JP5445720B1 - High strength steel plate with excellent arrestability - Google Patents

High strength steel plate with excellent arrestability Download PDF

Info

Publication number
JP5445720B1
JP5445720B1 JP2013513475A JP2013513475A JP5445720B1 JP 5445720 B1 JP5445720 B1 JP 5445720B1 JP 2013513475 A JP2013513475 A JP 2013513475A JP 2013513475 A JP2013513475 A JP 2013513475A JP 5445720 B1 JP5445720 B1 JP 5445720B1
Authority
JP
Japan
Prior art keywords
less
plate thickness
grain boundary
area ratio
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013513475A
Other languages
Japanese (ja)
Other versions
JPWO2013150687A1 (en
Inventor
清孝 中島
鉄平 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2013513475A priority Critical patent/JP5445720B1/en
Application granted granted Critical
Publication of JP5445720B1 publication Critical patent/JP5445720B1/en
Publication of JPWO2013150687A1 publication Critical patent/JPWO2013150687A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Abstract

この高強度厚鋼板は、炭素当量Ceq.が0.3〜0.5%である成分組成を有し、面積率で70%以下のフェライトと、面積率で30%以上のベイナイトを含有するミクロ組織を有し、板厚の1/4部では、結晶方位差が15°以上の結晶粒界の単位面積当たりの総長さである結晶粒界密度が400〜1000mm/mmであるとともに、主圧延方向に対し垂直な面に対し15°以内の角度をなす{100}面の面積率が10〜40%であり、前記板厚の1/2部では、前記結晶粒界密度が300〜900mm/mmであるとともに、前記主圧延方向に対し垂直な面に対し15°以内の角度をなす{110}面の面積率が40〜70%である。This high strength thick steel plate has a carbon equivalent Ceq. Has a component composition of 0.3 to 0.5%, has a microstructure containing 70% or less of ferrite in area ratio, and bainite of 30% or more in area ratio, and is 1/4 of the plate thickness. Part, the crystal grain boundary density, which is the total length per unit area of the crystal grain boundary having a crystal orientation difference of 15 ° or more, is 400 to 1000 mm / mm 2 , and 15 ° to the plane perpendicular to the main rolling direction. The area ratio of the {100} plane forming an angle of within 10 to 40%, and at 1/2 part of the plate thickness, the grain boundary density is 300 to 900 mm / mm 2 and the main rolling direction The area ratio of the {110} plane forming an angle of 15 ° or less with respect to the plane perpendicular to the plane is 40 to 70%.

Description

本発明は、アレスト性に優れた高強度厚鋼板に関する。
本願は、2012年4月6日に、日本に出願された特願2012−087384号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a high-strength thick steel plate excellent in arrestability.
The present application claims priority based on Japanese Patent Application No. 2012-087384 filed in Japan on April 6, 2012, the contents of which are incorporated herein by reference.

造船、建築、タンク、海洋構造物、ラインパイプなどの構造物に用いられる厚鋼板には、構造物の脆性破壊を抑制するために、脆性破壊が伝播することを抑制する能力であるアレスト性(脆性破壊伝播停止性能)が求められる。近年、構造物の大型化に伴い、降伏応力が390〜690MPa、板厚が60〜95mmの高強度厚鋼板を使用するケースが多くなっている。しかし、上記したアレスト性は、一般に強度及び板厚それぞれに相反する傾向にある。このため、高強度厚鋼板においてアレスト性を向上させる技術が望まれている。   For steel plates used in structures such as shipbuilding, architecture, tanks, offshore structures, line pipes, arrestability (the ability to suppress the propagation of brittle fracture in order to suppress brittle fracture of structures) Brittle fracture propagation stopping performance) is required. In recent years, with the increase in size of structures, there are increasing cases of using high-strength thick steel plates having a yield stress of 390 to 690 MPa and a plate thickness of 60 to 95 mm. However, the above-described arrestability generally tends to conflict with strength and thickness. For this reason, the technique which improves arrestability in a high intensity | strength thick steel plate is desired.

アレスト性を向上させる方法として、例えば結晶粒径を制御する方法、脆化第二相を制御する方法、及び集合組織を制御する方法が知られている。   As a method for improving the arrestability, for example, a method of controlling the crystal grain size, a method of controlling the embrittled second phase, and a method of controlling the texture are known.

結晶粒径を制御する方法としては、特許文献1〜3、21に記載された技術がある。
特許文献1に記載された技術では、フェライトを母相とし、このフェライトを細粒化することにより、アレスト性を向上させる。そのような細粒フェライトを得るために、表裏層部より鋳片厚中心方向に鋳片厚の1/8以上がAr3以下となるように冷却し、極低温域で圧延を行い、その後Ac3を越える温度まで復熱させ、フェライトを再結晶させる必要がある。
特許文献2、3に記載された技術では、フェライトを母相とし、表層部を一旦Ar1以下に冷却し、その後表層部が復熱する過程で圧延を行うことにより、微細なフェライト再結晶粒を得る。
特許文献21に記載された技術では、フェライトの長軸方向の平均結晶粒径を5μm以上でアスペクト比が2以上、または、旧オーステナイト粒の長軸方向の平均粒径を10μm以上でアスペクト比が2以上、とすることにより、脆性き裂伝播停止特性を高めている。
As a method for controlling the crystal grain size, there are techniques described in Patent Documents 1 to 3 and 21.
In the technique described in Patent Document 1, the arrestability is improved by using ferrite as a parent phase and making the ferrite finer. In order to obtain such fine-grained ferrite, cooling is performed so that 1/8 or more of the slab thickness becomes Ar3 or less from the front and back layer portions toward the center of the slab thickness, and rolling is performed in a cryogenic region, and then Ac3 is used. It is necessary to reheat to a temperature exceeding that and recrystallize the ferrite.
In the techniques described in Patent Documents 2 and 3, fine ferrite recrystallized grains are formed by rolling in the process where the surface layer part is once cooled to Ar1 or less and then the surface layer part is reheated, using ferrite as a parent phase. obtain.
In the technique described in Patent Document 21, the average crystal grain size in the major axis direction of ferrite is 5 μm or more and the aspect ratio is 2 or more, or the average grain size in the major axis direction of prior austenite grains is 10 μm or more and the aspect ratio is By setting it to 2 or more, the brittle crack propagation stopping property is enhanced.

また、脆化第二相を制御する方法としては、特許文献4に記載された技術がある。
特許文献4に記載された技術では、母相となるフェライト中に微細な脆化第二相(例えばマルテンサイト)を分散させることにより、脆性き裂先端部において脆化第二相に微小き裂を発生させて、き裂先端部の応力状態を緩和させる。
As a method for controlling the embrittled second phase, there is a technique described in Patent Document 4.
In the technique described in Patent Document 4, a fine embrittled second phase (for example, martensite) is dispersed in a ferrite as a parent phase, whereby a microcrack is formed in the embrittled second phase at the brittle crack tip. To relieve the stress state at the crack tip.

また、集合組織を制御する方法としては、特許文献5〜17に記載された技術がある。特許文献5〜17に記載された技術では、集合組織としてX線面強度比を例えば表層部、板厚の1/4部、板厚の1/2部の各板厚位置で制御することによって、き裂の伝播方向を変化させ、アレスト性を向上させる。   Moreover, there exists a technique described in patent documents 5-17 as a method of controlling a texture. In the techniques described in Patent Documents 5 to 17, by controlling the X-ray plane intensity ratio as a texture at each plate thickness position, for example, the surface layer portion, 1/4 portion of the plate thickness, and 1/2 portion of the plate thickness. , Change the crack propagation direction, improve arrestability.

さらに、結晶粒径と集合組織の両方を制御する方法としては、特許文献18〜20に記載された技術がある。
特許文献18に記載された技術では、板厚の1/2部のフェライト分率を80%以上とし、結晶粒径とX線面強度比を制御することにより、アレスト性を向上させる。
特許文献19に記載された技術では、表層と板厚の1/2部の結晶粒径とX線で測定した集合組織強度比を制御させることにより、アレスト性を向上させる。
特許文献20に記載された技術では、表層と板厚の1/2部の結晶粒径と外部応力に対し垂直な{100}面の面積率を制御することにより、アレスト性を向上させる。
Furthermore, as a method for controlling both the crystal grain size and the texture, there are techniques described in Patent Documents 18 to 20.
In the technique described in Patent Document 18, the arrestability is improved by controlling the crystal grain size and the X-ray plane intensity ratio by setting the ferrite fraction at ½ part of the plate thickness to 80% or more.
In the technique described in Patent Document 19, the arrestability is improved by controlling the texture size ratio measured by X-rays and the crystal grain size of ½ part of the surface layer and the plate thickness.
In the technique described in Patent Document 20, the arrestability is improved by controlling the crystal grain size of the surface layer, ½ part of the plate thickness, and the area ratio of the {100} plane perpendicular to the external stress.

日本国特開昭61−235534号公報Japanese Unexamined Patent Publication No. 61-235534 日本国特開2003−221619号公報Japanese Unexamined Patent Publication No. 2003-221619 日本国特開平5−148542号公報Japanese Patent Laid-Open No. 5-148542 日本国特開昭59−47323号公報Japanese Patent Publication No. 59-47323 日本国特開2008−045174号公報Japanese Unexamined Patent Publication No. 2008-045174 日本国特開2008−069380号公報Japanese Unexamined Patent Publication No. 2008-069380 日本国特開2008−111165号公報Japanese Unexamined Patent Publication No. 2008-111165 日本国特開2008−111166号公報Japanese Unexamined Patent Publication No. 2008-111166 日本国特開2008−169467号公報Japanese Unexamined Patent Publication No. 2008-169467 日本国特開2008−169468号公報Japanese Unexamined Patent Publication No. 2008-169468 日本国特開2008−214652号公報Japanese Laid-Open Patent Publication No. 2008-214652 日本国特開2008−214653号公報Japanese Unexamined Patent Publication No. 2008-214653 日本国特開2008−214654号公報Japanese Unexamined Patent Publication No. 2008-214654 日本国特開2009−185343号公報Japanese Unexamined Patent Publication No. 2009-185343 日本国特開2009−221585号公報Japanese Unexamined Patent Publication No. 2009-221585 日本国特開2009−235458号公報Japanese Unexamined Patent Publication No. 2009-235458 日本国特開2010−047805号公報Japanese Unexamined Patent Publication No. 2010-0478805 日本国特開2011−068952号公報Japanese Unexamined Patent Publication No. 2011-068952 日本国特開2011−214116号公報Japanese Unexamined Patent Publication No. 2011-214116 日本国特開2007−302993号公報Japanese Unexamined Patent Publication No. 2007-302993 日本国特開2008−156751号公報Japanese Unexamined Patent Publication No. 2008-156751

特許文献1〜3に記載の技術では、鋼板表裏層部のフェライトの再結晶を利用してフェライトを主体にしているため、高強度で、かつ、板厚の厚い鋼板とすることが困難である。また、特許文献1〜3、21に記載の技術のように、結晶粒径の制御のみでは、高強度かつ板厚の厚い鋼板でアレスト性を向上させることは困難である。また、冷却、圧延、復熱工程を経る必要があり、製造プロセスが複雑になるため、安定した材質を得るのは極めて困難である。さらに、このような製造プロセスでは、鋼板面の冷却が不均一になることに起因した形状不良が生じやすい。形状不良が生じた場合、形状矯正に多大なコストを要する。   In the techniques described in Patent Documents 1 to 3, since ferrite is mainly used by utilizing recrystallization of ferrite in the front and back layers of the steel sheet, it is difficult to obtain a steel sheet having high strength and a large thickness. . In addition, as in the techniques described in Patent Documents 1 to 3 and 21, it is difficult to improve the arrestability with a steel plate having high strength and a large plate thickness only by controlling the crystal grain size. In addition, it is necessary to go through cooling, rolling, and recuperation steps, and the manufacturing process becomes complicated. Therefore, it is extremely difficult to obtain a stable material. Furthermore, in such a manufacturing process, shape defects are likely to occur due to uneven cooling of the steel sheet surface. When a shape defect occurs, a great deal of cost is required for shape correction.

