JP4025263B2 - Low yield ratio high strength steel sheet with excellent gas cut crack resistance and high heat input weld toughness and low acoustic anisotropy - Google Patents

Low yield ratio high strength steel sheet with excellent gas cut crack resistance and high heat input weld toughness and low acoustic anisotropy Download PDF

Info

Publication number
JP4025263B2
JP4025263B2 JP2003276231A JP2003276231A JP4025263B2 JP 4025263 B2 JP4025263 B2 JP 4025263B2 JP 2003276231 A JP2003276231 A JP 2003276231A JP 2003276231 A JP2003276231 A JP 2003276231A JP 4025263 B2 JP4025263 B2 JP 4025263B2
Authority
JP
Japan
Prior art keywords
heat input
steel
toughness
steel sheet
yield ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003276231A
Other languages
Japanese (ja)
Other versions
JP2005036295A (en
Inventor
光明 柴田
重雄 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003276231A priority Critical patent/JP4025263B2/en
Publication of JP2005036295A publication Critical patent/JP2005036295A/en
Application granted granted Critical
Publication of JP4025263B2 publication Critical patent/JP4025263B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、耐ガス切断割れ性に優れると共に、約100KJ/mmまでもの超大入熱溶接での継手靭性に優れ、且つ音響異方性が小さく、塑性変形能が大きく、しかも引張強さが590MPa以上の溶接構造用高張力鋼板に関するものである。   The present invention is excellent in gas cut cracking resistance, joint toughness in super high heat input welding up to about 100 KJ / mm, small acoustic anisotropy, large plastic deformability, and tensile strength of 590 MPa. The present invention relates to the above-described high-tensile steel sheet for welded structures.

近年、建築物の超高層化や橋梁の少数主桁化が進む中で、溶接施工時の予熱低減とともに、大入熱溶接の適用および溶接継手部への超音波探傷試験の適用、地震に対する終局耐力設計の適用が設計・施工サイドで進められつつある。これに伴い、それらに供用される鋼材サイドとしては、下記(1)〜(4)の各項目について検討されている。
(1)予熱低減要求に対しては、溶接低温割れ感受性組成(PCM)の低減、
(2)大入熱溶接の適用に対しては、入熱量の増大に耐えうる溶接継手部全部位の高靭性 化、
(3)溶接継手部への超音波探傷試験(UT)への適用に対しては、斜角UTに用いられ れる横波の鋼材とSTB試験片での音速比が例えば、板厚25mm超え、公称屈折角 度70°で探傷する場合においては、V/VSTB0.995〜1.015の範囲内に あることによって音響異方性が小さいこと(日本建築学会における鋼構造建築溶接部 の超音波検査基準の定義に従う)、
(4)地震に対する終局耐力設計の適用に対しては、降伏比(降伏点/引張強さ×100 %)が小さいこと(即ち、塑性変形能が高いこと)が要求されると共に(建築用途の 場合、80%以下)、使用される鋼材の板厚・引張強さについても厚肉・高強度化 (最大100mm厚で、建築用途の場合、590MPa以上、橋梁の場合、570M Pa以上)されつつある。
In recent years, with the progress of super-high-rise buildings and fewer main girder bridges, in addition to reducing preheating during welding, application of high heat input welding, application of ultrasonic flaw detection tests to welded joints, and ultimate earthquake Application of proof stress design is being promoted on the design and construction side. Accordingly, the following items (1) to (4) have been studied as the steel material side used for them.
(1) In response to the requirement for preheating reduction, reduction of weld cold cracking sensitive composition (P CM ),
(2) For high heat input welding, increase the toughness of all parts of the welded joint that can withstand the increase in heat input,
(3) For application to the ultrasonic flaw detection test (UT) on welded joints, the sound speed ratio between the steel material of the transverse wave used for the oblique angle UT and the STB test piece is, for example, more than 25 mm thick, When flaw detection is performed at a refraction angle of 70 °, the acoustic anisotropy is small by being in the range of V / V STB 0.995 to 1.015 (ultrasonic waves of steel structure building welds in the Architectural Institute of Japan). According to the definition of inspection standards),
(4) For the application of ultimate strength design for earthquakes, it is required that the yield ratio (yield point / tensile strength x 100%) is small (that is, the plastic deformability is high). In the case of 80% or less), the thickness and tensile strength of the steel used are also increased in thickness and strength (maximum thickness is 100 mm, 590 MPa or more for building use, 570 MPa or more for bridges) is there.

建築用鋼に要求される低降伏比および小さい音響異方性が要求される590MPa級鋼の製造方法の一つとして、例えば非特許文献1に示されるような技術が提案されている。この技術では、0.13C−0.25Si−1.44Mn−0.21Cu−0.20Ni−0.08Cr−0.17Mo−0.04Vの化学成分組成で炭素当量Ceqが0.45%の80mm厚材を用い、Ac3点以上の温度からなる再加熱焼入れ(RQ)、二相域(Ac1点以上Ac3点未満)からの焼入れ(Q’)およびAc1点未満の温度での焼戻し(T)を施すQ−Q’−T法を用いて、軟質で延性に優れるフェライトとより硬質のベイナイトの二相組織として、降伏比80%以下、引張強さ590MPa以上を得るものである。 As one of methods for producing a 590 MPa class steel that requires a low yield ratio and small acoustic anisotropy required for building steel, for example, a technique as shown in Non-Patent Document 1 has been proposed. In this technique, a chemical composition of 0.13C-0.25Si-1.44Mn-0.21Cu-0.20Ni-0.08Cr-0.17Mo-0.04V and a carbon equivalent Ceq of 0.45% is 80 mm. Reheating quenching (RQ) consisting of a temperature of Ac 3 point or higher, quenching from a two-phase region (Ac 1 point or higher and less than Ac 3 point) (Q '), and tempering at a temperature lower than Ac 1 point. By using the QQ'-T method for applying (T), a yield ratio of 80% or less and a tensile strength of 590 MPa or more are obtained as a two-phase structure of soft and excellent ductile ferrite and harder bainite.

この技術で得られる中炭素系の590MPa級鋼板は、低降伏比で音響異方性も小さい特性を発揮し、建築用として使用されているものの、フェライト相の生成によって母材および継手部において所定の強度を確保するために炭素当量Ceqを従来の590MPa級鋼板より高くする必要があり(例えば炭素当量Ceqが0.42%超)、必然的に低温割れ防止予熱温度が100℃と高くなってしまい、大入熱溶接継手部の靭性も低位なものとなる。   The medium carbon 590 MPa grade steel sheet obtained by this technology exhibits low yield ratio and low acoustic anisotropy, and is used for construction purposes. In order to ensure the strength of the steel, it is necessary to make the carbon equivalent Ceq higher than that of the conventional 590 MPa grade steel sheet (for example, the carbon equivalent Ceq is more than 0.42%), and the preheating temperature for preventing low temperature cracking is inevitably as high as 100 ° C. Therefore, the toughness of the high heat input welded joint is also low.

極低炭素系のベイナイト組織を活用し、音響異方性を改善すると共に、引張強さが570MPa級または590MPa級の鋼材を製造する方法としては、例えば特許文献1〜3のような各技術も提案されている。   As a method for utilizing the ultra-low carbon bainite structure to improve acoustic anisotropy and producing a steel material having a tensile strength of 570 MPa class or 590 MPa class, for example, each technique as described in Patent Documents 1 to 3 is also available. Proposed.

このうち特許文献1の技術では、C:0.001%以上0.030%未満、Si:0.60%以下、Mn:0.20〜3.00%、Ni:2.0%以下、Cu:0.7〜2.0%およびAl:0.10%以下を夫々含む組成になる鋼素材を、860℃以上の温度に加熱して冷却した後、500℃以上800℃未満の温度域に再加熱して冷却することによって、材質ばらつきが少なく、且つ音響異方性の小さい570MPa級の高強度鋼材を製造する方法について開示されている。   Among them, in the technique of Patent Document 1, C: 0.001% or more and less than 0.030%, Si: 0.60% or less, Mn: 0.20 to 3.00%, Ni: 2.0% or less, Cu : After the steel material which becomes a composition which respectively contains 0.7-2.0% and Al: 0.10% or less is heated and cooled to the temperature of 860 degreeC or more, it is in the temperature range of 500 degreeC or more and less than 800 degreeC. A method for producing a high strength steel material of 570 MPa class with little material variation and small acoustic anisotropy by reheating and cooling is disclosed.

また特許文献2の技術では、C:0.005〜0.025%、Si:0.60%以下、Mn:0.4〜1.6%、P:0.025%以下、S:0.010%以下、Al:0.1%以下、Cu:0.6〜2%、Ni:0.25〜2.0%、Ti:0.001〜0.050%およびB:0.0002〜0.0030%からなる化学成分組成で、且つ重量比Mn/Cu:2.0以下且つ117Mn(%)+163Cu(%):250〜350%で含有し、残部がFeおよび不可避不純物から成る鋳片を、1050〜1250℃に再加熱後、950℃以下の温度域における累積圧下率が50%以下で仕上げ圧延温度が800℃以上の熱間圧延を施すことによって、圧延ままで鋼板の厚み方向の靭性および音響異方性に優れる590MPa級の溶接用極厚鋼板を製造する方法について開示されている。   In the technique of Patent Document 2, C: 0.005 to 0.025%, Si: 0.60% or less, Mn: 0.4 to 1.6%, P: 0.025% or less, S: 0.00. 010% or less, Al: 0.1% or less, Cu: 0.6-2%, Ni: 0.25-2.0%, Ti: 0.001-0.050% and B: 0.0002-0 A slab comprising a chemical composition composed of .0030% and a weight ratio of Mn / Cu: 2.0 or less and 117 Mn (%) + 163 Cu (%): 250 to 350%, with the balance being Fe and inevitable impurities , After reheating to 1050 to 1250 ° C., by performing hot rolling with a cumulative rolling reduction in a temperature range of 950 ° C. or less of 50% or less and a finish rolling temperature of 800 ° C. or more, toughness in the thickness direction of the steel sheet as it is rolled 590MPa welding electrode with excellent acoustic anisotropy It discloses a method of manufacturing the steel sheet.

更に、特許文献3には、C:0.025〜0.045%、Nb:0.005〜0.1%でMoを含まない音響異方性が小さく、溶接性に優れた引張強さ590MPa以上の非調質型の低降伏比高張力鋼板の製造方法が示されている。   Furthermore, Patent Document 3 discloses that C: 0.025 to 0.045%, Nb: 0.005 to 0.1%, Mo-free acoustic anisotropy is small, and tensile strength 590 MPa excellent in weldability. A method for producing the above non-tempered low yield ratio high strength steel sheet is shown.

しかしながら、これまで提案されている極低炭素系ベイナイト組織の高張力鋼板においても夫々次に示すような問題が指摘される。まず上記特許文献1の技術では、得られる鋼材の音響異方性は小さいものの、降伏比は80%を超えており、建築用途に供用できない。   However, the following problems are pointed out also in the high-tensile steel sheets having an ultra-low carbon bainite structure proposed so far. First, in the technique of Patent Document 1, although the acoustic anisotropy of the obtained steel material is small, the yield ratio exceeds 80% and cannot be used for architectural purposes.

特許文献2の技術では、得られる鋼板の音響異方性は小さく、降伏比も建築用鋼板に対する要求値(80%以下)を満足するものの、Cuの析出による強度上昇効果を、圧延後の冷却過程に依っているため、冷却速度が速い場合には上記効果が安定して得られるとは限らず、しかもこうした効果は板厚に依存することになる。大入熱HAZ靭性についても、入熱50KJ/mmの熱サイクルシャルピー(0℃での吸収エネルギーvE0)で52〜71J程度であり(実施例の表2)、本発明で目標とする平均70J以上を安定して達成できるものではない。またこの技術では、CuおよびNiを必須成分として含むものであるが、これらの適切な配合割合については何ら考慮されていないので(実施例の表1でNi/Cuが0.47〜0.95)、ガス切断面に表面に平行方向にCuの液化に起因する割れの感受性を有するものとなる。 In the technique of Patent Document 2, although the obtained steel sheet has small acoustic anisotropy and the yield ratio satisfies the required value (80% or less) for the steel sheet for construction, the effect of increasing the strength due to precipitation of Cu is reduced by cooling after rolling. Depending on the process, when the cooling rate is fast, the above effect is not always obtained stably, and such an effect depends on the plate thickness. The large heat input HAZ toughness is also about 52 to 71 J in the heat cycle Charpy (absorption energy vE 0 at 0 ° C.) with a heat input of 50 KJ / mm (Table 2 in Examples), and the average of 70 J targeted in the present invention. The above cannot be achieved stably. Further, in this technique, Cu and Ni are included as essential components, but no consideration is given to their appropriate blending ratio (Ni / Cu is 0.47 to 0.95 in Table 1 of the Examples). The gas cut surface is susceptible to cracking due to Cu liquefaction in a direction parallel to the surface.

特許文献3の技術は、空冷ままで小さい音響異方性と低降伏比を実現させることによって建築用鋼板としての要求特性を満足させたものであるが、大入熱溶接継手の入熱量が20KJ/mm程度と比較的小さいので(例えば実施例の表3)、本発明の目標とする約100KJ/mmまでの溶接入熱において、高HAZ靭性を確保できる保証はない。   The technique of Patent Document 3 satisfies the required characteristics as a steel sheet for construction by realizing a small acoustic anisotropy and a low yield ratio while being air-cooled, but the heat input amount of the large heat input welded joint is 20 KJ. / Mm, which is relatively small (for example, Table 3 of Examples), there is no guarantee that high HAZ toughness can be secured at the welding heat input up to about 100 KJ / mm which is the target of the present invention.

