる。
Ti: 0.003 to 0.02%. T
i is contained in order to improve both the base metal toughness and the weld joint toughness through refinement of the microstructure. 0.00
If the content is less than 3%, the effect is small, and if it exceeds 0.02%, the base material toughness and the large heat input welded joint toughness are rather deteriorated.

【0053】[0053]

【実施例】本発明で得られた種々の実施例について、以
下に説明する。図2、3として示す表1−1、1−2
は、供試鋼の化学成分、板厚を示す。表中の鋼No.1
〜18は本発明鋼であり、鋼No.19〜27は成分組
成が本発明の範囲外となる比較鋼を示している。
EXAMPLES Various examples obtained by the present invention will be described below. Tables 1-1 and 1-2 shown as FIGS.
Indicates the chemical composition and plate thickness of the test steel. Steel No. in the table. 1
Nos. To 18 are steels of the present invention, Reference numerals 19 to 27 indicate comparative steels whose component compositions fall outside the range of the present invention.

【0054】図4、5として示す表2−1、2−2は、
表1−1、1−2に示した化学組成を有する鋼の諸性質
について調査した結果をまとめたものである。表に示す
スラブ加熱温度、圧延仕上温度、焼戻温度で製造したと
きの鋼の機械的性質(降伏強度、引張強度)、靭性(破
面遷移温度vTs及び無延性遷移温度NDTT)、音響
異方性、溶接性(最高硬さ)、大入熱溶接継手靭性(大
入熱溶接時のHAZ部のvTs)を示している。
Tables 2-1 and 2-2 shown as FIGS.
It is a summary of the results of investigations on various properties of steel having the chemical compositions shown in Tables 1-1 and 1-2. Mechanical properties (yield strength, tensile strength), toughness (fracture surface transition temperature vTs and non-ductile transition temperature NDTT), acoustic anisotropy of steel produced at the slab heating temperature, rolling finish temperature, and tempering temperature shown in the table , Weldability (maximum hardness), and high heat input weld joint toughness (vTs of the HAZ at the time of high heat input welding).

【0055】また、鋼No.1.1と1.2、2.1と
2.2、3.1と3.2は、それぞれ表1−1、1−2
の鋼No.1、2、3と同じ組成の鋼について、加熱温
度を変化させて製造したものであり、鋼No.4.1と
4.2は、表中の鋼No.4について圧延仕上温度を変
化させて製造したものである。なお、本実施例に示した
鋼板の圧延時には、圧下率が5%以下の軽圧下が3パス
以上含まれている。
Further, steel No. 1.1 and 1.2, 2.1 and 2.2, 3.1 and 3.2 are shown in Tables 1-1 and 1-2, respectively.
Steel No. Steel Nos. 1, 2, and 3 were manufactured by changing the heating temperature. 4.1 and 4.2 are steel No. in the table. No. 4 was manufactured by changing the rolling finishing temperature. In addition, at the time of rolling the steel sheet shown in the present embodiment, three or more passes of light rolling with a rolling reduction of 5% or less are included.

【0056】以下、諸性質について順に説明する。 1)機械的性質 降伏強度、引張強度は、各鋼の板厚中心部からJIS4
号試験片を採取し、引張試験で測定した。HT780鋼
として、降伏強度が685N/mm2以上、引張強度が
780N/mm2以上となるものを合格とした。本発明
鋼では、降伏強度、引張強度いずれも合格であったが、
比較例の鋼No.4.2は、圧延仕上温度がTF より低
いため、鋼No.19はC量が0.054%と低いた
め、鋼No.21はNi量が0・45%と低いため、強
度が不足している。
Hereinafter, various properties will be described in order. 1) Mechanical properties Yield strength and tensile strength are measured according to JIS4 from the center of the thickness of each steel.
No. specimens were collected and measured by a tensile test. HT780 steel having a yield strength of 685 N / mm 2 or more and a tensile strength of 780 N / mm 2 or more was accepted. In the steel of the present invention, both the yield strength and the tensile strength passed,
Steel No. of the comparative example. No. 4.2, since the rolling finish temperature is lower than T F , steel No. Steel No. 19 has a low C content of 0.054%. 21 has a low Ni content of 0.45%, and thus has insufficient strength.