また、特許文献4に記載の技術では、フェライト中にマルテンサイトを分散させているので脆性き裂発生特性が著しく劣化してしまう。さらに、フェライトを主体としているため、上記同様に高強度かつ板厚の厚い鋼板とすることが困難である。また、脆化第二相の制御のみでは、高強度かつ板厚の厚い鋼板でアレスト性を向上させることは困難である。   In the technique described in Patent Document 4, since martensite is dispersed in ferrite, brittle crack generation characteristics are significantly deteriorated. Furthermore, since the main component is ferrite, it is difficult to obtain a steel plate having high strength and a large plate thickness as described above. Moreover, it is difficult to improve the arrestability with a steel plate having a high strength and a thick plate thickness only by controlling the embrittlement second phase.

また、特許文献5〜17、19及び21に記載の技術では、高強度かつ板厚の厚い鋼板のアレスト性を向上させるために最も効果的な因子である結晶粒径の制御を行っていない。すなわち集合組織の制御のみでは、高強度かつ板厚の厚い鋼板でアレスト性を飛躍的に向上させることができない。また、X線面強度比は局所的な集合組織を表しているものであるため、ばらつきが大きい。これらの技術は、アレスト性を向上させ且つ熱間圧延時に高い生産性が得られる技術ではない。そもそも特許文献5〜8、11及び21の技術は、板厚方向の脆性き裂伝播停止特性を高める技術であり、本願のような鋼板表面に平行な方向、例えば、圧延方向と垂直又は平行な方向の脆性き裂伝播停止特性の向上に係る技術ではない。このような技術により、鋼板表面に平行な方向の脆性き裂伝播停止特性の向上を図ることはできない。
特許文献9及び10で開示された鋼板のアレスト性は、最も高いものであっても、板厚60mmで−10℃でのKcaが6500〜6600N・mm−0.5程度である。このレベルは−20℃でのKcaが6000N・mm−0.5以下と考えられ、更なるアレスト性向上が必要である。
特許文献12、13、16及び19には、高いアレスト性を得るための技術が開示されている。しかし、板厚方向で特異な集合組織を形成するために、板厚中央部の温度がAr3点−10℃以下、Ar3点−50℃以上の温度域において累積圧下率30%以上かつ平均パス圧下率8%以上の圧延などが必要である。つまり、非常に低い温度での圧延が不可欠であり、圧延時の生産性が非常に低く、大量生産は困難である。
特許文献14、15及び17で開示された鋼板の板厚方向のアレスト性は、大型混成ESSO試験(助走板長さ:1600mm、試験板長さ:800mm、試験体幅:2400mmm、負荷応力:235kg・mm−0.5)で評価されている。その−20℃でのKcaは、6000N・mm−0.5以下と考えられる。しかも、集合組織を形成させるために、やはり低温での圧延が不可欠であり、大量生産は困難である。
In the techniques described in Patent Documents 5 to 17, 19 and 21, the crystal grain size, which is the most effective factor, is not controlled in order to improve the arrestability of a steel plate having high strength and a large thickness. That is, only by controlling the texture, the arrestability cannot be dramatically improved with a steel plate having a high strength and a large thickness. Moreover, since the X-ray plane intensity ratio represents a local texture, the variation is large. These techniques are not techniques for improving arrestability and obtaining high productivity during hot rolling. In the first place, the techniques of Patent Documents 5 to 8, 11 and 21 are techniques for improving the brittle crack propagation stopping characteristics in the plate thickness direction, such as a direction parallel to the steel sheet surface as in the present application, for example, perpendicular or parallel to the rolling direction. It is not a technique related to improving the direction of brittle crack propagation stoppage. With such a technique, it is impossible to improve the brittle crack propagation stopping characteristics in the direction parallel to the steel plate surface.
Even if the arrestability of the steel sheets disclosed in Patent Documents 9 and 10 is the highest, the Kca at −10 ° C. with a plate thickness of 60 mm is about 6500 to 6600 N · mm −0.5 . This level is considered that Kca at −20 ° C. is 6000 N · mm −0.5 or less, and further improvement in arrestability is necessary.
Patent Documents 12, 13, 16, and 19 disclose techniques for obtaining high arrestability. However, in order to form a peculiar texture in the plate thickness direction, the cumulative reduction rate is 30% or more and the average pass pressure is lowered in the temperature range where the temperature at the center of the plate thickness is Ar3 −10 ° C. or lower and Ar3 −50 ° C. Rolling with a rate of 8% or more is necessary. That is, rolling at a very low temperature is indispensable, productivity at the time of rolling is very low, and mass production is difficult.
The arrestability in the plate thickness direction of the steel sheet disclosed in Patent Documents 14, 15 and 17 is the large-sized hybrid ESSO test (running plate length: 1600 mm, test plate length: 800 mm, specimen width: 2400 mm, load stress: 235 kg. -Mm -0.5 ). The Kca at −20 ° C. is considered to be 6000 N · mm −0.5 or less. Moreover, in order to form a texture, rolling at a low temperature is indispensable, and mass production is difficult.

また、特許文献18に記載の技術では、板厚の1/2部のみで結晶粒径と集合組織を制御しているため、板厚が厚い場合のアレスト性を向上させることは難しい。また、フェライトを主体にしているため、高強度で、かつ、板厚の厚い鋼板とすることが困難である。また、X線面強度比は局所的な集合組織を表しているものであるため、ばらつきが大きくアレスト性を向上させる因子としては適していない。また、この技術は、低温での圧延により、集合組織を形成させることによって、圧延方向に対して45°の角度のアレスト性を向上させるための技術である。低温での圧延が不可欠であり、大量生産は困難である。
特許文献20に記載の技術では、表層と板厚の1/2部とにおける結晶粒径及び集合組織を制御する。しかし、板厚が厚い場合のアレスト性を向上させることにおいて、平面応力状態であり、元々へき開破壊が起こり難い表層の寄与は極めて小さいため、表層の制御では、アレスト性を飛躍的に向上させることは困難である。また、板厚70mmで−10℃でのKcaが210MPa・mm−0.5(つまり、約6600N・mm−0.5に相当)であることが開示されている。このレベルは−20℃でのKcaでは6000N・mm−0.5以下と考えられ、更なるアレスト性向上が必要である。
In the technique described in Patent Document 18, since the crystal grain size and texture are controlled by only ½ part of the plate thickness, it is difficult to improve the arrestability when the plate thickness is thick. Moreover, since ferrite is the main component, it is difficult to obtain a steel plate having high strength and a large plate thickness. Further, since the X-ray plane intensity ratio represents a local texture, it has a large variation and is not suitable as a factor for improving arrestability. Further, this technique is a technique for improving the arrestability at an angle of 45 ° with respect to the rolling direction by forming a texture by rolling at a low temperature. Rolling at a low temperature is indispensable, and mass production is difficult.
In the technique described in Patent Document 20, the crystal grain size and texture in the surface layer and ½ part of the plate thickness are controlled. However, in improving the arrestability when the plate thickness is thick, the contribution of the surface layer, which is in the state of plane stress and hardly cleaves by nature, is extremely small, so the control of the surface layer can dramatically improve the arrestability. It is difficult. Further, it is disclosed that Kca at −10 ° C. with a plate thickness of 70 mm is 210 MPa · mm −0.5 (that is, equivalent to about 6600 N · mm −0.5 ). This level is considered to be 6000 N · mm −0.5 or less in Kca at −20 ° C., and further improvement in arrestability is necessary.

本発明は上記のような事情を考慮してなされたものであり、その目的は、製造コストが低く、生産性が高く、強度が高く、板厚が厚く、かつHAZ靭性の劣化がない、アレスト性に優れた高強度厚鋼板を提供することにある。   The present invention has been made in consideration of the above-mentioned circumstances, and the purpose thereof is an arrest that has low manufacturing cost, high productivity, high strength, thick plate thickness, and no degradation of HAZ toughness. An object of the present invention is to provide a high-strength thick steel plate having excellent properties.

本発明の要旨は以下の通りである。   The gist of the present invention is as follows.