一方、引張強さ590MPa級で入熱20KJ/mm以上における大入熱溶接継手靭性に優れた鋼材として、例えば特許文献4〜6のような技術も提案されている。   On the other hand, technologies such as Patent Documents 4 to 6 have been proposed as steel materials having a tensile strength of 590 MPa and excellent in toughness of high heat input welded joints at a heat input of 20 KJ / mm or more.

このうち特許文献4には、C:0.001〜0.03%、Mn:0.8〜3.0%、B:0.0003〜0.0050%を含み、且つTi/Alが5.0以上を満足し、かつTi酸化物:20〜90%、Al23:70%以下、Ca酸化物,REM酸化物のいずれか1種または2種の合計:5〜50%、MnO:15%以下からなる酸化物系介在物を分散させた引張強さ570MPa級鋼材の製造方法が開示されている。 Among these, Patent Document 4 includes C: 0.001 to 0.03%, Mn: 0.8 to 3.0%, B: 0.0003 to 0.0050%, and Ti / Al is 5. 0 or more, and Ti oxide: 20 to 90%, Al 2 O 3 : 70% or less, one or two of Ca oxide and REM oxide: 5 to 50%, MnO: A method for producing a tensile strength 570 MPa grade steel material in which oxide inclusions of 15% or less are dispersed is disclosed.

また特許文献5には、C:0.02%以下、Mn:0.5〜2.0%、Nb:0.010〜0.10%、B:0.0003〜0.0040%で、且つB/Nが0.3〜1.0の組成を有する引張強さ552〜605MPaの非調質型低温用鋼材について開示されている。   In Patent Document 5, C: 0.02% or less, Mn: 0.5 to 2.0%, Nb: 0.010 to 0.10%, B: 0.0003 to 0.0040%, and Non-tempered steel for low temperature use with a tensile strength of 552 to 605 MPa having a composition of B / N of 0.3 to 1.0 is disclosed.

更に、特許文献6には、C:0.01〜0.06%、Mn:1.25〜2.5%、Cr:0.1〜2.0%、Mo:1.5%以下(0%を含む)、Ti:0.005〜0.03%、B:0.0006〜0.005%、O:0.0025〜0.015%を含有し、([Mn]+1.5×[Cr]+2×[Mo])で定義されるパラメータKPが2.4質量%以上である高張力鋼板について開示されている。またこうした高張力鋼板を製造する工程として、850〜950℃で圧延を完了し、その後冷却し、次いで750〜800℃に再加熱後水焼入れを行い、最終的に550〜600℃で焼戻しすることについて示されている(例えば、実施例の表3、4)。   Further, in Patent Document 6, C: 0.01 to 0.06%, Mn: 1.25 to 2.5%, Cr: 0.1 to 2.0%, Mo: 1.5% or less (0 %), Ti: 0.005 to 0.03%, B: 0.0006 to 0.005%, O: 0.0025 to 0.015%, ([Mn] + 1.5 × [ A high-strength steel sheet having a parameter KP defined by Cr] + 2 × [Mo]) of 2.4% by mass or more is disclosed. Moreover, as a process for producing such a high-tensile steel plate, rolling is completed at 850 to 950 ° C., then cooled, then re-heated to 750 to 800 ° C. and then water-quenched, and finally tempered at 550 to 600 ° C. (Eg, Tables 3 and 4 in the Examples).

しかしながら、上記特許文献4の技術では、0.005〜0.10%程度のNbを含むものであり(実施例で0.04〜0.05%)、圧延終了温度を800℃以上(実施例で820〜850℃)と規定しており、建築用途の溶接構造用鋼材に要求される音響異方性を安定して満足し得ないものである(この点については後述する)。   However, in the technique of the above-mentioned Patent Document 4, Nb is contained in an amount of about 0.005 to 0.10% (0.04 to 0.05% in the examples), and the rolling end temperature is 800 ° C. or more (Examples). 820 to 850 ° C.), and cannot stably satisfy the acoustic anisotropy required for a steel material for welded structures for architectural purposes (this point will be described later).

特許文献5の技術では、上記特許文献4と同様にNb:0.010〜0.10%を含有しており、こうしたこうした鋼材に対して750℃以上で圧延を終了し、空冷あるいは加速冷却が施されることによって引張強さ590MPa級を満足させるものであるが、降伏比は82%以上となって建築用途に適用できないものである。   In the technique of Patent Document 5, Nb: 0.010 to 0.10% is contained in the same manner as in Patent Document 4 described above. Such steel material is rolled at 750 ° C. or higher, and air cooling or accelerated cooling is performed. When applied, it satisfies the tensile strength of 590 MPa class, but the yield ratio is 82% or more and cannot be applied to building applications.

特許文献6の技術では、低炭素鋼(C含有量0.03ベース)において、Cu,NbおよびMoを無添加としたものも示されているが(実施例の表1のNo.1)、この鋼材におけるMn量はJIS G 3106のSM570および建設大臣一般認定の高性能鋼SA440におけるMn量の規定量(1.6%以下)を超えるものである。またMn量を1.60%以下としたものも示されているが(表1のNo.12)、この鋼材ではCuおよびNbの無添加による強度低下をMoの添加によって補償するものであり、こうした鋼材では靭性がvE-40(−40℃における吸収エネルギー)で71Jと低位であり、しかもガス切断性に劣るものとなる。即ち、こうした鋼材では、ガス切断面の表面粗度がWES2801を満足するのは困難であり、ノッチが生成されて破壊の起点となるため、構造用部材としては適さない。 In the technique of Patent Document 6, although low carbon steel (based on a C content of 0.03), Cu, Nb and Mo are not added (No. 1 in Table 1 of Examples). The amount of Mn in this steel exceeds the specified amount (1.6% or less) of the amount of Mn in SM570 of JIS G 3106 and high performance steel SA440 certified by the Minister of Construction. Moreover, although what made Mn amount 1.60% or less is also shown (No. 12 of Table 1), in this steel material, the strength reduction by the addition of Cu and Nb is compensated by addition of Mo, Such a steel material has a toughness as low as 71 J in vE -40 (absorbed energy at -40 ° C), and is inferior in gas cutting property. That is, in such a steel material, it is difficult for the surface roughness of the gas cut surface to satisfy WES2801, and a notch is generated and becomes a starting point of destruction, so that it is not suitable as a structural member.

ところで、Cuを含有する鋼材において、Cuに起因する表面割れを抑制し、且つ溶接熱影響部の靭性をも優れたものとした技術として、例えば特許文献7に示されるようなものも知られている。この技術は、Si:0.05〜0.5%、Cr:0.1〜0.6%、B:0.0005%以下を含有する溶接構造用Cu含有鋼であり、圧延時の割れを防止すると共に、12KJ/mmのCO2溶接における溶接熱影響部の靭性vE0が良好であるとしている。またNiを添加する場合は、鋼中Cu量の1/3未満に規定することが望ましいことが示されている。 By the way, in the steel material containing Cu, as a technique for suppressing surface cracks caused by Cu and having excellent toughness of the weld heat affected zone, for example, a technique as shown in Patent Document 7 is also known. Yes. This technology is a Cu-containing steel for welded structures containing Si: 0.05 to 0.5%, Cr: 0.1 to 0.6%, B: 0.0005% or less, and cracks during rolling It is said that the toughness vE 0 of the weld heat affected zone in CO 2 welding at 12 KJ / mm is good. Moreover, when adding Ni, it has shown that it is desirable to prescribe | regulate to less than 1/3 of the amount of Cu in steel.

しかしながら、この技術で圧延時の割れが防止できたとしても、ガス切断時に鋼成分がスラグ化する過程において鋼中のCuやCu合金が低温まで溶融状態で残存する場合には、圧延の加熱時に比較して鋼が一旦溶融する程に格段に入熱量が大きいため、溶融状態のCuのガス切断面の粒界に容易に侵入し易くなることによって、ガス切断割れを防止できないこともあり、そのままの状態では破壊の起点を内在したものとなり、割れが開口する方向の軸応力が作用する部位への適用はできない。
「日本鋼管技報」No.122(1988)、第5〜10頁 特開平9−256042号公報 特許請求の範囲等 特開平11−193445号公報 特許請求の範囲、実施例の表1、2等 特開2002−53912号公報 特許請求の範囲、実施例の表3等 特開2000−345239号公報 特許請求の範囲等 特開2001−20034号公報 特許請求の範囲等 特開2001−335883号公報 特許請求の範囲、実施例の表3、4等
However, even if cracking during rolling can be prevented with this technique, when the Cu or Cu alloy in the steel remains in a molten state up to a low temperature in the process of slagging the steel component during gas cutting, Compared to the fact that the amount of heat input is so large that the steel is once melted in comparison, it is easy to easily enter the grain boundary of the gas cut surface of the molten Cu, and may not prevent gas cut cracks. In this state, the starting point of fracture is inherent, and it cannot be applied to a site where axial stress acts in the direction in which the crack opens.
“Japan Steel Pipe Technical Report” 122 (1988), pp. 5-10 Japanese Patent Laid-Open No. 9-256042 Claims etc. Japanese Patent Application Laid-Open No. 11-193445 Patent Claims, Examples Table 1, 2 etc. JP, 2002-53912, A Claims, Table 3 of an example, etc. JP, 2000-345239, A Claims etc. JP, 2001-20034, A Claims etc. JP, 2001-335883, A Claims, Tables 3 and 4 of an example, etc.

本発明は、こうした従来技術における課題を解決するためになされたものであって、その目的は、耐ガス切断割れ性および大入熱溶接継手靭性に優れ、且つ音響異方性が小さく、しかも塑性変形能が大きい、引張強さ590MPa級の高張力鋼板を提供することにある。   The present invention has been made in order to solve such problems in the prior art, and its purpose is excellent in gas cut cracking resistance and high heat input weld joint toughness, and has low acoustic anisotropy and plasticity. An object of the present invention is to provide a high-tensile steel plate having a large deformability and a tensile strength of 590 MPa.

上記目的を達成し得た本発明の高張力鋼板とは、C:0.015〜0.045%、Si:0.4%以下(0%を含む)、Mn:0.8〜1.6%、Cr:0.5〜1.3%、sol.Al:0.08%以下(0%を含む)、B:0.0004〜0.003%、固溶B:0.0002〜0.002%、Cu:0.5〜0.95%、Ni:0.7〜5.0%(但し、Ni含有量[Ni]とCu含有量[Cu]の比[Ni]/[Cu]≧1)、Ti:0.005〜0.03%および下記(1)式を満足するNを夫々含有し、残部がFeおよび不可避不純物であり、且つ下記(2)式で示されるCEN値が0.27〜0.33%の範囲内にある化学成分組成を有し、主圧延方向に沿った板厚方向断面における旧オーステナイト粒径の平均アスペクト比(主圧延方向の平均粒径/板厚方向の平均粒径)が1.0〜1.2であると共に、0.5〜3.5体積%の島状マルテンサイト相と4×1020〜26×1020個/m3のε−Cu相クラスターがベイナイト地に分散したものである点に要旨を有するものである。 The high-strength steel sheet of the present invention that can achieve the above-mentioned object is: C: 0.015-0.045%, Si: 0.4% or less (including 0%), Mn: 0.8-1.6 %, Cr: 0.5 to 1.3%, sol. Al: 0.08% or less (including 0%), B: 0.0004 to 0.003%, solid solution B: 0.0002 to 0.002%, Cu: 0.5 to 0.95%, Ni : 0.7 to 5.0% (however, the ratio [Ni] / [Cu] ≧ 1 of Ni content [Ni] and Cu content [Cu]), Ti: 0.005 to 0.03% and the following (1) Chemical components each containing N satisfying the formula, the balance being Fe and inevitable impurities, and the CE N value represented by the following formula (2) within the range of 0.27 to 0.33% The average aspect ratio of the prior austenite grain size (average grain size in the main rolling direction / average grain size in the thickness direction) in the thickness direction cross section along the main rolling direction is 1.0 to 1.2. In addition, 0.5 to 3.5% by volume of island martensite phase and 4 × 10 20 to 26 × 10 20 pieces / m 3 of ε-Cu phase clusters are distributed in the bainite. It has a gist in that it is scattered.

[Ti]×14.0/47.9−0.001≦[N]≦[Ti]×14.0/47.9+[B]×14.0/10.8 ‥(1)
但し、[Ti],[N],および[B]は、夫々Ti,NおよびBの含有量(質量%)を示す。
[Ti] × 14.0 / 47.9−0.001 ≦ [N] ≦ [Ti] × 14.0 / 47.9 + [B] × 14.0 / 10.8 (1)
However, [Ti], [N], and [B] indicate the contents (mass%) of Ti, N, and B, respectively.

CEN=[C]+A(c)・[[Si]/24+[Mn]/6+[Cu]/15+[Ni]/20+([Cr]+[Mo]+[Nb]+[V])/5+5[B]]
‥(2)
但し、A(c)= 0.75+0.25・tanh[20([C]-0.12)]であり、[C],[Si],[Mn],[Cu],[Ni],[Cr],[Mo],[Nb],[V]および[B]は、夫々C,Si,Mn,Cu,Ni,Cr,Mo,Nb,VおよびBの含有量(質量%)を示す。
CE N = [C] + A (c) ・ [[Si] / 24 + [Mn] / 6 + [Cu] / 15 + [Ni] / 20 + ([Cr] + [Mo] + [Nb] + [V]) / 5 + 5 [B]]
(2)
However, A (c) = 0.75 + 0.25 · tanh [20 ([C] -0.12)], [C], [Si], [Mn], [Cu], [Ni], [Cr], [ Mo], [Nb], [V] and [B] indicate the contents (mass%) of C, Si, Mn, Cu, Ni, Cr, Mo, Nb, V and B, respectively.

