JP7481703B2 - Collision evaluation test body, collision test method, collision test device, manufacturing method of hull structure, design method of hull structure, and hull structure - Google Patents

Collision evaluation test body, collision test method, collision test device, manufacturing method of hull structure, design method of hull structure, and hull structure Download PDF

Info

Publication number
JP7481703B2
JP7481703B2 JP2020064057A JP2020064057A JP7481703B2 JP 7481703 B2 JP7481703 B2 JP 7481703B2 JP 2020064057 A JP2020064057 A JP 2020064057A JP 2020064057 A JP2020064057 A JP 2020064057A JP 7481703 B2 JP7481703 B2 JP 7481703B2
Authority
JP
Japan
Prior art keywords
plate
test
steel plate
collision
ship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020064057A
Other languages
Japanese (ja)
Other versions
JP2020172256A (en
JP2020172256A5 (en
Inventor
和利 市川
鉄平 大川
広志 島貫
安平 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
National Institute of Maritime Port and Aviation Technology
Original Assignee
Nippon Steel Corp
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, National Institute of Maritime Port and Aviation Technology filed Critical Nippon Steel Corp
Priority to KR1020200042670A priority Critical patent/KR20200119209A/en
Publication of JP2020172256A publication Critical patent/JP2020172256A/en
Publication of JP2020172256A5 publication Critical patent/JP2020172256A5/ja
Application granted granted Critical
Publication of JP7481703B2 publication Critical patent/JP7481703B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/08Shock-testing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/14Hull parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B71/00Designing vessels; Predicting their performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B73/00Building or assembling vessels or marine structures, e.g. hulls or offshore platforms
    • B63B73/10Building or assembling vessels from prefabricated hull blocks, i.e. complete hull cross-sections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/18Manufacturability analysis or optimisation for manufacturability

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Geometry (AREA)
  • Combustion & Propulsion (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Immunology (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Computational Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

特許法第30条第2項適用 ウェブサイトのアドレス(1) https://www.crcpress.com/Developments-in-the-Collision-and-Grounding-of-Ships-and-Offshore-Structures/Soares/p/book/9780367433130 (2) https://www.taylorfrancis.com/books/e/9781003002420 (3) https://www.taylorfrancis.com/books/e/9781003002420/chapters/10.1201/9781003002420-5 掲載日:令和1年10月11日 [刊行物等] 8th International Conference on Collision and Grounding of Ships and Offshore Structures 開催日:令和1年10月21日 [刊行物等] ウェブサイトのアドレス:https://www.jasnaoe.or.jp/members/koenronbun/29/program/plist-j.html 掲載日:令和1年11月14日 [刊行物等] 令和元年 日本船舶海洋工学会 秋季講演会 開催日:令和1年11月22日 [刊行物等] ウェブサイトのアドレス:http://dtbn.jp/DPT8Cxz 掲載日:令和1年11月28日 [刊行物等] 溶接構造シンポジウム2019-「デジタル技術が拓く溶接構造化技術の革新」- 開催日:令和1年12月3日Article 30, paragraph 2 of the Patent Act applies Website address (1) https://www.crcpress.com/Developments-in-the-Collision-and-Grounding-of-Ships-and-Offshore-Structures/Soares/p/book/9780367433130 (2) https://www.taylorfrancis.com/books/e/9781003002420 (3) https://www.taylorfrancis.com/books/e/9781003002420 com/books/e/9781003002420/chapters/10.1201/9781003002420-5 Posted on: October 11, 2019 [Publications, etc.] 8th International Conference on Collision and Grounding of Ships and Offshore Structures Held on: October 21, 2019 [Publications, etc.] Website address: https://www.jasnaoe.or.jp/members/koenronbun/29/program/plist-j. html Posted on: November 14, 2019 [Publications, etc.] 2019 Japan Society of Naval Architects and Ocean Engineers Autumn Lecture Meeting Held on: November 22, 2019 [Publications, etc.] Website address: http://dtbn.jp/DPT8Cxz Posted on: November 28, 2019 [Publications, etc.] Welding Structure Symposium 2019 - "Innovation in welding structure technology pioneered by digital technology" - Held on: December 3, 2019

本発明は、特に船側部に衝突された船舶における船殻の変形や破口を模擬し、鋼材とその溶接部の性能を評価する衝突評価試験体、衝突試験方法および衝突試験装置、ならびに、船体構造の製造方法、船体構造の設計方法および船体構造に関するものである。 The present invention relates to a collision evaluation test specimen, a collision test method, and a collision test device that simulate the deformation and rupture of the hull of a ship that has been hit, particularly in the side of the ship, and evaluate the performance of steel materials and their welds, as well as a manufacturing method for a hull structure, a design method for a hull structure, and a hull structure.

鉱石運搬船や石炭運搬船などのバルクキャリアにおいては、現在でも一重船殻構造(シングルハル)が採用されている。これら船舶からの積荷(鉱石、石炭)の流出は海洋を汚染するものはないが、船舶に積載されている燃料油などの油が流出すると海洋汚染を引き起こす場合がある。このため、衝突事故などによる船殻の破口を抑制する必要がある。 Even today, single hull structures are used in bulk carriers such as ore carriers and coal carriers. The leakage of cargo (ore, coal) from these ships does not pollute the ocean, but if fuel oil or other oil loaded on the ship leaks, it may cause marine pollution. For this reason, it is necessary to prevent hull breaches due to collision accidents, etc.

また、タンカーからの油の流出は顕著な海洋汚染を引き起こす恐れがあるため、国際的な問題になっている。近年、衝突事故などによる油の流出を抑制するため、二重船殻構造(ダブルハル)への切り替えが進みつつある。ダブルハルはシングルハルと比較し、漏洩比率が減少しているものの、効果は不十分との指摘もなされている。 In addition, oil spills from tankers have become an international issue because they can cause significant marine pollution. In recent years, there has been a shift to double hull structures to prevent oil spills due to collision accidents and other factors. Although double hulls have a lower leakage rate than single hulls, it has also been pointed out that the effect is insufficient.

そこで、近年、造船分野においては、万一船舶同士が衝突事故を起こしてもその破壊(破口)を最小限にくい止め、油の流出を防止し、破損部からの浸水等の被害を最小限にし、人命や積荷を保護するための技術が検討されている。 Therefore, in recent years, in the shipbuilding industry, technologies have been developed to minimize damage (breaks) in the unlikely event of a collision between ships, prevent oil spills, and minimize damage such as flooding from damaged areas, thereby protecting human lives and cargo.

その中でも、船体用鋼材面からの取り組みとして、鋼材の延性を改善させた高延性鋼により、船体の破壊を抑制することが例えば特許文献1のように提案されている。 One of the approaches proposed in relation to the steel materials for ship hulls is to prevent destruction of the hull by using high-ductility steel with improved ductility, as shown in, for example, Patent Document 1.

国際公開第2016/013288号International Publication No. 2016/013288

例えば特許文献1などで示されている船体構造の評価方法は有限要素法による計算結果である。これは、自動車の衝突実験とは大きく異なり、船体の海上での実大規模の衝突実験は経済的に考えて実現が不可能なためである。また船体の一部を作製し、研究室で衝突実験を行うにしても、例えば、惠美洋彦 著、英和版 新 船体構造イラスト集(成山堂書店、2015)に示されているように、実際の船体構造は外板だけではなく様々な補強部材や防撓部材が配置された極めて複雑な構造を有しており、それらを忠実に再現して製作することは溶接の工期やコストに鑑みると現実的ではない。 For example, the evaluation method for ship hull structure shown in Patent Document 1 is the result of calculation using the finite element method. This is because, unlike automobile collision tests, it is economically impossible to realize a full-scale collision test of a ship at sea. Furthermore, even if a part of the ship hull is fabricated and a collision test is performed in a laboratory, as shown in, for example, Hirohiko Emi's New English-Japanese Ship Structure Illustration Collection (Seizando Shoten, 2015), the actual ship hull structure is extremely complex, with not only the outer plate but also various reinforcing and stiffening members, and faithfully replicating and manufacturing them is not realistic in terms of the construction time and cost of welding.

しかしながら、このようなマクロスケールでの有限要素法での評価では十分に考慮されていない、溶接部(防撓部材等)を含んだ構造体の衝突安全性評価を実験で行うことが望ましい。しかし、これまではそのような実験的評価はなされていない。したがって、適正な衝突評価試験体の形状や衝突試験方法および試験装置も考案されていない。 However, it would be desirable to conduct experiments to evaluate the crashworthiness of structures that include welds (stiffened members, etc.), which are not fully taken into account in such macro-scale finite element method evaluations. However, no such experimental evaluations have been conducted to date. As a result, no appropriate shape for the crash evaluation test specimen, crash test method, or test device have been devised.

本発明の目的は、上記実情に鑑み、船体の衝突安全性を評価の合理性を損なわずに、実際の船体構造を簡略化し、経済的に実現可能な衝突評価試験体(以下、「試験体」と称することがある)、衝突試験方法(以下、「試験方法」と称することがある)および衝突試験装置(以下、「試験装置」と称することがある)、ならびに、船体構造の製造方法、船体構造の設計方法および船体構造を提供する所にある。 In view of the above situation, the object of the present invention is to provide an economically feasible collision evaluation test body (hereinafter sometimes referred to as "test body"), a collision test method (hereinafter sometimes referred to as "test method"), and a collision test apparatus (hereinafter sometimes referred to as "test apparatus"), as well as a manufacturing method for a hull structure, a design method for a hull structure, and a hull structure, which simplify the actual hull structure without compromising the rationality of the evaluation of the collision safety of the hull.

船舶が衝突したときに船舶側面部に破口が生じるメカニズムを考察する。例えば、船舶Aの側壁部に他の船舶Bの舳先が衝突した場合には、船舶Bの舳先の全体が船舶A側壁部の平らな鋼板にめり込んでくるので、船舶A側壁部の鋼板は大きく曲げ変形を受け、奥に引き伸ばされて大きく引っ張られる。そして、鋼板が破壊されると、船舶A側壁部の鋼板が破口することとなる。 Let us consider the mechanism by which a breach occurs in the side of a ship when two ships collide. For example, if the bow of another ship B collides with the side wall of ship A, the entire bow of ship B will sink into the flat steel plate of ship A's side wall, causing the steel plate of ship A's side wall to be severely bent and deformed, stretched backwards, and pulled strongly. When the steel plate is destroyed, the steel plate of ship A's side wall will be breached.

したがって、船舶が衝突したときに船舶側面部の鋼板に破口を生じさせないようにするためには、衝突時の初期段階で鋼板が大きく曲げられた時に、その曲げに耐えられること、そして、曲がっていない部分が大きく引き伸ばされ引張り変形を起こすこととなるが、その部分が伸びて破断しないことが必要である。 Therefore, in order to prevent breaks in the steel plates on the side of a ship when it collides with another ship, the steel plates must be able to withstand the large bending that occurs during the initial stages of a collision, and the unbent parts must be stretched significantly and undergo tensile deformation, but these parts must not stretch and break.

そこで、船舶が衝突したときに船舶側面部の破口を抑制するには鋼板の伸びを大きくすることが本質的に重要であるが、一般に鋼板の強度を向上させると鋼板の伸びが劣化するので、強度と伸びとを両立させた高強度高延性鋼板が望まれ、開発がなされた。ただし、その鋼板そのもの強度や延性については、試験片を用いて機械的に評価することが可能であるが、実際の船舶に適用した場合の衝突評価については、有限要素法によるものにとどまっている。一方で、実際の船舶またはその一部を忠実に再現したものによる試験は現実的でない。そこで、本発明では溶接部材(防撓部材)を含んだ船体構造体の衝突評価試験体、衝突試験方法および、衝突試験装置、ならびにその衝突試験方法を用いて、船体構造の製造方法、船体構造の設計方法および船体構造を検討した。 In order to prevent the side of a ship from being broken when it collides with another ship, it is essential to increase the elongation of the steel plate. However, since improving the strength of a steel plate generally leads to a decrease in the elongation of the steel plate, a high-strength, high-ductility steel plate that combines strength and elongation has been desired and developed. However, while the strength and ductility of the steel plate itself can be mechanically evaluated using test pieces, the collision evaluation when applied to an actual ship has been limited to the finite element method. On the other hand, testing using an actual ship or a faithful reproduction of a part of it is not realistic. Therefore, in this invention, a collision evaluation test specimen for a hull structure including welded members (stiffened members), a collision test method, and a collision test device, as well as a manufacturing method for a hull structure, a design method for a hull structure, and a hull structure were studied using the collision test method.

本発明者は、船体構造の衝突安全性を合理的且つ経済的に評価する試験体、試験方法および試験装置を検討し、評価対象となる船体の外板あるいは内板に相当する鋼板(試験鋼板)と、前記試験鋼板の一方の表面に溶接された拘束板の枠と、前記拘束板の枠の内部で前記試験鋼板及び前記拘束板の枠に溶接された1枚又は複数枚の防撓部材とを備えた、衝突評価試験体、衝突試験方法および試験装置により鋼材の耐衝突安全性能が、合理的且つ経済的に評価できること、ならびにその衝突試験方法を用いて、船体構造の製造方法、船体構造の設計方法および船体構造が合理的且つ経済的に得られることを見出して、本発明を完成した。なお、衝突評価試験体は、事前に有限要素法シミュレーション等を実施し、最大荷重が試験機の範囲内であること、意図した崩壊モードで崩壊すること等を十分に確認して製作したものを使用した。 The inventors have studied test specimens, test methods, and test equipment for evaluating the collision safety of ship hull structures in a rational and economical manner, and have found that the collision safety performance of steel materials can be evaluated rationally and economically using a collision evaluation test specimen, collision test method, and test equipment that includes a steel plate (test steel plate) equivalent to the outer or inner plate of the ship to be evaluated, a restraining plate frame welded to one surface of the test steel plate, and one or more stiffening members welded to the test steel plate and the restraining plate frame inside the restraining plate frame, and that a manufacturing method for ship hull structures, a design method for ship hull structures, and a ship hull structure can be obtained rationally and economically using the collision test method, thus completing the present invention. The collision evaluation test specimens used were manufactured by carrying out finite element method simulations in advance to thoroughly confirm that the maximum load was within the range of the testing machine and that the collapse occurred in the intended collapse mode.