(1)本発明の一態様に係る高強度厚鋼板は、質量%で、C:0.04〜0.16%、Si:0.01〜0.5%、Mn:0.75〜2.5%、Al:0.001〜0.1%、Nb:0.003〜0.05%、Ti:0.003〜0.05%、N:0.001〜0.008%を含有し、Pが0.03%以下、Sが0.02%以下、Cuが1%以下、Niが2%以下、Crが1%以下、Moが0.5%以下、Vが0.15%以下、Bが0.005%以下、Caが0.01%以下、Mgが0.01%以下、REMが0.01%以下に制限され、残部が鉄および不可避的不純物を含有し、下記A式の炭素当量Ceq.が0.30〜0.50%である成分組成を有し、面積率で70%以下のフェライトと、面積率で30%以上のベイナイトを含有するミクロ組織を有し、板厚の1/4部では、結晶方位差が15°以上の結晶粒界の単位面積当たりの総長さである結晶粒界密度が400〜1000mm/mmであるとともに、主圧延方向に対し垂直な面に対し15°以内の角度をなす{100}面の面積率が10〜40%であり、前記板厚の1/2部では、前記結晶粒界密度が300〜900mm/mmであるとともに、前記主圧延方向に対し垂直な面に対し15°以内の角度をなす{110}面の面積率が40〜70%である。
Ceq.=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5
・・・A式
(2)上記(1)に記載の高強度厚鋼板は、前記板厚が60〜95mmであってもよい。
(3)上記(1)又は(2)に記載の高強度厚鋼板は、降伏応力が390〜690MPaであってもよい。
(4)上記(1)〜(3)のいずれか一項に記載の高強度厚鋼板では、前記ミクロ組織が、面積率で10%以下のパーライトを含有してもよい。
(5)上記(1)〜(4)のいずれか一項に記載の高強度厚鋼板では、前記ミクロ組織が、フェライト面積率が50%未満で、パーライト面積率が5%以下で、ベイナイト面積率が50%以上であってもよい。
(6)上記(1)〜(5)のいずれか一項に記載の高強度厚鋼板では、前記板厚1/4部の前記結晶粒界密度が500〜900mm/mm、前記板厚1/2部の前記結晶粒界密度が400〜800mm/mmであってもよい。
(7)上記(1)〜(6)のいずれか一項に記載の高強度厚鋼板では、前記Cuを0.5%以下、前記Niを1%以下、前記Crを0.5%以下、前記Moを0.2%以下、前記Vを0.07%以下、にさらに制限してもよい。
(8)上記(1)〜(7)のいずれか一項に記載の高強度厚鋼板では、前記Bを0.002%以下にさらに制限してもよい。
(9)上記(1)〜(8)のいずれか一項に記載の高強度厚鋼板では、前記Caを0.003%以下、前記Mgを0.003%以下、前記REMを0.003%以下にさらに制限してもよい。
(1) The high-strength thick steel plate according to one embodiment of the present invention is mass%, C: 0.04 to 0.16%, Si: 0.01 to 0.5%, Mn: 0.75 to 2. 5%, Al: 0.001-0.1%, Nb: 0.003-0.05%, Ti: 0.003-0.05%, N: 0.001-0.008%, P is 0.03% or less, S is 0.02% or less, Cu is 1% or less, Ni is 2% or less, Cr is 1% or less, Mo is 0.5% or less, V is 0.15% or less, B is 0.005% or less, Ca is 0.01% or less, Mg is 0.01% or less, REM is limited to 0.01% or less, and the balance contains iron and unavoidable impurities. Carbon equivalent Ceq. Has a component composition of 0.30 to 0.50%, and has a microstructure containing 70% or less ferrite in area ratio and 30% or more bainite in area ratio, and is ¼ of the plate thickness. Part, the crystal grain boundary density, which is the total length per unit area of the crystal grain boundary having a crystal orientation difference of 15 ° or more, is 400 to 1000 mm / mm 2 , and 15 ° to the plane perpendicular to the main rolling direction. The area ratio of the {100} plane forming an angle of within 10 to 40%, and at 1/2 part of the plate thickness, the grain boundary density is 300 to 900 mm / mm 2 and the main rolling direction The area ratio of the {110} plane forming an angle of 15 ° or less with respect to the plane perpendicular to the plane is 40 to 70%.
Ceq. = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5
... Formula A (2) The high-strength thick steel plate described in (1) above may have a thickness of 60 to 95 mm.
(3) The high-strength thick steel plate described in (1) or (2) above may have a yield stress of 390 to 690 MPa.
(4) In the high-strength thick steel plate according to any one of (1) to (3), the microstructure may contain pearlite having an area ratio of 10% or less.
(5) In the high-strength thick steel plate according to any one of (1) to (4), the microstructure has a ferrite area ratio of less than 50%, a pearlite area ratio of 5% or less, and a bainite area. The rate may be 50% or more.
(6) In the high-strength thick steel plate according to any one of the above (1) to (5), the grain boundary density of the ¼ part of the plate thickness is 500 to 900 mm / mm 2 , and the plate thickness 1 The crystal grain boundary density of / 2 parts may be 400 to 800 mm / mm 2 .
(7) In the high-strength thick steel sheet according to any one of (1) to (6), the Cu is 0.5% or less, the Ni is 1% or less, and the Cr is 0.5% or less. The Mo may be further limited to 0.2% or less, and the V may be further limited to 0.07% or less.
(8) In the high-strength thick steel plate according to any one of (1) to (7), B may be further limited to 0.002% or less.
(9) In the high-strength thick steel plate according to any one of (1) to (8), the Ca is 0.003% or less, the Mg is 0.003% or less, and the REM is 0.003%. You may further restrict | limit to the following.

本発明によれば、鋼板表面に平行な方向、例えば、圧延方向と垂直又は平行な方向のアレスト性に極めて優れ、かつ、板厚が厚くても強度が高く、HAZ靭性の劣化がない鋼板となるので、溶接鋼構造物の低コスト化や安全性向上を図ることが可能となる。   According to the present invention, a steel sheet that is extremely excellent in arrestability in a direction parallel to the surface of the steel sheet, for example, a direction perpendicular to or parallel to the rolling direction, has high strength even when the plate thickness is thick, and has no degradation of HAZ toughness Therefore, it is possible to reduce the cost and improve the safety of the welded steel structure.

本発明の一実施形態に係る鋼板に対し、写真左方向のVノッチから衝撃を加えて発生させたき裂伝播の態様を示す写真である。It is a photograph which shows the aspect of the crack propagation which generate | occur | produced and applied the impact from the V notch of the photograph left direction with respect to the steel plate which concerns on one Embodiment of this invention. 図1Aに示すき裂の破断面の写真である。It is a photograph of the fracture surface of the crack shown to FIG. 1A. 比較例に係る鋼板に対し、写真左方向のVノッチから衝撃を加えて発生させたき裂伝播の態様を示す写真である。It is a photograph which shows the aspect of the crack propagation which generate | occur | produced and applied the impact from the V notch of the photograph left direction with respect to the steel plate which concerns on a comparative example. 図2Aに示すき裂の破断面の写真である。It is a photograph of the fracture surface of the crack shown to FIG. 2A. 比較例に係る鋼板に対し、写真左方向のVノッチから衝撃を加えて発生させたき裂伝播の態様を示す写真である。It is a photograph which shows the aspect of the crack propagation which generate | occur | produced and applied the impact from the V notch of the photograph left direction with respect to the steel plate which concerns on a comparative example. 図3Aに示すき裂の破断面の写真である。It is a photograph of the fracture surface of the crack shown to FIG. 3A.

本発明者らは上記課題を解決するために鋭意研究し、その結果、高強度鋼板の成分組成、ミクロ組織、板厚方向の結晶粒界密度、および板厚方向の集合組織を制御することにより、熱間圧延時の生産性が高く且つ鋼板表面に平行な方向、例えば、圧延方向と垂直又は平行な方向のアレスト性を向上させた高強度鋼板が得られることを見出した。   The present inventors have intensively studied to solve the above problems, and as a result, by controlling the component composition, microstructure, grain boundary density in the plate thickness direction, and texture in the plate thickness direction of the high-strength steel plate. The present inventors have found that a high-strength steel sheet having high productivity during hot rolling and improved arrestability in a direction parallel to the steel sheet surface, for example, a direction perpendicular to or parallel to the rolling direction can be obtained.

以下、上述の知見に基づきなされた本発明の一実施形態に係る高強度厚鋼板(以下、単に鋼板と呼ぶ場合がある)について説明する。
本実施形態に係る鋼板は、成分組成と、ミクロ組織と、板厚方向の結晶粒界密度と、板厚方向の集合組織とを制御することにより、鋼板表面に平行な方向、例えば、圧延方向と垂直又は平行な方向のアレスト性を向上させる。
Hereinafter, a high-strength thick steel plate (hereinafter sometimes simply referred to as a steel plate) according to an embodiment of the present invention made based on the above-described knowledge will be described.
The steel sheet according to this embodiment controls the component composition, the microstructure, the grain boundary density in the plate thickness direction, and the texture in the plate thickness direction, thereby controlling the direction parallel to the steel plate surface, for example, the rolling direction. Improve the arrestability in the direction perpendicular to or parallel to.

(ミクロ組織)
本実施形態に係る鋼板は、フェライト及びベイナイトの混合組織、又は、フェライト、パーライト及びベイナイトの混合組織であり、フェライト面積率が70%以下、ベイナイト面積率が30%以上であるミクロ組織を有する。
フェライト面積率が70%超では、板厚が厚く強度が高い鋼板とすることが困難である。所望の板厚、強度の鋼板が得ることができれば、第二相としてベイナイト、又はパーライト及びベイナイトとすることが可能である。本発明は厚肉高強度鋼を対象としており、フェライト面積率の上限を50%未満、30%未満、20%未満又は10%未満に制限してもよい。
ベイナイト面積率が30%未満では、板厚が厚く強度が高い鋼板を得ることが困難である。フェライト面積率を確保し、脆性き裂伝播の障害となる結晶粒界を増加させるために、ベイナイト面積率の上限は95%であってもよい。本発明は厚肉高強度鋼を対象としており、ベイナイト面積率の下限を50%以上、60%以上、70%以上又は80%以上に制限してもよい。
パーライトは、所望の板厚、強度の鋼板が得ることができれば含有してもよい。従って、パーライト面積率を、10%以下、5%以下、又は3%以下に制限してもよい。パーライト面積率の下限は0%である。
フェライト、パーライト及びベイナイト以外に、微細な島状マルテンサイト(MA: Martensite−Austenite−Consituent)が存在していてもよいが、MA面積率は5%以下とする。MA面積率を3%以下、2%以下又は1%以下に制限してもよく、0%が最も望ましい。
(Micro structure)
The steel sheet according to the present embodiment is a mixed structure of ferrite and bainite, or a mixed structure of ferrite, pearlite, and bainite, and has a microstructure with a ferrite area ratio of 70% or less and a bainite area ratio of 30% or more.
If the ferrite area ratio is more than 70%, it is difficult to obtain a steel plate having a large plate thickness and high strength. If a steel plate having a desired thickness and strength can be obtained, bainite, pearlite and bainite can be used as the second phase. The present invention is intended for thick high-strength steel, and the upper limit of the ferrite area ratio may be limited to less than 50%, less than 30%, less than 20%, or less than 10%.
If the bainite area ratio is less than 30%, it is difficult to obtain a steel sheet having a large thickness and high strength. The upper limit of the bainite area ratio may be 95% in order to secure the ferrite area ratio and increase the crystal grain boundary that hinders brittle crack propagation. The present invention is intended for thick high-strength steel, and the lower limit of the bainite area ratio may be limited to 50% or more, 60% or more, 70% or more, or 80% or more.
Perlite may be contained as long as a steel plate having a desired thickness and strength can be obtained. Therefore, the pearlite area ratio may be limited to 10% or less, 5% or less, or 3% or less. The lower limit of the pearlite area ratio is 0%.
In addition to ferrite, pearlite, and bainite, fine island martensite (MA) may exist, but the MA area ratio is 5% or less. The MA area ratio may be limited to 3% or less, 2% or less, or 1% or less, and 0% is most desirable.

(板厚方向の結晶粒界密度)
アレスト性向上における支配因子は、結晶粒界の寄与が最も大きい。結晶粒界が脆性き裂伝播の障害となるからである。すなわち、結晶粒界においては隣接結晶粒間で結晶方位が異なるため、この部分においてき裂が伝播する方向が変化する。このため未破断領域が生じ、未破断領域によって応力が分散され、き裂閉口応力となる。従って、き裂伝播の駆動力が低下し、アレスト性が向上する。また、未破断領域が最終的に延性破壊するため、脆性破壊に要するエネルギーが吸収される。このため、アレスト性が向上する。
(Grain boundary density in the plate thickness direction)
The dominant factor in improving arrestability is the largest contribution of grain boundaries. This is because the crystal grain boundary becomes an obstacle to brittle crack propagation. That is, since the crystal orientation differs between adjacent crystal grains at the crystal grain boundary, the direction in which the crack propagates changes in this portion. For this reason, an unbroken region is generated, and the stress is dispersed by the unbroken region, resulting in a crack closing stress. Therefore, the driving force for crack propagation is reduced and the arrestability is improved. Further, since the unbroken region finally undergoes ductile fracture, energy required for brittle fracture is absorbed. For this reason, arrestability improves.