本発明の低降伏比高張力鋼板には、必要によって、(a)V:0.005〜0.10%、(b)Ca:0.0005〜0.01%、(c)La:0.002〜0.02%,Ce:0.0003〜0.0050%およびMg:0.0005〜0.0030%よりなる群から選ばれる1種または2種以上、等を含有することも有効であり、これら含有される成分に応じて高張力鋼板の特性を更に向上させることができる。   In the low yield ratio high tensile strength steel sheet of the present invention, (a) V: 0.005 to 0.10%, (b) Ca: 0.0005 to 0.01%, (c) La: 0.0. It is also effective to contain one or more selected from the group consisting of 002 to 0.02%, Ce: 0.0003 to 0.0050% and Mg: 0.0005 to 0.0030%. The properties of the high-tensile steel sheet can be further improved depending on the components contained therein.

本発明の高張力鋼板は、低降伏比で予熱を必要とせず、且つ約100KJ/mmまでもの大入熱溶接を施しても平均70J以上の高HAZ靭性を確保でき、歪み速度の大きな地震に対しても溶接継手部の脆性破壊を防止でき、しかもガス切断割れの欠陥を内在せず、音響異方性も小さいので、超高層建築物の主要溶接構造部材として極めて信頼性の高い引張強度590MPa級高張力鋼板である。   The high-strength steel sheet of the present invention does not require preheating at a low yield ratio, and can ensure high HAZ toughness of an average of 70 J or higher even when subjected to large heat input welding up to about 100 KJ / mm, and is suitable for earthquakes with large strain rates. In contrast, brittle fracture of welded joints can be prevented, and there is no defect of gas cutting cracks, and acoustic anisotropy is small. Therefore, the tensile strength of 590 MPa is extremely reliable as the main welded structural member of high-rise buildings. Grade high-tensile steel sheet.

超高層建築物に供せられる引張強さ590MPa級高張力鋼板に関して、従来の降伏比80%以下の塑性変形能に加えて、溶接継手の厚肉化に対応して、溶接入熱50〜100KJ/mmの超大入熱化を実現すると共に、大地震のように大きい歪み速度を有する外力に抵抗するために、溶接継手の全部位において、ダイアフラム溶接部に対する溶接施工指針に示される平均15J以上より遥かに高位な平均70J以上の要求靭性が要望されるようになってきた。   In addition to the conventional plastic deformability with a yield ratio of 80% or less, the welding heat input of 50 to 100 KJ is applicable to the high-strength steel sheet with a tensile strength of 590 MPa for high-rise buildings. In order to realize an extremely large heat input of / mm and to resist external forces having a large strain rate like a large earthquake, the average value of 15 J or more shown in the welding guidelines for diaphragm welds in all parts of the welded joint A much higher average toughness of 70 J or more has been demanded.

一方、橋梁の場合においても、大入熱溶接化に加えて、溶接継手部を従来の放射線透過試験から超音波斜角探傷試験に切り替わる趨勢にあることから、高層建築物の場合と同様に、横波に対する音響異方性が小さいことが求められるようになっている。   On the other hand, in the case of bridges, in addition to the large heat input welding, since there is a tendency to switch the welded joint part from the conventional radiation transmission test to the ultrasonic oblique flaw detection test, as in the case of high-rise buildings, The acoustic anisotropy with respect to the transverse wave is required to be small.

本発明者らが、建築用590MPa級高張力鋼板において低降伏比,音響異方性が小さいことに加え、約100KJ/mmまでものエレクトロスラグ溶接が施された強度部材に関して、溶接熱影響部に平均70J以上の靭性を持たせることについて鋭意検討した。   In addition to a low yield ratio and small acoustic anisotropy in a 590 MPa class high-tensile steel sheet for construction, the present inventors have applied a heat-affected zone to a strength member subjected to electroslag welding up to about 100 KJ / mm. We have intensively studied to provide an average toughness of 70 J or more.

その結果、1350〜1400℃に昇温した後、冷却速度の極めて小さい熱影響部に対してはTiNによる結晶粒粗大化の抑制効果に加えて、(i)溶融線近傍の熱影響部の結晶粒界へのフェライト析出および粒界からのフェライトサイドプレートの生成を抑制すること、更には(ii)同結晶粒内を微細ベイナイト組織にすることが有効であることを知見した。   As a result, after heating to 1350-1400 ° C., in addition to the effect of suppressing grain coarsening by TiN for the heat affected zone with a very low cooling rate, (i) crystals in the heat affected zone in the vicinity of the melting line It has been found that it is effective to suppress the precipitation of ferrite at the grain boundaries and the formation of ferrite side plates from the grain boundaries, and (ii) to make the inside of the crystal grains a fine bainite structure.

そして上記(i)に対しては、冷却速度が極めて小さい場合においても、固溶Bを結晶粒界に偏析させることが効果的であることが判明した。またそのためには、BNの生成を抑制するためにフリーNをTiで固定すると共に、Ar3変態点を上昇させるMoを無添加とし、Ar3変態点を低下させるCrを積極的に適量添加することが有効であることが分かった。 For (i) above, it has been found that it is effective to segregate the solid solution B at the grain boundaries even when the cooling rate is extremely low. For that purpose, in order to suppress the formation of BN, free N is fixed with Ti, Mo which raises the Ar 3 transformation point is not added, and an appropriate amount of Cr which lowers the Ar 3 transformation point is positively added. Was found to be effective.

また上記(ii)に対しては、前記(2)式で規定される炭素当量CENを0.27〜0.33%に制御すると共に、構成するCを極低化し、加えてNbを無添加とすることによって、熱影響部の旧オーステナイト結晶粒内のミクロ組織を大傾角化させた微細ベイナイトブロックの集合体とできることが効果的であることが判明した。また上記CENが0.27〜0.33%の範囲では、小入熱溶接時の予熱フリー化も実現できることも分かった。尚、これらの方策による母材の強度低下を補償するために、ε−Cu相による析出強化を積極的に活用する必要がある。 In addition to the above (ii), the carbon equivalent CE N defined by the above formula (2) is controlled to 0.27 to 0.33%, and the constituent C is made extremely low, and Nb is not added. It has been proved that it is effective to be an aggregate of fine bainite blocks in which the microstructure in the prior austenite crystal grains in the heat-affected zone is increased in inclination by the addition. It was also found that when the CE N is in the range of 0.27 to 0.33%, preheating free at the time of small heat input welding can be realized. In addition, in order to compensate for the strength reduction of the base material due to these measures, it is necessary to actively utilize precipitation strengthening due to the ε-Cu phase.

ところで、析出強化が発現するCuを過剰添加すると、ガス切断時に溶融した低融点のCuやCu合金が選択的に結晶粒界に侵入することによって、約0.2mm深さに及ぶヘアクラックが多数発生することから、Cu含有量を0.5〜0.95%に制限する共に、Ni含有量[Ni]とCu含有量[Cu]の比[Ni]/[Cu]を1以上として、溶融時に共晶化させて、凝固温度の高温化を図ることで割れ感受性を小さくする必要がある。   By the way, when Cu that exhibits precipitation strengthening is excessively added, a low melting point Cu or Cu alloy melted at the time of gas cutting selectively penetrates into the crystal grain boundary, so that there are many hair cracks extending to a depth of about 0.2 mm. Therefore, the Cu content is limited to 0.5 to 0.95%, and the ratio [Ni] / [Cu] of the Ni content [Ni] and the Cu content [Cu] is set to 1 or more to melt. Sometimes it is necessary to reduce the susceptibility to cracking by eutecticizing and increasing the solidification temperature.

また母材の降伏比を低減(80%以下)させる方策として、従来のフェライト・ベイナイトの2相組織化とは異なり、MnおよびCrの添加によってベイナイト変態を促進させること、およびC含有量を0.015〜0.045%とすることによってベイナイト相間に微細な島状マルテンサイト相を0.5〜3.5%分散させることが必要である。   Also, as a measure for reducing the yield ratio of the base metal (80% or less), unlike the conventional two-phase structure of ferrite bainite, bainite transformation is promoted by addition of Mn and Cr, and the C content is reduced to 0. It is necessary to disperse 0.5 to 3.5% of the fine island martensite phase between the bainite phases by setting the content to .015 to 0.045%.

更に、母材の音響異方性については、日本建築学会の「鋼構造建築溶接部の超音波検査基準」の付則表1にあるSTBとの音速比がないと判定される範囲を満足させるためには、母材の旧オーステナイト粒径の平均アスペクト比(圧延方向の平均粒径/板厚方向の平均粒径)が1〜1.2の範囲に制御するによって実現できる。   Furthermore, with respect to the acoustic anisotropy of the base material, in order to satisfy the range in which it is determined that there is no sound velocity ratio with STB in Appendix Table 1 of “Ultrasonic Inspection Standards for Steel Structure Building Welds” of the Architectural Institute of Japan. Can be realized by controlling the average aspect ratio of the prior austenite grain size of the base material (average grain size in the rolling direction / average grain size in the plate thickness direction) to a range of 1 to 1.2.

以上の方策を総合して適用することによって、50〜100KJ/mmの大入熱溶接が施されてもvE0で平均70J以上を有し、且つガス切断割れ感受性のない建築用590MPa級高性能鋼(SA440)に適合した鋼板が得られることを見出し、本発明を完成するに至った。 By applying the above measures in a comprehensive manner, even if a large heat input welding of 50 to 100 KJ / mm is applied, it has an average value of 70 J or more at vE 0 and is not susceptible to gas cutting cracking. The present inventors have found that a steel plate suitable for steel (SA440) can be obtained, and have completed the present invention.

以下に、本発明の特性を得るための化学組成およびミクロ組織の限定理由を、その経緯に沿って説明する。   The reason for limiting the chemical composition and the microstructure for obtaining the characteristics of the present invention will be described below along the background.

本発明者らは、前記CEN値が約0.30%の一定となるようにMn含有量を可変にして調整した5鋼種(0.035C−1.45Mn−0.95Cu−1Ni−0.7Cr−0.015Ti−0.0012B−0.0040N系の基本鋼,0.4Mo添加鋼,0.01Nb添加鋼,0.4Mo−0.01Nb添加鋼および0.05C系鋼)のスキンプレート材と、SN490B−TMC(0.14C−0.3Si−1.25Mn−0.008Nb−0.012Ti系,60mm厚)のダイアフラム材を組合せし、ギャップ25mmを設けて入熱100KJ/mmのエレクトロスラグ溶接を行ない、溶接継手部のスキンプレート側の熱影響部(HAZ)の靭性(切欠き位置:大入熱溶接HAZで最も低靭性を示すボンド+0.5mm)を比較調査した(後記表7の実験No.2〜7参照)。 The inventors of the present invention have five steel types (0.035C-1.45Mn-0.95Cu-1Ni-0.0) adjusted with the Mn content variable so that the CE N value is constant at about 0.30%. 7Cr-0.015Ti-0.0012B-0.0040N-based basic steel, 0.4Mo-added steel, 0.01Nb-added steel, 0.4Mo-0.01Nb-added steel, and 0.05C-based steel) skin plate material And a SN490B-TMC (0.14C-0.3Si-1.25Mn-0.008Nb-0.012Ti system, 60 mm thick) diaphragm material, with a gap of 25 mm and an electroslag with a heat input of 100 KJ / mm Welding and comparing the toughness of the heat affected zone (HAZ) on the skin plate side of the welded joint (notch position: bond showing the lowest toughness in high heat input welding HAZ + 0.5 mm) And 査 (see Experimental No.2~7 the following Table 7).

この結果から、上記CEN値が約0.30%と同レベルを示す化学成分組成であっても、Mo無添加,Nb無添加,Cr増量およびC低減によって、夫々大入熱HAZ靭性を大幅に向上させること、およびこれらの要件を複合化させることにより、最もHAZ靭性が低くなるボンド+0.5mm位置近傍においても、vE070J以上を初めて保証できることが分かる。また、MoおよびNbの無添加による強度低下をCuの析出強化とMn,Crによる固溶強化によって補償できることも分かる。 From this result, even if the chemical component composition shows the same level as the CE N value of about 0.30%, the large heat input HAZ toughness is greatly increased by adding no Mo, no Nb, adding Cr, and reducing C. It can be seen that, by combining these requirements and combining these requirements, it is possible to guarantee vE 0 70 J or more for the first time even in the vicinity of the bond +0.5 mm position where the HAZ toughness is lowest. It can also be seen that the strength reduction due to the absence of addition of Mo and Nb can be compensated by precipitation strengthening of Cu and solid solution strengthening by Mn and Cr.

また、大入熱溶接HAZ靭性が高位な鋼種(後記表1の鋼種B)を基本成分として、CuやNiの含有量を変化させてLPガス(LPG)切断によって、ガス切断面から鋼板表面に平行方向に進展する割れの最大深さを比較調査した(後記表7の実験No.2,8〜17参照)。   In addition, steel grade with high heat input welding HAZ toughness (steel grade B in Table 1 below) is used as a basic component, and the content of Cu and Ni is changed to LP gas (LPG) cutting from the gas cut surface to the steel plate surface. A comparative investigation was made on the maximum depth of cracks extending in the parallel direction (see Experiment Nos. 2, 8 to 17 in Table 7 below).

この結果から、Cu含有量が0.95%以下でかつ、前記比[Ni]/[Cu]を1以上に制御することにより、ガス切断割れ感受性が小さくなることが判明したのである。   From this result, it has been found that by controlling the ratio [Ni] / [Cu] to 1 or more when the Cu content is 0.95% or less, the sensitivity to gas cutting cracks is reduced.