本発明の要旨は、次の通りである。
(1)
評価対象となる船体の外板または内板に相当する試験鋼板と、前記試験鋼板の一方の表面に溶接された拘束板の枠と、前記拘束板の枠の内部で前記試験鋼板及び前記拘束板の枠に溶接された1枚ないし複数枚の防撓部材とを備える、ことを特徴とする、衝突評価試験体。
(2)
前記衝突評価試験体において、
試験鋼板の板厚: 3.2~40mm
試験鋼板の長さ: 1500~2500mm
試験鋼板の幅: 1000~2000mm
防撓部材の板厚: 10~30mm
防撓部材の高さ: 50~150mm

拘束板の板厚: 30~70mm
拘束板の枠の外長: 1000~2000mm
(ただし、試験鋼板の長さ未満)
拘束板の枠の外幅: 500~1500mm
(ただし、試験鋼板の幅未満)
拘束板の枠の高さ: 300~700mm
であることを特徴とする、(1)に記載の衝突評価試験体。
(3)
前記防撓部材の形状が、板形状(フラットバー形状)又はフランジ部を有する形状であることを特徴とする、(1)または(2)に記載の衝突評価試験体。
(4)
前記フランジ部を有する形状が、T字型、L字型、バルブプレート形状の少なくとも一つを含み、該フランジ部の幅が30~80mm(ただし、防撓部材の板厚を超える)であることを特徴とする、(3)に記載の衝突評価試験体。
(5)
前記防撓部材と前記拘束板の枠との溶接部に、補強板が配置されていることを特徴とする、(1)~(4)のいずれか1つに記載の衝突評価試験体。
(6)
前記試験鋼板は、板継ぎのための溶接部を有する鋼板であることを特徴とする、(1)~(5)のいずれか1つに記載の衝突評価試験体。
(7)
(1)~(6)のいずれか1つに記載の衝突評価試験体の前記試験鋼板に圧子を衝突させて、前記試験鋼板を変形または破口させることを特徴とする、衝突試験方法。
(8)
前記圧子の先端部が、球体の一部、曲面、突起形状の少なくとも一つを有することを特徴とする、(7)に記載の衝突試験方法。
(9)
前記球体の外半径を200~400mmとすることを特徴とする、(8)に記載の衝突試験方法。
(10)
前記圧子の衝突速度が0.1~10000mm/秒であることを特徴とする、(7)~(9)のいずれか1つに記載の衝突試験方法。
(11)
(1)~(6)のいずれか1つに記載の衝突評価試験体、前記衝突評価試験体を固定する固定手段、前記衝突評価試験体に衝突させる圧子、および前記圧子を駆動する機構、を備える、ことを特徴とする衝突試験装置。

(12)
(7)~(10)のいずれか1つに記載の衝突試験方法において、前記圧子の最大押込量と前記拘束板の枠の外幅との比を0.20とした試験中の荷重低下が160kN以下である鋼板を、船側部の外板の一部の部位若しくは前記外板の全ての部位、又は、船側部の内板の一部の部位若しくは前記内板の全ての部位に使用することを特徴とする船体構造の製造方法。
(13)
(7)~(10)のいずれか1つに記載の衝突試験方法において、前記圧子の最大押込量と前記拘束板の枠の外幅との比を0.20~0.28のいずれかとした試験中の荷重低下が160kN以下であることを仕様として課せられ且つ前記仕様を満たすことが確認された鋼板を、船側部の外板の一部の部位若しくは前記外板の全ての部位、又は、船側部の内板の一部の部位若しくは前記内板の全ての部位、に使用することを特徴とする船体構造の製造方法。
(14)
(7)~(10)のいずれか1つに記載の衝突試験方法において、前記圧子の最大押込量と前記拘束板の枠の外幅との比を0.20とした試験中の荷重低下が最高荷重の5%以下である鋼板を、船側部の外板の一部の部位若しくは前記外板の全ての部位、又は、船側部の内板の一部の部位若しくは前記内板の全ての部位に使用することを特徴とする船体構造の製造方法。
(15)
(7)~(10)のいずれか1つに記載の衝突試験方法において、前記圧子の最大押込量と前記拘束板の枠の外幅との比を0.20~0.28のいずれかとした試験中の荷重低下が最高荷重の5%以下であることを仕様として課せられ且つ前記仕様を満たすことが確認された鋼板を、船側部の外板の一部の部位若しくは前記外板の全ての部位、又は、内板の一部の部位若しくは前記内板の全ての部位、に使用することを特徴とする船体構造の製造方法。
(16)
(7)~(10)のいずれか1つに記載の衝突試験方法において、前記圧子の最大押込量と、前記拘束板の枠の外幅との比が0.20であるときに破口が生じない鋼板を、船側部の外板の一部の部位若しくは前記外板の全ての部位、又は、船側部の内板の一部の部位若しくは前記内板の全ての部位、に使用することを特徴とする船体構造の製造方法。
(17)
(7)~(10)のいずれか1つに記載の衝突試験方法において、前記圧子の最大押込量と前記拘束板の枠の外幅との比を0.20~0.28のいずれかとした試験中において破口が生じないことを仕様として課せられ且つ前記仕様を満たすことが確認された鋼板を、船側部の外板の一部の部位若しくは前記外板の全ての部位、又は、船側部の内板の一部の部位若しくは前記内板の全ての部位、に使用することを特徴とする船体構造の製造方法。
(18)
船側部の外板又は内板の中で、破口を抑制する必要がある部位を特定し、当該部位に使用する鋼板に、(7)~(10)のいずれか1つに記載の衝突試験方法において、前記圧子の最大押込量と前記拘束板の枠の外幅との比を0.20~0.28のいずれかとした試験中の荷重低下が160kN以下であることが確認された鋼板を使用することを特徴とする船体構造の設計方法。
(19)
船側部の外板又は内板の中で、破口を抑制する必要がある部位を特定し、当該部位に使用する鋼板に、(7)~(10)のいずれか1つに記載の衝突試験方法において、前記圧子の最大押込量と前記拘束板の枠の外幅との比を0.20~0.28のいずれかとした試験中の荷重低下が最高荷重の5%以下であることが確認された鋼板を使用することを特徴とする船体構造の設計方法。
(20)
船側部の外板又は内板の中で、破口を抑制する必要がある部位を特定し、当該部位に使用する鋼板に、(7)~(10)のいずれか1つに記載の衝突試験方法において、前記圧子の最大押込量と前記拘束板の枠の外幅との比を0.20~0.28のいずれかとした試験中において破口が生じないことが確認された鋼板を使用することを特徴とする船体構造の設計方法。
(21)
船側部の外板若しくは内板の一部の部位、又は、前記外板若しくは前記内板の全ての部位の鋼板が、(7)~(10)のいずれか1つに記載の衝突試験方法において、前記圧子の最大押込量と前記拘束板の枠の外幅との比を0.20とした試験中の荷重低下が160kN以下である鋼板であることを特徴とする船体構造。
(22)
船側部の外板若しくは内板の一部の部位、又は、前記外板若しくは前記内板の全ての部位の鋼板が、(7)~(10)のいずれか1つに記載の衝突試験方法において、前記圧子の最大押込量と前記拘束板の枠の外幅との比を0.20~0.28のいずれかとした試験中の荷重低下が160kN以下であることを仕様として課せられ且つ前記仕様を満たすことが確認された鋼板であることを特徴とする船体構造。
(23)
船側部の外板若しくは内板の一部の部位、又は、前記外板若しくは前記内板の全ての部位の鋼板が、(7)~(10)のいずれか1つに記載の衝突試験方法において、前記圧子の最大押込量と前記拘束板の枠の外幅との比を0.20とした試験中の荷重低下が最高荷重の5%以下である鋼板であることを特徴とする船体構造。
(24)
船側部の外板若しくは内板の一部の部位、又は、前記外板若しくは前記内板の全ての部位の鋼板が、(7)~(10)のいずれか1つに記載の衝突試験方法において、前記圧子の最大押込量と前記拘束板の枠の外幅との比を0.20~0.28のいずれかとした試験中の荷重低下が最高荷重の5%以下であることを仕様として課せられ且つ前記仕様を満たすことが確認された鋼板であることを特徴とする船体構造。
(25)
船側部の外板若しくは内板の一部の部位、又は、前記外板若しくは前記内板の全ての部位の鋼板が、(7)~(10)のいずれか1つに記載の衝突試験方法において、前記圧子の最大押込量と、前記拘束板の枠の外幅との比が0.20であるときに破口が生じない鋼板であることを特徴とする船体構造。
(26)
船側部の外板若しくは内板の一部の部位、又は、前記外板若しくは前記内板の全ての部位の鋼板が、(7)~(10)のいずれか1つに記載の衝突試験方法において、前記圧子の最大押込量と前記拘束板の枠の外幅との比を0.20~0.28のいずれかとした試験中において破口が生じないことを仕様として課せられ且つ前記仕様を満たすことが確認された鋼板であることを特徴とする船体構造。
The gist of the present invention is as follows.
(1)
A collision evaluation test body comprising a test steel plate corresponding to an outer or inner plate of a hull to be evaluated, a restraint plate frame welded to one surface of the test steel plate, and one or more stiffening members welded to the test steel plate and the restraint plate frame inside the restraint plate frame.
(2)
In the collision evaluation test specimen,
Test steel plate thickness: 3.2 to 40 mm
Length of test steel plate: 1500-2500mm
Width of test steel plate: 1000-2000 mm
Thickness of stiffening member: 10-30mm
Height of stiffening member: 50-150mm

Restraint plate thickness: 30-70mm
Outer length of restraining plate frame: 1000-2000mm
(However, this is less than the length of the test steel plate.)
Outer width of restraining plate frame: 500-1500mm
(However, this is less than the width of the test steel plate.)
Height of the restraining plate frame: 300-700mm
The collision evaluation test specimen according to (1),
(3)
The collision evaluation test specimen according to (1) or (2), wherein the stiffening member has a plate shape (flat bar shape) or a shape having a flange portion.
(4)
The collision evaluation test body according to (3), characterized in that the shape having the flange portion includes at least one of a T-shape, an L-shape, and a valve plate shape, and the width of the flange portion is 30 to 80 mm (however, the width exceeds the plate thickness of the stiffening member).
(5)
5. The collision evaluation test body according to any one of (1) to (4), characterized in that a reinforcing plate is disposed at a welded portion between the stiffening member and the frame of the restraint plate.
(6)
The collision evaluation test specimen according to any one of (1) to (5), wherein the test steel plate is a steel plate having a welded portion for plate joining.
(7)
A collision test method comprising: impacting an indenter against the test steel plate of the collision evaluation test body according to any one of (1) to (6) to deform or break the test steel plate.
(8)
The impact test method according to (7), wherein the tip of the indenter has at least one of a part of a sphere, a curved surface, and a protruding shape.
(9)
The collision test method according to (8), characterized in that the outer radius of the sphere is 200 to 400 mm.
(10)
The impact test method according to any one of (7) to (9), characterized in that the impact speed of the indenter is 0.1 to 10,000 mm/sec.
(11)
A collision test device comprising: a collision evaluation test specimen according to any one of (1) to (6); a fixing means for fixing the collision evaluation test specimen; an indenter for colliding with the collision evaluation test specimen; and a mechanism for driving the indenter.

(12)
A manufacturing method for a hull structure, characterized in that in the collision test method described in any one of (7) to (10), a steel plate in which a load drop during the test is 160 kN or less when the ratio of the maximum depression amount of the indenter to the outer width of the frame of the restraint plate is 0.20 is used for a part of a portion of an outer plate of the ship's side or all of the portions of the outer plate, or for a part of a portion of an inner plate of the ship's side or all of the portions of the inner plate.
(13)
A manufacturing method for a hull structure, characterized in that in the collision test method according to any one of (7) to (10), a steel plate that is required as a specification to have a load drop of 160 kN or less during a test in which the ratio of the maximum depression amount of the indenter to the outer width of the frame of the restraint plate is set to any one of 0.20 to 0.28 and that has been confirmed to satisfy the specification is used for a part of an outer plate of a ship's side or all of the parts of the outer plate, or a part of an inner plate of a ship's side or all of the parts of the inner plate.
(14)
A manufacturing method for a hull structure, characterized in that in the collision test method described in any one of (7) to (10), a steel plate in which a load drop during the test is 5% or less of the maximum load, with the ratio of the maximum depression amount of the indenter to the outer width of the frame of the restraint plate being 0.20, is used for a part of a portion of an outer plate of the ship's side or all of the portions of the outer plate, or for a part of a portion of an inner plate of the ship's side or all of the portions of the inner plate.
(15)
A manufacturing method for a hull structure, characterized in that in the collision test method described in any one of (7) to (10), a steel plate that is required as a specification that the load drop during the test is 5% or less of the maximum load, with the ratio of the maximum depression amount of the indenter to the outer width of the frame of the restraint plate being anywhere between 0.20 and 0.28, and that has been confirmed to satisfy the specification, is used for a part of an outer plate of a ship's side part or all of the parts of the outer plate, or a part of an inner plate or all of the parts of the inner plate.
(16)
A manufacturing method for a hull structure, characterized in that in the collision test method described in any one of (7) to (10), a steel plate that does not cause a fracture when the ratio of the maximum depression amount of the indenter to the outer width of the frame of the restraint plate is 0.20 is used for a part of a portion of an outer plate of the ship's side or all of the portions of the outer plate, or for a part of a portion of an inner plate of the ship's side or all of the portions of the inner plate.
(17)
A manufacturing method for a hull structure, characterized in that in the collision test method according to any one of (7) to (10), a steel plate that is required as a specification that no fracture occurs during a test in which the ratio of the maximum depression amount of the indenter to the outer width of the frame of the restraint plate is set to any one of 0.20 to 0.28 and that has been confirmed to satisfy the specification is used for a part of an outer plate of a ship's side or all of the parts of the outer plate, or a part of an inner plate of a ship's side or all of the parts of the inner plate.
(18)
A method for designing a hull structure, comprising: identifying an area among the outer or inner plating of a ship's side where it is necessary to suppress a break; and using, as a steel plate for said area, a steel plate that has been confirmed to have a load drop of 160 kN or less during a test in which the ratio of the maximum depression amount of the indenter to the outer width of the frame of the restraint plate is set to any one of 0.20 to 0.28 in the collision test method described in any one of (7) to (10).
(19)
A method for designing a hull structure, comprising: identifying an area among the outer or inner plating of a ship's side where it is necessary to suppress a break; and using, as a steel plate for said area, a steel plate that has been confirmed to have a load reduction of 5% or less of the maximum load during a test in which the ratio of the maximum depression amount of the indenter to the outer width of the frame of the restraint plate is set to any one of 0.20 to 0.28 in the collision test method described in any one of (7) to (10).
(20)
A method for designing a hull structure, comprising: identifying an area among the outer or inner plating of a ship's side where it is necessary to suppress fracture; and using, as a steel plate for said area, a steel plate that has been confirmed to not cause fracture during a test in which the ratio of the maximum depression amount of the indenter to the outer width of the frame of the restraint plate is set to any one of 0.20 to 0.28 in the collision test method described in any one of (7) to (10).
(21)
A hull structure characterized in that a steel plate for a part of an outer plate or an inner plate of a ship's side, or for all of the outer plate or the inner plate, is a steel plate for which a load drop during a test in which the ratio of the maximum indentation amount of the indenter to the outer width of the frame of the restraint plate is 160 kN or less, is set to 0.20, in the collision test method described in any one of (7) to (10).
(22)
A hull structure, characterized in that a steel plate for a part of an outer or inner plate of a ship's side, or for all of the outer or inner plates, is a steel plate that is subject to a specification that a load drop during a test in which the ratio of the maximum indenter depression amount to the outer width of the frame of the restraint plate is set to any one of 0.20 to 0.28 in the collision test method described in any one of (7) to (10) is 160 kN or less, and that has been confirmed to satisfy the specification.
(23)
A hull structure characterized in that the steel plate of a part of an outer plate or an inner plate of a ship's side, or of all of the outer plate or the inner plate, is a steel plate in which a load reduction during a test in which the ratio of the maximum depression amount of the indenter to the outer width of the frame of the restraint plate is 5% or less of the maximum load, is set to 0.20 in the collision test method described in any one of (7) to (10).
(24)
A hull structure, characterized in that a steel plate for a part of an outer or inner plate of a ship's side, or for all of the outer or inner plates, is a steel plate that is subject to a specification that a load drop during a test in which the ratio of the maximum indenter depression amount to the outer width of the frame of the restraint plate is set to any one of 0.20 to 0.28, and that has been confirmed to satisfy the specification, in the collision test method described in any one of (7) to (10).
(25)
A hull structure, characterized in that a steel plate for a part of an outer plate or an inner plate of a ship's side, or for all of the outer plate or the inner plate, is a steel plate that does not cause a fracture when the ratio of the maximum indenter depression amount to the outer width of the frame of the restraint plate is 0.20 in the collision test method described in any one of (7) to (10).
(26)
A hull structure, characterized in that a steel plate for a part of an outer or inner plate of a ship's side, or for all of the outer or inner plates, is a steel plate that is subject to a specification that no fracture occurs during a test in which the ratio of the maximum indenter depression amount to the outer width of the frame of the restraint plate is any one of 0.20 to 0.28 in the collision test method described in any one of (7) to (10), and that has been confirmed to satisfy the specification.