これまでは、この結晶粒界を増加させるために結晶粒径を細かくすることが必要であると考えられていた。フェライトが主体の組織では、その通りであるが、板厚が厚く高強度の鋼では、ベイナイトの利用が不可欠である。このベイナイトはフェライトと異なり、下部組織の形状が複雑であるため、結晶粒の定義が極めて難しい。このため、円相当径に換算して結晶粒径とアレスト性の関係を求めてもばらつきが大きく、アレスト性向上に必要な結晶粒径を決定することが困難であった。そこで、結晶粒界がき裂伝播の障害になるという基本原理に立ち返り、単位面積当たりの結晶粒界の総長さ(以下、結晶粒界密度という)を定義し、それを用いてアレスト性との関係を整理すると最も相関が良いことを知見した。   Until now, it was considered necessary to reduce the crystal grain size in order to increase the grain boundary. This is true in the structure mainly composed of ferrite, but the use of bainite is indispensable for steel with a large thickness and high strength. Unlike ferrite, this bainite has a complicated substructure, so it is very difficult to define crystal grains. For this reason, even if the relationship between the crystal grain size and the arrestability is calculated in terms of the equivalent circle diameter, the variation is large, and it is difficult to determine the crystal grain size necessary for improving the arrestability. Therefore, returning to the basic principle that the grain boundary becomes an obstacle to crack propagation, the total length of the grain boundary per unit area (hereinafter referred to as the grain boundary density) is defined and used to relate to the arrest property. We found that the best correlation was obtained by organizing

そこで、本実施形態に係る鋼板においては、
(A)板厚の1/4部において結晶粒界密度を400〜1000mm/mmとし、
(B)板厚の1/2部において結晶粒界密度を300〜900mm/mmとする。
ここで、「結晶粒界密度」とは、「結晶方位差が15°以上の結晶粒界の単位面積当たりの総長さ」を意味する。結晶方位差を15°以上とした理由は、15°未満では、結晶粒界が脆性き裂伝播の障害とはなり難く、アレスト性向上効果が減少するからである。
Therefore, in the steel sheet according to this embodiment,
(A) The grain boundary density is 400 to 1000 mm / mm 2 at ¼ part of the plate thickness,
(B) The grain boundary density is set to 300 to 900 mm / mm 2 at ½ part of the plate thickness.
Here, “crystal grain boundary density” means “total length per unit area of crystal grain boundaries having a crystal orientation difference of 15 ° or more”. The reason why the crystal orientation difference is set to 15 ° or more is that if it is less than 15 °, the crystal grain boundary is unlikely to be an obstacle to brittle crack propagation, and the effect of improving arrestability is reduced.

すなわち、結晶粒界密度が、板厚の1/4部、1/2部でそれぞれ400、300mm/mm以上とする要件を満足したときに−20℃におけるアレスト靭性値(Kca)が6000N・mm−0.5以上の高アレスト性を示す。さらに安定的にアレスト性を向上させるためには、結晶粒界密度を板厚の1/4部、1/2部でそれぞれ500、400mm/mm以上とすることが好ましく、またはそれぞれ600、400mm/mm以上とするとさらに好ましい。That is, the arrest toughness value (Kca) at −20 ° C. is 6000 N · when the grain boundary density satisfies the requirements of 400 and 300 mm / mm 2 or more at ¼ part and ½ part of the plate thickness, respectively. High arrestability of mm −0.5 or more is shown. In order to further improve the arrestability, the grain boundary density is preferably set to 500 or 400 mm / mm 2 or more at 1/4 part or 1/2 part of the plate thickness, or 600 or 400 mm, respectively. / Mm 2 or more is more preferable.

結晶粒界密度は増加するほどアレスト性は向上するが、過度に増加させることは圧延の負荷が大きくなり生産性を低下させてしまうので、結晶粒界密度の上限は、板厚の1/4部、1/2部でそれぞれ1000、900mm/mmとする。それぞれの上限を、それぞれ900、800mm/mm又はそれぞれ800、700mm/mmに制限してもよい。The arrestability improves as the grain boundary density increases, but excessively increasing the rolling load increases the productivity, so the upper limit of the grain boundary density is 1/4 of the plate thickness. Part and 1/2 part are 1000 and 900 mm / mm 2 , respectively. Each limit may be respectively limited 900,800mm / mm 2 or, respectively 800,700mm / mm 2.

結晶粒界密度を板厚の1/4部、1/2部で規定する理由は、極厚材のアレスト性向上のためには板厚全体の結晶粒界密度を増加させる必要があり、板厚の1/4部、1/2部を制御することで、板厚平均の結晶粒界密度の代表値とすることができるからである。尚、板厚の1/2部の結晶粒界密度を主に制御する後述の製造方法によれば、それ以外の板厚位置は、必然的に温度は低く、冷却速度は大きくなり、結晶粒界密度は増加する傾向になるので、特段数値を限定する必要はない。しかし、加熱の方法によっては、板厚方向に大きな温度勾配が発生して、板厚の1/4部と1/2部の結晶粒界密度が逆転する場合もあるので、敢えて数値を規定している。   The reason why the grain boundary density is defined by 1/4 part and 1/2 part of the plate thickness is that it is necessary to increase the grain boundary density of the entire plate thickness in order to improve the arrestability of the extra-thick material. This is because by controlling ¼ part and ½ part of the thickness, it is possible to obtain a representative value of the average grain thickness of the grain boundary. In addition, according to the manufacturing method described later that mainly controls the grain boundary density of 1/2 part of the plate thickness, the other plate thickness positions inevitably have a low temperature and a high cooling rate. Since the field density tends to increase, it is not necessary to limit the special value. However, depending on the heating method, a large temperature gradient may occur in the thickness direction, and the grain boundary density at 1/4 and 1/2 parts of the thickness may be reversed. ing.

結晶粒界の測定には、結晶方位の情報を広い視野で精度良く測定できるEBSD(Electron Back Scatter Diffraction pattern)法を用いることが好ましい。EBSD法を用いれば、ベイナイトのような複雑な組織の結晶粒界の同定も可能である。
より詳細には、結晶粒界密度は、EBSD法により、板厚の1/4部、及び1/2部の500μm×500μmの領域を1μmピッチで測定し、隣接粒との結晶方位差が15°以上の境界を結晶粒界と定義し、そのときの結晶粒界の総長を測定面積で除することによって求めることができる。
For the measurement of the crystal grain boundary, it is preferable to use an EBSD (Electron Back Scatter Diffraction Pattern) method capable of accurately measuring crystal orientation information with a wide field of view. By using the EBSD method, it is possible to identify a crystal grain boundary having a complicated structure such as bainite.
More specifically, the crystal grain boundary density was measured by measuring the area of 500 μm × 500 μm at ¼ part and ½ part of the plate thickness at 1 μm pitch by EBSD method, and the crystal orientation difference between adjacent grains was 15 It can be determined by defining a boundary of more than 0 ° as a grain boundary and dividing the total length of the grain boundary at that time by the measurement area.

(板厚方向の集合組織)
板厚が厚く高強度の鋼板の場合、板厚方向の結晶粒界密度の制御のみではアレスト性を安定的に向上させることが難しい。そこで、集合組織を活用したき裂伝播方向の制御が重要である。鋼板が外部応力を受けた際に該鋼板に発生する脆性き裂は{100}面のへき開面に沿って伝播する。従って、この外部応力と垂直な面に{100}面集合組織が発達すれば、上記のように結晶粒径を制御したときのアレスト性向上効果が減少してしまうことが判明した。外部応力は、鋼構造物に外的に付与される応力のことである。脆性き裂は、最も高い外部応力に垂直な方向に発生、伝播する場合が多い。したがって、ここでは、鋼構造物に外的に付与される最も高い応力のことを外部応力と定義する。一般的に外部応力は、鋼板の主圧延方向とほぼ平行に付与される。このため、外部応力に対して垂直な面を、鋼板の主圧延方向に対して垂直な面として取り扱うことができる。
尚、鋼板の主圧延方向については、例えば、鋼板表面をピクリン酸により腐食させ、旧オーステナイトのアスペクト比を測定することで特定可能である。すなわち、旧オーステナイトのアスペクト比が大きい方向を鋼板の主圧延方向として特定することができる。
(Texture in the thickness direction)
In the case of a high-strength steel plate having a large plate thickness, it is difficult to stably improve the arrestability only by controlling the grain boundary density in the plate thickness direction. Therefore, it is important to control the crack propagation direction using the texture. A brittle crack generated in the steel sheet when the steel sheet is subjected to external stress propagates along a {100} face cleavage plane. Therefore, it has been found that if the {100} plane texture develops in a plane perpendicular to the external stress, the effect of improving the arrestability when the crystal grain size is controlled as described above is reduced. External stress is a stress externally applied to a steel structure. Brittle cracks often occur and propagate in a direction perpendicular to the highest external stress. Therefore, here, the highest stress externally applied to the steel structure is defined as external stress. In general, the external stress is applied substantially parallel to the main rolling direction of the steel sheet. For this reason, a surface perpendicular to the external stress can be handled as a surface perpendicular to the main rolling direction of the steel sheet.
The main rolling direction of the steel sheet can be specified by, for example, corroding the steel sheet surface with picric acid and measuring the aspect ratio of prior austenite. That is, the direction in which the aspect ratio of the prior austenite is large can be specified as the main rolling direction of the steel sheet.

鋼板の主圧延方向に対し垂直な面に対し15°以内の角度をなす{110}面の集合組織が、板厚の1/2部において面積率で40〜70%になるようにすれば、1/2部近傍の脆性き裂が真っ直ぐ伝播せずにき裂が傾斜して伝播することにより、き裂伝播の駆動力を低減できることが判明した。しかしながら、板厚の1/2部以外の板厚部位にも同様な集合組織を発達させると、き裂は傾斜したまま伝播することになり、十分なアレスト性向上効果を発揮できない。そこで逆に、板厚の1/4部ではき裂を真っ直ぐ伝播させるために、板厚の1/4部において、鋼板の主圧延方向に対し垂直な面に対し15°以内の角度をなす{100}面の集合組織を面積率で10〜40%にすることにより、1/2部の傾斜したき裂伝播が1/2部以外の板厚部位にまで伝播することが抑制されることが判明した。   If the texture of the {110} plane forming an angle of 15 ° or less with respect to the plane perpendicular to the main rolling direction of the steel sheet is 40 to 70% in terms of the area ratio at 1/2 part of the plate thickness, It has been found that the driving force of crack propagation can be reduced by the fact that the brittle crack in the vicinity of ½ part does not propagate straight but propagates in an inclined manner. However, if a similar texture is developed in plate thickness parts other than 1/2 part of the plate thickness, the crack propagates in an inclined state, and a sufficient arrestability improving effect cannot be exhibited. Therefore, conversely, in order to propagate the crack straight at ¼ part of the plate thickness, an angle of 15 ° or less is formed with respect to a plane perpendicular to the main rolling direction of the steel plate at ¼ part of the plate thickness { By setting the texture of the 100} plane to 10 to 40% in terms of area ratio, it is possible to suppress the propagation of a ½ part inclined crack to a plate thickness part other than ½ part. found.

上述の知見に基づき、本実施形態に係る鋼板においては、
(C)板厚の1/4部において、主圧延方向に対し垂直な面に対し15°以内の角度をなす{100}面の面積率を10〜40%とし、
(D)板厚の1/2部において、主圧延方向に対し垂直な面に対し15°以内の角度をなす{110}面の面積率を40〜70%とする。
Based on the above knowledge, in the steel sheet according to the present embodiment,
(C) In the ¼ part of the plate thickness, the area ratio of the {100} plane that forms an angle within 15 ° with respect to the plane perpendicular to the main rolling direction is 10 to 40%,
(D) In the ½ part of the plate thickness, the area ratio of the {110} plane that forms an angle of 15 ° or less with respect to the plane perpendicular to the main rolling direction is 40 to 70%.