【0057】2)破面遷移温度 破面遷移温度(vTs)は、各鋼の板厚中心部からJI
S4号試験片(JISZ2202)を採取し、2mmV
ノッチシヤルピー衝撃試験で測定した。母材のvTsが
−40℃以下を基準に良否を判断した。本発明鋼は、い
ずれもvTsが良好であったが、比較例の鋼No.1.
2、2.2、3.2は、未固溶Nb量が残存しない温度
で加熱されたため、鋼No.4.2は圧延仕上温度がT
F より低温のため、鋼No.19はC量が0.054%
と低いため、鋼No.21はNi量が0.45%と低い
ため、鋼No.25はNb量が0.017%と低いた
め、鋼No.26はCeqが0.47と低いため、各々
靭性が良好でない。
2) Fracture surface transition temperature Fracture surface transition temperature (vTs) is determined by JI from the center of the thickness of each steel.
S4 test piece (JISZ2202) was collected and 2 mmV
It was measured by a notch-shearpy impact test. Pass / fail was determined based on the base material having a vTs of -40 ° C or lower. The steels of the present invention all had good vTs, but steel No. 1.
Steel Nos. 2, 2.2 and 3.2 were heated at a temperature at which the amount of undissolved Nb did not remain. 4.2: Rolling finish temperature is T
Since the temperature is lower than F , 19: 0.054% of C content
And steel No. Steel No. 21 has a low Ni content of 0.45%. Steel No. 25 has a low Nb content of 0.017%. Sample No. 26 has a low Ceq of 0.47, and thus has poor toughness.

【0058】3)無延性遷移温度 無延性遷移温度(NDTT)は、各鋼の板厚中心部から
試験片を採取し、NRL落重試験で測定した。試験片
は、厚さ25mm、長さ360mm、幅90mmの試片
の片面に溶接ビードを盛り、幅1.5mm以下の切り込
みを入れたものである。母材のNDTTが−30℃以下
を基準に良否を判断した。本発明鋼は、いずれもNDT
Tが良好であったが、比較例の鋼No.1.2、2.
2、3.2は、未固溶Nb量が残存しない温度で加熱さ
れたため、鋼No.4.2は圧延仕上温度がTF より低
温のため、鋼No.19はC量が0.054%と低いた
め、鋼No.21はNi量が0.45%と低いため、鋼
No.25はNb量が0.017%と低いため、鋼N
o.26はCeqが0.47と低いため、各々NDTT
が良好でない。
3) Non-ductile transition temperature The non-ductile transition temperature (NDTT) was determined by taking a test piece from the center of the thickness of each steel and performing an NRL drop test. The test piece is a test piece having a thickness of 25 mm, a length of 360 mm, and a width of 90 mm, in which a weld bead is provided on one side, and a cut of 1.5 mm or less is formed. The pass / fail of the NDTT of the base material was determined based on -30 ° C or lower. The steels of the present invention are all NDT
T was good, but steel No. 1.2, 2.
Steel Nos. 2 and 3.2 were heated at a temperature at which the amount of undissolved Nb did not remain. No. 4.2, since the rolling finish temperature is lower than TF , steel No. Steel No. 19 has a low C content of 0.054%. Steel No. 21 has a low Ni content of 0.45%. No. 25 has a low Nb content of 0.017%.
o. 26 has a low Ceq of 0.47, so each NDTT
Is not good.

【0059】4)音響異方性 音響異方性は、JIS Z 3060に規定された超音
波試験に準拠して評価し、音速比が1.02以下を基準
に良否を判断した。本発明鋼はいずれも音響異方性が小
さく良好であったが、比較例の鋼No.4.2は、圧延
仕上温度がTFより低いため、音響異方性が不良であっ
た。
4) Acoustic Anisotropy The acoustic anisotropy was evaluated according to the ultrasonic test specified in JIS Z 3060, and the quality was judged based on the sound speed ratio of 1.02 or less. Each of the steels of the present invention had a small acoustic anisotropy and was good. In 4.2, since the rolling finish temperature was lower than TF , the acoustic anisotropy was poor.

【0060】5)溶接性 溶接性は、溶接部の最高硬さ試験によって評価した。各
鋼からJISl号試験片(JIS Z3101)を採取
し、下記条件で溶接して、ビッカース硬度計により溶接
部の最高硬さHv(98N)を求めた。最高硬さが35
0以下を基準に良否を判断した。 溶接方法:被覆アーク溶接 入熱:1.7kJ/mm 溶接雰囲気温度:20℃ 溶接湿度:60% 本発明鋼はいずれも溶接性に優れているが、比較例の鋼
No.20はC量が0.096%と高いため、鋼No.
22はCr量が1.08%と高いため、鋼No.23は
Moが0.87%と高いため、鋼No.27はBが含有
されているため、溶接性(溶接硬化性)の点で不十分で
あった。
5) Weldability The weldability was evaluated by a maximum hardness test of the welded portion. A JIS No. test piece (JIS Z3101) was sampled from each steel, welded under the following conditions, and the maximum hardness Hv (98N) of the welded portion was determined by a Vickers hardness tester. Maximum hardness is 35
The quality was judged based on 0 or less. Welding method: coated arc welding Heat input: 1.7 kJ / mm Welding atmosphere temperature: 20 ° C. Welding humidity: 60% The steels of the present invention are all excellent in weldability, but steel No. of Comparative Example was used. Steel No. 20 has a high C content of 0.096%.
Steel No. 22 has a high Cr content of 1.08%. Steel No. 23 has a high Mo content of 0.87%. Since No. 27 contained B, it was insufficient in terms of weldability (weld hardenability).