本発明の衝突評価試験体、衝突試験方法および衝突試験装置を使用することにより、万一船舶同士の衝突事故が起こった場合でも、船舶の鋼板が破断して破口する可能性を合理的かつ経済的に評価することができるので、有限要素法と合わせて、鋼材の安全性評価を行って、より安全な船体構造の採用や鋼材の選定を行うことで、衝突事故による沈没を回避し、人命や貨物の保護や燃料油の流出による海洋汚染の可能性を低減できるなど環境保護及び安全性の点から顕著な効果を奏する。さらに、その衝突試験方法を用いて、船体構造の製造方法、船体構造の設計方法および船体構造を得ることができ、衝突事故による船舶の沈没を回避し、人命や貨物の保護や燃料油の流出による海洋汚染の可能性を低減できるなど環境保護及び安全性の点から顕著な効果を奏する。 By using the collision evaluation test specimen, collision test method, and collision test device of the present invention, it is possible to rationally and economically evaluate the possibility of a ship's steel plate breaking and breaking in the event of a collision between two ships. In combination with the finite element method, a safety evaluation of the steel material can be performed to adopt a safer hull structure and select a steel material, thereby avoiding sinking due to a collision accident, protecting human life and cargo, and reducing the possibility of marine pollution due to fuel oil spills, thereby achieving significant effects in terms of environmental protection and safety. Furthermore, by using the collision test method, a manufacturing method for a hull structure, a design method for a hull structure, and a hull structure can be obtained, which can avoid sinking of a ship due to a collision accident, protecting human life and cargo, and reducing the possibility of marine pollution due to fuel oil spills, thereby achieving significant effects in terms of environmental protection and safety.

防撓部材と試験鋼板の溶接接合部近傍の相当塑性ひずみの分布を有限要素法で計算した例を示す図。A diagram showing an example of the distribution of equivalent plastic strain near the welded joint between a stiffening member and a test steel plate calculated using the finite element method. 本発明による典型的な衝突評価試験体を用いた、衝突試験装置の一例を模式的に示す図。FIG. 1 is a schematic diagram showing an example of a crash test device using a typical crash evaluation test specimen according to the present invention. 本発明による典型的な衝突評価試験体形状を示す図。FIG. 2 is a diagram showing a typical shape of a crash evaluation test specimen according to the present invention. 本発明による典型的な衝突評価試験の結果による押込み変位と荷重の関係を高延性鋼と一般鋼で比較した図。FIG. 13 is a graph comparing the relationship between indentation displacement and load between high ductile steel and general steel in the results of a typical crash evaluation test according to the present invention. 衝突評価試験後の試験鋼板表面(圧子が衝突した面)の写真。Photograph of the surface of the test steel plate (the surface that was struck by the indenter) after the impact evaluation test. 衝突評価試験後の一般鋼Bの裏面の写真。Photograph of the back surface of general steel B after the collision evaluation test. 船体構造を説明するための図である。FIG. 2 is a diagram for explaining a hull structure. 図8における船側部底部を拡大した図である。FIG. 9 is an enlarged view of the bottom of the side of the ship in FIG. 8 .

以下本発明について詳細に説明する。 The present invention will be described in detail below.

船舶の側壁構造は、一般に外板とそれに付随する防撓部材(例えば、一般的にはロンジ部材と称される。)から構成され、さらに二重隔壁を有する船体の場合には、外板に加えて、内板とそれに付随する防撓部材を有する。船体が衝突を受けた場合の構造体の安全性評価を、評価の合理性を損なわずに経済的な寸法に実構造から縮小した部分構造で行うことを検討し、その結果、以下に詳述する衝突評価試験体の構成、試験方法および試験装置、ならびに船体構造の製造方法、船体構造の設計方法および船体構造を発明した。 The sidewall structure of a ship is generally composed of an outer plate and associated stiffening members (for example, generally referred to as longitudinal members), and in the case of a hull with a double bulkhead, in addition to the outer plate, there is an inner plate and associated stiffening members. We considered how to evaluate the safety of a structure in the event of a collision with a hull using a partial structure that is reduced in size from the actual structure to an economical size without compromising the rationality of the evaluation, and as a result, we invented the configuration of a collision evaluation test specimen, a test method and test device, as well as a manufacturing method for a hull structure, a design method for a hull structure, and a hull structure, which are described in detail below.

本発明者らは、このような船体構造が衝突を受けた場合の安全性評価を、合理性を損なわずに経済的な寸法に実構造から縮小した部分構造で行うことを検討した。その結果、評価対象となる船体の外板あるいは内板に相当する鋼板(試験鋼板)に、防撓部材を1枚または複数枚配し、且つ拘束板の枠を溶接で配置した衝突評価試験体、当該試験体を用いた衝突試験方法および衝突試験装置が適当であることを知見した。ここで、拘束板の枠とは、試験鋼板に対し、T字状に突合せ溶接された複数の拘束板によって構成された枠をいう。また、枠とは、物体を支える役割をもつ構造の一部と定義され、拘束板同士は必ずしも溶接されている必要はなく、間隔が空いていてもよい。 The inventors have considered how to perform a safety evaluation of such a hull structure in the event of a collision using a partial structure that is reduced in size from the actual structure to an economical size without compromising rationality. As a result, they have found that a collision evaluation test specimen in which one or more stiffening members are arranged on a steel plate (test steel plate) equivalent to the outer or inner plate of the hull to be evaluated and a restraining plate frame is welded in place, as well as a collision test method and collision test device using said test specimen, are appropriate. Here, the restraining plate frame refers to a frame formed by multiple restraining plates butt-welded in a T-shape to the test steel plate. In addition, the frame is defined as a part of a structure that plays a role in supporting an object, and the restraining plates do not necessarily need to be welded to each other and may be spaced apart.

特に試験体には防撓部材を備える必要がある。有限要素法による解析を行ったところ、図1に示すように防撓部材と試験鋼板の溶接接合部の近傍にはひずみが集中するので、実際の船舶の衝突を考慮するためには、このような防撓部材の存在を考慮することが不可欠であることを知見した。防撓部材がない場合には、圧子の先端が接触する試験鋼板部分のひずみが最も高くなるが、これは、防撓部材を有する実際の船舶の被衝突時の状況とは全く異なるので、防撓部材を考慮しない試験体は実際の衝突現象を合理的に再現できない。 In particular, the test specimen must be equipped with stiffening members. Analysis using the finite element method revealed that, as shown in Figure 1, strain is concentrated near the welded joint between the stiffening member and the test steel plate, and it is therefore essential to take into account the presence of such stiffening members in order to consider the collision of an actual ship. In the absence of stiffening members, the strain is highest in the part of the test steel plate where the tip of the indenter comes into contact, but this is completely different from the situation when an actual ship with stiffening members is hit, so a test specimen that does not take stiffening members into account cannot reasonably reproduce the actual collision phenomenon.

本発明試験体、試験方法および試験装置の限定理由を説明する。 The reasons for the limitations of the test specimen, test method, and test equipment of the present invention are explained.

(試験鋼板)
試験鋼板は、衝突試験の評価対象となる船体の外板あるいは内板に相当する鋼板である。試験鋼板は、製造ままの1枚の鋼板であってもよく、実際の船体構造をより厳密に考慮して、板継ぎ溶接部を有していてもよい。試験鋼板の形状は、矩形であってもよく、実際の船体構造に応じて、略矩形の形状に適宜調整してもよい。試験鋼板の形状は、船舶側壁構造を模擬する形状であってよい。
試験鋼板の面寸法(板厚を除く、鋼板の長さおよび幅)は、想定される原寸との縮尺に応じて決定することができる。実際の船舶を模擬した衝突現象を再現するためには、原寸に対する縮尺が、1/10以上であることが好ましい。一方、変形、破口を生じさせるために、実際に衝突してくる船舶の船首を模擬するほどの(実機程度の)、大がかりな試験装置を要せず、試験を行うためには、原寸に対する縮尺が、3/4以下であることが好ましい。なお、縮尺が大きくなると相対的に試験機は大型のものが必要となり、縮尺が小さくなると小型のものですむ傾向にある。
試験鋼板の板厚は3.2~40mmとしてもよい。試験鋼板の板厚を3.2mm以上にすれば、船舶の衝突現象を精度良く再現することが可能になる。実際の船舶の衝突現象を再現するという観点から、より好ましくは、試験鋼板の板厚を10mm以上とする。一方、アイス級(氷海を運航する)船舶で使用されることを想定した鋼板の板厚は40mmであり、これよりも厚い板厚は特殊な用途で使用されることが想定される。したがって、経済的な実現性を考慮して、試験鋼板の板厚を40mm以下とすることが好ましい。試験鋼板の板厚は、想定される原寸との縮尺に応じて決定することができる。アイス級よりも汎用性の高い板厚という観点から、より好ましくは、試験鋼板の板厚を30mm以下とする。
試験鋼板には、溶接された拘束板による補強が加わるため、実際の船舶の側壁構造よりも過大な強度を模擬したものにならないように、試験鋼板の長さおよび幅の下限を設定することが好ましい。一方、経済性の観点から、過度に大きな試験機を使用することなく試験が行えるように、試験鋼板の長さおよび幅の上限を設定することが好ましい。試験鋼板の長さは1500~2500mm、試験鋼板の幅は1000~2000mmとしてもよい。試験鋼板の長さを1500mm以上にすると、試験評価部が十分に大きくなり、試験の結果に及ぼす拘束板と試験鋼板との溶接の影響を無視できる程度に小さくすることができる。同様の理由で、試験鋼板の幅を1000mm以上とすることが好ましい。一方、試験鋼板の長さは、2500mm以下であれば、実際に衝突してくる船舶の(実船程度の)船首を模擬するほどの、大きな容量の試験機を要することがないので、経済的に有利である。同様の理由で、試験鋼板の幅を2000mm以下とすることが好ましい。
(Test steel plate)
The test steel plate is a steel plate corresponding to an outer plate or an inner plate of a hull to be evaluated in a collision test. The test steel plate may be a single steel plate as manufactured, or may have a plate joint welded portion in consideration of the actual hull structure more closely. The shape of the test steel plate may be rectangular, or may be appropriately adjusted to a substantially rectangular shape according to the actual hull structure. The shape of the test steel plate may be a shape that simulates a ship sidewall structure.
The surface dimensions of the test steel plate (length and width of the steel plate excluding the plate thickness) can be determined according to the scale of the assumed original size. In order to reproduce a collision phenomenon simulating an actual ship, the scale of the original size is preferably 1/10 or more. On the other hand, in order to perform a test without requiring a large-scale test device (of the same size as a real ship) that simulates the bow of an actual colliding ship in order to cause deformation and breakage, the scale of the original size is preferably 3/4 or less. Note that as the scale increases, a relatively large test device is required, and as the scale decreases, a smaller one tends to suffice.
The thickness of the test steel plate may be 3.2 to 40 mm. If the thickness of the test steel plate is 3.2 mm or more, it is possible to reproduce the collision phenomenon of a ship with high accuracy. From the viewpoint of reproducing the collision phenomenon of an actual ship, the thickness of the test steel plate is more preferably 10 mm or more. On the other hand, the thickness of a steel plate assumed to be used in an ice-class (operating in ice-covered seas) ship is 40 mm, and a plate thickness thicker than this is assumed to be used for special purposes. Therefore, in consideration of economic feasibility, it is preferable to set the thickness of the test steel plate to 40 mm or less. The thickness of the test steel plate can be determined according to the scale of the assumed original size. From the viewpoint of a plate thickness with higher versatility than the ice-class, the thickness of the test steel plate is more preferably 30 mm or less.
Since the test steel plate is reinforced by the welded restraining plate, it is preferable to set the lower limit of the length and width of the test steel plate so that the strength of the test steel plate is not excessively greater than that of the sidewall structure of an actual ship. On the other hand, from the viewpoint of economic efficiency, it is preferable to set the upper limit of the length and width of the test steel plate so that the test can be performed without using an excessively large testing machine. The length of the test steel plate may be 1500 to 2500 mm, and the width of the test steel plate may be 1000 to 2000 mm. If the length of the test steel plate is 1500 mm or more, the test evaluation part becomes sufficiently large, and the influence of the welding between the restraining plate and the test steel plate on the test result can be reduced to a negligible level. For the same reason, it is preferable to set the width of the test steel plate to 1000 mm or more. On the other hand, if the length of the test steel plate is 2500 mm or less, a large capacity testing machine is not required to simulate the bow of a ship (about the actual ship) that actually collides, which is economically advantageous. For the same reason, it is preferable to set the width of the test steel plate to 2000 mm or less.