上述の(C)、(D)を満たすことで、図1A、図1Bに示すように、1/2部のき裂は傾斜して伝播し、且つ、1/4部のき裂は真っ直ぐに伝播することになり、より一層き裂の伝播抵抗が増加する。これにより、結晶粒界密度の増加によるアレスト性向上効果を発揮でき、アレスト性は十分な値を示すことできる。 尚、図1Aは、本発明の一実施形態に係る鋼板に対し、写真左方向のVノッチから衝撃を加えて発生させたき裂伝播の態様を示す写真であり、図1Bはそのき裂の破断面を示す写真である。
By satisfying the above (C) and (D), as shown in FIGS. 1A and 1B, the ½ part crack propagates in an inclined manner, and the ¼ part crack becomes straight. Propagation of the cracks is further increased. Thereby, the arrestability improvement effect by the increase in the crystal grain boundary density can be exhibited, and the arrestability can exhibit a sufficient value. FIG. 1A is a photograph showing a mode of crack propagation generated by applying an impact from a V-notch in the left direction of the steel plate according to one embodiment of the present invention, and FIG. 1B is a fracture view of the crack. It is a photograph which shows a cross section.

板厚の1/4部において、主圧延方向に対し垂直な面に対し15°以内の角度をなす{100}面の面積率を10%以上とする理由は、10%未満ではき裂を真っ直ぐ伝播させる効果が得られないためである。
また、板厚の1/4部において、主圧延方向に対し垂直な面に対し15°以内の角度をなす{100}面の面積率を40%以下とする理由は、図2A、2Bに示すように、40%超では1/2部よりも1/4部のき裂伝播が支配的となりき裂が真っ直ぐ伝播することによってアレスト性が低下してしまうからである。 尚、図2Aは、板厚の1/4部において、主圧延方向に対し垂直な面に対し15°以内の角度をなす{100}面の面積率を40%超とした鋼板に対し、写真左方向のVノッチから衝撃を加えて発生させたき裂伝播の態様を示す写真であり、図2Bはそのき裂の破断面を示す写真である。

板厚の1/4部における、主圧延方向に対し垂直な面に対し15°以内の角度をなす{100}面の面積率は、好ましくは13〜37%であり、さらに好ましくは、15〜35%である。
The reason why the area ratio of the {100} plane that forms an angle of 15 ° or less with respect to the plane perpendicular to the main rolling direction at ¼ part of the plate thickness is 10% or more is that the crack is straightened if it is less than 10%. This is because the effect of propagation cannot be obtained.
In addition, the reason why the area ratio of the {100} plane that forms an angle of 15 ° or less with respect to the plane perpendicular to the main rolling direction at ¼ part of the plate thickness is 40% or less is shown in FIGS. 2A and 2B. Thus, when it exceeds 40%, the crack propagation of ¼ part is more dominant than ½ part, and the arrest property is deteriorated by the propagation of the crack straight. Note that FIG. 2A is a photograph for a steel sheet with an area ratio of the {100} plane exceeding 40% at an angle of 15 ° or less with respect to a plane perpendicular to the main rolling direction at ¼ part of the plate thickness. FIG. 2B is a photograph showing an aspect of crack propagation generated by applying an impact from the left V-notch, and FIG. 2B is a photograph showing a fracture surface of the crack.

The area ratio of the {100} plane, which forms an angle of 15 ° or less with respect to the plane perpendicular to the main rolling direction, at ¼ part of the plate thickness is preferably 13 to 37%, more preferably 15 to 15%. 35%.

板厚の1/2部において、主圧延方向に対し垂直な面に対し15°以内の角度をなす{110}面の面積率を40%以上とする理由は、40%未満ではき裂を傾斜させて伝播させる効果が得られないためである。
また、板厚の1/2部において、主圧延方向に対し垂直な面に対し15°以内の角度をなす{110}面の面積率を70%以下とする理由は、図3A、図3Bに示すように、70%超では1/4部の抵抗を受けずに傾斜したまま伝播することによってアレスト性が低下してしまうからである。 尚、図3Aは、板厚の1/2部において、主圧延方向に対し垂直な面に対し15°以内の角度をなす{110}面の面積率を70%超とした鋼板に対し、写真左方向のVノッチから衝撃を加えて発生させたき裂伝播の態様を示す写真であり、図3Bはそのき裂の破断面を示す写真である。

板厚の1/2部において、主圧延方向に対し垂直な面に対し15°以内の角度をなす{110}面の面積率は、好ましくは、45〜65%であり、さらに好ましくは、40〜60%である。
The reason why the area ratio of the {110} plane that forms an angle of 15 ° or less with respect to the plane perpendicular to the main rolling direction in the ½ part of the plate thickness is 40% or more is that the crack is inclined if it is less than 40%. This is because the effect of propagating it is not obtained.
The reason why the area ratio of the {110} plane that forms an angle within 15 ° with respect to the plane perpendicular to the main rolling direction at ½ part of the plate thickness is 70% or less is shown in FIGS. 3A and 3B. As shown in the figure, when it exceeds 70%, the arrestability is deteriorated by propagating while being inclined without receiving a resistance of ¼ part. Note that FIG. 3A is a photograph for a steel sheet in which the area ratio of the {110} plane, which forms an angle of 15 ° or less with respect to the plane perpendicular to the main rolling direction, is more than 70% at 1/2 part of the plate thickness. FIG. 3B is a photograph showing an aspect of crack propagation generated by applying an impact from the left V-notch, and FIG. 3B is a photograph showing a fracture surface of the crack.

In the ½ part of the plate thickness, the area ratio of the {110} plane that forms an angle of 15 ° or less with respect to the plane perpendicular to the main rolling direction is preferably 45 to 65%, and more preferably 40%. ~ 60%.

集合組織はEBSD法により測定することが好ましい。EBSD法により測定する場合、X線による測定に比べて、より広い視野の集合組織を精度良く測定することが可能である。
より詳細には、EBSD法により、板厚の1/4部では鋼板の主圧延方向に対し垂直な面に対し15°以内の角度をなす{100}面、及び板厚の1/2部では{110}面のマップをそれぞれ作成し、その総面積を測定面積で除することによって、それらの面積率を求めることができる。
The texture is preferably measured by the EBSD method. When measuring by the EBSD method, it is possible to measure a texture having a wider field of view with higher accuracy than measurement by X-rays.
More specifically, according to the EBSD method, at {fraction (1/4)} of the plate thickness, the {100} plane forming an angle of 15 ° or less with respect to the plane perpendicular to the main rolling direction of the steel plate, By creating maps of {110} planes and dividing the total area by the measured area, the area ratio can be obtained.

上記のようなアレスト性向上のための方策は、降伏応力が390〜690MPa、引張強さが500〜780MPaである鋼板、及び板厚が60〜95mmの鋼板において適用可能である。この理由は、降伏応力が390MPa未満、又は板厚が60mm未満の領域では、本発明の手段に頼らずともアレスト性を向上させることは比較的容易であり、降伏応力が690MPa超、板厚が95mm超の領域では、本発明で規定する結晶粒界密度や集合組織を形成しても、力学的条件が厳しくなるため、−20℃におけるアレスト靭性値(Kca)が6000N・mm−0.5以上の高アレスト性とすることが難しいからである。降伏応力の下限を440MPa又は470MPaに、上限を640MPa又は590MPaに制限してもよい。引張強さの下限を520MPa、540MPa又は560MPaに、上限を730MPa、680MPa又は630MPaに制限してもよい。The measures for improving the arrestability as described above can be applied to a steel plate having a yield stress of 390 to 690 MPa, a tensile strength of 500 to 780 MPa, and a steel plate having a thickness of 60 to 95 mm. This is because in a region where the yield stress is less than 390 MPa or the plate thickness is less than 60 mm, it is relatively easy to improve the arrestability without relying on the means of the present invention, the yield stress exceeds 690 MPa, the plate thickness is In the region exceeding 95 mm, even if the grain boundary density and texture defined in the present invention are formed, the mechanical condition becomes severe, so the arrest toughness value (Kca) at −20 ° C. is 6000 N · mm −0.5. This is because it is difficult to achieve the above high arrestability. The lower limit of the yield stress may be limited to 440 MPa or 470 MPa, and the upper limit may be limited to 640 MPa or 590 MPa. The lower limit of the tensile strength may be limited to 520 MPa, 540 MPa, or 560 MPa, and the upper limit may be limited to 730 MPa, 680 MPa, or 630 MPa.

(成分組成)
以下、本実施形態に係る鋼板の成分組成について説明する。成分についての「%」は質量%を意味する。
(Component composition)
Hereinafter, the component composition of the steel plate according to the present embodiment will be described. “%” For a component means mass%.

C:0.04〜0.16%
Cは、厚手母材の強度と靭性を確保するために0.04%以上含有させる。Cの含有量が0.16%を超えると、良好なHAZ靭性を確保することが困難になるので、Cの含有量は、0.16%以下とする。
従って、Cの下限値は0.04%、好ましくは0.05%、より好ましくは0.06%であり、Cの上限値は0.16%、好ましくは0.14%、より好ましくは0.12%である。
C: 0.04 to 0.16%
C is contained in an amount of 0.04% or more in order to ensure the strength and toughness of the thick base material. If the C content exceeds 0.16%, it becomes difficult to ensure good HAZ toughness, so the C content is set to 0.16% or less.
Therefore, the lower limit value of C is 0.04%, preferably 0.05%, more preferably 0.06%, and the upper limit value of C is 0.16%, preferably 0.14%, more preferably 0. .12%.

Si:0.01〜0.5%
Siは、脱酸元素、及び強化元素として有効であるので、0.01%以上含有させる。Siの含有量が0.5%を超えると、HAZ靭性が大きく劣化するので、Siの含有量は0.5%以下とする。
従って、Siの下限値は0.01%、好ましくは0.03%、より好ましくは0.05%であり、Siの上限値は0.5%、好ましくは0.4%、より好ましくは0.35%又は0.3%である。
Si: 0.01 to 0.5%
Since Si is effective as a deoxidizing element and a strengthening element, it is contained in an amount of 0.01% or more. If the Si content exceeds 0.5%, the HAZ toughness is greatly deteriorated, so the Si content is 0.5% or less.
Accordingly, the lower limit of Si is 0.01%, preferably 0.03%, more preferably 0.05%, and the upper limit of Si is 0.5%, preferably 0.4%, more preferably 0. .35% or 0.3%.

Mn:0.75〜2.5%
Mnは、厚手母材の強度と靭性を経済的に確保するために0.75%以上含有させる。Mnの含有量が2.5%を超えると、中心偏析が顕著となり、中心偏析が生じた部分の母材とHAZの靭性が劣化するので、Mnの含有量は、2.5%以下とする。
従って、Mnの下限値は0.75%、好ましくは0.9%、より好ましくは1.2%であり、Mnの上限値は2.5%、好ましくは2.0%、より好ましくは1.8%又は1.6%である。
Mn: 0.75 to 2.5%
Mn is contained in an amount of 0.75% or more in order to economically secure the strength and toughness of the thick base material. If the Mn content exceeds 2.5%, the center segregation becomes prominent, and the toughness of the base material and the HAZ where the center segregation has occurred deteriorates, so the Mn content is 2.5% or less. .
Therefore, the lower limit value of Mn is 0.75%, preferably 0.9%, more preferably 1.2%, and the upper limit value of Mn is 2.5%, preferably 2.0%, more preferably 1%. .8% or 1.6%.