更に、本発明者らは、0.035C−1.45Mn−0.95Cu−1Ni−0.7Cr−0.015Ti−0.0012B−0.0040N系の基本成分(後記表1の鋼種B)のC含有量を変化させた鋼種を用い、連続鋳造スラブを1050〜1100℃に加熱後、100mm厚に900℃で熱間圧延後直接焼入れし、引き続き840℃での焼入れ処理(Q’処理)と500℃での焼戻し処理(T処理)を実施して、強度,降伏比およびミクロ組織および100KJ/mmでのHAZ靭性に及ぼすC含有量の影響を調査した(後記表7の実験No.2,6,18〜21参照)。   Furthermore, the inventors of the present invention have a basic component of 0.035C-1.45Mn-0.95Cu-1Ni-0.7Cr-0.015Ti-0.0012B-0.0040N system (steel type B in Table 1 below). Using steel grades with varying C content, the continuous cast slab was heated to 1050-1100 ° C, then hot-rolled to 900mm at 900 ° C and then directly quenched, followed by quenching at 840 ° C (Q 'treatment) A tempering treatment (T treatment) at 500 ° C. was carried out to investigate the influence of the C content on the strength, yield ratio, microstructure and HAZ toughness at 100 KJ / mm (Experiment No. 2 in Table 7 below). 6, 18-21).

この結果から、C:0.015%以上で降伏比80%以下と強度を両立できることが分かったのである。また、これらの鋼種における大入熱HAZ靭性の調査結果から、vE0で平均70J以上を確保するためには、C含有量の上限を0.045%とする必要があることが分かった。 From this result, it was found that when C: 0.015% or more, the yield ratio is 80% or less and the strength is compatible. Further, from the investigation results of the high heat input HAZ toughness in these steel types, it was found that the upper limit of the C content needs to be 0.045% in order to ensure an average of 70 J or more in vE 0 .

次に、本発明の高張力鋼板における化学成分組成の限定理由について説明する。まず本発明では、上記のようにC:0.015〜0.045%、Si:0.4%以下(0%を含む)、Mn:0.8〜1.6%、Cr:0.5〜1.3%、sol.Al:0.08%以下(0%を含む)、B:0.0004〜0.003%、固溶B:0.0002〜0.002%、Cu:0.5〜0.95%、Ni:0.7〜5.0%(但し、Ni含有量[Ni]とCu含有量[Cu]の比[Ni]/[Cu]≧1)、Ti:0.005〜0.03%および下記(1)式を満足するNを夫々含有すると共に、実質的にNbおよびMoを含まないものとする必要があるが、これら元素の範囲限定理由は、次の通りである。   Next, the reason for limiting the chemical component composition in the high-tensile steel sheet of the present invention will be described. First, in the present invention, as described above, C: 0.015 to 0.045%, Si: 0.4% or less (including 0%), Mn: 0.8 to 1.6%, Cr: 0.5 ~ 1.3%, sol. Al: 0.08% or less (including 0%), B: 0.0004 to 0.003%, solid solution B: 0.0002 to 0.002%, Cu: 0.5 to 0.95%, Ni : 0.7 to 5.0% (however, the ratio [Ni] / [Cu] ≧ 1 of Ni content [Ni] and Cu content [Cu]), Ti: 0.005 to 0.03% and the following Although it is necessary to contain N satisfying the formula (1) and substantially not contain Nb and Mo, the reasons for limiting the ranges of these elements are as follows.

C:0.015〜0.045%
Cは低温ベイナイトを形成させて高張力鋼の強度と低降伏比の確保に有効な元素であり、0.015%以上含有させる必要がある。しかしながら、Cを過剰に含有させると、高冷却速度側でマルテンサイト相を形成して耐溶接低温割れ性を劣化させると共に、大入熱溶接HAZで島状マルテンサイト相を増大させて靭性を劣化させることになる。こうしたことから、その上限は0.045%とする必要がある。尚、母材強度と大入熱溶接HAZ靭性の両立の観点から、好ましい下限は0.02%であり、好ましい上限は0.04%である。
C: 0.015-0.045%
C is an element effective for forming low-temperature bainite and ensuring the strength and low yield ratio of high-tensile steel, and needs to be contained in an amount of 0.015% or more. However, if C is contained excessively, a martensite phase is formed on the high cooling rate side and the cold cracking resistance of welding is deteriorated, and the island-like martensite phase is increased by high heat input HAZ to deteriorate toughness. I will let you. For these reasons, the upper limit needs to be 0.045%. In addition, from a viewpoint of coexistence of base material strength and high heat input welding HAZ toughness, a preferable lower limit is 0.02%, and a preferable upper limit is 0.04%.

Si:0.4%以下(0%を含む)
Siは脱酸剤および強化元素として有効な元素であるが、過剰に含有させると大入熱溶接HAZでの島状マルテンサイト相を増加させて靭性を劣化させる。こうしたことから、その上限を0.4%とし、また含有量はできるだけ少ない方が良いことからその下限を0%とする。Siを含まない場合には、脱酸はMn,Al,Ti等で任意に代替可能である。尚、Si含有量の好ましい上限は0.3%である。
Si: 0.4% or less (including 0%)
Si is an effective element as a deoxidizer and strengthening element. However, if excessively contained, it increases the island-like martensite phase in the high heat input welding HAZ and deteriorates toughness. For these reasons, the upper limit is set to 0.4%, and the lower content is preferably as low as possible, so the lower limit is set to 0%. When Si is not included, deoxidation can be arbitrarily replaced with Mn, Al, Ti, or the like. In addition, the preferable upper limit of Si content is 0.3%.

Mn:0.8〜1.6%
Mnはフェライト変態を低温,長時間側に移行させ、低温で上部ベイナイト相を形成させて強化するのに有効な元素である。そのためにはMnは0.8%以上含有させる必要がある。しかしながらMnを過剰に含有させると、母材および大入熱溶接HAZの靭性の劣化および耐溶接低温割れ性の劣化を引き起こすので上限を1.6%とする。Mn含有量の好ましい好ましい下限は1.0%であり、好ましい上限は1.5%である。
Mn: 0.8 to 1.6%
Mn is an element that is effective in causing the ferrite transformation to shift to a low temperature for a long time and to form and strengthen the upper bainite phase at a low temperature. For that purpose, it is necessary to contain 0.8% or more of Mn. However, if Mn is contained excessively, the toughness of the base metal and the high heat input weld HAZ and the deterioration of the weld cold crack resistance are caused, so the upper limit is made 1.6%. A preferable lower limit of the Mn content is 1.0%, and a preferable upper limit is 1.5%.

Cr:0.5〜1.3%
Crは焼入性を向上させることによって、低温での上部ベイナイト相の形成および同一強度レベル比較での降伏比の低減に有効な元素である。また、大入熱溶接HAZのフェライト変態を低温,長時間に移行させるため、低温でベイナイト相を形成させ易くして靭性向上に有効である。こうした効果を発揮させるために、Crは0.5%以上含有させる必要がある。しかしながら、Crを過剰に含有させると大入熱溶接HAZでの島状マルテンサイト相の増大を招くことから、その上限は1.3%とする必要がある。尚、Cr含有量の好ましい下限は0.6%であり、好ましい上限は1.1%である。
Cr: 0.5 to 1.3%
Cr is an element that is effective for forming the upper bainite phase at a low temperature and reducing the yield ratio by comparing the same strength level by improving hardenability. Moreover, since the ferrite transformation of the high heat input weld HAZ is transferred to a low temperature for a long time, it is easy to form a bainite phase at a low temperature, which is effective in improving toughness. In order to exhibit such an effect, Cr needs to be contained 0.5% or more. However, if Cr is excessively contained, the island-like martensite phase is increased in the high heat input welding HAZ, so the upper limit needs to be 1.3%. In addition, the minimum with preferable Cr content is 0.6%, and a preferable upper limit is 1.1%.

sol.Al:0.08%(0%を含む)
sol.Al(可溶能Al)は脱酸に有効な元素であるが、大入熱溶接HAZでTiオキサイドを核とする粒内のベイナイトを形成させることで靭性を向上させるには、含有量はできるだけ少ない方がよく、下限を0%とする。その場合の脱酸はMn,Si,Ti等で任意に代替可能である。またsol.Alは、TiによるN固定を補うことによって母材の焼入性確保に有効に作用するが、過剰に含有されると非金属介在物を増加させて靭性劣化を招くことになる。こうしたことから、sol.Alを含有させるときにはその上限を0.08%とする必要がある。尚、sol.Alの好ましい上限は0.06%程度である。
sol. Al: 0.08% (including 0%)
sol. Al (soluble ability Al) is an element effective for deoxidation, but in order to improve toughness by forming intragranular bainite with Ti oxide as the core in high heat input welding HAZ, the content can be as much as possible. Less is better and the lower limit is 0%. In this case, deoxidation can be arbitrarily replaced with Mn, Si, Ti, or the like. Also, sol. Al effectively works to secure the hardenability of the base material by supplementing N fixation with Ti, but if it is excessively contained, it increases nonmetallic inclusions and causes toughness deterioration. Therefore, sol. When Al is contained, the upper limit needs to be 0.08%. In addition, sol. A preferable upper limit of Al is about 0.06%.

B:0.0004〜0.003%(但し、固溶B:0.0002〜0.002%)
Bは焼入性を向上させて低冷却速度でもフェライト変態を抑制し、低温ベイナイトの生成を促進するため、母材強度の向上に有効である。またBはNと結合してBNを形成し、このBNは粒内ベイナイト変態核として作用するため、大入熱溶接HAZの粒界フェライト相の生成抑制と微細な粒内ベイナイト相の生成による靭性向上に有効に作用する。そのためには、Bは0.0004%以上、および固溶Bとして0.0002%以上含有させる必要がある。しかしながら、Bを過剰に含有させると鋼の焼入性が高くなり過ぎて、島状マルテンサイト相を増加させ、母材および大入熱溶接HAZの靭性を劣化させると共に、耐溶接低温割れ性を劣化させる。こうしたことから、B含有量の上限は0.003%(固溶Bとして0.002%)とする必要がある。尚、B含有量の好ましい下限は0.006%(固溶Bとして0.0004)、好ましい上限は0.002%(固溶Bとして0.001%)である。
B: 0.0004 to 0.003% (however, solid solution B: 0.0002 to 0.002%)
B improves the hardenability, suppresses ferrite transformation even at a low cooling rate, and promotes the formation of low-temperature bainite. Therefore, B is effective in improving the strength of the base material. In addition, B combines with N to form BN, and this BN acts as an intragranular bainite transformation nucleus, so toughness due to the suppression of the formation of intergranular ferrite phases and the formation of fine intragranular bainite phases in high heat input HAZ. It works effectively for improvement. For that purpose, B needs to be contained in an amount of 0.0004% or more, and as a solid solution B, 0.0002% or more. However, when B is contained excessively, the hardenability of the steel becomes too high, the island-like martensite phase is increased, the toughness of the base metal and the high heat input welding HAZ is deteriorated, and the resistance to welding cold cracking is reduced. Deteriorate. For these reasons, the upper limit of the B content needs to be 0.003% (0.002% as solute B). In addition, the minimum with preferable B content is 0.006% (0.0004 as solid solution B), and a preferable upper limit is 0.002% (0.001% as solid solution B).

Cu:0.5〜0.95%
Cuは固溶強化およびε−Cu相のクラスターの析出により、母材の強度を向上させるのに有効な元素である。これらの効果を発揮させるためには、Cuは0.5%以上含有させる必要がある。しかしながら、Cuを過剰に含有させると、ガス切断面にCu濃縮相を形成し、熱膨張時に旧オーステナイト粒界に侵入さて割れを誘発させることから、その上限を0.95%とする。Cu含有量の好ましい下限は0.7%であり、好ましい上限は0.9%である。
Cu: 0.5 to 0.95%
Cu is an element effective for improving the strength of the base material by solid solution strengthening and precipitation of clusters of ε-Cu phase. In order to exhibit these effects, it is necessary to contain Cu 0.5% or more. However, if Cu is excessively contained, a Cu-concentrated phase is formed on the gas cut surface and penetrates into the prior austenite grain boundaries during thermal expansion to induce cracking, so the upper limit is made 0.95%. The minimum with preferable Cu content is 0.7%, and a preferable upper limit is 0.9%.

Ni:0.7〜5.0%
Niは、焼入性を向上させると共に、母材および大入熱溶接HAZの基地の靭性を向上させる元素であり、これらの効果を作用させるには、0.7%以上含有させる必要がある。しかしながら、Niを過剰に含有させると、焼入性が高くなり過ぎて島状マルテンサイト相が増加して靭性劣化を招くとばかりか不経済でもあるので、その上限を5%とする。尚、Ni含有量の好まい下限は0.9%であり、好ましい上限は3%である。
Ni: 0.7-5.0%
Ni is an element that improves the hardenability and improves the toughness of the base material and the base of the high heat input welding HAZ, and in order to exert these effects, it is necessary to contain 0.7% or more. However, if Ni is contained excessively, the hardenability becomes too high and the island-like martensite phase increases, leading to toughness deterioration, and it is also uneconomical, so the upper limit is made 5%. In addition, the preferable minimum of Ni content is 0.9%, and a preferable upper limit is 3%.

但し、[Ni]/[Cu]≧1
本発明の高張力鋼においては、Ni含有量[Ni]とCuの含有量[Cu]の比[Ni]/[Cu]で1以上とする必要がある。こうした要件を満足させることによって、ガス切断面に濃縮するCu−Ni合金相の融点を高温化でき、高温割れを防止できる。
However, [Ni] / [Cu] ≧ 1
In the high-tensile steel of the present invention, the ratio [Ni] / [Cu] of the Ni content [Ni] and the Cu content [Cu] needs to be 1 or more. By satisfying these requirements, the melting point of the Cu—Ni alloy phase concentrated on the gas cut surface can be increased, and hot cracking can be prevented.