(拘束板及び拘束板の枠)
試験鋼板の一方の表面に拘束板の枠(以下、拘束板枠ということがある。)が溶接される。これにより、試験鋼板の変形が制限され、試験鋼板の面中心に、圧子(衝突治具)の衝突(押込み等)による変形を効果的、集中的に生じさせることができる。さらに、試験鋼板の周縁部に拘束板の枠を溶接で附置してもよい。
まず、拘束板枠を構成する拘束板について説明する。拘束板の板厚は30~70mmとしてもよい。拘束の効果を十分に得るために、拘束板の板厚は30mm以上が好ましい。一方、経済的な観点から、溶接作業負荷や、試験体の重量が過大にならないように、拘束板の板厚を70mm以下にすることが好ましい。
拘束板で構成される拘束板枠の形状は、溶接で接合される試験鋼板の形状に応じて、適宜調整してもよい。試験鋼板は、製造ままの1枚の鋼板であるか、または板継ぎされた1枚の鋼板であり、略矩形である場合が多いことから、複数の拘束板で構成される拘束板枠の形状も略矩形としてもよい。拘束板枠の形状は多角形でもよい。
拘束板枠の外長および外幅は、溶接される試験鋼板の長さ未満の範囲で、適宜調整してもよく、拘束板枠の外長は1000~2000mm、拘束板枠の外幅は500~1500mmとしてもよい。ここで、拘束板枠の外法(そとのり)のうち大きいものを拘束板枠の外長、小さいものを拘束板枠の外幅と定義する。上述のように、試験鋼板には、溶接部を介して拘束板による補強が加わり、拘束板枠の外長および外幅も同様に影響を及ぼすことから、実際の船舶の側壁構造よりも過大な強度を模擬したものにならないように、拘束板枠の外長および外幅の下限を設定することが好ましい。一方、経済的な観点から、溶接作業負荷や、試験体の重量が過大にならないように、拘束板枠の外長および外幅の上限を設定することが好ましい。
拘束板枠の外長を1000mm以上にすると、試験評価部位が十分に大きくなり、試験の結果に及ぼす拘束板と試験鋼板との溶接の影響を無視できる程度に小さくすることができる。同様の理由で、拘束板枠の外幅を500mm以上とすることが好ましい。一方、経済的な観点から、溶接作業負荷や、試験体の重量が過大にならないように、拘束板附置のための溶接作業負荷や、試験体の重量が過大にならないように、拘束板枠の外長を2000mm以下とすることが好ましい。同様の理由で、拘束板枠の外幅を1500mm以下とすることが好ましい。拘束板の枠の外長は試験鋼板の長さ未満であることが好ましく、拘束板の枠の外長は試験鋼板の長さ未満であることが好ましい。
拘束板枠の高さは、試験鋼板の厚み方向の拘束枠板の長さであり、適宜調整してもよく、300~700mmとしてもよい。拘束の効果を十分に得るために、拘束板枠の高さを300mm以上にすることが好ましい。一方、経済性の観点から、拘束板枠製作のための溶接作業負荷を軽減し、試験体の重量が過大にならないように、拘束板枠の高さを700mm以下にすることが好ましい。
なお、拘束板は、圧子(衝突治具)を試験鋼板に衝突させた場合に、拘束板が動かないように、試験場にアンカー等で固定されてもよい。これにより、圧子(衝突治具)による動的な衝撃を効率的に、試験鋼板に与えることができる。
(Restraint plate and restraint plate frame)
A constraint plate frame (hereinafter sometimes referred to as constraint plate frame) is welded to one surface of the test steel plate. This limits the deformation of the test steel plate, and allows deformation caused by the collision (pressing, etc.) of the indenter (collision jig) to occur effectively and intensively at the center of the surface of the test steel plate. Furthermore, the constraint plate frame may be attached to the peripheral portion of the test steel plate by welding.
First, the restraint plate constituting the restraint plate frame will be described. The thickness of the restraint plate may be 30 to 70 mm. In order to obtain a sufficient restraint effect, the thickness of the restraint plate is preferably 30 mm or more. On the other hand, from an economical point of view, the thickness of the restraint plate is preferably 70 mm or less so that the welding work load and the weight of the test specimen are not excessively large.
The shape of the restraint plate frame made up of restraint plates may be adjusted as appropriate according to the shape of the test steel plate to be joined by welding. Since the test steel plate is a single steel plate as manufactured or a single steel plate that has been joined together, and is generally rectangular in most cases, the shape of the restraint plate frame made up of multiple restraint plates may also be generally rectangular. The shape of the restraint plate frame may also be polygonal.
The outer length and the outer width of the constraining plate frame may be appropriately adjusted within a range less than the length of the test steel plate to be welded, and the outer length of the constraining plate frame may be 1000 to 2000 mm, and the outer width of the constraining plate frame may be 500 to 1500 mm. Here, the larger of the outer dimensions of the constraining plate frame is defined as the outer length of the constraining plate frame, and the smaller one is defined as the outer width of the constraining plate frame. As described above, the test steel plate is reinforced by the constraining plate through the welded portion, and the outer length and the outer width of the constraining plate frame are also affected in the same way, so it is preferable to set the lower limit of the outer length and the outer width of the constraining plate frame so as not to simulate an excessive strength compared to the sidewall structure of an actual ship. On the other hand, from an economical point of view, it is preferable to set the upper limit of the outer length and the outer width of the constraining plate frame so as not to cause the welding work load and the weight of the test specimen to be excessive.
When the outer length of the constraining plate frame is set to 1000 mm or more, the test evaluation portion becomes sufficiently large, and the influence of welding between the constraining plate and the test steel plate on the test result can be made negligible. For the same reason, it is preferable to set the outer width of the constraining plate frame to 500 mm or more. On the other hand, from an economical point of view, it is preferable to set the outer length of the constraining plate frame to 2000 mm or less so that the welding work load for attaching the constraining plate and the weight of the test specimen do not become excessive. For the same reason, it is preferable to set the outer width of the constraining plate frame to 1500 mm or less. It is preferable that the outer length of the frame of the constraining plate is less than the length of the test steel plate, and it is preferable that the outer length of the frame of the constraining plate is less than the length of the test steel plate.
The height of the restraint plate frame is the length of the restraint plate in the thickness direction of the test steel plate, and may be adjusted as appropriate, and may be 300 to 700 mm. In order to obtain a sufficient restraint effect, it is preferable to set the height of the restraint plate frame to 300 mm or more. On the other hand, from the viewpoint of economy, it is preferable to set the height of the restraint plate frame to 700 mm or less in order to reduce the welding work load for manufacturing the restraint plate frame and to prevent the weight of the test specimen from becoming excessive.
The restraint plate may be fixed to the test site with an anchor or the like so that the restraint plate does not move when the indenter (collision jig) is collided with the test steel plate, thereby allowing the dynamic impact of the indenter (collision jig) to be efficiently applied to the test steel plate.

(防撓部材)
実際の船体構造を模擬するために、上記拘束板の枠の内部で、上記試験鋼板及び上記拘束板の枠に溶接された防撓部材が備えられる。防撓部材とは、鋼板の撓みを防止するために、鋼板に適当な間隔で設ける骨材であり、JIS F 0012-1997において、スチフナ(Stiffener)と規定されるものである。附置する防撓部材は、1枚または複数枚を配する。防撓部材は、略縦方向(略鉛直方向)または略横方向(略水平方向)に配置されてもよく、または縦・横を組み合わせて十字型や格子型に配置されてもよく、その両端は当接する拘束板に溶接される。典型的には、防撓部材が例えば鉛直方向にのみ、2枚配置され、その2枚の間に圧子の中心が配置される場合であって、このような場合が最も厳しい評価となる。ここで、略縦方向(略鉛直方向)および略横方向(略水平方向)とは、それぞれ鉛直方向および水平方向に対して±10°以内の方向を指す。このような防撓部材の配置により、試験体がより実際の(例えば、後述する図7や図8に示すような)船体構造を模擬することができ、船体の衝突安全性を評価の合理性を高めることができる。防撓部材の配置の間隔などは、下記にも示すように、防撓部材の寸法と同様に実際の船舶構造の原寸との縮尺に応じて決定することができる。溶接箇所や溶接点数は、適切な溶接が確保できるものであれば特に限定はされない。防撓部材の側面を試験鋼板の表面に隅肉溶接してもよい。また、防撓部材の両端部の端面を拘束板(枠)の表面に隅肉溶接してもよい。
防撓部材の基本形状は、板形状(フラットバー形状)であるが、実際の船体構造を模擬するために、防撓部材はフランジ部を有した形状であってもよい。つまり、防撓部材の形状は、単純な板形状だけではなく、T字型、L字型、バルブプレート形状等のフランジ部を有する形状であってもよい。
防撓部材の寸法は、想定される原寸との縮尺に応じて決定することができる。実際の船舶を模擬した衝突現象を再現するために、原寸に対する縮尺を1/10以上にすることが好ましい。一方、変形、破口を生じさせるために、実際に衝突してくる船舶の船首を模擬するほどの(実機程度の)、大がかりな試験装置が必要にならないように、原寸に対する縮尺を3/4以下にすると、経済的に試験を行うことができる。
防撓部材の基本形状(板形状)部の板厚、高さ、さらに基本形状(板形状)の防撓部材に任意付加されるフランジ部の幅は、適宜、決定すればよい。防撓部材の基本形状(板形状)部の板厚は10~30mm、高さは50~150mmとしてもよい。基本形状(板形状)の防撓部材に任意付加されるフランジ部の幅は30~80mm(ただし、防撓部材の板厚を超える)であってもよい。防撓の効果を十分に得て、実際の船舶を模擬した衝突現象を再現するために、基本形状(板形状)部の板厚を10mm以上にすることが好ましい。同様の理由で、基本形状(板形状)部の高さを50mm以上にすることが好ましく、基本形状(板形状)の防撓部材に任意付加されるフランジ部の幅を30mm以上にする(ただし、防撓部材の板厚を超える)ことが好ましい。一方、経済的な観点から、変形、破口を生じさせるために、実際に衝突してくる船舶の船首を模擬するほどの(実機程度の)、大きな試験荷重を要しないように、基本形状(板形状)部の板厚を30mm以下にすることが好ましい。同様の理由で、基本形状(板形状)部の高さを150mm以下にすることが好ましく、基本形状(板形状)の防撓部材に任意付加されるフランジ部の幅を80mm以下にすることが好ましい。
(Stiffening member)
In order to simulate an actual hull structure, stiffening members are provided inside the frame of the restraining plate and welded to the test steel plate and the frame of the restraining plate. The stiffening members are frameworks provided at appropriate intervals on the steel plate to prevent the steel plate from bending, and are defined as stiffeners in JIS F 0012-1997. One or more stiffening members are attached. The stiffening members may be arranged in a substantially vertical direction (substantially vertical direction) or a substantially horizontal direction (substantially horizontal direction), or may be arranged in a cross or lattice shape by combining the vertical and horizontal directions, and both ends of the stiffening members are welded to the abutting restraining plate. Typically, two stiffening members are arranged only in the vertical direction, for example, and the center of the indenter is arranged between the two stiffening members, and such a case is the most severe evaluation. Here, the substantially vertical direction (substantially vertical direction) and the substantially horizontal direction (substantially horizontal direction) refer to directions within ±10° of the vertical direction and the horizontal direction, respectively. Such an arrangement of stiffening members allows the test specimen to more accurately simulate a real hull structure (for example, as shown in Figures 7 and 8 described below), improving the rationality of the evaluation of the collision safety of the hull. The spacing of the stiffening members can be determined according to the scale of the actual ship structure, similar to the dimensions of the stiffening members, as shown below. There are no particular limitations on the locations and number of welding points as long as appropriate welding can be ensured. The sides of the stiffening members may be fillet welded to the surface of the test steel plate. In addition, the end faces of both ends of the stiffening members may be fillet welded to the surface of the restraining plate (frame).
The basic shape of the stiffening member is a plate shape (flat bar shape), but in order to simulate an actual hull structure, the stiffening member may have a shape with a flange portion. In other words, the shape of the stiffening member is not limited to a simple plate shape, but may have a flange portion such as a T-shape, an L-shape, a bulb plate shape, etc.
The dimensions of the stiffening members can be determined according to the scale of the expected full-scale. In order to reproduce a collision phenomenon simulating an actual ship, it is preferable to set the scale to 1/10 or more of the full-scale. On the other hand, in order to avoid the need for a large-scale test device (of the same size as a real ship) that simulates the bow of an actual colliding ship in order to cause deformation and breakage, it is possible to economically perform the test by setting the scale to 3/4 or less of the full-scale.
The thickness and height of the basic shape (plate shape) part of the stiffening member, and the width of the flange part optionally added to the basic shape (plate shape) stiffening member may be appropriately determined. The thickness of the basic shape (plate shape) part of the stiffening member may be 10 to 30 mm, and the height may be 50 to 150 mm. The width of the flange part optionally added to the basic shape (plate shape) stiffening member may be 30 to 80 mm (but exceeds the plate thickness of the stiffening member). In order to fully obtain the effect of stiffening and reproduce a collision phenomenon simulating an actual ship, it is preferable that the plate thickness of the basic shape (plate shape) part is 10 mm or more. For the same reason, it is preferable that the height of the basic shape (plate shape) part is 50 mm or more, and the width of the flange part optionally added to the basic shape (plate shape) stiffening member is 30 mm or more (but exceeds the plate thickness of the stiffening member). On the other hand, from an economical point of view, it is preferable to set the plate thickness of the basic shape (plate shape) part to 30 mm or less so as not to require a large test load (approximately that of a real ship) to simulate the bow of an actual colliding ship in order to cause deformation and breakage. For the same reason, it is preferable to set the height of the basic shape (plate shape) part to 150 mm or less, and it is preferable to set the width of the flange part optionally added to the basic shape (plate shape) stiffening member to 80 mm or less.

(補強板)
防撓部材は拘束板の枠と溶接で接合されるが、試験中に本来の評価部位ではないその溶接部分での破断を防止するために、その溶接部には補強板を附置してもよい。補強板は、防撓部材のフランジ部に附置してもよい。補強板の板厚は、例えば、10~30mmであってよい。補強板は、防撓部材又は拘束板の枠への応力の集中を回避できる形状を有することが好ましい。例えば、補強板の形状は、三角形、あるいは図3のsで示すように、三角形のうち、拘束板の枠に接しない片が曲面を有する形状である。補強板と防撓部材および拘束板の枠との接合は応力伝達の効率性を鑑みて溶接によってなされる。補強板があると、拘束板の枠と防撓部材との溶接部が剥離しにくくなり、試験体評価のために本質的ではない溶接部での破断をより確実に防止できる。
(Reinforcing plate)
The stiffening member is joined to the frame of the restraining plate by welding, and a reinforcing plate may be attached to the welded portion to prevent breakage during the test at the welded portion that is not the actual evaluation portion. The reinforcing plate may be attached to the flange portion of the stiffening member. The thickness of the reinforcing plate may be, for example, 10 to 30 mm. The reinforcing plate preferably has a shape that can avoid concentration of stress on the stiffening member or the frame of the restraining plate. For example, the shape of the reinforcing plate is a triangle, or as shown by s in Figure 3, a triangle with a curved portion that does not contact the frame of the restraining plate. The reinforcing plate is joined to the stiffening member and the frame of the restraining plate by welding in consideration of the efficiency of stress transfer. The presence of the reinforcing plate makes it difficult for the welded portion between the frame of the restraining plate and the stiffening member to peel off, and can more reliably prevent breakage at the welded portion that is not essential for the evaluation of the test specimen.

(衝突評価試験体)
試験体は、試験鋼板に、防撓部材を1枚または複数枚配し、且つ拘束板の枠を溶接で配置したものであり、防撓部材は試験鋼板および拘束板の枠に溶接されている。実際の船舶の構造に近い条件での評価が可能になるように、試験体では、評価対象となる試験鋼板が防撓部材を備えている。さらに、試験鋼板に溶接される拘束板の枠によって試験鋼板の変形が制限されるので、圧子(衝突治具)による動的な衝撃を効率的に、試験鋼板に与えることができる。したがって、当該試験体を用いて、衝突評価試験をすることによって、より合理的な衝突安全性の評価が可能である。
(Collision evaluation test specimen)
The test specimen is a test steel plate with one or more stiffening members and a restraint plate frame welded in place, and the stiffening members are welded to the test steel plate and the restraint plate frame. In order to enable evaluation under conditions close to those of an actual ship structure, the test steel plate to be evaluated in the test specimen is equipped with stiffening members. Furthermore, since the deformation of the test steel plate is limited by the restraint plate frame welded to the test steel plate, the dynamic impact of the indenter (collision jig) can be efficiently applied to the test steel plate. Therefore, a more rational evaluation of collision safety is possible by performing a collision evaluation test using the test specimen.