【0061】6)大入熱溶接継手靭性 大入熱溶接継手特性は、大入熱SAWのボンド部のシヤ
ルピー衝撃試験によって評価した。SAWの入熱量は1
2kJ/mm、開先はX開先とした。シヤルピー衝撃試
験は、溶接のファイナル側1/4tから採取し、ノッチ
位置をボンド部(溶接金属とHAZの比率が1:1とな
る位置)に形成したJIS4号試験片(JIS Z 2
202)を用いて実施し、vTsが0℃以下を基準に良
否を判断した。本発明鋼は、いずれも大入熱溶接継手靭
性に優れているが、比較例の鋼No.20はC量が0.
096%と高いため、鋼No.26はCeqが047と
低いため、鋼No.27はBが含有されているため、大
入熱溶接継手靭性は良好ではない。また、鋼No.24
はNb量が0.051%と高いため、大入熱溶接の溶接
金属部の靭性不良が認められた。
6) Toughness of High Heat Input Welded Joint The characteristics of the large heat input welded joint were evaluated by a Charpy impact test of the bond portion of the large heat input SAW. SAW heat input is 1
The groove was 2 kJ / mm and the groove was X. In the Charpy impact test, a JIS No. 4 test piece (JIS Z 2) in which a notch position was formed at a bond portion (a position at which the ratio of weld metal to HAZ is 1: 1) was taken from the final side 1 / 4t of welding.
202), and the pass / fail was determined based on vTs of 0 ° C. or lower. Each of the steels of the present invention is excellent in large heat input welded joint toughness. 20 has a C content of 0.
096%, steel No. No. 26 has a low Ceq of 047, and therefore steel No. 26 has a low Ceq of 047. Since No. 27 contains B, the large heat input welded joint toughness is not good. In addition, steel No. 24
Since Nb content was as high as 0.051%, poor toughness of the weld metal part of large heat input welding was recognized.

【0062】[0062]

【発明の効果】以上述べてきたように、本発明によれ
ば、溶接性、音響異方性、板厚中心部の靭性に優れたH
T780鋼を製造することができる。このことは、高張
力鋼を必要とする、様々な鋼構造物に適用できることを
示唆し、同時にそれらの施工において、施工コストの低
減に大きく寄与するものである。また、本発明は、鋼板
を対象とするものであるが、本発明の思想は、他の鋼材
製造プロセス、例えば形鋼の製造に応用できることは言
うまでもない。
As described above, according to the present invention, H is excellent in weldability, acoustic anisotropy, and toughness at the center of the thickness.
T780 steel can be manufactured. This suggests that the present invention can be applied to various steel structures that require high-tensile steel, and at the same time, greatly contributes to the reduction of the construction cost in their construction. Further, the present invention is directed to a steel plate, but it is needless to say that the idea of the present invention can be applied to other steel material manufacturing processes, for example, manufacturing of a shaped steel.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱間圧延前の未固溶のNb量と、板厚中心部か
ら採取したNRL式落重試験の無延性遷移温度(NDT
T)の関係を示す図である。
FIG. 1 shows the amount of undissolved Nb before hot rolling and the non-ductile transition temperature (NDT) of the NRL drop test taken from the center of the sheet thickness.
It is a figure which shows the relationship of T).

【図2】供試鋼の化学成分、板厚等を、表1−1として
示す図である。
FIG. 2 is a diagram showing a chemical composition, a plate thickness, and the like of a test steel as Table 1-1.

【図3】供試鋼の化学成分、板厚等を、表1−2として
示す図である。
FIG. 3 is a diagram showing a chemical composition, a plate thickness, and the like of a test steel as Table 1-2.