Ti:0.005〜0.03%
Tiは固溶NをTiNとして固定して固溶B量を増加させ、母材の焼入性を向上させるのに有効な元素である。またTi脱酸でTi酸化物を生成させる場合には、大入熱溶接HAZにおいて粒内ベイナイト相の生成核として作用して靭性を向上させる。こうした効果を発揮させるためには、Ti含有量は0.005%以上とする必要がある。しかしながら、Tiを過剰に含有させるとTiCの析出によって母材およびHAZの靭性を劣化させるので、その上限を0.03%とする。尚、Ti含有量の好ましい下限は0.008%であり、好ましい上限は0.02%である。
Ti: 0.005 to 0.03%
Ti is an element effective for fixing solid solution N as TiN, increasing the amount of solid solution B, and improving the hardenability of the base material. Further, when Ti oxide is generated by Ti deoxidation, it acts as a nucleus for formation of an intragranular bainite phase in high heat input welding HAZ and improves toughness. In order to exert such effects, the Ti content needs to be 0.005% or more. However, when Ti is excessively contained, the toughness of the base metal and the HAZ is deteriorated by precipitation of TiC, so the upper limit is made 0.03%. In addition, the minimum with preferable Ti content is 0.008%, and a preferable upper limit is 0.02%.

N:前記(1)式を満足する量
大入熱溶接HAZにおいて靭性を高位に確保するためには、旧オーステナイト粒内にTiNを微細析出させること、およびBNを複合的に析出させることで、粒内ベイナイトの生成核となすことが有効である。こうした観点から、N含有量の下限を(Tiの化学量論的当量)−0.001%とし、その上限をTiとBの化学量論的当量の総量とした。これを超えると、固溶NによるHAZの靭性劣化や母材の焼入性低下を惹き起こすことになる。
N: In order to ensure high toughness in the high heat input welding HAZ that satisfies the above formula (1) , fine precipitation of TiN in the prior austenite grains and composite precipitation of BN, It is effective to form the nuclei of intragranular bainite. From such a viewpoint, the lower limit of the N content was (Ti stoichiometric equivalent) −0.001%, and the upper limit was the total amount of Ti and B stoichiometric equivalents. Exceeding this will cause toughness degradation of the HAZ due to the solute N and a decrease in the hardenability of the base metal.

Nb:実質的に含まない
Nbは固溶して焼入性を向上させるが、大入熱溶接HAZにおいて旧オーステナイト粒内に板状の粗大な上部ベイナイト相を形成させ、結晶方位が揃うことになるので破壊経路の障壁とならず、靭性を大きく劣化させる。こうした観点から、本発明の高張力鋼においては実質的に含有しないことが必要である。尚、「実質的に含まない」とは、不純物程度(例えば、0.005%以下)として混入することは許容する趣旨である。
Nb: Nb not substantially contained improves the hardenability by solid solution, but forms a plate-like coarse upper bainite phase in the prior austenite grains in the high heat input welding HAZ, and the crystal orientation is aligned. Therefore, it does not become a barrier for the fracture path and greatly deteriorates the toughness. From such a viewpoint, it is necessary that the high-tensile steel of the present invention is not substantially contained. Note that “substantially free” means that it is allowed to be mixed as an impurity (for example, 0.005% or less).

Mo:実質的に含まない
Moは焼入性を向上させて強度向上に有効な元素であるが、Ar3変態点を上昇させて大入熱溶接HAZで高温ベイナイト相や島状マルテンサイト相の生成を促進させて靭性を劣化させる。こうした観点から、本発明の高張力鋼においては実質的に含有しないことが必要である。尚、「実質的に含まない」とは、不純物程度(例えば、0.05%以下)として混入することは許容する趣旨である。
Mo: Mo which is substantially not contained is an element effective for improving the hardenability and improving the strength. However, the Ar 3 transformation point is raised to increase the high-temperature bainite phase or the island martensite phase in the high heat input welding HAZ. Promotes formation and degrades toughness. From such a viewpoint, it is necessary that the high-tensile steel of the present invention is not substantially contained. Note that “substantially does not contain” means that it is allowed to be mixed as an impurity (for example, 0.05% or less).

本発明の低降伏比高張力鋼板には、必要によって、(a)V:0.005〜0.10%、(b)Ca:0.0005〜0.01%、(c)La:0.002〜0.02%,Ce:0.0003〜0.0050%およびMg:0.0005〜0.0030%よりなる群から選ばれる1種または2種以上、等を含有することも有効であるが、これらの成分を含有させるときの範囲限定理由は、次の通りである。   In the low yield ratio high tensile strength steel sheet of the present invention, (a) V: 0.005 to 0.10%, (b) Ca: 0.0005 to 0.01%, (c) La: 0.0. It is also effective to contain one or more selected from the group consisting of 002 to 0.02%, Ce: 0.0003 to 0.0050% and Mg: 0.0005 to 0.0030%. However, the reasons for limiting the range when these components are contained are as follows.

V:0.005〜0.10%
Vは母材強度の向上に有効な元素である。こうした効果を発揮させるためには、Vは0.005%以上含有させることが好ましいが、0.10%を超えて過剰に含有させると大入熱溶接HAZ靭性が低下することになる。尚、V含有量のより好ましい下限は0.03であり、より好ましい上限は0.06%である。
V: 0.005-0.10%
V is an element effective for improving the base material strength. In order to exert such an effect, it is preferable to contain V in an amount of 0.005% or more. However, if it is contained in excess of 0.10%, the high heat input welding HAZ toughness is lowered. In addition, the more preferable minimum of V content is 0.03, and a more preferable upper limit is 0.06%.

Ca:0.0005〜0.01%
CaはSをCaSとして固定すると共に、粒状の非金属介在物として形態を制御することにより、板厚中央部に存在するS偏析部に柱角継手溶接時に発生するZ方向引張応力が作用する場合においても、絞りおよび靭性を向上させて、偏析部からの破壊を防止するのに有効である。また、[O]と化合してCaOとして、大入熱溶接後のベイナイト変態の核を旧オーステナイト粒内に分散させて、ベイナイトブロックサイズを微細化させて大入熱HAZ靭性を向上させる作用も発揮する。これらの効果を発揮させるためには、Caは0.0005%以上含有させることが好ましいが、0.01%を超えて過剰に含有させてもこれらの効果は飽和するばかりか、母材の靭性が却って劣化する。尚、Ca含有量のより好ましい下限は0.01%であり、より好ましい上限は0.05%である。
Ca: 0.0005 to 0.01%
When Ca fixes S as CaS and controls the form as granular non-metallic inclusions, the Z-direction tensile stress generated during column angle joint welding acts on the S segregated portion in the center of the plate thickness Is effective in improving drawing and toughness and preventing breakage from the segregated portion. Moreover, it combines with [O] to form CaO, and the core of bainite transformation after high heat input welding is dispersed in the prior austenite grains, and the bainite block size is refined to improve the high heat input HAZ toughness. Demonstrate. In order to exert these effects, Ca is preferably contained in an amount of 0.0005% or more. However, if the Ca content exceeds 0.01%, these effects are not only saturated but also the toughness of the base material. However, it deteriorates. In addition, the more preferable minimum of Ca content is 0.01%, and a more preferable upper limit is 0.05%.

La:0.002〜0.02%、Ce:0.0003〜0.0050%、Mg:0.0005〜0.0030%よりなる群から選ばれる1種または2種以上
LaおよびCeは希土類元素(REM)の1種であり、硫化物としてSを固定し、偏析部の絞りおよび靭性を向上させるのに有効に作用する。またCeとMgは、大入熱溶接後の冷却時間においてCeO2やMgOの低融点酸化物を旧オーステナイト粒内に析出させて、それを核にベイナイト変態するため、ベイナイトブロックを微細化させて、破壊経路を複雑化させることにより、大入熱溶接HAZ靭性を向上させる。La,Ce,Mgが上記各下限よりも少ない場合にはこれらの効果が発揮されず、上限よりも多くなると過剰な非金属介在物の存在により、母材靭性を却って劣化させることになる。より好ましい下限は夫々La:0.002%、Ce:0.005%、Mg:0.001%であり、より好ましい上限は夫々La:0.01%、Ce:0.002%、Mg:0.0020%である。
One or more selected from the group consisting of La: 0.002-0.02%, Ce: 0.0003-0.0050%, Mg: 0.0005-0.0030% La and Ce are rare earth elements It is a kind of (REM) and works effectively to fix S as a sulfide and improve the drawing and toughness of the segregation part. In addition, Ce and Mg precipitate CeO 2 and MgO low melting point oxides in the prior austenite grains during the cooling time after high heat input welding, and transform the bainite block into fine bainite blocks. By increasing the fracture path, the high heat input welding HAZ toughness is improved. When La, Ce, and Mg are less than the above lower limits, these effects are not exhibited. When the La, Ce, and Mg are more than the upper limits, the presence of excessive nonmetallic inclusions causes deterioration of the base metal toughness. More preferable lower limits are La: 0.002%, Ce: 0.005%, Mg: 0.001%, respectively, and more preferable upper limits are La: 0.01%, Ce: 0.002%, Mg: 0. 0020%.

本発明の高張力鋼板において、上記成分の他は、Feおよび不可避不純物からなるものであるが、その特性を阻害しない程度の微量成分(許容成分)も含み得るものであり、こうした高張力鋼板も本発明の範囲に含まれるものである。   In the high-strength steel sheet of the present invention, in addition to the above components, it consists of Fe and inevitable impurities, but it can also contain a trace component (allowable component) to the extent that it does not impede its properties. It is included in the scope of the present invention.

本発明の高張力鋼板においては、上記(1)式で規定されるCEN値や、平均アスペクト比(主圧延方向/板厚方向の平均粒径比)、および島状マルテンサイト相やε−Cu相のクラスターの分散率も適切は範囲に制御する必要があるが、これらの範囲限定理由は、次の通りである。 In the high-tensile steel sheet of the present invention, the CE N value defined by the above formula (1), the average aspect ratio (the average grain size ratio in the main rolling direction / the thickness direction), the island-like martensite phase, and ε− It is necessary to appropriately control the dispersion ratio of the Cu phase clusters. The reason for limiting these ranges is as follows.

CE N :0.27〜0.33%
上記(2)式で規定されるCENは、溶接HAZの硬化性を表現する炭素当量である。このCENの値が0.27%未満では、厚肉材で引張強さ590MPa級を満足できなくなる。またCENの値が0.33%を超えると、耐溶接低温割れ性が劣化して、予熱が必要となるばかりでなく、島状マルテンサイト相が増加して大入熱溶接HAZの靭性が低位となり、入熱100KJ/mmで目標とする平均vE0:70Jを安定して確保することが困難となる。よって、本発明の高張力鋼においては、上記(2)式で規定されるCEN値が0.27〜0.33%の範囲内とする必要がある。尚、CEN値の好ましい下限は0.28%であり、好ましい上限は0.32%である。
CE N : 0.27 to 0.33%
CE N defined by the above formula (2) is a carbon equivalent expressing the curability of the welded HAZ. If the CE N value is less than 0.27%, the thick material cannot satisfy the tensile strength of 590 MPa class. Also the value of CE N exceeds 0.33%, the resistance to weld cold cracking resistance deteriorates, preheating not only necessary, toughness high heat-input welding HAZ island martensite phase is increased It becomes low, and it becomes difficult to stably secure the target average vE 0 : 70 J at a heat input of 100 KJ / mm. Therefore, in the high-tensile steel of the present invention, the CE N value defined by the above equation (2) needs to be in the range of 0.27 to 0.33%. The preferable lower limit of the CE N value is 0.28%, and the preferable upper limit is 0.32%.

板厚方向断面における旧オーステナイト粒径の平均アスペクト比(主圧延方向/板厚方
向の平均粒径比):1.0〜1.2
板厚方向断面における旧オーステナイト粒径のアスペクト比(主圧延方向の平均粒径/板厚方向の平均粒径)が1.2を超えると、結晶方位が特定の方向に配向した、いわゆる集合組織が多く形成されるため,音響異方性が「日本建築学会の鋼構造建築溶接部の超音波検査規準」にある付則表1にあるSTBとの音速比がないと判定される範囲(例えば、板厚25mm超えを公称屈折角70°の探触子で探傷する場合、0.995≦V/VSTB≦1.015)を超えることになり、超音波探傷試験で欠陥位置を正しく表示できなくなり、施工上問題となる。従って、旧オーステナイトの平均アスペクト比(主圧延方向の平均粒径/板厚方向の平均粒径)が1.0から1.2までの範囲に制御する必要がある。好ましくは、平均アスペクトを1.0〜1.1の範囲内とするのが良い。
Average aspect ratio of prior austenite grain size in the cross section in the thickness direction (main rolling direction / thickness direction)
Average particle size ratio): 1.0 to 1.2
When the aspect ratio of the prior austenite grain size in the cross section in the thickness direction (average grain size in the main rolling direction / average grain size in the thickness direction) exceeds 1.2, the so-called texture in which the crystal orientation is oriented in a specific direction Therefore, a range in which the acoustic anisotropy is determined to have no sound velocity ratio with STB in Appendix Table 1 in “Ultrasonic Inspection Standard of Steel Structure Building Welding by the Architectural Institute of Japan” (for example, When flaw detection is performed with a probe having a nominal refraction angle of 70 ° exceeding a plate thickness of 25 mm, it will exceed 0.995 ≦ V / V STB ≦ 1.015), and the defect position cannot be correctly displayed in the ultrasonic flaw detection test. It becomes a construction problem. Therefore, it is necessary to control the average aspect ratio of the prior austenite (average particle size in the main rolling direction / average particle size in the plate thickness direction) in the range of 1.0 to 1.2. Preferably, the average aspect is in the range of 1.0 to 1.1.