(衝突評価試験方法)
試験鋼板、拘束板の枠、防撓部材、任意付加的な補強板で構成される試験体の、試験鋼板面の防撓部材を附置した逆側の面から圧子(衝突治具)を衝突させ、陥入させて試験鋼板の変形と破口の試験を行う。
圧子の衝突方法は、想定される衝突現象に応じて、適宜調整することができる。圧子を、油圧シリンダー等で、試験鋼板に押し込む(押し付ける)ように衝突させてもよい。また、圧子を、振り子のように、衝突させてもよい。また、試験鋼板を、水平に設置して、圧子を上下方向(鉛直方向)から、押し込む(押しつける)ように衝突させてもよく、あるいは、圧子を適当な高さから落下衝突させてもよい。衝突速度が遅く、精度良く調整したい場合は、圧子を油圧シリンダーで押し込むことが好ましい。圧子を適当な高さから試験鋼板に落下衝突させると、衝突速度を速くすることができる。
(Crash Assessment Test Method)
A test specimen consisting of a test steel plate, a restraint plate frame, a stiffening member, and an optional reinforcing plate is subjected to an impact with an indenter (impact jig) on the side of the test steel plate opposite the side on which the stiffening member is attached, causing the test steel plate to deform and break.
The method of impact of the indenter can be adjusted appropriately according to the expected impact phenomenon. The indenter may be impacted by pushing (pressing) it against the test steel plate using a hydraulic cylinder or the like. The indenter may also be impacted like a pendulum. The test steel plate may be placed horizontally and the indenter may be impacted by pushing (pressing) it from above and below (vertically), or the indenter may be dropped from an appropriate height to impact it. If the impact speed is slow and precise adjustment is required, it is preferable to push the indenter with a hydraulic cylinder. The impact speed can be increased by dropping the indenter from an appropriate height to impact the test steel plate.

(圧子)
圧子の材質は、想定される衝突物に応じて、適宜調整することができる。衝突対象が、他の船舶であることを想定して、圧子が鋼製であってもよい。
圧子の形状は、想定される衝突物に応じて、適宜調整することができる。圧子の先端部が、衝突してくる船首を模擬するために、球体の一部あるいは曲面を有してもよく、または突起形状(圧子先端が三角柱の角である形状、圧子先端に突起を設けた形状等)の少なくとも一つを有してもよく、それらを組み合わせたものであってもよい。
圧子の先端部が球体の一部の形状を有する場合、球体の外半径を200~400mmとすることが妥当である。荷重の極端な集中を回避し、実際の船舶の衝突を再現するためには、球体の外半径を200mm以上にすることが好ましい。また、球体の外半径を400mm以下にすることにより、荷重を適度に集中させて、合理的な変形や破口が得られて、容易に試験鋼板の評価を行うことが可能になる。
(Indenter)
The material of the indenter can be appropriately adjusted depending on the anticipated collision object. Assuming that the collision object is another ship, the indenter may be made of steel.
The shape of the indenter can be adjusted appropriately depending on the anticipated collision object. In order to simulate the bow of a colliding ship, the tip of the indenter may have at least one of a part of a sphere or a curved surface, a protruding shape (such as a shape in which the tip of the indenter is the corner of a triangular prism or a shape in which a protrusion is provided at the tip of the indenter), or a combination of these.
When the tip of the indenter has the shape of a part of a sphere, it is appropriate to set the outer radius of the sphere to 200 to 400 mm. In order to avoid extreme concentration of the load and reproduce the collision of an actual ship, it is preferable to set the outer radius of the sphere to 200 mm or more. Furthermore, by setting the outer radius of the sphere to 400 mm or less, the load is appropriately concentrated, rational deformation and fracture are obtained, and it becomes possible to easily evaluate the test steel plate.

(衝突速度)
衝突速度(押し込み等の速度)は、実際の大型船舶の衝突状況を再現するために、適宜調整してもよく、0.1~10000mm/秒としてもよい。実際の動的な衝突現象を再現するためには、衝突速度(押し込み等の速度)を0.1mm/秒以上にすることが好ましく、0.4mm/秒以上にすることがより好ましい。一方、実際の船舶の衝突事故における衝突速度が10000mm/秒を超えることは想定しがたく、また、大型の高速な圧縮試験機を用意するためには莫大なコストを要するので、経済的な観点からも衝突速度(押し込み等の速度)を1000mm/秒以下にすることが好ましい。経済的な観点から、衝突速度(押し込み等の速度)は100mm/秒以下がより好ましく、10mm/秒以下がより一層好ましい。衝突速度(押し込み等の速度)は1mm/秒以下であってもよい。
また、衝突試験を行う際に、試験装置および環境を含めて、その試験温度を、実際の海洋環境温度に合わせて調整してもよい。試験温度を、略室温(25±15℃)としてもよく、氷海域を想定して、試験温度の下限値を-60℃としてもよい。
(Collision speed)
The collision speed (speed of pushing, etc.) may be appropriately adjusted to reproduce the collision situation of an actual large ship, and may be 0.1 to 10,000 mm/sec. In order to reproduce an actual dynamic collision phenomenon, the collision speed (speed of pushing, etc.) is preferably 0.1 mm/sec or more, and more preferably 0.4 mm/sec or more. On the other hand, it is difficult to imagine that the collision speed in an actual ship collision accident exceeds 10,000 mm/sec, and it is also costly to prepare a large, high-speed compression test machine, so from an economical point of view, it is preferable to set the collision speed (speed of pushing, etc.) to 1,000 mm/sec or less. From an economical point of view, the collision speed (speed of pushing, etc.) is more preferably 100 mm/sec or less, and even more preferably 10 mm/sec or less. The collision speed (speed of pushing, etc.) may be 1 mm/sec or less.
In addition, when performing a collision test, the test temperature including the test equipment and environment may be adjusted to match the actual marine environment temperature. The test temperature may be approximately room temperature (25±15° C.), or the lower limit of the test temperature may be set to −60° C. assuming an ice-covered sea area.

(衝突評価試験装置)
試験装置は、試験体に圧子(衝突治具)を衝突させて、衝突評価試験が行えるように、試験体、その固定手段および圧子を配設したものである。また、試験装置は、圧子が動的な衝撃を試験体(すなわち試験鋼板)に与えることができるように、圧子を駆動する機構を備えたものである。
ここで、試験体の配置は、試験鋼板に圧子を適切に衝突させることができるものであれば、特に限定されるものではなく、試験体は、垂直に配置されてもよく、または水平に配置されていてもよい。試験体は、圧子(衝突治具)を試験鋼板に衝突させた場合に、拘束板が動かないように、試験装置においてアンカー等の固定手段で固定されてもよい。さらに、試験装置が、試験場にアンカー等で固定されてもよい。これにより、圧子(衝突治具)による動的な衝撃を効率的に、試験鋼板に与えることができる。
また、駆動機構は、合理的な動的衝撃を実現できるものであれば、特に限定されるものではない。駆動機構の一態様として、圧子を吊り具で吊り下げ、圧子を振り子のように、試験体の試験鋼板に衝突させてもよい。また、圧子を、油圧シリンダー等で、試験体に押し込む(押し付ける)ような駆動機構であってもよい。また、試験体を、水平に配置して、圧子を上下方向から、押し込む(押しつける)ことをしてもよく、あるいは、圧子を適当な高さから落下衝突させてもよい。図2は、試験装置の一例を模式的に図示したものである。荷重および変位の測定は主に磁気ひずみによる応力測定や電気抵抗ひずみゲージなどによってなされるが、レーザ変位計など光学的な方法を使用してもよい。
(Collision evaluation test device)
The test apparatus is provided with a test specimen, a fixing means for the test specimen, and an indenter so that a crash evaluation test can be performed by crashing the indenter (crash tool) into the test specimen. The test apparatus also includes a mechanism for driving the indenter so that the indenter can apply a dynamic impact to the test specimen (i.e., the test steel plate).
Here, the arrangement of the test specimen is not particularly limited as long as the indenter can be appropriately impacted against the test steel plate, and the test specimen may be arranged vertically or horizontally. The test specimen may be fixed in the test device by a fixing means such as an anchor so that the restraining plate does not move when the indenter (impact jig) is impacted against the test steel plate. Furthermore, the test device may be fixed to the test site by an anchor or the like. This allows the dynamic impact of the indenter (impact jig) to be efficiently applied to the test steel plate.
The driving mechanism is not particularly limited as long as it can realize a reasonable dynamic impact. As one embodiment of the driving mechanism, the indenter may be suspended by a suspender and the indenter may be caused to impact the test steel plate of the test specimen like a pendulum. Alternatively, the driving mechanism may be configured to push the indenter against the test specimen using a hydraulic cylinder or the like. Alternatively, the test specimen may be arranged horizontally and the indenter may be pushed from above and below, or the indenter may be dropped from an appropriate height to impact the test specimen. FIG. 2 is a schematic diagram of an example of a testing device. The load and displacement are mainly measured by magnetostrictive stress measurement or an electric resistance strain gauge, but optical methods such as a laser displacement meter may also be used.

本発明の船体構造及びその製造方法について説明する。 This article describes the hull structure and manufacturing method of the present invention.

まず、衝突評価試験体の前記試験鋼板に圧子を衝突させて、前記試験鋼板を変形または破口させる衝突試験方法における合否の判定について説明する。後述する実施例の図4に示すように、圧子の押し込み量(変位)の増加に伴い、荷重が上昇する。
高延性鋼Aのように、試験中に荷重低下が見られない場合は合格である。一方、一般鋼Bのように、最高荷重に到達した後、荷重が低下する場合、試験中の荷重低下が160kNを超えると不合格である。
試験中の荷重低下が160kNであれば、降伏現象は生じているものの、破口の発生には至らないとみなし、合格と判定する。したがって、試験中の荷重低下が160kN以下であれば、合格と判定する。また、試験中の荷重低下が最大荷重の5%以下であれば、降伏現象は生じているものの、破口の発生には至らないとみなし、合格と判定することも可能である。したがって、試験中の荷重低下が最大荷重の5%以下であれば、合格と判定することも可能である。ここで、上記判定は前記圧子の最大押込量と前記拘束板の枠の外幅との比を0.20とした試験により行うが、さらに高い要求特性として、0.20~0.28の何れかを合格判定基準とすることもできる。
なお、試験中の荷重低下は、圧子の変位の増加に伴い、荷重が低下する状態をいい、除荷による荷重低下は除外される。試験中の荷重低下は、試験中に表示される荷重-変位曲線に基づいて判定してもよく、試験の終了後、得られた荷重-変位曲線に基づいて判定してもよい。特に、荷重低下を最大荷重に対する割合とする場合は、試験後の荷重-変位曲線に基づいて判定してもよい。試験中に目視又はCCDカメラによって破口の発生の有無を確認してもよい。
一方、圧子を振り子のようにして試験鋼板に衝突させる場合や、圧子を適当な高さから試験鋼板に落下衝突させる場合など、荷重を測定できないときは、破口の発生の有無によって合否を判定する。このとき、破口の発生には試験鋼板の変形量が影響するため、圧子の押込量と、拘束板の枠の外幅との比が0.20であるときに破口が生じないことを合格とする。試験鋼板の変形量は、圧子を振り子のようにして衝突させる場合は降り幅によって、圧子を試験鋼板に落下させる場合は、落下させる高さによって調整することができる。ただし、試験条件を、圧子の押込量と、拘束板の枠の外幅との比が正確に0.20となるように調整する必要はない。圧子の押込量と、拘束板の枠の外幅との比が0.20を超える試験条件で破口が発生していなければ合格と判定することができる。また、さらに高い要求特性として、0.20~0.28の何れかを合格判定基準とすることもできる。したがって、圧子の押込量と、拘束板の枠の外幅との比が0.20~0.28の何れかであるときに破口が生じないことを合格としてもよい。試験中に目視又はCCDカメラによって破口の発生の有無を確認してもよい。
First, the pass/fail judgment in the collision test method in which an indenter is collided with the test steel plate of the collision evaluation test specimen to deform or break the test steel plate will be described. As shown in Fig. 4 of the example described later, the load increases with an increase in the indenter's pushing amount (displacement).
If no load drop is observed during the test, as in the case of high ductility steel A, the test is passed. On the other hand, if the load drops after reaching the maximum load, as in the case of general steel B, the test is failed if the load drop during the test exceeds 160 kN.
If the load drop during the test is 160 kN, it is considered that although a yield phenomenon occurs, it does not lead to the occurrence of a fracture, and it is judged as passing. Therefore, if the load drop during the test is 160 kN or less, it is judged as passing. Also, if the load drop during the test is 5% or less of the maximum load, it is possible to consider that although a yield phenomenon occurs, it does not lead to the occurrence of a fracture, and it is also possible to judge as passing. Therefore, if the load drop during the test is 5% or less of the maximum load, it is also possible to judge as passing. Here, the above judgment is made by a test in which the ratio of the maximum pushing amount of the indenter to the outer width of the frame of the restraining plate is 0.20, but as an even higher required characteristic, any of 0.20 to 0.28 can be used as the pass judgment criterion.
The load reduction during the test refers to a state in which the load decreases with an increase in the displacement of the indenter, and does not include a load reduction due to unloading. The load reduction during the test may be judged based on the load-displacement curve displayed during the test, or based on the load-displacement curve obtained after the test is completed. In particular, when the load reduction is expressed as a percentage of the maximum load, it may be judged based on the load-displacement curve after the test. The occurrence of a fracture may be confirmed visually or by a CCD camera during the test.
On the other hand, when the load cannot be measured, such as when the indenter is made to impact the test steel plate like a pendulum or when the indenter is dropped from an appropriate height onto the test steel plate, the pass/fail judgment is made based on the presence or absence of a break. At this time, the occurrence of a break is affected by the deformation amount of the test steel plate, so when the ratio of the indenter's indentation amount to the outer width of the frame of the restraining plate is 0.20, the test plate is deemed to pass if no break occurs. The deformation amount of the test steel plate can be adjusted by the drop width when the indenter is made to impact like a pendulum, and by the drop height when the indenter is dropped onto the test steel plate. However, it is not necessary to adjust the test conditions so that the ratio of the indenter's indentation amount to the outer width of the frame of the restraining plate is exactly 0.20. If no break occurs under test conditions where the ratio of the indenter's indentation amount to the outer width of the frame of the restraining plate exceeds 0.20, the test plate can be deemed to pass. In addition, as an even higher required characteristic, any of 0.20 to 0.28 can be used as the pass judgment criterion. Therefore, when the ratio of the indenter's pressing amount to the outer width of the frame of the restraining plate is any of 0.20 to 0.28, the absence of a fracture may be regarded as a pass. The presence or absence of a fracture may be confirmed visually or by a CCD camera during the test.

次に、上述した合格判定基準を満たす鋼板を使用する、船体構造の製造方法について説明する。船体構造の製造方法においては、船側部の外板の一部の部位若しくは外板の全ての部位、又は、内板の一部の部位若しくは内板の全ての部位に上述した合格判定基準を満たす鋼板を使用する。以下では、合格判定基準を満たす鋼板を高延性鋼板と称する場合がある。本発明に係る衝突試験方法は、圧延ロット、転炉ロット、適用される鋼板の単一船体ロット毎に行えばよいものである。あるいは同一の造船会社から発注される同一設計の一連の船舶に対し、一度、本発明に係る衝突試験方法を行えばよい。 Next, a method for manufacturing a hull structure using steel plates that satisfy the above-mentioned pass criteria will be described. In the method for manufacturing a hull structure, steel plates that satisfy the above-mentioned pass criteria are used for some or all of the outer plates of the ship's side, or some or all of the inner plates. Hereinafter, steel plates that satisfy the pass criteria may be referred to as high ductility steel plates. The collision test method according to the present invention may be performed for each rolling lot, converter lot, or single hull lot of the steel plate to be applied. Alternatively, the collision test method according to the present invention may be performed once for a series of ships of the same design ordered by the same shipbuilding company.