【図4】表1−1、1−2に示した化学組成を有する鋼
の諸性質について調査した結果をまとめたものを、表2
−1として示す図である。
FIG. 4 summarizes the results of investigations on various properties of steels having the chemical compositions shown in Tables 1-1 and 1-2.
It is a figure shown as -1.

【図5】表1−1、1−2に示した化学組成を有する鋼
の諸性質について調査した結果をまとめたものを、表2
−2として示す図である。
FIG. 5 summarizes the results of investigations on various properties of steels having the chemical compositions shown in Tables 1-1 and 1-2.
It is a figure shown as -2.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川中 徹 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Toru Kawanaka 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.06%以上、Ni:
0.5〜3.0%、Nb:0.02〜0.04%を含有
し、かつ、Ceq:0.48%以上を満たす鋼を、未固
溶Nb量が0.005%以上存在する温度以下950℃
以上で加熱した後、熱間圧延を行い、圧延終了後直ちに
直接焼入れし、その後Ac1変態点以下600℃以上の
温度で焼戻すことを特徴とする、靭性に優れた引張強さ
780N/mm2級鋼の製造方法。ここで、Ceq=C
+Mn/6+Si/24+Ni/40+Cr/5+Mo
/4+V/14 (%)
(1) In terms of% by weight, C: 0.06% or more, Ni:
Steel containing 0.5 to 3.0% and Nb: 0.02 to 0.04% and satisfying Ceq: 0.48% or more has an undissolved Nb content of 0.005% or more. Below temperature 950 ℃
After the above heating, hot rolling is performed, and the steel is directly quenched immediately after the rolling is completed, and then tempered at a temperature not higher than the Ac1 transformation point and not lower than 600 ° C., and has a tensile strength of 780 N / mm 2 with excellent toughness. Method of manufacturing grade steel. Here, Ceq = C
+ Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo
/ 4 + V / 14 (%)
【請求項2】 重量%で、C:0.06〜0.09%、
Mn:0.5〜1.5%、P:0.01%以下、S:
0.01%以下、Ni:0.5〜3.0%、Mo:0.
1〜0.8%、Nb:0.02〜0.04%、Al:
0.01〜0.08%、N:0.001〜0.008
%、B:0.0002%以下を含有し、かつ、Ceq:
0.48%以上を満たし、残部が鉄及び不可避的不純物
である鋼を、未固溶Nb量が0.005%以上存在する
温度以下950℃以上で加熱した後、熱間圧延をTF
1050℃の範囲内で終了させ、圧延終了後直ちに直接
焼入れし、その後Ac1変態点以下600℃以上の温度
で焼戻しをすることを特徴とする、靭性に優れた引張強
さ780N/mm2級鋼の製造方法。ここで、TF =2
0Mn+10Ni+15Cr+100Mo+1500N
b+15Cu+150V+500(Ti−3.42N)
−8√板厚(mm)+830 (℃)
2. C: 0.06 to 0.09% by weight,
Mn: 0.5 to 1.5%, P: 0.01% or less, S:
0.01% or less, Ni: 0.5 to 3.0%, Mo: 0.
1-0.8%, Nb: 0.02-0.04%, Al:
0.01-0.08%, N: 0.001-0.008
%, B: 0.0002% or less, and Ceq:
After heating the steel which satisfies 0.48% or more and the balance is iron and inevitable impurities at a temperature of 950 ° C. or higher at a temperature at which the amount of undissolved Nb is 0.005% or higher, hot rolling is performed at TF to
Terminate in a range of 1050 ° C., after completion of rolling immediately direct quenching, then characterized by tempering at Ac1 transformation point 600 ° C. or higher, toughness excellent tensile strength 780N / mm 2 class steel Manufacturing method. Here, T F = 2
0Mn + 10Ni + 15Cr + 100Mo + 1500N
b + 15Cu + 150V + 500 (Ti-3.42N)
-8 mm thickness (mm) + 830 (° C)
【請求項3】 前記鋼が、重量%で、更に、Si:0.
O1〜0.5%、Cu:0.01〜0.5%、Cr:
0.01〜1.0%、V:0.01〜0.1%、Ti:
0.005〜0.02%の一種以上を含有することを持
徴とする、請求項2記載の、靭性に優れた引張強さ78
0N/mm2級鋼の製造方法。 【0001】
3. The steel according to claim 1, further comprising:
O1 to 0.5%, Cu: 0.01 to 0.5%, Cr:
0.01 to 1.0%, V: 0.01 to 0.1%, Ti:
The tensile strength 78 having excellent toughness according to claim 2, characterized by containing at least one of 0.005 to 0.02%.
0N / mm Method for producing grade 2 steel. [0001]
JP24483797A 1997-08-27 1997-08-27 Production of steel having tensile strength of 780 n/mm2 and excellent in toughness Pending JPH1161249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24483797A JPH1161249A (en) 1997-08-27 1997-08-27 Production of steel having tensile strength of 780 n/mm2 and excellent in toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24483797A JPH1161249A (en) 1997-08-27 1997-08-27 Production of steel having tensile strength of 780 n/mm2 and excellent in toughness