0.5〜3.5体積%の島状マルテンサイト相と4×10 20 〜26×10 20 個/m 3 のε−Cu相のクラスターがベイナイト地に分散していること
本発明に係る高張力鋼において、低CENで降伏比(降伏強度/引張強度×100%)が耐震設計の観点から建築の主要部材に要求される降伏比80%以下を具備させるには、ベイナイト相の基地に、より硬質の島状マルテンサイト相を微細分散させる必要がある。島状マルテンサイト相の分散率が0.5体積%未満の場合には、降伏比が80%を超えることになる。一方、島状マルテンサイト相の分散率が3.5体積%を超える場合には、降伏比が80%以下となるものの、母材の靭性が低位となる。従って、島状マルテンサイトを0.5〜3.5体積%とする必要がある。好ましくは1〜3体積%とするのが良い。
Clusters of 0.5 to 3.5% by volume of island martensite phase and 4 × 10 20 to 26 × 10 20 pieces / m 3 of ε-Cu phase are dispersed in bainite. in tensile steel, in order to include a yield ratio (yield strength / tensile strength × 100%) is below the yield ratio of 80% required for the main members of the building in terms of seismic design of low-CE N is the base of the bainite phase It is necessary to finely disperse the harder island martensite phase. When the dispersion ratio of the island-like martensite phase is less than 0.5% by volume, the yield ratio exceeds 80%. On the other hand, when the dispersion ratio of the island-like martensite phase exceeds 3.5% by volume, the toughness of the base material is low although the yield ratio is 80% or less. Therefore, it is necessary to make island-like martensite 0.5 to 3.5 volume%. Preferably it is 1 to 3 volume%.

また低CENで引張強さ:590MPa以上を確保するには、ベイナイト相を基地として、時効によるε−Cu相の析出強化を加える必要がある。ε−Cu相のクラスターが4×1020個/m3未満で分散するとベイナイト地であっても引張強度が不足する。一方、ε−Cu相のクラスターが26×1020個/m3を超えて存在すると靭性が劣化する傾向を呈するようになると共に、ガス切断時に低融点のCu合金を多量に形成するようになってガス切断面に粒界割れを引き起こす。従って、ベイナイト地にε−Cu相のクラスターを4×1020〜26×1020個/m3分散させる必要がある。好ましくは7×1020〜22×1020個/m3である。 Further, in order to secure a tensile strength of 590 MPa or more with low CE N , it is necessary to add precipitation strengthening of the ε-Cu phase by aging using the bainite phase as a base. When ε-Cu phase clusters are dispersed at less than 4 × 10 20 / m 3 , tensile strength is insufficient even in bainite. On the other hand, if the number of ε-Cu phase clusters exceeds 26 × 10 20 / m 3 , the toughness tends to deteriorate, and a large amount of low melting point Cu alloy is formed during gas cutting. Causing intergranular cracking on the gas cut surface. Therefore, it is necessary to disperse 4 × 10 20 to 26 × 10 20 clusters / m 3 of ε-Cu phase clusters in bainite. Preferably from 7 × 10 20 ~22 × 10 20 atoms / m 3.

本発明の鋼板を製造するには、基本的には連鋳法あるいは造塊法により作製されたスラグを用いて、熱間圧延−冷却−熱処理の通常の方法により製造できるが、上記の各要件を満足させるためには、圧延温度域をオーステナイト未再結晶温度より高温とし、その後直接焼入れ或は再加熱焼入れとし、その後二相域焼入れ、焼戻しの熱処理をすれば良い。即ち、旧オーステナイト粒径の平均アスペクト比は圧延温度域によって制御でき、島状マルテンサイト相やε−Cu相のクラスターの分散率は、圧延或は二相域熱処理の冷却速度や焼戻し温度等によって制御できる。   In order to produce the steel sheet of the present invention, it can basically be produced by a normal method of hot rolling-cooling-heat treatment using slag produced by a continuous casting method or an ingot-making method. In order to satisfy the above conditions, the rolling temperature range should be higher than the austenite non-recrystallization temperature, followed by direct quenching or reheating quenching, followed by two-phase quenching and tempering heat treatment. That is, the average aspect ratio of the prior austenite grain size can be controlled by the rolling temperature range, and the dispersion ratio of the island-like martensite phase and ε-Cu phase cluster depends on the cooling rate of the rolling or two-phase zone heat treatment, the tempering temperature, etc. Can be controlled.

以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に徴して設計変形することはいずれも本発明の技術的範囲に含まれるものである。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and any design modifications may be made in accordance with the gist of the present invention. It is included in the range.

下記表1〜3に示す化学成分組成の鋼を用い、下記表4〜6に示す製造条件にて鋼板を製造した。尚、表1には、本発明で規定する(1)式の範囲、CENの値および[Ni]/[Cu]の値の他、参考のために下記(3)式で求められるPCM値(割れ組成:%)についても示した。また、表4〜6中、QはAc3点以上の温度からなる再加熱焼入れ、Q’は二相域(Ac1点以上Ac3点未満)からの焼入れ、TはAc1点未満の温度での焼戻しを夫々示す。 Steel sheets having chemical composition compositions shown in Tables 1 to 3 below were used to manufacture steel sheets under the manufacturing conditions shown in Tables 4 to 6 below. Incidentally, in Table 1, the specified range is (1) in the present invention, other values and the value of [Ni] / [Cu] of CE N, P CM obtained by the following equation (3) for reference The value (crack composition:%) is also shown. In Tables 4 to 6, Q is reheat quenching at a temperature of Ac 3 point or higher, Q ′ is quenching from a two-phase region (Ac 1 point or higher and less than Ac 3 point), and T is a temperature below Ac 1 point. Each shows tempering.

CM(%)=[C]+[Si]/30+([Mn]+[Cu]+[Cr])/20+[Ni]/60+[Mo]/15+[V]/10+5[B]‥(3)
但し、[C],[Si],[Mn],[Cu],[Cr],[Ni],[Mo],[V]および[B]は、夫々C,Si,Mn,Cu,Cr,Ni,Mo,Nb,VおよびBの含有量(質量%)を示す。
P CM (%) = [C] + [Si] / 30 + ([Mn] + [Cu] + [Cr]) / 20+ [Ni] / 60 + [Mo] / 15 + [V] / 10 + 5 [B] (3)
However, [C], [Si], [Mn], [Cu], [Cr], [Ni], [Mo], [V] and [B] are C, Si, Mn, Cu, Cr, Content (mass%) of Ni, Mo, Nb, V, and B is shown.

Figure 0004025263
Figure 0004025263

Figure 0004025263
Figure 0004025263

Figure 0004025263
Figure 0004025263

Figure 0004025263
Figure 0004025263

Figure 0004025263
Figure 0004025263

Figure 0004025263
得られた各鋼板について、旧オーステナイト(γ)粒径のアスペクト比、固溶B量、島状マルテンサイトの体積率、ε−Cu相クラスターの個数等を下記の方法によって測定した。
Figure 0004025263
About each obtained steel plate, the aspect ratio of prior austenite ((gamma)) particle size, the amount of solute B, the volume ratio of island-like martensite, the number of (epsilon) -Cu phase clusters, etc. were measured with the following method.

[旧オーステナイト(γ)粒径のアスペクト比]
主圧延方向に沿った板厚方向断面における旧オーステナイト粒界は、(5ml塩酸+1gピクリン酸+100mlエタノール)からなる腐食液を用いて現出させ、主圧延方向の平均粒径と板厚方向の平均粒径を測定して、それらの比を平均アスペクト比として求めた。
[Aspect ratio of former austenite (γ) particle size]
The prior austenite grain boundaries in the cross section in the plate thickness direction along the main rolling direction are revealed using a corrosive solution consisting of (5 ml hydrochloric acid + 1 g picric acid + 100 ml ethanol), and the average grain size in the main rolling direction and the average in the plate thickness direction The particle sizes were measured and their ratio was determined as the average aspect ratio.

[固溶B量]
板厚断面における固溶B量は、抽出残渣分析によりBN,Fe23(C,B)6等のB化合物の量を求めて、全B量から差し引いた値として求めた。
[Solubility B amount]
The amount of solid solution B in the plate thickness section was determined as a value obtained by subtracting from the total amount of B by determining the amount of B compound such as BN, Fe 23 (C, B) 6 by extraction residue analysis.

[島状マルテンサイトの体積率]
島状マルテンサイト相は、主圧延方向および主圧延方向に直角方向の板厚断面を、レペラー試薬を用いて現出させて撮影し、画像解析装置によって分率(体積率)を算出した。
[Volume ratio of island martensite]
The island-like martensite phase was photographed by exposing the main rolling direction and the plate thickness section perpendicular to the main rolling direction using a repeller reagent, and the fraction (volume ratio) was calculated by an image analyzer.

[ε−Cu相のクラスターの個数]
ε−Cu相のクラスターについては、板厚断面から薄膜を採取して、分析電子顕微鏡を用いて、ε−Cu相の固定および本クラスター分布の撮影を行ない、画像解析装置によって単位面積当りの個数を算出した。
[Number of clusters of ε-Cu phase]
For ε-Cu phase clusters, a thin film is taken from the cross section of the plate thickness, the ε-Cu phase is fixed and the distribution of this cluster is photographed using an analytical electron microscope, and the number per unit area is measured by an image analyzer. Was calculated.

また得られた各鋼板について、ガス切断割れ感受性、音響異方性、母材の引張特性(降伏強度,引張強度,降伏比、母材靭性、耐溶接低温割れ性および大入熱溶接HAZ靭性について夫々下記の方法によって評価した。   In addition, for each steel plate obtained, gas cutting crack sensitivity, acoustic anisotropy, tensile properties of the base material (yield strength, tensile strength, yield ratio, base material toughness, welding cold crack resistance and high heat input weld HAZ toughness) Each was evaluated by the following method.

[ガス切断割れ感受性]
鉄骨製作過程において鋼板切断に汎用されるLPガスの板厚に応じた適正切断条件(例えば、100mm厚の場合、#5火口)で酸素圧:0.6MPa(6kgf/cm2)、LPガス圧:0.06MPa(0.6kgf/cm2)、切断速度:210mm/分で切断した後、切断面に直角な方向の断面を光学顕微鏡観察して、切断表面からの最大割れ深さを測定した。割れ無しを合格とした。
[Gas cutting crack sensitivity]
Oxygen pressure: 0.6 MPa (6 kgf / cm 2 ), LP gas pressure under appropriate cutting conditions (for example, # 5 crater in the case of 100 mm thickness) according to the plate thickness of LP gas widely used for steel plate cutting in the steel frame manufacturing process : 0.06 MPa (0.6 kgf / cm 2 ), cutting speed: 210 mm / min. After cutting, the cross section perpendicular to the cut surface was observed with an optical microscope, and the maximum crack depth from the cut surface was measured. . No crack was accepted.

[音響異方性]
日本建築学会の鋼構造建築溶接部の超音波検査規準に定義されたSTB音速比(V/VSTB)を主圧延方向(L方向)および主圧延方向に直角方向(C方向)について測定し、付則表1に従ってSTBとの音速差の有無の判定を行った。付則表1のV/VSTBの範囲を合格とした。例えば板厚:25mm超えを公称屈折角度70°の探傷子で探傷する場合、0.995≦V/VSTB≦1.015を音響異方性がないものと判定した。
[Acoustic anisotropy]
STB sound velocity ratio (V / V STB ) defined in the ultrasonic inspection standard for steel structure building welds of the Architectural Institute of Japan was measured in the main rolling direction (L direction) and the direction perpendicular to the main rolling direction (C direction). The presence or absence of a difference in sound velocity from STB was determined according to Appendix Table 1. The range of V / V STB in Appendix Table 1 was considered acceptable. For example, when flaw detection is performed with a flaw having a plate thickness of more than 25 mm and a nominal refraction angle of 70 °, 0.995 ≦ V / V STB ≦ 1.015 is determined to have no acoustic anisotropy.

[母材の引張特性]
鋼板のt/4(tは板厚)からC方向にJIS Z 22014号試験片を採取してJIS Z 2241の要領で引張試験を行ない、降伏強度(0.2%耐力:σ0.2)引張強度(TS),降伏比(降伏強度/引張強度×100%:YR)を測定した。降伏強度:440〜540MPa、引張強度:590〜740MPaおよび降伏比:80%以下を合格とした。
[Tensile properties of base material]
A JIS Z 22014 test piece was taken in the C direction from t / 4 (t is the plate thickness) of the steel sheet and subjected to a tensile test according to JIS Z 2241, yield strength (0.2% proof stress: σ 0.2 ) tensile strength. (TS), yield ratio (yield strength / tensile strength × 100%: YR) was measured. Yield strength: 440-540 MPa, tensile strength: 590-740 MPa, and yield ratio: 80% or less were accepted.

[母材靭性]
鋼板のt/4からL方向にJIS Z 2202 4号試験片を採取してJIS Z 2242に準拠して衝撃試験を行ない、破面遷移温度(vTrs)を測定した。vTrsが−20℃以下を目標として合格とした。
[Base material toughness]
JIS Z 2204 No. 4 test specimens were collected in the L direction from t / 4 of the steel sheet, subjected to an impact test in accordance with JIS Z 2242, and the fracture surface transition temperature (vTrs) was measured. The target was vTrs of −20 ° C. or less.