上述した合格判定基準を満たす鋼板を使用する船体構造の製造方法においては、前記圧子の最大押込量と前記拘束板の枠の外幅との比を0.20~0.28のいずれかとした試験において上述した合格判定基準を満たすことが仕様として課され、且つ当該仕様を満たすことが確認された鋼板を使用するものであってもよい。
ここで、「仕様」とは、造船会社が製鉄会社に対して鋼板を発注する際に要求する鋼板の特性であり、例えば船級協会が高延性鋼にノーテーションを付記している場合には、ノーテーションを付記した材料記号に基づいて発注するものであってもよい。
In a manufacturing method for a hull structure using a steel plate that satisfies the above-mentioned pass/fail criteria, a specification that requires the steel plate to satisfy the above-mentioned pass/fail criteria in a test in which the ratio of the maximum depression amount of the indenter to the outer width of the frame of the restraint plate is anywhere between 0.20 and 0.28, and a steel plate that has been confirmed to satisfy said specification, may be used.
Here, "specifications" refer to the characteristics of steel plates that a shipbuilding company requires when ordering steel plates from a steel manufacturer. For example, if a classification society notates high ductility steel, the order may be placed based on the material symbol to which the notation is attached.

船体構造に用いられる鋼板は、各船級協会の規格を満たす必要がある。このため、各船級協会の規格で規定された頻度で、必要とされる評価試験が行われる。通常、その試験結果において鋼材仕様書等を満たす鋼板のみが各製鉄会社の検査に合格と判定され、その評価試験の結果等が鋼材検査証明書等に記載される。鋼材検査証明書等は、各船級協会の検査員の確認を受けたのち、製鉄会社から発注した造船会社に引き渡される。 Steel plates used in ship hull structures must meet the standards of each classification society. For this reason, the necessary evaluation tests are conducted at a frequency stipulated by each classification society's standards. Usually, only steel plates that meet the steel specifications, etc. in the test results are judged to pass each steel manufacturer's inspection, and the results of the evaluation tests are recorded in steel inspection certificates, etc. After being checked by an inspector from each classification society, the steel manufacturer passes them on to the shipbuilding company that placed the order.

本発明において、「衝突試験方法において、前記圧子の最大押込量と前記拘束板の枠の外幅との比を0.20~0.28のいずれかとした試験中の荷重低下が160kN以下であることを仕様として課せられ」、「衝突試験方法において、試験中の 荷重低下が最高荷重の5%以下であることを仕様として課せられ」、及び、「衝突試験方法において、前記圧子の最大押込量と前記拘束板の枠の外幅との比を0.20~0.28のいずれかとした試験中において破口が生じないことを仕様として課せられ」とは、鋼板仕様書等にて、鋼板が、前記衝突試験方法に合格することが要求されることを意図している。造船会社と製鉄会社との鋼材取引き等のコンピューター処理化が進んでおり、鋼板仕様書等の書面の送付等を行わない場合も多い。本発明においては、データの電送などの書面によらない方法で、仕様として課されてもよい。
また、「前記仕様を満たすことが確認できた」とは、少なくとも各製鉄会社の検査で、鋼板が、前記衝突試験方法に合格することが確認されることを意図している。この確認は、一般的には、各製鉄会社内のコンピュータシステムにより行われる(例えば、試験結果が鋼板仕様書等の要求値を満たしているか否かが、コンピュータシステムにより判定される)。
In the present invention, "in a collision test method, a specification is imposed that the load drop during a test in which the ratio of the maximum indentation amount of the indenter to the outer width of the frame of the restraining plate is set to any one of 0.20 to 0.28 is 160 kN or less", "in a collision test method, a specification is imposed that the load drop during a test is 5% or less of the maximum load", and "in a collision test method, a specification is imposed that no fracture occurs during a test in which the ratio of the maximum indentation amount of the indenter to the outer width of the frame of the restraining plate is set to any one of 0.20 to 0.28" are intended to mean that a steel plate is required to pass the collision test method in a steel plate specification or the like. With the advancement of computer processing of steel material transactions between shipbuilding companies and steel companies, there are many cases where written documents such as steel plate specifications are not sent. In the present invention, the specification may be imposed by a method other than written documents, such as electronic data transmission.
Moreover, "it has been confirmed that the steel plate satisfies the specifications" means that at least in an inspection by each steel company, it has been confirmed that the steel plate passes the crash test method. This confirmation is generally performed by a computer system in each steel company (for example, the computer system determines whether or not the test results satisfy the required values in the steel plate specifications, etc.).

図7及び図8に、船体構造の一例を示す。図7は、油槽の二重船殻構造の例であり、船体構造を構成する主要な部材は、船側外板10と内板11、外板10と内板11にそれぞれ付随する防撓材12、13、トランス14、ストリンガー15、アッパーデッキ16及びビルジ17である。 Figures 7 and 8 show an example of a hull structure. Figure 7 shows an example of a double hull structure for an oil tank, and the main components that make up the hull structure are the side outer plate 10, the inner plate 11, the stiffeners 12, 13 attached to the outer plate 10 and the inner plate 11, respectively, the transformer 14, the stringer 15, the upper deck 16, and the bilge 17.

本発明は、高延性鋼板を、船側部の外板の一部の部位又は前記外板の全ての部位に使用する、船体構造の製造方法である。更に、前記高延性鋼板が使用された前記外板に対向する内板の一部の部位又は前記内板の全ての部位に、前記高延性鋼板を使用することが好ましい。
また、本発明は、高延性鋼板を、船側部の内板の一部の部位又は前記内板の全ての部位に使用する、船体構造の製造方法である。更に、前記高延性鋼板が使用された前記内板に対向する外板の一部の部位又は前記外板の全ての部位に、前記高延性鋼板を使用することが好ましい。
また、ストリンガーの一部又は全部に、前記高延性鋼板を使用することがより一層好ましい。また、アッパーデッキの一部又は全部に、前記高延性鋼板を使用することがより一層好ましい。また、ビルジの一部又は全部に、前記高延性鋼板を使用することがより一層好ましい。また、トランスの一部又は全部に、前記高延性鋼板を使用することがより一層好ましい。
The present invention relates to a method for manufacturing a hull structure, in which a high ductility steel plate is used for a part of an outer plate of a ship's side or for all of the outer plate. It is further preferable that the high ductility steel plate is used for a part of an inner plate facing the outer plate using the high ductility steel plate or for all of the inner plate.
The present invention also provides a method for manufacturing a hull structure, in which a high ductility steel plate is used for a part of an inner plate of a ship's side or for all of the inner plate. Furthermore, it is preferable that the high ductility steel plate is used for a part of an outer plate facing the inner plate using the high ductility steel plate or for all of the outer plate.
It is even more preferable to use the high ductility steel plate for a part or all of the stringer. It is even more preferable to use the high ductility steel plate for a part or all of the upper deck. It is even more preferable to use the high ductility steel plate for a part or all of the bilge. It is even more preferable to use the high ductility steel plate for a part or all of the transformer.

また、本発明は、船側部の外板の一部の部位又は前記外板の全ての部位の鋼板が、前記高延性鋼板である、船体構造である。更に、鋼板に前記高延性鋼板が使用された前記外板に対向する内板の一部の部位又は前記内板の全ての部位の鋼板が、前記高延性鋼板であることが好ましい。
また、本発明は、船側部の内板の一部の部位又は前記内板の全ての部位の鋼板が、前記高延性鋼板である、船体構造である。更に、鋼板に前記高延性鋼板が使用された前記内板に対向する外板の一部の部位又は前記外板の全ての部位の鋼板が、前記高延性鋼板であることが好ましい。
また、ストリンガーの一部又は全部の鋼板が、前記高延性鋼板であることがより一層好ましい。また、アッパーデッキの一部又は全部の鋼板が、前記高延性鋼板であることがより一層好ましい。また、ビルジの一部又は全部の鋼板が、前記高延性鋼板であることがより一層好ましい。また、トランスの一部又は全部の鋼板が、前記高延性鋼板であることがより一層好ましい。
The present invention also relates to a hull structure in which the steel plate of a part of an outer plate of a ship side or the whole of the outer plate is the high ductility steel plate. Furthermore, it is preferable that the steel plate of a part of an inner plate facing the outer plate using the high ductility steel plate or the whole of the inner plate is the high ductility steel plate.
The present invention also relates to a hull structure in which the steel plate of a part of an inner plate of a ship side or the whole of the inner plate is the high ductility steel plate. Furthermore, it is preferable that the steel plate of a part of an outer plate facing the inner plate using the high ductility steel plate or the whole of the outer plate is the high ductility steel plate.
It is even more preferable that some or all of the steel plates of the stringers are the high ductility steel plates. It is even more preferable that some or all of the steel plates of the upper deck are the high ductility steel plates. It is even more preferable that some or all of the steel plates of the bilge are the high ductility steel plates. It is even more preferable that some or all of the steel plates of the transformer are the high ductility steel plates.

経済性及び効率的エネルギー吸収の観点からは、前記高延性鋼板は、外板、内板及び防撓材にまず適用することが望ましい。この場合、内板に付随する防撓材への適用は止めて、外板、内板及び外板に付随する防撓材へ前記高延性鋼板を適用するバリエーションや外板及び内板に前記高延性鋼板を適用するバリエーションもあり得る。外板及び内板のいずれか片方のみを前記高延性鋼板とする場合には、内板より外板を前記高延性鋼板とすることがより好ましい。しかしながら、内板のみに前記高延性鋼板を使用することを、妨げるものではない。また、船底構造、船首構造、船尾構造に高延性鋼板を使用してもよい。さらに、上部構造(ブリッジ等)に高延性鋼板を使用してもよい。 From the viewpoint of economy and efficient energy absorption, it is desirable to first apply the high ductility steel plate to the outer plate, the inner plate and the stiffeners. In this case, there may be a variation in which the high ductility steel plate is applied to the outer plate, the inner plate and the stiffeners associated with the outer plate without applying it to the stiffeners associated with the inner plate, or a variation in which the high ductility steel plate is applied to the outer plate and the inner plate. When only one of the outer plate and the inner plate is made of the high ductility steel plate, it is more preferable to use the high ductility steel plate for the outer plate rather than the inner plate. However, this does not prevent the high ductility steel plate from being used only for the inner plate. In addition, the high ductility steel plate may be used for the bottom structure, bow structure and stern structure. Furthermore, the high ductility steel plate may be used for the superstructure (bridge, etc.).

本発明に係る船体構造の製造方法は、大型船舶に加えて小型船舶にも適用可能であるが、特に大型船舶に適用した場合に効果が大きい。本発明の効果は、大型原油タンカー(Very Large Crude oil Carrier、VLCCという)が特に大きい。バルクキャリア(鉱石運搬船)等の一重船殻構造(シングルハル)に適用しても、効果を発揮する。本発明に係る船体構造の製造方法においては、外板と内板という2つの部材を区別している。一重船殻構造の場合、外板は内板でもあると看做せる(逆に、内板は外板でもあると看做せる)ため、一重船殻構造の場合も本発明の技術的範囲内である。また、このようなバルクキャリア等の被衝突時の破口により油漏洩が危惧されるその燃料油タンク部(船体が基本的に一重船殻構造であっても、多くの場合、当該燃料油タンク部は、外板と内板にて囲まれた(局部的な)二重船殻構造となっている。)に適用してもよい。 The manufacturing method of the hull structure according to the present invention can be applied to small ships as well as large ships, but is particularly effective when applied to large ships. The effect of the present invention is particularly large for large crude oil tankers (Very Large Crude Oil Carriers, VLCCs). It is also effective when applied to single hull structures (single hulls) such as bulk carriers (ore carriers). In the manufacturing method of the hull structure according to the present invention, two members, the outer plate and the inner plate, are distinguished. In the case of a single hull structure, the outer plate can also be considered to be the inner plate (and conversely, the inner plate can also be considered to be the outer plate), so the single hull structure is also within the technical scope of the present invention. It may also be applied to the fuel oil tank part of such bulk carriers, etc., where oil leakage is feared due to a break in the event of a collision (even if the hull is basically a single hull structure, in many cases the fuel oil tank part has a (local) double hull structure surrounded by the outer plate and the inner plate).

本発明の試験方法を使用する、船体構造の設計方法について説明する。 This article describes a method for designing a hull structure using the test method of the present invention.

本発明に係る船体構造の設計方法を実施するためには、破口を抑制する必要がある船側鋼板部材を特定し、当該部材に使用する鋼板に、前記高延性鋼板を使用する必要がある。特に外板又は内板においては破口を抑制する必要がある部位まで特定し、当該部位に使用する鋼板に、前記高延性鋼板を使用する必要がある。つまり、破口を抑制する必要がある部材を特定し、当該船側鋼板部材に使用する鋼板に、本発明の試験方法に合格することが確認された高延性鋼板を使用する船体構造の設計方法を意図している。このような意図した船体構造の設計方法の結果、本発明の試験方法に合格することが確認された鋼板が、船殻構造の特定の船側鋼板部材(破口を抑制する必要がある部材)に使用された船体構造を製造することができる。 To implement the design method of the hull structure of the present invention, it is necessary to identify the hull steel plate members that need to be prevented from breaking, and to use the high ductility steel plate for the steel plate used for the member. In particular, for outer or inner plates, it is necessary to identify the parts that need to be prevented from breaking, and to use the high ductility steel plate for the steel plate used for the part. In other words, the intended design method of the hull structure is to identify the parts that need to be prevented from breaking, and to use the high ductility steel plate that has been confirmed to pass the test method of the present invention for the steel plate used for the hull steel plate member. As a result of this intended design method of the hull structure, it is possible to manufacture a hull structure in which a steel plate that has been confirmed to pass the test method of the present invention is used for a specific hull steel plate member (a member that needs to be prevented from breaking) of the hull structure.

破口を抑制する必要がある船側鋼板部材(外板又は内板においては破口を抑制する必要がある部位)は、船殻構造の設計者の耐衝突安全性に対する考え方によるが、船舶の種類に大きく依存する。例えば、バルクキャリアにおいては、バラストタンクがなく船倉が外板1枚の部位(つまり、内板がない部位)を、破口を抑制する必要がある外板と特定し、当該部位の外板に高延性鋼板を使用してもよい。あるいは、燃料タンクの一部となる外板がある部位を、破口を抑制する必要がある外板と特定し、当該部位の外板に高延性鋼板を使用してもよい。 The ship's side steel plate components that need to be prevented from breaking (the parts of the outer or inner plating that need to be prevented from breaking) depend on the hull structure designer's approach to collision safety, but also depend heavily on the type of ship. For example, in a bulk carrier, a part where there is no ballast tank and the hold is made of a single outer plate (i.e., a part where there is no inner plate) may be identified as an outer plate that needs to be prevented from breaking, and high ductility steel plate may be used for the outer plate in that part. Alternatively, a part where there is an outer plate that will become part of a fuel tank may be identified as an outer plate that needs to be prevented from breaking, and high ductility steel plate may be used for the outer plate in that part.