P:0.03%以下に制限
Pは、不純物元素の一つである。HAZ靭性を安定的に確保するために、Pの含有量を0.03%以下に制限してもよい。好ましくは、0.02%以下、さらに好ましくは、0.015%以下である。下限値は0%であるが、P含有量を低減させるためのコストを考慮し、0.0001%を下限値としてもよい。
P: Limited to 0.03% or less P is one of the impurity elements. In order to stably secure the HAZ toughness, the P content may be limited to 0.03% or less. Preferably, it is 0.02% or less, more preferably 0.015% or less. The lower limit value is 0%, but considering the cost for reducing the P content, 0.0001% may be set as the lower limit value.

S:0.02%以下に制限
Sは、不純物元素の一つである。母材の特性、及びHAZ靭性を安定的に確保するために、Sの含有量を0.02%以下に制限してもよい。好ましくは、0.01%以下、さらに好ましくは、0.008%以下である。下限値は0%であるが、S含有量を低減させるためのコストを考慮し、0.0001%を下限値としてもよい。
S: Limited to 0.02% or less S is one of the impurity elements. In order to stably ensure the characteristics of the base material and the HAZ toughness, the S content may be limited to 0.02% or less. Preferably, it is 0.01% or less, More preferably, it is 0.008% or less. The lower limit is 0%, but 0.0001% may be set as the lower limit in consideration of the cost for reducing the S content.

Al:0.001〜0.1%
Alは、脱酸を担い、不純物元素の一つであるOを低減する。Al以外に、MnやSiも脱酸に寄与する。しかし、MnやSiが添加される場合でも、Alの含有量が0.001%未満では、安定的にOを低減することはできない。ただし、Alの含有量が0.1%を超えると、アルミナ系の粗大酸化物やそのクラスターが生成し、母材とHAZ靭性が損なわれるので、Alの含有量は0.1%以下とする。
従って、Alの下限値は0.001%、好ましくは0.01%、より好ましくは0.015%であり、Alの上限値は0.1%、好ましくは0.08%、より好ましくは0.05%である。
Al: 0.001 to 0.1%
Al is responsible for deoxidation and reduces O, which is one of the impurity elements. In addition to Al, Mn and Si also contribute to deoxidation. However, even when Mn or Si is added, if the Al content is less than 0.001%, O cannot be stably reduced. However, if the Al content exceeds 0.1%, alumina-based coarse oxides and clusters thereof are generated, and the base material and the HAZ toughness are impaired. Therefore, the Al content is 0.1% or less. .
Accordingly, the lower limit of Al is 0.001%, preferably 0.01%, more preferably 0.015%, and the upper limit of Al is 0.1%, preferably 0.08%, more preferably 0. .05%.

Nb:0.003〜0.05%
Nbは、本発明において重要な元素である。所定の結晶粒界密度や集合組織を形成させるためには、未再結晶オーステナイト域での圧延が必要となる。Nbは未再結晶温度域を拡大させるために有効な元素であり、圧延温度を上昇させ、生産性向上にも寄与する。この効果を得るためには、0.003%以上含有させる必要がある。ただし、Nbの含有量が0.05%を超えるとHAZ靭性や溶接性が低下するので、Nbの含有量は、0.05%以下とする。
従って、Nbの下限値は0.003%、好ましくは0.005%、より好ましくは0.008%であり、Nbの上限値は0.05%、好ましくは0.025%、より好ましくは0.018%である。
Nb: 0.003 to 0.05%
Nb is an important element in the present invention. In order to form a predetermined grain boundary density and texture, rolling in an unrecrystallized austenite region is required. Nb is an effective element for expanding the non-recrystallization temperature range, and raises the rolling temperature and contributes to productivity improvement. In order to acquire this effect, it is necessary to make it contain 0.003% or more. However, if the Nb content exceeds 0.05%, the HAZ toughness and weldability deteriorate, so the Nb content is set to 0.05% or less.
Therefore, the lower limit value of Nb is 0.003%, preferably 0.005%, more preferably 0.008%, and the upper limit value of Nb is 0.05%, preferably 0.025%, more preferably 0. .018%.

Ti:0.003〜0.05%
Tiは、本発明において重要な元素である。Tiを含有させることによりTiNが形成され、鋼片加熱時にオーステナイト粒径が大きくなることを抑制する。オーステナイト粒径が大きくなると変態組織の結晶粒径も大きくなるため、所定の結晶粒界密度を得ることが困難となり、靭性、アレスト性が低下する。靭性、アレスト性を低下させないために必要な量の結晶粒界密度を得るためには、Tiを0.003%以上含有させる必要がある。しかし、Tiの含有量が0.05%を超えると、TiCが形成されHAZ靭性が低下するので、Tiの含有量は0.05%以下とする。
従って、Tiの下限値は0.003%、好ましくは0.006%、より好ましくは0.008%であり、Tiの上限値は0.05%、好ましくは0.02%、より好ましくは0.015%である。
Ti: 0.003 to 0.05%
Ti is an important element in the present invention. TiN is formed by containing Ti, and it suppresses that an austenite particle size becomes large at the time of steel bill heating. When the austenite grain size is increased, the crystal grain size of the transformed structure is also increased, so that it becomes difficult to obtain a predetermined grain boundary density, and toughness and arrestability are deteriorated. In order to obtain a necessary amount of grain boundary density so as not to lower toughness and arrestability, it is necessary to contain 0.003% or more of Ti. However, if the Ti content exceeds 0.05%, TiC is formed and the HAZ toughness decreases, so the Ti content is set to 0.05% or less.
Therefore, the lower limit value of Ti is 0.003%, preferably 0.006%, more preferably 0.008%, and the upper limit value of Ti is 0.05%, preferably 0.02%, more preferably 0. .015%.

N:0.001〜0.008%
Nは、本発明において重要な元素である。上記したようにTiNを形成し、鋼片加熱時にオーステナイト粒径が大きくなることを抑制するために、0.001%以上含有させる必要がある。しかし、Nの含有量が0.008%を超えると、鋼材が脆化するので、Nの含有量は、0.008%以下とする。
従って、Nの下限値は0.001%、好ましくは0.0015%、より好ましくは0.002%であり、Nの上限値は0.008%、好ましくは0.0065%、より好ましくは0.006%である。
N: 0.001 to 0.008%
N is an important element in the present invention. In order to form TiN as described above and suppress the austenite grain size from becoming large when the steel slab is heated, it is necessary to contain 0.001% or more. However, if the N content exceeds 0.008%, the steel material becomes brittle, so the N content is set to 0.008% or less.
Therefore, the lower limit value of N is 0.001%, preferably 0.0015%, more preferably 0.002%, and the upper limit value of N is 0.008%, preferably 0.0065%, more preferably 0. 0.006%.

本実施形態に係る鋼板の成分組成において、上述した元素の残部はFe及び不可避的不純物であればよい。ただし、本実施形態に係る鋼板の成分組成は、必要に応じてCu、Ni、Cr、Mo、V、B、Ca、Mg、REMの少なくとも1種を含有してもよい。これらの元素の含有量の下限値は0%であるが、添加による効果を安定して得るために下限値を設定してもよい。また、これらの元素が不純物レベルで微量含有されていても本発明では許容できる。以下、それぞれの元素の添加効果と含有量について説明する。これらの元素が意図的に添加されていたとしても、不可避的不純物としての混入であっても、その含有量が請求範囲内の鋼板は、本発明の請求範囲内と看做す。   In the component composition of the steel sheet according to the present embodiment, the balance of the elements described above may be Fe and inevitable impurities. However, the component composition of the steel plate according to the present embodiment may contain at least one of Cu, Ni, Cr, Mo, V, B, Ca, Mg, and REM as necessary. The lower limit value of the content of these elements is 0%, but a lower limit value may be set in order to stably obtain the effect of addition. Moreover, even if these elements are contained in trace amounts at the impurity level, it is acceptable in the present invention. Hereinafter, the addition effect and content of each element will be described. Even if these elements are intentionally added, even if they are mixed as unavoidable impurities, a steel sheet whose content is within the scope of claims is considered within the scope of the present invention.

Cu:0〜1%
Cuを添加することにより、母材の強度、及び靭性を向上することができる。
ただし、Cuの含有量が多すぎると、HAZ靭性や溶接性が悪化するため、1%を上限とする。Cuの下限値は0%であるが、添加効果を安定して得るために、下限値を0.1%としてもよい。
従って、Cuの下限値は0%である。母材の強度及び靭性の向上のために、その下限を0.1%又は0.2%としてもよい。HAZ靭性や溶接性の向上のため、Cuの上限値は、必要に応じて、1%、0.8%、0.5%、又は0.3%に制限してもよい。
Cu: 0 to 1%
By adding Cu, the strength and toughness of the base material can be improved.
However, if the Cu content is too large, the HAZ toughness and weldability deteriorate, so 1% is made the upper limit. The lower limit value of Cu is 0%, but the lower limit value may be 0.1% in order to stably obtain the effect of addition.
Therefore, the lower limit of Cu is 0%. In order to improve the strength and toughness of the base material, the lower limit may be 0.1% or 0.2%. In order to improve HAZ toughness and weldability, the upper limit value of Cu may be limited to 1%, 0.8%, 0.5%, or 0.3% as necessary.

Ni:0〜2%
Niを添加することにより、母材の強度、及び靭性を向上することができる。
ただし、Niの含有量が多すぎると、HAZ靭性や溶接性が悪化するため、2%を上限とする。Niの下限値は0%であるが、添加効果を安定して得るために、下限値を0.1%としてもよい。
従って、Niの下限値は0%である。母材の強度及び靭性の向上のために、その下限を0.1%又は0.2%としてもよい。Niの上限値は、必要に応じて、2%、1%、0.5%、又は0.3%に制限してもよい。
Ni: 0 to 2%
By adding Ni, the strength and toughness of the base material can be improved.
However, if the Ni content is too large, the HAZ toughness and weldability deteriorate, so 2% is made the upper limit. The lower limit value of Ni is 0%, but the lower limit value may be 0.1% in order to stably obtain the effect of addition.
Therefore, the lower limit of Ni is 0%. In order to improve the strength and toughness of the base material, the lower limit may be 0.1% or 0.2%. The upper limit value of Ni may be limited to 2%, 1%, 0.5%, or 0.3% as necessary.

Cr:0〜1%
Crを添加することにより、母材の強度、及び靭性を向上することができる。
ただし、Crの含有量が多すぎると、HAZ靭性や溶接性が悪化するため、1%を上限とする。Crの下限値は0%であるが、添加効果を安定して得るために、下限値を0.1%又は0.2%としてもよい。Crの上限値は、必要に応じて、1%、0.8%、0.5%、又は0.3%に制限してもよい。
Cr: 0 to 1%
By adding Cr, the strength and toughness of the base material can be improved.
However, if the Cr content is too high, the HAZ toughness and weldability deteriorate, so 1% is made the upper limit. Although the lower limit of Cr is 0%, the lower limit may be set to 0.1% or 0.2% in order to stably obtain the effect of addition. The upper limit value of Cr may be limited to 1%, 0.8%, 0.5%, or 0.3% as necessary.