[耐溶接低温割れ性]
JIS Z 3158のy形溶接割れ試験法に従い、入熱量:1.7KJ/mmで被覆アーク溶接を行ない、ルート割れ防止予熱温度を測定した。25℃以下を合格とした。
[Weld cold crack resistance]
According to the JIS Z 3158 y-type weld crack test method, covered arc welding was performed at a heat input of 1.7 KJ / mm, and the root crack prevention preheating temperature was measured. 25 degrees C or less was set as the pass.

[大入熱溶接HAZ靭性]
入熱量100KJ/mmのエレクトロスラグ溶接により、柱・ダイアフラム溶接継手を作製して、柱(スキンプレート)側から、吸収エネルギーが最も低位となることが多いとされるボンド+0.5mm位置にZ−T方向の切欠きを入れたシャルピー衝撃試験片(JIS Z 2204 4号)をn=3で採取し、0℃における平均衝撃吸収エネルギーvE0を求めた。平均70J以上を合格とした。
[Large heat input welding HAZ toughness]
A column / diaphragm welded joint is manufactured by electroslag welding with a heat input of 100 KJ / mm. From the column (skin plate) side, the absorbed energy is said to be the lowest in most cases. A Charpy impact test piece (JIS Z 2204 No. 4) with a notch in the T direction was taken at n = 3, and an average impact absorption energy vE 0 at 0 ° C. was determined. An average of 70 J or more was accepted.

これらの結果を、下記表7〜9に示すが、これらの結果から、次のように考察できる。まず、実験No.1は従来型の中C系のSA440鋼であり、CENが高いため、溶接低温割れ防止予熱温度が100℃と高く、入熱量100KJ/mmのエレクトロスラグ溶接のHAZ靭性も低位である。 These results are shown in Tables 7 to 9 below, and can be considered as follows from these results. First, experiment no. No. 1 is a conventional medium C-based SA440 steel, which has a high CE N , and therefore has a high preheating temperature for preventing cold cracking at welding as high as 100 ° C. and has a low HAZ toughness for electroslag welding with a heat input of 100 KJ / mm.

実験No.2は本発明の基本成分系であり、母材の強靭性は目標を満足し、溶接性は予熱不要と良好であり、入熱量100KJ/mmものエレクトロスラグ溶接のHAZ靭性も目標平均70J以上を十分満足するものである。   Experiment No. 2 is the basic component system of the present invention, the toughness of the base material satisfies the target, the weldability is good as it does not require preheating, and the HAZ toughness of electroslag welding with a heat input of 100 KJ / mm also exceeds the target average of 70 J or more. Satisfied enough.

実験No.3〜6のものは、実験No.2と同CENであるものの、それぞれ0.4Mo系,0.01Nb系,0.4Mo−0.01Nb系、0.05C系であり、大入熱HAZ靭性が低位である。 Experiment No. 3 to 6 are those of Experiment No. 2 and CE N, but 0.4Mo, 0.01Nb, 0.4Mo-0.01Nb, and 0.05C, respectively, and high heat input HAZ toughness is low.

実験No.8〜12のものは、Niを1%と一定とした上で、Cu量を変化させてNi/Cu比を変化させたものである(表1の鋼種H〜L)。また、実験No.13〜17は、Cu:0.95%とした上で、Ni量を変化させたものである。Cu:0.95%を超えたもの(実験No.8,9)は、Ni/Cu比が1以下であってもガス切断割れ感受性を有することが分かる。また、Cuが0.5%未満のもの(実験No.12)では、降伏強度および引張強度が目標値を下回っている。   Experiment No. In Nos. 8 to 12, the Ni / Cu ratio was changed by changing the amount of Cu while keeping Ni constant at 1% (steel types H to L in Table 1). In addition, Experiment No. Nos. 13 to 17 are obtained by changing the amount of Ni after setting Cu: 0.95%. It can be seen that Cu: exceeding 0.95% (Experiment No. 8, 9) has gas cut cracking susceptibility even when the Ni / Cu ratio is 1 or less. In the case where Cu is less than 0.5% (Experiment No. 12), the yield strength and the tensile strength are lower than the target values.

実験No.18〜21は、C量を除いて本発明成分で一定とし、C量のみ変化させたものである(表1の鋼種R〜U)。C量が0.015%未満のもの(実験No.18)では、降伏強度,引張強度とも目標値を下回っていることが分かる。   Experiment No. Nos. 18 to 21 are constant in the composition of the present invention except for the C amount, and only the C amount is changed (steel types R to U in Table 1). It can be seen that when the C content is less than 0.015% (Experiment No. 18), the yield strength and the tensile strength are both lower than the target values.

実験No.22は、母材のミクロ組織を構成する島状マルテンサイトの体積率が本発明で規定する範囲を上回ったものであり、降伏比が目標値(80%以下)を満足しないことが分かる。   Experiment No. No. 22 shows that the volume ratio of the island-shaped martensite constituting the microstructure of the base material exceeds the range specified by the present invention, and it is understood that the yield ratio does not satisfy the target value (80% or less).

実験No.23,24は母材の旧オーステナイト粒のアスペクト比(主圧延方向の粒径/板厚方向の粒径)を変化させたものであり、アスペクト比が1.2を超えると、音響異方性を有するようになる。   Experiment No. Nos. 23 and 24 are obtained by changing the aspect ratio (grain size in the main rolling direction / grain size in the plate thickness direction) of the prior austenite grains of the base material. Will have.

実験No.25〜27はSi量以外本発明で規定する範囲内とし(表1の鋼種V〜X)、Si量のみ変化させたものである。Siが0.4%を超えると(実験No.27)、島状マルテンサイト体積率が増大して、降伏比が目標値を上回り、母材靭性は目標値を満足しない。   Experiment No. 25 to 27 are within the range defined by the present invention except the Si amount (steel types V to X in Table 1), and only the Si amount is changed. When Si exceeds 0.4% (Experiment No. 27), the volume ratio of island martensite increases, the yield ratio exceeds the target value, and the base material toughness does not satisfy the target value.

実験No.30〜33は、Mn量を除いて本発明で規定する範囲内とし、Mn量のみ変化させたものである(表2の鋼種A1〜D1)。Mnが1.6%を超えてCENが0.33%を上回る実験No.33のものでは(鋼種D1)、降伏比が高く、耐溶接低温割れ性,大入熱HAZ靭性とも目標値を下回ることが分かる。 Experiment No. 30 to 33 are within the range defined by the present invention except for the amount of Mn, and only the amount of Mn is changed (steel types A1 to D1 in Table 2). Experiment No. with Mn exceeding 1.6% and CE N exceeding 0.33%. In the case of No. 33 (steel type D1), it can be seen that the yield ratio is high, and the weld cold crack resistance and the high heat input HAZ toughness are both below the target values.

実験No.34〜36は、Cr量以外本発明で規定する範囲内とし、Cr量のみ変化させたものである(表2の鋼種E1〜G1)。Crは同一引張強度比較で降伏比の低減に有効に作用するものの、Cr量が1.3%を超え、CENも0.33%を上回る実験No.36のものでは(鋼種G1)、母材靭性、耐溶接低温割れ性および大入熱HAZ靭性が目標値を満足しない。 Experiment No. 34 to 36 are within the range defined in the present invention except for the Cr amount, and only the Cr amount is changed (steel types E1 to G1 in Table 2). Although Cr acts effectively to reduce the yield ratio by the same tensile strength compared, experiment Cr content exceeds 1.3%, CE N also exceed 0.33% No. In the case of 36 (steel type G1), the base metal toughness, the weld cold crack resistance and the high heat input HAZ toughness do not satisfy the target values.

実験No.37〜40はAl量以外本発明で規定する範囲内とし、Al量のみ変化させたものである(表2の鋼種H1〜K1)。Alが0.08%超えの実験No.40のものでは(鋼種K1)、母材靭性が目標値を下回ることが分かる。   Experiment No. 37 to 40 are within the range defined in the present invention except the amount of Al, and only the amount of Al is changed (steel types H1 to K1 in Table 2). Experiment No. with Al over 0.08%. In the case of 40 (steel type K1), it can be seen that the base metal toughness is lower than the target value.

実験No.41〜44は、B量を除いて本発明で規定する範囲内とし、B含有量を変えて母材における固溶B量を変化させたものである(表2の鋼種L1〜O1)。全B量が0.003%を超え、固溶B量が0.002%を超えた実験No.44のものでは(鋼種O1)、降伏強度,降伏比が目標値を上回り、母材靭性,耐溶接低温割れ性,大入熱溶接HAZ靭性が目標値を満足しないことが分かる。   Experiment No. Nos. 41 to 44 are within the range defined in the present invention except for the B amount, and the B content is changed to change the solid solution B amount in the base material (steel types L1 to O1 in Table 2). Experiment No. in which the total B amount exceeded 0.003% and the solid solution B amount exceeded 0.002%. In the case of No. 44 (steel type O1), it can be seen that the yield strength and yield ratio exceed the target values, and the base metal toughness, resistance to welding cold cracking, and high heat input welding HAZ toughness do not satisfy the target values.

実験No.45〜47は、Ni量を除いて本発明で規定する範囲内とし、Ni量を上限
側に変化させたものである(表2の鋼種P1〜R1)。Ni量が5%を超えた実験No.47のものでは(鋼種R1)、母材靭性および耐溶接低温割れ性に劣っている。
Experiment No. Nos. 45 to 47 are within the range defined in the present invention excluding the Ni amount, and the Ni amount is changed to the upper limit side (steel types P1 to R1 in Table 2). Experiment No. with Ni amount exceeding 5%. In 47 (steel type R1), the base metal toughness and the resistance to welding cold cracking are inferior.

実験No.48〜51は、TiNの量バランスを変化させたものである(表2の鋼種S1〜V1)。実験No.48のTi無添加のものでは、降伏強度および大入熱溶接HAZ靭性が目標値を下回る。また実験No.51のものでは、N含有量が本発明で規定する(1)式の上限を上回っており(鋼種V1)、母材靭性および大入熱溶接HAZ靭性が目標値を下回ることになる。   Experiment No. Nos. 48 to 51 are obtained by changing the TiN amount balance (steel types S1 to V1 in Table 2). Experiment No. In the case where 48 Ti is not added, the yield strength and the high heat input HAZ toughness are lower than the target values. In addition, Experiment No. In No. 51, the N content exceeds the upper limit of the formula (1) defined in the present invention (steel type V1), and the base metal toughness and the high heat input welding HAZ toughness are lower than the target values.

実験No.52〜55は、V量を除いて本発明で規定する範囲内とし、V量を変化させたものである(表2の鋼種W1〜Z1)。実験No.55のものでは、V量が0.10%を超えたものであり(鋼種Z1)、大入熱HAZ靭性が目標値を下回っていることが分かる。   Experiment No. 52 to 55 are within the range defined by the present invention except for the V amount, and the V amount is changed (steel types W1 to Z1 in Table 2). Experiment No. In No. 55, the amount of V exceeded 0.10% (steel type Z1), and it can be seen that the high heat input HAZ toughness is below the target value.

実験No.56〜59は、本発明の基本成分をベースにCa含有量を変化させたものである(表3の鋼種A2〜D2)。Ca量が0.01%を超えると(実験No.59)、大入熱溶接HAZ靭性が劣化する傾向を呈し、目標値を満足しないことが分かる。   Experiment No. Nos. 56 to 59 are obtained by changing the Ca content based on the basic components of the present invention (steel types A2 to D2 in Table 3). When the Ca content exceeds 0.01% (Experiment No. 59), it can be seen that the high heat input welding HAZ toughness tends to deteriorate and does not satisfy the target value.

実験No.60〜63は、本発明の基本成分に希土類元素であるLaの量を変化させて含有させたものである(表3の鋼種E2〜H2)。La含有量が0.02%を超えると(実験No.63)、大入熱HAZ靭性が却って劣化して目標値を下回ることが分かる。   Experiment No. 60 to 63 are those in which the basic component of the present invention contains the amount of La, which is a rare earth element, changed (steel types E2 to H2 in Table 3). When the La content exceeds 0.02% (Experiment No. 63), it can be seen that the high heat input HAZ toughness deteriorates and falls below the target value.

実験No.64〜67は、本発明の基本成分をベースにMg含有量を変化させたものである(表3の鋼種I2〜L2)。Mgが0.0030%を超えると(実験No.67)、大入熱溶接HAZ靭性が却って劣化して、目標値を下回る。   Experiment No. Nos. 64 to 67 are obtained by changing the Mg content based on the basic components of the present invention (steel types I2 to L2 in Table 3). If Mg exceeds 0.0030% (Experiment No. 67), the high heat input welding HAZ toughness deteriorates and falls below the target value.

実験No.68〜71は、Laまたは(La+Mg)の添加に加えて、Ce量を変化させて含有させたものである(表3の鋼種O2〜P2)。Ceが0.0050%を超えた実験No.71のものでは、大入熱溶接HAZ靭性が却って劣化して、目標値を下回っていることが分かる。   Experiment No. Nos. 68 to 71 contain La or (La + Mg) in addition to changing the Ce amount (steel types O2 to P2 in Table 3). Experiment No. with Ce over 0.0050%. In the case of No. 71, it can be seen that the high heat input welding HAZ toughness deteriorates and falls below the target value.

実験No.72、73は、(Mg+Ce)または(V+Ca+La+Mg)を本発明範囲内で添加したものであり、母材の強靭性,耐溶接低温割れ性,大入熱溶接HAZ靭性とし目標値を満足することが分かる。   Experiment No. Nos. 72 and 73 are obtained by adding (Mg + Ce) or (V + Ca + La + Mg) within the scope of the present invention, and satisfy the target value as the toughness of the base metal, the resistance to welding cold cracking, and the high heat input welding HAZ toughness. I understand.