また、例えばタンカーにおいては、製品油(原油タンカーの場合には、原油)が貯蔵されているタンクがある部位(内板の部位)に対向する外板を、破口を抑制する必要がある外板と特定してもよい。この場合、当該部位は、外板の高さ方向及び長さ方向にほぼ全体の部位となり、その部位の外板に高延性鋼板を使用することになる。船殻設計者の耐衝突安全性に対する考え方にもよるが、高延性鋼板を使用した前記外板に対向する内板にも、前記高延性鋼板を使用してもよく、前記外板及び前記内板に付随する防撓材の一部又は全部に、高延性鋼板を使用してもよい。
また、例えば球形タンク方式のLNG船においては、LNGが貯留されている球形タンクが最も近接する船側外板の部位を、破口を抑制する必要がある外板と特定してもよい。この場合、タンクは球形であるため、当該部位は、平面視及び側面視においてタンク全体をカバーする部分である必要はなく、タンクが最も近接する部分のみでもよい。そして、特定された部位の外板に高延性鋼板を使用してもよい。必要に応じて、球形タンクが最も近接する船側外板の周辺の部位も、破口を抑制する必要がある外板と特定してもよい。
また、船舶の種類によらず、前記外板、前記内板及び前記防撓材に加え、ストリンガーの一部又は全部、アッパーデッキの一部又は全部、ビルジの一部又は全部、トランスの一部又は全部に、前記高延性鋼板を使用してもよい。
Also, for example, in a tanker, the shell plate facing a portion (a portion of the inner plate) in which a tank storing product oil (crude oil in the case of a crude oil tanker) is located may be specified as the shell plate for which it is necessary to suppress breakage. In this case, the portion in question is almost the entire portion in the height direction and length direction of the shell plate, and high ductility steel plate is used for the shell plate in that portion. Depending on the hull designer's approach to collision safety, the high ductility steel plate may also be used for the inner plate facing the shell plate using the high ductility steel plate, and the high ductility steel plate may be used for some or all of the stiffeners associated with the shell plate and the inner plate.
Also, for example, in an LNG ship using a spherical tank, the portion of the side shell plating closest to the spherical tank storing LNG may be identified as the shell plating that needs to suppress breakage. In this case, since the tank is spherical, the portion does not need to be a portion that covers the entire tank in plan view and side view, but may be only the portion closest to the tank. A high ductility steel plate may be used for the shell plating of the identified portion. If necessary, the peripheral portion of the side shell plating closest to the spherical tank may also be identified as the shell plating that needs to suppress breakage.
Furthermore, regardless of the type of ship, the high ductility steel plate may be used for the outer plate, the inner plate and the stiffeners, as well as for part or all of the stringers, part or all of the upper deck, part or all of the bilges, and part or all of the transformers.

以下、本発明の実施例を説明する。本発明は、実施例に限定して解釈されるものではない。 The following describes examples of the present invention. The present invention should not be construed as being limited to these examples.

図2で模式的に示された試験装置(4000トン圧縮試験機)を用いて、図3に示す試験体の衝突実験を行った。試験装置の圧子は、鋼製であり、先端の形状が球形の一部であるものを用いた。試験体の各部寸法及び圧子先端(試験鋼板と衝突する際に接触する範囲)の外半径(R)は以下の通りである。圧子の押し込み速度は0.43mm/秒とした。
なお、試験体は想定した船体の1/2スケールのものとした。なお、括弧内のアルファベットは図3の符号である。
試験鋼板の板厚(a): 12mm
試験鋼板の長さ(b): 1900mm
試験鋼板の幅(c): 1300mm
防撓部材の板厚(d): 12mm
防撓部材の高さ(e): 100mm
防撓部材のフランジ部の幅(f): 50mm
拘束板の板厚(g): 50mm
拘束板枠の外長(h): 1500mm
拘束板枠の外幅(i): 900mm
拘束板枠の高さ(j): 500mm
圧子の外半径(R): 300mm
補強板(S)
A collision experiment was carried out on the test specimen shown in Fig. 3 using a test apparatus (4000 ton compression test machine) shown in Fig. 2. The indenter used in the test apparatus was made of steel and had a tip shape that was a part of a sphere. The dimensions of each part of the test specimen and the outer radius (R) of the indenter tip (the area that comes into contact when colliding with the test steel plate) are as follows. The pressing speed of the indenter was 0.43 mm/sec.
The test specimen was a half-scale of the assumed hull. The letters in parentheses are the symbols in Figure 3.
Test steel plate thickness (a): 12 mm
Length of test steel plate (b): 1900 mm
Width of test steel plate (c): 1300 mm
Thickness of stiffening member (d): 12mm
Height of stiffening member (e): 100mm
Width of flange of stiffening member (f): 50mm
Restraint plate thickness (g): 50 mm
Outer length of restraining plate frame (h): 1500 mm
Outer width of restraining plate frame (i): 900 mm
Height of restraining plate frame (j): 500 mm
Outer radius of indenter (R): 300 mm
Reinforcement plate (S)

試験鋼板と防撓部材には、表1に示す2種類の鋼板を用い、その耐衝突安全性能を比較した。 The two types of steel plates shown in Table 1 were used for the test steel plates and stiffening members, and their collision safety performance was compared.

Figure 0007481703000001

なお、高延性鋼Aは、特許文献1の発明(船体構造)に使用される高延性鋼板の規定を満たすものである。
Figure 0007481703000001

The high ductility steel A satisfies the regulations for high ductility steel plate used in the invention (hull structure) of Patent Document 1.

図4に示すように、一般鋼Bでは押し込み荷重3500kNで破口が生じ、荷重の上昇が見られなくなったが、高延性鋼Aでは、その高い伸びが効果的に作用して、試験終了まで荷重を負担することが示された。
図5は、試験後の試験鋼板表面(圧子が衝突した面)の写真であり、一般鋼Bでは大きな開口が見られたが、高延性鋼Aでは破口が見られなかった。また、図6は、一般鋼Bの裏側の写真であり、防撓部材に沿って破口が延在していることが示された。この結果は、図1に示される、有限要素法による解析結果(防撓部材の近傍にひずみが集中する)と一致しており、本発明の試験体、試験方法および試験装置の合理性を裏付けるものである。また、本発明の試験体、試験方法および試験装置は、実際の船舶を用意して、それを用いて衝突試験を行うよりも経済的である。
したがって本試験体、試験方法および試験装置によって、船体構造に適用する高延性鋼を合理的且つ経済的に評価が可能であることが示された。
As shown in FIG. 4, in the case of general steel B, a fracture occurred at a thrust load of 3,500 kN, and no increase in the load was observed, whereas in the case of high ductility steel A, its high elongation worked effectively, allowing it to bear the load until the end of the test.
Fig. 5 is a photograph of the surface of the test steel plate (the surface where the indenter collided) after the test, and a large opening was observed in the general steel B, but no fracture was observed in the high ductility steel A. Fig. 6 is a photograph of the back side of the general steel B, which shows that the fracture extended along the stiffening member. This result is consistent with the analysis result by the finite element method shown in Fig. 1 (strain is concentrated in the vicinity of the stiffening member), and supports the rationality of the test specimen, test method, and test device of the present invention. Furthermore, the test specimen, test method, and test device of the present invention are more economical than preparing an actual ship and using it to conduct a collision test.
It was therefore demonstrated that the present test specimen, test method and test equipment make it possible to rationally and economically evaluate high ductility steels for use in ship hull structures.

さらに、このように合理性を損なわずに経済的に実現可能な、本発明による試験体、試験方法、および試験装置を用いて、一般鋼Bでは破口が生じるものの、高延性鋼Aでは破口が生じていないことが確認された。すなわち、高延性鋼Aが、一般鋼Bに比べて、耐衝突性に優れたものであることが、あらためて確認された。 Furthermore, using the test specimen, test method, and test device according to the present invention, which are thus economically feasible without compromising rationality, it was confirmed that while fractures occurred in ordinary steel B, fractures did not occur in high ductility steel A. In other words, it was once again confirmed that high ductility steel A has superior impact resistance compared to ordinary steel B.

Claims (26)

評価対象となる船体の外板または内板に相当する試験鋼板と、前記試験鋼板の一方の表面に溶接された拘束板の枠と、前記拘束板の枠の内部で前記試験鋼板及び前記拘束板の枠に溶接された1枚ないし複数枚の防撓部材とを備える、ことを特徴とする、衝突評価試験体。 A collision evaluation test specimen comprising a test steel plate corresponding to the outer or inner plate of the hull to be evaluated, a restraint plate frame welded to one surface of the test steel plate, and one or more stiffening members welded to the test steel plate and the restraint plate frame inside the restraint plate frame. 前記衝突評価試験体において、
試験鋼板の板厚: 3.2~40mm
試験鋼板の長さ: 1500~2500mm
試験鋼板の幅: 1000~2000mm
防撓部材の板厚: 10~30mm
防撓部材の高さ: 50~150mm

拘束板の板厚: 30~70mm
拘束板の枠の外長: 1000~2000m
だし、前記試験鋼板の長さ未
拘束板の枠の外幅: 500~1500m
だし、前記試験鋼板の幅未
拘束板の枠の高さ: 300~700mm
であることを特徴とする、請求項1に記載の衝突評価試験体。
In the collision evaluation test specimen,
Test steel plate thickness: 3.2 to 40 mm
Length of test steel plate: 1500-2500mm
Width of test steel plate: 1000-2000 mm
Thickness of stiffening member: 10-30mm
Height of stiffening member: 50-150mm