Mo:0〜0.5%
Moを添加することにより、母材の強度、及び靭性を向上することができる。
ただし、Moの含有量が多すぎると、HAZ靭性や溶接性が悪化するため、0.5%を上限とする。Moの下限値は0%であるが、添加効果を安定して得るために、下限値を0.01%又は0.02%としてもよい。Moの上限値は、必要に応じて、0.5%、0.3%、0.2%、又は0.1%に制限してもよい。
Mo: 0 to 0.5%
By adding Mo, the strength and toughness of the base material can be improved.
However, if the Mo content is too large, the HAZ toughness and weldability deteriorate, so 0.5% is made the upper limit. Although the lower limit of Mo is 0%, the lower limit may be set to 0.01% or 0.02% in order to stably obtain the effect of addition. The upper limit value of Mo may be limited to 0.5%, 0.3%, 0.2%, or 0.1% as necessary.

V:0〜0.15%
Vを添加することにより、母材の強度、及び靭性を向上することができる。
ただし、Vの含有量が多すぎると、HAZ靭性や溶接性が悪化するため、0.15%を上限とする。Vの下限値は0%であるが、添加効果を安定して得るために、下限値を0.01%又は0.02%としてもよい。Vの上限値は、必要に応じて、0.15%、0.1%、0.07%、又は0.05%に制限してもよい。
V: 0 to 0.15%
By adding V, the strength and toughness of the base material can be improved.
However, if the V content is too large, the HAZ toughness and weldability deteriorate, so 0.15% is made the upper limit. The lower limit value of V is 0%, but the lower limit value may be 0.01% or 0.02% in order to stably obtain the effect of addition. The upper limit value of V may be limited to 0.15%, 0.1%, 0.07%, or 0.05% as necessary.

B:0〜0.005%
Bを添加することにより、母材の強度、及び靭性を向上することができる。
ただし、Bの含有量が多すぎると、HAZ靭性や溶接性が悪化するため、0.005%を上限とする。Bの下限値は0%であるが、添加効果を安定して得るために、下限値を0.0002%又は0.0003%としてもよい。Bの上限値は、必要に応じて、0.005%、0.003%、0.002%、又は0.001%に制限してもよい。
B: 0 to 0.005%
By adding B, the strength and toughness of the base material can be improved.
However, if the B content is too large, the HAZ toughness and weldability deteriorate, so 0.005% is made the upper limit. The lower limit value of B is 0%, but the lower limit value may be 0.0002% or 0.0003% in order to stably obtain the effect of addition. The upper limit value of B may be limited to 0.005%, 0.003%, 0.002%, or 0.001% as necessary.

Ca:0〜0.01%
Caを添加することにより、HAZ靭性が向上する。ただし、Caの含有量が多すぎると、HAZ靭性や溶接性が悪化するため、0.01%を上限とする。Caの下限値は0%であるが、添加効果を安定して得るために、下限値を0.0002%又は0.0003%としてもよい。Caの上限値は、必要に応じて、0.01%、0.005%、0.003%、又は0.001%に制限してもよい。
Ca: 0 to 0.01%
By adding Ca, the HAZ toughness is improved. However, if the Ca content is too large, the HAZ toughness and weldability deteriorate, so 0.01% is made the upper limit. The lower limit value of Ca is 0%, but the lower limit value may be 0.0002% or 0.0003% in order to stably obtain the addition effect. The upper limit value of Ca may be limited to 0.01%, 0.005%, 0.003%, or 0.001% as necessary.

Mg:0〜0.01%
Mgを添加することにより、HAZ靭性が向上する。ただし、Mgの含有量が多すぎると、HAZ靭性や溶接性が悪化するため、0.01%を上限とする。Mgの下限値は0%であるが、添加効果を安定して得るために、下限値を0.0002%又は0.0003%としてもよい。Mgの上限値は、必要に応じて、0.01%、0.005%、0.003%、又は0.001%に制限してもよい。
Mg: 0 to 0.01%
By adding Mg, the HAZ toughness is improved. However, if the Mg content is too large, the HAZ toughness and weldability deteriorate, so 0.01% is made the upper limit. The lower limit value of Mg is 0%, but the lower limit value may be 0.0002% or 0.0003% in order to stably obtain the effect of addition. The upper limit value of Mg may be limited to 0.01%, 0.005%, 0.003%, or 0.001% as necessary.

REM:0〜0.01%
REMを添加することにより、HAZ靭性が向上する。ただし、REMの含有量が多すぎると、HAZ靭性や溶接性が悪化するため、0.01%を上限とする。REMの下限値は0%であるが、添加効果を安定して得るために、下限値を0.0003%又は0.0005%としてもよい。REMの上限値は、必要に応じて、0.01%、0.005%、0.003%、又は0.001%に制限してもよい。
REM: 0 to 0.01%
By adding REM, HAZ toughness is improved. However, if the REM content is too large, the HAZ toughness and weldability deteriorate, so 0.01% is made the upper limit. The lower limit value of REM is 0%, but the lower limit value may be 0.0003% or 0.0005% in order to stably obtain the addition effect. The upper limit of REM may be limited to 0.01%, 0.005%, 0.003%, or 0.001% as necessary.

母材の強度、及び靭性向上などのために、上述の選択元素を意図的に添加することができる。しかし、合金コスト低減などのために、これらの選択元素を何ら添加しなくても差し支えない。これらの元素は、意図的に添加しない場合であっても、不可避的不純物として、Cu:0.1%以下、Ni:0.1%以下、Cr:0.1%以下、Mo:0.01%以下、V:0.01%以下、B:0.0002%以下、Ca:0.0003%以下、Mg:0.0003%以下、REM:0.0003%以下を、鋼中に含有し得る。   In order to improve the strength and toughness of the base material, the above-mentioned selective elements can be intentionally added. However, it is not necessary to add any of these selective elements in order to reduce alloy costs. Even if these elements are not intentionally added, Cu: 0.1% or less, Ni: 0.1% or less, Cr: 0.1% or less, Mo: 0.01 % Or less, V: 0.01% or less, B: 0.0002% or less, Ca: 0.0003% or less, Mg: 0.0003% or less, REM: 0.0003% or less can be contained in the steel. .

(炭素当量:0.30〜0.50%)
本実施形態に係る鋼板は、下記(1)式により求められる炭素当量Ceq.を、0.30〜0.50%とする。
Ceq.=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5
・・・(1)式
ここで、各成分は鋼板中に含有されている各成分の質量%である。
(Carbon equivalent: 0.30 to 0.50%)
The steel plate according to the present embodiment has a carbon equivalent Ceq. Is 0.30 to 0.50%.
Ceq. = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5
... (1) Formula Here, each component is the mass% of each component contained in the steel plate.

炭素当量が0.30%未満になると、高強度厚鋼板に要求される強度を満足できない。炭素当量が0.50%を超えると、高強度厚鋼板に要求されるアレスト性を満足できない。
従って、炭素当量の下限値は0.30%、好ましくは0.32%、より好ましくは0.34%、更に好ましくは0.36%であり、炭素当量の上限値は0.50%、好ましくは0.44%、より好ましくは0.42%、更に好ましくは0.40%である。
When the carbon equivalent is less than 0.30%, the strength required for the high-strength thick steel plate cannot be satisfied. When the carbon equivalent exceeds 0.50%, the arrestability required for the high-strength thick steel plate cannot be satisfied.
Therefore, the lower limit value of the carbon equivalent is 0.30%, preferably 0.32%, more preferably 0.34%, still more preferably 0.36%, and the upper limit value of the carbon equivalent is 0.50%, preferably Is 0.44%, more preferably 0.42%, still more preferably 0.40%.

次に、本実施形態に係る鋼板の好ましい製造方法について説明する。   Next, the preferable manufacturing method of the steel plate which concerns on this embodiment is demonstrated.

まず、所望の成分組成に調整した溶鋼を、転炉等を用いた公知の溶製方法で溶製し、連続鋳造等の公知の鋳造方法で鋼片とする。   First, molten steel adjusted to a desired component composition is melted by a known melting method using a converter or the like, and is made into a steel slab by a known casting method such as continuous casting.

鋼片を板厚中心温度が600℃以下まで冷却した後、雰囲気温度が1000〜1250℃の加熱炉に30〜600分装入し、板厚中心温度が950〜1150℃で抽出する。
冷却した鋼片の温度が600℃超での加熱炉への装入は、冷却中のオーステナイトからフェライトへの変態が完了していないため、加熱時のオーステナイトへの逆変態による細粒化効果が得られにくく、粗大なオーステナイト粒では圧延後の結晶粒界密度を増加させることが困難であるからである。好ましくは、500℃以下である。
加熱の雰囲気温度が1000℃未満では、十分加熱できず溶体化が不十分となる。雰囲気温度が1250℃を超えると、オーステナイト粒が粗大化し、その後の圧延過程で結晶粒界密度を増加させることが困難となる。好ましい雰囲気温度の範囲は、1050〜1200℃である。
加熱炉への装入時間が30分未満では、溶体化が不十分であり、600分超では、オーステナイト粒が粗大化するからである。好ましい装入時間の範囲は、40〜500分である。
加熱抽出時の板厚中心温度が950℃未満では、溶体化が不十分であるとともに、オーステナイト粒が微細化することにより焼入れ性が低下するため、板厚が厚く、強度が高い鋼板にすることが困難である。
加熱抽出時の板厚中心温度が1150℃を超えると、オーステナイト粒が粗大化し、その後の圧延過程で結晶粒界密度を増加させることが困難となり、さらに、圧延開始までの温度の低下を待つ時間が生じるので、生産性が低くなる。好ましい加熱抽出温度の範囲は、1000〜1100℃である。
After the steel piece is cooled to a plate thickness center temperature of 600 ° C. or lower, it is charged in a heating furnace having an ambient temperature of 1000 to 1250 ° C. for 30 to 600 minutes and extracted at a plate thickness center temperature of 950 to 1150 ° C.
The charging to the heating furnace with the temperature of the cooled slab exceeding 600 ° C. has not yet completed the transformation from austenite to ferrite during cooling, so there is a refining effect due to reverse transformation to austenite during heating. This is because it is difficult to obtain and it is difficult to increase the grain boundary density after rolling with coarse austenite grains. Preferably, it is 500 degrees C or less.
If the atmospheric temperature of heating is less than 1000 ° C., sufficient heating cannot be performed and solution formation becomes insufficient. When the atmospheric temperature exceeds 1250 ° C., austenite grains become coarse, and it becomes difficult to increase the grain boundary density in the subsequent rolling process. A preferable range of the atmospheric temperature is 1050 to 1200 ° C.
This is because, when the charging time into the heating furnace is less than 30 minutes, solution formation is insufficient, and when more than 600 minutes, austenite grains become coarse. A preferred charging time range is 40 to 500 minutes.
When the plate thickness center temperature during heat extraction is less than 950 ° C., the solution is not sufficiently formed, and the hardenability is reduced due to the refinement of the austenite grains. Therefore, the plate should be thick and have high strength. Is difficult.
When the plate thickness center temperature at the time of heat extraction exceeds 1150 ° C., austenite grains become coarse, and it becomes difficult to increase the grain boundary density in the subsequent rolling process, and furthermore, the time to wait for the temperature to drop until the start of rolling. As a result, productivity is lowered. The range of preferable heat extraction temperature is 1000-1100 degreeC.