Publications (1)

Publication Number Publication Date
JPH1161249A true JPH1161249A (en) 1999-03-05

Family

ID=17124711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24483797A Pending JPH1161249A (en) 1997-08-27 1997-08-27 Production of steel having tensile strength of 780 n/mm2 and excellent in toughness

Country Status (1)

Country Link
JP (1) JPH1161249A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049119A1 (en) * 2004-11-04 2006-05-11 Mitsubishi Heavy Industries, Ltd. Steel structure for ship and ship
JP2009115493A (en) * 2007-11-02 2009-05-28 Sumitomo Metal Ind Ltd Arresting characteristic evaluation method of steel plate, and steel plate for arresting characteristic evaluation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049119A1 (en) * 2004-11-04 2006-05-11 Mitsubishi Heavy Industries, Ltd. Steel structure for ship and ship
JP2009115493A (en) * 2007-11-02 2009-05-28 Sumitomo Metal Ind Ltd Arresting characteristic evaluation method of steel plate, and steel plate for arresting characteristic evaluation

Similar Documents

Publication Publication Date Title
JP4226626B2 (en) High tensile strength steel sheet with low acoustic anisotropy and excellent weldability, including yield stress of 450 MPa or more and tensile strength of 570 MPa or more, including the central part of the plate thickness, and method for producing the same
KR101502845B1 (en) Abrasion resistant steel plate which exhibits excellent weld toughness and excellent delayed fracture resistance
JP4897125B2 (en) High-strength steel sheet and its manufacturing method
WO2012002567A1 (en) Abrasion-resistant steel plate or sheet with excellent weld toughness and delayed fracture resistance
JP5509923B2 (en) Method for producing high-tensile steel sheet having a tensile strength of 1100 MPa or more for laser welding or laser-arc hybrid welding
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
JP7262288B2 (en) High-strength low-yield-ratio thick steel plate with excellent toughness of base metal and weld heat-affected zone and small acoustic anisotropy, and its manufacturing method
JP4485427B2 (en) Low yield ratio high strength steel sheet
JP4418391B2 (en) High tensile strength steel sheet having yield strength of 650 MPa or more with small acoustic anisotropy and method for producing the same
KR19980703593A (en) Welding coefficient with excellent fatigue strength
JP2005298877A (en) Steel plate with excellent fatigue crack propagation characteristic, and its manufacturing method
JP4998708B2 (en) Steel material with small material anisotropy and excellent fatigue crack propagation characteristics and method for producing the same
JP4025263B2 (en) Low yield ratio high strength steel sheet with excellent gas cut crack resistance and high heat input weld toughness and low acoustic anisotropy
JP4924047B2 (en) Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less
JP4610351B2 (en) Method for producing low yield ratio high strength steel sheet with excellent gas cut crack resistance and high heat input weld joint toughness and low acoustic anisotropy
JP3371744B2 (en) Low yield ratio steel material and method of manufacturing the same
JP2000192140A (en) Production of low yield ratio high tensile strength steel excellent in weld cracking sensitivity
JPH1161249A (en) Production of steel having tensile strength of 780 n/mm2 and excellent in toughness
JP4659593B2 (en) Method for producing high-tensile steel sheet with low acoustic anisotropy and excellent base material toughness
JP3541746B2 (en) High strength thick steel plate excellent in CTOD characteristics and method for producing the same
JPH06271984A (en) Steel plate excellent in fatigue propagation resistance and arrest property and its production
JPH0813087A (en) Steel for welded steel pipe excellent in ssc resistance in seam zone
JP5903907B2 (en) High strength thick steel plate with excellent tensile strength (TS) of high heat input heat affected zone with high heat input and high heat resistance of low heat input weld heat affected zone and manufacturing method thereof
JP2011153366A (en) Method for manufacturing high-tensile-strength steel sheet to be laser-welded or laser/arc hybrid-welded having tensile strength of 1,100 mpa or more
JPH08283836A (en) Production of steel excellent in weldability and acoustic anisotropy

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040825

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050804

A02 Decision of refusal

Effective date: 20051207

Free format text: JAPANESE INTERMEDIATE CODE: A02