Restraint plate thickness: 30-70mm
Outer length of restraining plate frame: 1000-2000mm
However , less than the length of the test steel plate
Outer width of restraining plate frame: 500-1500mm
However , less than the width of the test steel plate
Height of the restraining plate frame: 300-700mm
2. The collision evaluation test specimen according to claim 1, wherein
前記防撓部材の形状が、板形状又はフランジ部を有する形状であることを特徴とする、請求項1または2に記載の衝突評価試験体。 3. The crashworthiness test specimen according to claim 1, wherein the stiffening member has a plate shape or a flange shape. 前記フランジ部を有する形状が、T字型、L字型、バルブプレート形状の少なくとも一つを含み、該フランジ部の幅が30~80mmであり、かつ前記防撓部材の板厚を超えることを特徴とする、請求項3に記載の衝突評価試験体。 4. The collision evaluation test body according to claim 3 , wherein the shape having the flange portion includes at least one of a T-shape, an L-shape, and a valve plate shape, and the width of the flange portion is 30 to 80 mm and exceeds a plate thickness of the stiffening member. 前記防撓部材と前記拘束板の枠との溶接部に、補強板が配置されていることを特徴とする、請求項1~4のいずれか1項に記載の衝突評価試験体。 The collision evaluation test specimen according to any one of claims 1 to 4, characterized in that a reinforcing plate is disposed at the welded portion between the stiffening member and the frame of the restraining plate. 前記試験鋼板は、板継ぎのための溶接部を有する鋼板であることを特徴とする、請求項1~5のいずれか1項に記載の衝突評価試験体。 The crashworthiness test specimen according to any one of claims 1 to 5, characterized in that the test steel plate is a steel plate having a weld for plate joining. 請求項1~6のいずれか1項に記載の衝突評価試験体の前記試験鋼板に圧子を衝突させて、前記試験鋼板を変形または破口させることを特徴とする、衝突試験方法。 A collision test method comprising: impacting an indenter against the test steel plate of the collision evaluation test specimen according to any one of claims 1 to 6, thereby deforming or fracturing the test steel plate. 前記圧子の先端部が、球体の一部、曲面、突起形状の少なくとも一つを有することを特徴とする、請求項7に記載の衝突試験方法。 The impact test method according to claim 7, characterized in that the tip of the indenter has at least one of a part of a sphere, a curved surface, and a protruding shape. 前記球体の外半径を200~400mmとすることを特徴とする、請求項8に記載の衝突試験方法。 The impact test method according to claim 8, characterized in that the outer radius of the sphere is 200 to 400 mm. 前記圧子の衝突速度が0.1~10000mm/秒であることを特徴とする、請求項7~9のいずれか1項に記載の衝突試験方法。 The impact test method according to any one of claims 7 to 9, characterized in that the impact speed of the indenter is 0.1 to 10,000 mm/sec. 請求項1~6のいずれか1項に記載の衝突評価試験体、前記衝突評価試験体を固定する固定手段、前記衝突評価試験体に衝突させる圧子、および前記圧子を駆動する機構、を備える、ことを特徴とする衝突試験装置。 A collision test device comprising a collision evaluation test specimen according to any one of claims 1 to 6, a fixing means for fixing the collision evaluation test specimen, an indenter for impacting the collision evaluation test specimen, and a mechanism for driving the indenter. 請求項7~10のいずれか1項に記載の衝突試験方法において、前記圧子の最大押込量と前記拘束板の枠の外幅との比を0.20とした試験中の荷重低下が160kN以下である鋼板を、船側部の外板の一部の部位若しくは前記外板の全ての部位、又は、船側部の内板の一部の部位若しくは前記内板の全ての部位に使用することを特徴とする船体構造の製造方法。 A method for manufacturing a hull structure, characterized in that in the collision test method described in any one of claims 7 to 10, a steel plate in which the load drop during the test is 160 kN or less when the ratio of the maximum indenter depression amount to the outer width of the frame of the restraining plate is 0.20 is used for a part of the outer plate of the side of the ship or all of the outer plate, or a part of the inner plate of the side of the ship or all of the inner plate. 請求項7~10のいずれか1項に記載の衝突試験方法において、前記圧子の最大押込量と前記拘束板の枠の外幅との比を0.20~0.28のいずれかとした試験中の荷重低下が160kN以下であることを仕様として課せられ且つ前記仕様を満たすことが確認された鋼板を、船側部の外板の一部の部位若しくは前記外板の全ての部位、又は、船側部の内板の一部の部位若しくは前記内板の全ての部位、に使用することを特徴とする船体構造の製造方法。 A method for manufacturing a hull structure, characterized in that in the collision test method described in any one of claims 7 to 10, a steel plate that is required to have a load drop of 160 kN or less during a test in which the ratio of the maximum indenter depression amount to the outer width of the frame of the restraining plate is between 0.20 and 0.28 and that has been confirmed to satisfy the specification is used for a part of the outer plate of the side of the ship or all of the outer plate, or a part of the inner plate of the side of the ship or all of the inner plate. 請求項7~10のいずれか1項に記載の衝突試験方法において、前記圧子の最大押込量と前記拘束板の枠の外幅との比を0.20とした試験中の荷重低下が最高荷重の5%以下である鋼板を、船側部の外板の一部の部位若しくは前記外板の全ての部位、又は、船側部の内板の一部の部位若しくは前記内板の全ての部位に使用することを特徴とする船体構造の製造方法。 A method for manufacturing a hull structure, characterized in that in the collision test method described in any one of claims 7 to 10, a steel plate in which the load drop during the test is 5% or less of the maximum load when the ratio of the maximum indenter depression amount to the outer width of the frame of the restraining plate is 0.20 is used for a part of the outer plate of the ship's side or all of the outer plate, or a part of the inner plate of the ship's side or all of the inner plate. 請求項7~10のいずれか1項に記載の衝突試験方法において、前記圧子の最大押込量と前記拘束板の枠の外幅との比を0.20~0.28のいずれかとした試験中の荷重低下が最高荷重の5%以下であることを仕様として課せられ且つ前記仕様を満たすことが確認された鋼板を、船側部の外板の一部の部位若しくは前記外板の全ての部位、又は、内板の一部の部位若しくは前記内板の全ての部位、に使用することを特徴とする船体構造の製造方法。 A method for manufacturing a hull structure, characterized in that in the collision test method described in any one of claims 7 to 10, a steel plate that is required to have a ratio of the maximum indentation amount of the indenter to the outer width of the frame of the restraining plate of 0.20 to 0.28 and that is confirmed to satisfy the specification of a load drop of 5% or less of the maximum load during the test is used for a part of the outer plate of the ship's side or all of the outer plate, or a part of the inner plate or all of the inner plate. 請求項7~10のいずれか1項に記載の衝突試験方法において、前記圧子の最大押込量と、前記拘束板の枠の外幅との比が0.20であるときに破口が生じない鋼板を、船側部の外板の一部の部位若しくは前記外板の全ての部位、又は、船側部の内板の一部の部位若しくは前記内板の全ての部位、に使用することを特徴とする船体構造の製造方法。 A method for manufacturing a hull structure, characterized in that in the collision test method described in any one of claims 7 to 10, a steel plate that does not cause a fracture when the ratio of the maximum indentation amount of the indenter to the outer width of the frame of the restraining plate is 0.20 is used for a part of the outer plate of the side of the ship or all of the outer plate, or for a part of the inner plate of the side of the ship or all of the inner plate. 請求項7~10のいずれか1項に記載の衝突試験方法において、前記圧子の最大押込量と前記拘束板の枠の外幅との比を0.20~0.28のいずれかとした試験中において破口が生じないことを仕様として課せられ且つ前記仕様を満たすことが確認された鋼板を、船側部の外板の一部の部位若しくは前記外板の全ての部位、又は、船側部の内板の一部の部位若しくは前記内板の全ての部位、に使用することを特徴とする船体構造の製造方法。 A method for manufacturing a hull structure, characterized in that in the collision test method according to any one of claims 7 to 10, a steel plate that is required as a specification that no fracture occurs during a test in which the ratio of the maximum indentation amount of the indenter to the outer width of the frame of the restraining plate is set to any one of 0.20 to 0.28 and that has been confirmed to satisfy the specification is used for a part of an outer plate of the ship's side or all of the outer plate, or a part of an inner plate of the ship's side or all of the inner plate. 船側部の外板又は内板の中で、破口を抑制する必要がある部位を特定し、当該部位に使用する鋼板に、請求項7~10のいずれか1項に記載の衝突試験方法において、前記圧子の最大押込量と前記拘束板の枠の外幅との比を0.20~0.28のいずれかとした試験中の荷重低下が160kN以下であることが確認された鋼板を使用することを特徴とする船体構造の設計方法。 A method for designing a hull structure, comprising: identifying an area of the outer or inner plate of the ship's side where it is necessary to prevent a break; and using a steel plate for the area, which has been confirmed to have a load drop of 160 kN or less during a test in which the ratio of the maximum indenter depression amount to the outer width of the frame of the restraining plate is set to any one of 0.20 to 0.28 in the collision test method described in any one of claims 7 to 10. 船側部の外板又は内板の中で、破口を抑制する必要がある部位を特定し、当該部位に使用する鋼板に、請求項7~10のいずれか1項に記載の衝突試験方法において、前記圧子の最大押込量と前記拘束板の枠の外幅との比を0.20~0.28のいずれかとした試験中の荷重低下が最高荷重の5%以下であることが確認された鋼板を使用することを特徴とする船体構造の設計方法。 A method for designing a hull structure, comprising: identifying an area of the outer or inner plate of the ship's side where it is necessary to prevent a break; and using a steel plate for the area, which has been confirmed to have a load drop of 5% or less of the maximum load during a test in which the ratio of the maximum indenter depression amount to the outer width of the frame of the restraining plate is set to any one of 0.20 to 0.28 in the collision test method described in any one of claims 7 to 10. 船側部の外板又は内板の中で、破口を抑制する必要がある部位を特定し、当該部位に使用する鋼板に、請求項7~10のいずれか1項に記載の衝突試験方法において、前記圧子の最大押込量と前記拘束板の枠の外幅との比を0.20~0.28のいずれかとした試験中において破口が生じないことが確認された鋼板を使用することを特徴とする船体構造の設計方法。 A method for designing a hull structure, comprising: identifying an area of the outer or inner plate of the ship's side where it is necessary to prevent the formation of a fracture; and using a steel plate for the area that has been confirmed to not cause a fracture during a test in which the ratio of the maximum indenter depression amount to the outer width of the frame of the restraining plate is set to any of 0.20 to 0.28 in the collision test method described in any one of claims 7 to 10. 船側部の外板若しくは内板の一部の部位、又は、前記外板若しくは前記内板の全ての部位の鋼板が、請求項7~10のいずれか1項に記載の衝突試験方法において、前記圧子の最大押込量と前記拘束板の枠の外幅との比を0.20とした試験中の荷重低下が160kN以下である鋼板であることを特徴とする船体構造。 A hull structure characterized in that the steel plate of a part of the outer or inner plate of the ship's side, or the entirety of the outer or inner plate, is a steel plate that exhibits a load drop of 160 kN or less during a test in which the ratio of the maximum indenter depression amount to the outer width of the restraining plate frame is 0.20, in the collision test method described in any one of claims 7 to 10. 船側部の外板若しくは内板の一部の部位、又は、前記外板若しくは前記内板の全ての部位の鋼板が、請求項7~10のいずれか1項に記載の衝突試験方法において、前記圧子の最大押込量と前記拘束板の枠の外幅との比を0.20~0.28のいずれかとした試験中の荷重低下が160kN以下であることを仕様として課せられ且つ前記仕様を満たすことが確認された鋼板であることを特徴とする船体構造。 A hull structure characterized in that the steel plate of a part of the outer or inner plate of the ship's side, or the entirety of the outer or inner plate, is a steel plate that is subject to a specification that the load drop during the test is 160 kN or less when the ratio of the maximum indenter depression amount to the outer width of the restraining plate frame is 0.20 to 0.28 in the collision test method described in any one of claims 7 to 10, and that has been confirmed to satisfy the specification. 船側部の外板若しくは内板の一部の部位、又は、前記外板若しくは前記内板の全ての部位の鋼板が、請求項7~10のいずれか1項に記載の衝突試験方法において、前記圧子の最大押込量と前記拘束板の枠の外幅との比を0.20とした試験中の荷重低下が最高荷重の5%以下である鋼板であることを特徴とする船体構造。 A hull structure characterized in that the steel plate of a part of the outer or inner plate of the ship's side, or the entirety of the outer or inner plate, is a steel plate in which the load drop during the test is 5% or less of the maximum load when the ratio of the maximum indenter depression amount to the outer width of the frame of the restraining plate is 0.20, in the collision test method described in any one of claims 7 to 10. 船側部の外板若しくは内板の一部の部位、又は、前記外板若しくは前記内板の全ての部位の鋼板が、請求項7~10のいずれか1項に記載の衝突試験方法において、前記圧子の最大押込量と前記拘束板の枠の外幅との比を0.20~0.28のいずれかとした試験中の荷重低下が最高荷重の5%以下であることを仕様として課せられ且つ前記仕様を満たすことが確認された鋼板であることを特徴とする船体構造。 A hull structure characterized in that the steel plate of a part of the outer or inner plate of the ship's side, or the entirety of the outer or inner plate, is a steel plate that is subject to a specification that the load drop during the test, in which the ratio of the maximum indenter depression amount to the outer width of the restraining plate frame is between 0.20 and 0.28, is 5% or less of the maximum load, and that has been confirmed to satisfy the specification, in the collision test method described in any one of claims 7 to 10. 船側部の外板若しくは内板の一部の部位、又は、前記外板若しくは前記内板の全ての部位の鋼板が、請求項7~10のいずれか1項に記載の衝突試験方法において、前記圧子の最大押込量と、前記拘束板の枠の外幅との比が0.20であるときに破口が生じない鋼板であることを特徴とする船体構造。 A hull structure characterized in that the steel plate in a portion of the outer or inner plate of the ship's side, or in all of the outer or inner plates, is a steel plate that does not cause a fracture when the ratio of the maximum indenter depression amount to the outer width of the restraining plate frame is 0.20 in the collision test method described in any one of claims 7 to 10. 船側部の外板若しくは内板の一部の部位、又は、前記外板若しくは前記内板の全ての部位の鋼板が、請求項7~10のいずれか1項に記載の衝突試験方法において、前記圧子の最大押込量と前記拘束板の枠の外幅との比を0.20~0.28のいずれかとした試験中において破口が生じないことを仕様として課せられ且つ前記仕様を満たすことが確認された鋼板であることを特徴とする船体構造。 A hull structure characterized in that the steel plate of a part of the outer or inner plate of the ship's side, or the entirety of the outer or inner plate, is a steel plate that is subject to a specification that no fracture occurs during a test in which the ratio of the maximum indenter depression amount to the outer width of the restraining plate frame is between 0.20 and 0.28 in the collision test method described in any one of claims 7 to 10, and that has been confirmed to satisfy the specification.
JP2020064057A 2019-04-09 2020-03-31 Collision evaluation test body, collision test method, collision test device, manufacturing method of hull structure, design method of hull structure, and hull structure Active JP7481703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200042670A KR20200119209A (en) 2019-04-09 2020-04-08 Crash evaluation test specimen, crash test method, crash test equipment, method for manufacturing a ship structure, method for designing a ship structure and the ship structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019074306 2019-04-09
JP2019074306 2019-04-09

Publications (3)

Publication Number Publication Date
JP2020172256A JP2020172256A (en) 2020-10-22
JP2020172256A5 JP2020172256A5 (en) 2023-02-21
JP7481703B2 true JP7481703B2 (en) 2024-05-13

Family

ID=72829906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020064057A Active JP7481703B2 (en) 2019-04-09 2020-03-31 Collision evaluation test body, collision test method, collision test device, manufacturing method of hull structure, design method of hull structure, and hull structure

Country Status (2)

Country Link
JP (1) JP7481703B2 (en)
KR (1) KR20200119209A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116802114A (en) * 2021-03-29 2023-09-22 日本制铁株式会社 Welded joint, method for designing welded joint, method for manufacturing welded joint, and ship structure
CN116204991B (en) * 2023-05-05 2023-07-11 长江勘测规划设计研究有限责任公司 Design calculation method for ship lift steel wire rope-buffer oil cylinder anti-collision device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004132739A (en) 2002-10-08 2004-04-30 Honda Motor Co Ltd Shear testing device of curved panel
US20070227434A1 (en) 2006-03-29 2007-10-04 Matthias Gotze Testing Device for Hull Shells
JP2008191009A (en) 2007-02-05 2008-08-21 Kobe Steel Ltd Impact characteristic prediction method of steel material for ship
KR101240313B1 (en) 2012-10-22 2013-03-06 부산대학교 산학협력단 Collision test machine and method for collision test using the same
JP7165159B2 (en) 2019-04-15 2022-11-02 禾榮科技股▲フン▼有限公司 Minimally invasive neutron beam generator and minimally invasive neutron capture therapy system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07165159A (en) * 1993-12-17 1995-06-27 Kawasaki Heavy Ind Ltd Hull structure
JP2004132439A (en) * 2002-10-09 2004-04-30 Calsonic Kansei Corp Motive power transmission device and its assembling method
KR100577285B1 (en) * 2003-12-29 2006-05-10 삼성중공업 주식회사 The preventive device for the slamming damage
JP2013002960A (en) * 2011-06-16 2013-01-07 Universal Shipbuilding Corp Fatigue monitoring structure and steel structure
WO2016013288A1 (en) 2014-07-25 2016-01-28 新日鐵住金株式会社 Ship body structure with excellent crashworthiness, and ship body structure designing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004132739A (en) 2002-10-08 2004-04-30 Honda Motor Co Ltd Shear testing device of curved panel
US20070227434A1 (en) 2006-03-29 2007-10-04 Matthias Gotze Testing Device for Hull Shells
JP2008191009A (en) 2007-02-05 2008-08-21 Kobe Steel Ltd Impact characteristic prediction method of steel material for ship
KR101240313B1 (en) 2012-10-22 2013-03-06 부산대학교 산학협력단 Collision test machine and method for collision test using the same
JP7165159B2 (en) 2019-04-15 2022-11-02 禾榮科技股▲フン▼有限公司 Minimally invasive neutron beam generator and minimally invasive neutron capture therapy system

Also Published As

Publication number Publication date
JP2020172256A (en) 2020-10-22
KR20200119209A (en) 2020-10-19

Similar Documents

Publication Publication Date Title
Calle et al. A review-analysis on material failure modeling in ship collision
Wang et al. Behavior of a double hull in a variety of stranding or collision scenarios
Ozguc et al. A comparative study on the structural integrity of single and double side skin bulk carriers under collision damage
Kitamura Comparative study on collision resistance of side structure
Villavicencio et al. Experimental and numerical analysis of a tanker side panel laterally punched by a knife edge indenter
JP7481703B2 (en) Collision evaluation test body, collision test method, collision test device, manufacturing method of hull structure, design method of hull structure, and hull structure
Liu et al. Experimental and numerical analysis of the crushing behaviour of stiffened web girders
Zhang et al. Ship collision damage assessment and validation with experiments and numerical simulations
Hagiwara et al. A proposed method of predicting ship collision damage
Hogström et al. Assessment of the crashworthiness of a selection of innovative ship structures
Liu et al. Simplified method for quasi-static collision assessment of a damaged tanker side panel
Yamaguchi et al. Development of guidelines on brittle crack arrest design-Brittle crack arrest design for large container ships-1
Chen et al. Experimental and numerical investigation on the influence of stiffeners on the crushing resistance of web girders in ship grounding
Prabowo et al. Effect of the selected parameters in idealizing material failures under tensile loads: Benchmarks for damage analysis on thin-walled structures
Sumi Structural safety of ships developed by lessons learned from the 100-year history of break-in-two accidents
JP5893231B1 (en) Hull structure with excellent collision resistance and design method of hull structure
Ohtsubo et al. Experimental and numerical research on ship collision and grounding of oil tankers
Klanac et al. Qualitative design assessment of crashworthy structures
Kubo et al. Experimental study on brittle crack propagation behavior with large scale structural component model tests-Brittle crack arrest design for large container ships-5
Berkovits et al. Considerations of the effect of residual stresses on fatigue of welded aluminium alloy structures
Cho et al. Residual longitudinal strength of damaged box girder structures
Prabowo et al. Crashworthiness assessment of thin-walled bottom structures during powered-hard grounding accidents
Villavicencio et al. Response of a tanker side panel punched by a knife edge indenter
Ringsberg et al. A methodology for comparison and assessment of three crashworthy side-shell structures: The X-core, Y-core and corrugation panel structures
Toyoda et al. Safety of mega container ship focusing on brittle crack initiation and arrest behavior of heavy thickness plate

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200428

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20200428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240418

R150 Certificate of patent or registration of utility model

Ref document number: 7481703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150