実験No.74は45mm厚のDQ−Q’−T材の本発明例でエレクトロスラグのダイアフラム材には40mm厚のSN490B(0.16%C−0.34%Si−1.34%Mn−0.034%V系)を使用したもので、全ての特性において目標値を満足する。   Experiment No. 74 is a 45 mm-thick DQ-Q'-T example of the present invention, and electroslag diaphragm material is 40 mm thick SN490B (0.16% C-0.34% Si-1.34% Mn-0.034). % V system) and satisfy the target values in all characteristics.

実験No.75は本発明のベース成分(鋼種B)に実験No.1と同様のQ−Q’−Tを施したものである。また実験No.76は本発明のベース成分+Ca添加材(鋼種B1)に実験No.1と同様のQ−Q’−Tを施したものである。   Experiment No. No. 75 is an experimental no. Q-Q'-T similar to 1 is applied. In addition, Experiment No. No. 76 is an experiment No. in the base component + Ca additive (steel type B1) of the present invention. Q-Q'-T similar to 1 is applied.

実験No.75,76ともDQ−Q’−Tを施したものに比べて、降伏強度,引張強度とも目標値に対する余裕代は小さくなるものの、目標値を満足し、耐溶接低温割れ性,大入熱溶接HAZ靭性とも良好であることが分かる。   Experiment No. Compared to those with DQ-Q'-T for both 75 and 76, the margin for the target value for both yield strength and tensile strength is small, but the target value is satisfied, and welding cold crack resistance, high heat input welding It can be seen that the HAZ toughness is also good.

これらの結果から明らかなように、本発明で規定する要件を満足した高張力鋼板においては、母材の強靭性,降伏比が目標値を満足し、ガス切断割れ感受性および音響異方性がない。しかも、耐溶接割れ性が良好で、大入熱溶接HAZ靭性は全て部位においてvE0が平均70J以上を有することが分かる。尚、柱同士の1RUNサブマージ溶接の角継手においてもエレクトロスラグ溶接と同等の大入熱溶接であるため、HAZ靭性もあらゆる部位において平均70J以上を確保できることは言うまでもなく、溶接方法を問わず、本発明鋼の特性を満足できるものである。尚、本発明の高張力鋼板のガス切断性については、実施例には示していないが、いずれもWES2801(1980)の2級以上を十分満足するガス切断面の品質を有するものであった。 As is clear from these results, in the high-tensile steel sheet that satisfies the requirements stipulated in the present invention, the toughness and yield ratio of the base material satisfy the target values, and there is no gas cutting cracking susceptibility and acoustic anisotropy. . In addition, it can be seen that the weld crack resistance is good, and the high heat input welded HAZ toughness has an average vE 0 of 70 J or more in all parts. It should be noted that, even in a 1RUN submerged welding corner joint between columns, since it is a high heat input welding equivalent to electroslag welding, it is needless to say that HAZ toughness can be ensured to an average of 70 J or more in any part, regardless of the welding method. The characteristics of the invention steel can be satisfied. In addition, although it does not show in the Example about the gas cutting property of the high-tensile steel plate of this invention, all had the quality of the gas cutting surface which fully satisfied the 2nd grade or more of WES2801 (1980).

Figure 0004025263
Figure 0004025263

Figure 0004025263
Figure 0004025263

Figure 0004025263
Figure 0004025263

Claims (4)

C:0.015〜0.045%(質量%の意味、以下同じ)、Si:0.4%以下(0%を含む)、Mn:0.8〜1.6%、Cr:0.5〜1.3%、sol.Al:0.08%以下(0%を含む)、B:0.0004〜0.003%、固溶B:0.0002〜0.002%、Cu:0.5〜0.95%、Ni:0.7〜5.0%(但し、Ni含有量[Ni]とCu含有量[Cu]の比[Ni]/[Cu]≧1)、Ti:0.005〜0.03%および下記(1)式を満足するNを夫々含有し、残部がFeおよび不可避不純物であり、且つ下記(2)式で示されるCEN値が0.27〜0.33%の範囲内にある化学成分組成を有し、主圧延方向に沿った板厚方向断面における旧オーステナイト粒径の平均アスペクト比(主圧延方向の平均粒径/板厚方向の平均粒径)が1.0〜1.2であると共に、0.5〜3.5体積%の島状マルテンサイト相と4×1020〜26×1020個/m3のε−Cu相クラスターがベイナイト地に分散したものであることを特徴とする耐ガス切断割れ性および大入熱溶接継手靭性に優れ且つ音響異方性の小さい低降伏比高張力鋼板。
[Ti]×14.0/47.9−0.001≦[N]≦[Ti]×14.0/47.9+[B]×14.0/10.8 ‥(1)
但し、[Ti],[N],および[B]は、夫々Ti,およびBの含有量(質量%)を示す。
CEN=[C]+A(c)・{[Si]/24+[Mn]/6+[Cu]/15+[Ni]/20+([Cr]+[Mo]+[Nb]+[V])/5+5[B]}
‥(2)
但し、A(c)= 0.75+0.25・tanh{20([C]-0.12)}であり、[C],[Si],[Mn],[Cu],[Ni],[Cr],[Mo],[Nb],[V]および[B]は、夫々C,Si,Mn,Cu,Ni,Cr,Mo,Nb,VおよびBの含有量(質量%)を示す。
C: 0.015-0.045% (meaning of mass%, the same applies hereinafter), Si: 0.4% or less (including 0%), Mn: 0.8-1.6%, Cr: 0.5 ~ 1.3%, sol. Al: 0.08% or less (including 0%), B: 0.0004 to 0.003%, solid solution B: 0.0002 to 0.002%, Cu: 0.5 to 0.95%, Ni : 0.7 to 5.0% (however, the ratio [Ni] / [Cu] ≧ 1 of Ni content [Ni] and Cu content [Cu]), Ti: 0.005 to 0.03% and the following (1) Chemical components each containing N satisfying the formula , the balance being Fe and inevitable impurities, and the CE N value represented by the following formula (2) within the range of 0.27 to 0.33% The average aspect ratio of the prior austenite grain size (average grain size in the main rolling direction / average grain size in the thickness direction) in the thickness direction cross section along the main rolling direction is 1.0 to 1.2. In addition, 0.5 to 3.5% by volume of island martensite phase and 4 × 10 20 to 26 × 10 20 pieces / m 3 of ε-Cu phase clusters are distributed in the bainite. A low-yield ratio high-tensile steel sheet having excellent gas cut cracking resistance and high heat input welded joint toughness with low acoustic anisotropy, characterized by being scattered.
[Ti] × 14.0 / 47.9−0.001 ≦ [N] ≦ [Ti] × 14.0 / 47.9 + [B] × 14.0 / 10.8 (1)
However, [Ti], [N], and [B] indicate the contents (mass%) of Ti, N, and B, respectively.
CE N = [C] + A (c) ・ {[Si] / 24 + [Mn] / 6 + [Cu] / 15 + [Ni] / 20 + ([Cr] + [Mo] + [Nb] + [V]) / 5 + 5 [B]}
(2)
However, A (c) = 0.75 + 0.25 · tanh {20 ([C] -0.12)}, and [C], [Si], [Mn], [Cu], [Ni], [Cr], [ Mo], [Nb], [V] and [B] indicate the contents (mass%) of C, Si, Mn, Cu, Ni, Cr, Mo, Nb, V and B, respectively.
更に、V:0.005〜0.10%を含有するものである請求項1に記載の低降伏比高張力鋼板。   Furthermore, the low yield ratio high-tensile steel sheet according to claim 1, which contains V: 0.005 to 0.10%. 更に、Ca:0.0005〜0.01%を含有するものである請求項1または2に記載の低降伏比高張力鋼板。   Furthermore, the low yield ratio high-tensile steel sheet according to claim 1 or 2, which contains Ca: 0.0005 to 0.01%. 更に、La:0.002〜0.02%,Ce:0.0003〜0.0050%およびMg:0.0005〜0.0030%よりなる群から選ばれる1種または2種以上を含有するものである請求項1〜3のいずれかに記載の低降伏比高張力鋼板。

Furthermore, it contains one or more selected from the group consisting of La: 0.002-0.02%, Ce: 0.0003-0.0050% and Mg: 0.0005-0.0030% The low yield ratio high tensile strength steel sheet according to any one of claims 1 to 3.

JP2003276231A 2003-07-17 2003-07-17 Low yield ratio high strength steel sheet with excellent gas cut crack resistance and high heat input weld toughness and low acoustic anisotropy Expired - Lifetime JP4025263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003276231A JP4025263B2 (en) 2003-07-17 2003-07-17 Low yield ratio high strength steel sheet with excellent gas cut crack resistance and high heat input weld toughness and low acoustic anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003276231A JP4025263B2 (en) 2003-07-17 2003-07-17 Low yield ratio high strength steel sheet with excellent gas cut crack resistance and high heat input weld toughness and low acoustic anisotropy

Publications (2)

Publication Number Publication Date
JP2005036295A JP2005036295A (en) 2005-02-10
JP4025263B2 true JP4025263B2 (en) 2007-12-19

Family

ID=34212621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003276231A Expired - Lifetime JP4025263B2 (en) 2003-07-17 2003-07-17 Low yield ratio high strength steel sheet with excellent gas cut crack resistance and high heat input weld toughness and low acoustic anisotropy

Country Status (1)

Country Link
JP (1) JP4025263B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4610351B2 (en) * 2005-01-17 2011-01-12 株式会社神戸製鋼所 Method for producing low yield ratio high strength steel sheet with excellent gas cut crack resistance and high heat input weld joint toughness and low acoustic anisotropy
JP4868762B2 (en) * 2005-03-31 2012-02-01 株式会社神戸製鋼所 High-strength, high-toughness bainite non-tempered steel sheet with small acoustic anisotropy
JP4485427B2 (en) * 2005-07-28 2010-06-23 株式会社神戸製鋼所 Low yield ratio high strength steel sheet
JP4652952B2 (en) * 2005-11-04 2011-03-16 株式会社神戸製鋼所 High-tensile steel plate with excellent toughness of heat affected zone
JP5073396B2 (en) * 2007-07-20 2012-11-14 新日本製鐵株式会社 Manufacturing method of welded structural steel with excellent high temperature strength and low temperature toughness
CN103014539B (en) 2011-09-26 2015-10-28 宝山钢铁股份有限公司 A kind of yield strength 700MPa grade high-strength high-tenacity steel plate and manufacture method thereof
CN103014554B (en) 2011-09-26 2014-12-03 宝山钢铁股份有限公司 Low-yield-ratio high-tenacity steel plate and manufacture method thereof
CA2966476C (en) 2014-11-18 2020-05-12 Jfe Steel Corporation High toughness and high tensile strength thick steel plate with excellent material homogeneity and production method for same
JP6969222B2 (en) * 2017-08-23 2021-11-24 日本製鉄株式会社 Cu-added steel sheet

Also Published As

Publication number Publication date
JP2005036295A (en) 2005-02-10

Similar Documents

Publication Publication Date Title
KR101502845B1 (en) Abrasion resistant steel plate which exhibits excellent weld toughness and excellent delayed fracture resistance
JP4485427B2 (en) Low yield ratio high strength steel sheet
US10023946B2 (en) Thick steel sheet having excellent CTOD properties in multilayer welded joints, and manufacturing method for thick steel sheet
JP4252949B2 (en) Low yield ratio high-tensile steel sheet with small acoustic anisotropy and excellent weldability, and method for producing the same
JP6435122B2 (en) Thick steel plate for cold-pressed square steel pipe, cold-pressed square steel pipe, and welding method
JP2008266735A (en) Low yield ratio high tensile strength steel plate excellent in low temperature toughness of weld heat-affected zone and base material, and its manufacturing method
JP7262288B2 (en) High-strength low-yield-ratio thick steel plate with excellent toughness of base metal and weld heat-affected zone and small acoustic anisotropy, and its manufacturing method
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
JPWO2016035110A1 (en) Thick steel plate excellent in multi-layer welded joint CTOD characteristics and method for producing the same
JP5849940B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
JP2016084524A (en) H shape steel for low temperature and manufacturing method therefor
WO2014175122A1 (en) H-shaped steel and method for producing same
JP5136156B2 (en) Ultra-high heat input welded heat-affected zone toughness low yield ratio high-tensile thick steel plate and its manufacturing method
JP2007177325A (en) High tensile strength thick steel plate having low yield ratio and its production method
JP5276871B2 (en) Low yield specific thickness steel plate with excellent toughness of weld heat affected zone
JP4025263B2 (en) Low yield ratio high strength steel sheet with excellent gas cut crack resistance and high heat input weld toughness and low acoustic anisotropy
JP2011214053A (en) Low-yield-ratio thick steel plate for building structure superior in toughness at ultrahigh-heat-input weld zone, and method for manufacturing the same
JP4335789B2 (en) High-tensile steel plate with excellent weldability with small acoustic anisotropy and method for producing the same
JP2009235549A (en) Method for producing low yield ratio high tension thick steel plate excellent in toughness at super-high heat input welding affected part
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP3734692B2 (en) Non-refining type low yield ratio high tensile strength steel sheet with low acoustic anisotropy and excellent weldability
JP4610351B2 (en) Method for producing low yield ratio high strength steel sheet with excellent gas cut crack resistance and high heat input weld joint toughness and low acoustic anisotropy
JP7506305B2 (en) High-strength steel plate for large heat input welding
WO2015151521A1 (en) Welded joint
JP4354754B2 (en) High-tensile steel plate with excellent base metal toughness and HAZ toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071004

R150 Certificate of patent or registration of utility model

Ref document number: 4025263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

EXPY Cancellation because of completion of term