次いで、板厚中心温度850超〜1150℃で、1パス圧下率が3〜30%を4〜15パス、3%未満を3パス以内(0を含む)、累積圧下率が15〜70%の粗圧延を施す。   Next, at a plate thickness center temperature of 850 to 1150 ° C., the 1-pass reduction rate is 3 to 30% for 4 to 15 passes, less than 3% is within 3 passes (including 0), and the cumulative reduction rate is 15 to 70%. Rough rolling is performed.

板厚中心温度が1150℃を超えると、その後の仕上圧延でも再結晶オーステナイト粒を微細にすることができない。板厚中心温度が850℃未満となると、生産性が低下する。好ましい板厚中心温度は900〜1000℃である。
1パス圧下率が3%未満では、オーステナイト粒が異常成長するので、極力避ける必要がある。ただし、1パス圧下率が3%未満の圧延を3パス以内に制限し、1パス圧下率が3〜30%の圧延を4パス以上施せば、十分再結晶による微細化ができる。ただし、30%超では圧延機の負荷が大きく、15パスを超えると生産性が低下するので、1パス圧下率は30%を上限とし、パス数は4〜15パスとする。1パス圧下率が5〜25%の圧延を6〜13パスとすることが好ましい。
粗圧延の累積圧下率を15〜70%とする理由は、累積圧下率が15%未満になると、オーステナイトの再結晶による微細化が困難であるとともに、ポロシティが残存し、内部割れや延性、及び靭性の劣化が発生する可能性があり、70%を超えると、パス数が増加して生産性が低下するからである。好ましい累積圧下率は、30〜60%である。
When the plate thickness center temperature exceeds 1150 ° C., the recrystallized austenite grains cannot be made fine even in the subsequent finish rolling. When the plate thickness center temperature is less than 850 ° C., the productivity is lowered. A preferable thickness center temperature is 900 to 1000 ° C.
If the one-pass rolling reduction is less than 3%, austenite grains grow abnormally, so it is necessary to avoid them as much as possible. However, if rolling with a 1-pass reduction rate of less than 3% is limited to 3 passes and rolling with a 1-pass reduction rate of 3 to 30% is performed for 4 passes or more, refinement by sufficient recrystallization can be achieved. However, if it exceeds 30%, the load on the rolling mill is large, and if the number of passes exceeds 15 passes, the productivity is lowered. Therefore, the 1-pass rolling reduction is 30% as the upper limit, and the number of passes is 4 to 15 passes. Rolling with a 1-pass reduction of 5 to 25% is preferably 6 to 13 passes.
The reason why the cumulative rolling reduction of rough rolling is 15 to 70% is that when the cumulative rolling reduction is less than 15%, it is difficult to refine by austenite recrystallization, the porosity remains, internal cracks and ductility, and This is because deterioration of toughness may occur, and if it exceeds 70%, the number of passes increases and productivity decreases. A preferred cumulative rolling reduction is 30 to 60%.

次いで、板厚中心温度が750〜850℃で4〜15パス、下記(2)式の形状比(m )の平均値が0.5〜1、累積圧下率が40〜80%の仕上圧延を施す。
=2{R(H j−1 −H )}1/2/(H j−1 +H )・・・(2)式
ここで、jは圧延パス数、m はjパス目の形状比、Rはロール半径(mm)、H はjパス後の板厚(mm)を表す。
Next, finish rolling with a sheet thickness center temperature of 750 to 850 ° C. and 4 to 15 passes, an average value of the shape ratio (m j ) of the following formula (2) is 0.5 to 1, and a cumulative reduction ratio is 40 to 80%. Apply.
m j = 2 {R (H j−1 −H j )} 1/2 / (H j−1 + H j ) (2) where j is the number of rolling passes and m j is the jth pass. , R represents a roll radius (mm), and H j represents a plate thickness (mm) after j passes.

板厚中心温度が850℃を超えると、未再結晶領域に十分入らず、転位の増加が抑制され、結晶粒界密度を増加することができない。板厚中心温度が750℃未満となると、生産性が低下する上に、加工フェライトを一部含むことから板厚の1/2部の鋼板の主圧延方向に対し垂直な面に対し15°以内の角度をなす{110}面の面積率を40%以上とすることが困難となる。好ましい板厚中心温度は760〜840℃である。4パス未満の圧延では、形状比が1以下を確保することが困難であり、15パスを超えると、生産性が低下する。好ましいパス数は、5〜13パスである。
(2)式の形状比は、圧延によって鋼板にどのようなひずみ成分が付与されるかを表す指標である。形状比が小さいとせん断ひずみ成分、大きいと圧縮ひずみ成分が多く付与される。この形状比変化によるひずみ成分の変化は、特に板厚の1/4部の集合組織の形成に大きな影響を及ぼすことから、その範囲を上記のように設定している。
形状比の平均値を0.5〜1とする理由は、板厚の1/4部において、0.5未満では、圧延のせん断ひずみが支配的となり、それによる{100}集合組織が発達し、鋼板の主圧延方向に対し垂直な面に対し15°以内の角度をなす{100}面の面積率を40%未満とすることが困難であり、1超では、圧延の圧縮ひずみが支配的となり、それによる{110}集合組織が発達するため、{100}面の面積率を10%超とすることが困難であるからである。好ましい形状比の平均値の範囲は、0.6〜0.9である。累積圧下率は、40%未満では転位の蓄積による結晶粒界密度の増加や規定の集合組織を発達させることが困難であり、80%超では転位の蓄積による結晶粒界密度の増加効果が飽和する上に、生産性が低下するので、40〜80%とする。好ましい累積圧下率の範囲は、45〜75%である。
When the plate thickness center temperature exceeds 850 ° C., it does not sufficiently enter the non-recrystallized region, the increase in dislocation is suppressed, and the crystal grain boundary density cannot be increased. When the sheet thickness center temperature is less than 750 ° C., the productivity is lowered and part of the processed ferrite is included, so that it is within 15 ° with respect to the plane perpendicular to the main rolling direction of the steel sheet having a half thickness. It is difficult to make the area ratio of the {110} plane forming the angle of 40% or more. A preferable thickness center temperature is 760 to 840 ° C. In rolling with less than 4 passes, it is difficult to ensure a shape ratio of 1 or less, and when it exceeds 15 passes, productivity decreases. A preferable number of passes is 5 to 13 passes.
The shape ratio of the equation (2) is an index representing what kind of strain component is imparted to the steel sheet by rolling. If the shape ratio is small, a large amount of shear strain component is applied, and if the shape ratio is large, a large amount of compressive strain component is applied. Since the change of the strain component due to the change in the shape ratio has a great influence on the formation of the texture having a quarter of the plate thickness, the range is set as described above.
The reason why the average value of the shape ratio is 0.5 to 1 is that, in 1/4 part of the plate thickness, if it is less than 0.5, the shear strain of rolling becomes dominant, and the {100} texture is developed. It is difficult to make the area ratio of the {100} plane that forms an angle of 15 ° or less with respect to a plane perpendicular to the main rolling direction of the steel sheet less than 40%. This is because the {110} texture is developed, and it is difficult to make the area ratio of the {100} plane more than 10%. The range of the average value of a preferable shape ratio is 0.6 to 0.9. If the cumulative rolling reduction is less than 40%, it is difficult to increase the grain boundary density due to the accumulation of dislocations and develop the specified texture. If the cumulative rolling reduction exceeds 80%, the effect of increasing the grain boundary density due to the accumulation of dislocations is saturated. In addition, the productivity is reduced, so 40 to 80%. A preferable range of the cumulative rolling reduction is 45 to 75%.

上記の熱間圧延に続いて、板厚中心温度が700℃以上から、2〜10℃/sの板厚中心冷却速度で、550℃以下の温度まで加速冷却を施す。   Subsequent to the hot rolling, accelerated cooling is performed from a sheet thickness center temperature of 700 ° C. or more to a temperature of 550 ° C. or less at a sheet thickness center cooling rate of 2 to 10 ° C./s.

冷却開始時の板厚中心温度が700℃未満になると、フェライト変態が進行し粗粒化するので、結晶粒界密度を増加させることが困難である。板厚中心冷却速度が2℃/s未満になると、結晶粒界密度を増加させることが困難になる。板厚中心冷却速度が10℃/sを超えることは、板厚60mm以上の鋼板では実現が難しいので、これを上限とする。冷却停止温度が550℃を超えると、結晶粒界密度を増加させることが困難になる。冷却停止温度の下限を規定する必要性は特にないが、水温以下の温度にはできないので、水温または室温を下限とする。好ましい加速冷却の条件は、冷却開始時の板厚中心温度720℃以上、冷却速度3〜8℃/s、冷却停止温度500℃以下である。   If the plate thickness center temperature at the start of cooling is less than 700 ° C., ferrite transformation proceeds and coarsens, so it is difficult to increase the grain boundary density. When the sheet thickness center cooling rate is less than 2 ° C./s, it is difficult to increase the grain boundary density. The plate thickness center cooling rate exceeding 10 ° C./s is difficult to achieve with a steel plate having a plate thickness of 60 mm or more, so this is the upper limit. When the cooling stop temperature exceeds 550 ° C., it is difficult to increase the grain boundary density. Although there is no particular need to define the lower limit of the cooling stop temperature, it cannot be a temperature lower than the water temperature. Preferred accelerated cooling conditions are a plate thickness center temperature at the start of cooling of 720 ° C. or higher, a cooling rate of 3 to 8 ° C./s, and a cooling stop temperature of 500 ° C. or lower.

なお、鋼板の板厚中心温度を用いて製造を制御することにより、本実施形態に係る鋼板を製造することができる。板厚中心温度を用いることにより、鋼板の表面温度を用いる場合と比べ、板厚が変化した場合などにも、適切に製造条件を制御することができ、材質のばらつきが小さい、品質のよい鋼板を効率よく製造することができる。   In addition, the steel plate which concerns on this embodiment can be manufactured by controlling manufacture using the plate | board thickness center temperature of a steel plate. By using the plate thickness center temperature, it is possible to properly control the manufacturing conditions even when the plate thickness changes compared to the case where the surface temperature of the steel plate is used. Can be manufactured efficiently.

圧延工程では、通常、加熱から圧延までの間、鋼板の表面温度等を測定しながら鋼板内部の温度分布を計算し、その温度分布の計算結果から圧延反力などを予測しながら、圧延の制御を行っている。このように、圧延中に鋼板中心温度を容易に求めることができる。加速冷却を行う場合も、同様に板厚内部の温度分布を予測しながら、加速冷却の制御を行っている。   In the rolling process, usually the temperature distribution inside the steel sheet is calculated while measuring the surface temperature of the steel sheet from heating to rolling, and the rolling control is performed while predicting the rolling reaction force from the calculation result of the temperature distribution. It is carried out. Thus, the steel plate center temperature can be easily obtained during rolling. In the case of performing accelerated cooling, the accelerated cooling is controlled while predicting the temperature distribution inside the plate thickness.

加速冷却を施した後、必要に応じて300〜650℃で焼戻しを行ってもよい。   After performing accelerated cooling, you may temper at 300-650 degreeC as needed.

300℃未満での焼戻しでは、焼戻しの効果が得られにくい。焼戻し温度が650℃を超えると、軟化量が大きくなり、強度の確保が困難になる。好ましい焼戻し温度は、400〜600℃である。   When tempering at less than 300 ° C., the effect of tempering is difficult to obtain. When the tempering temperature exceeds 650 ° C., the amount of softening increases and it becomes difficult to ensure the strength. A preferable tempering temperature is 400-600 degreeC.

本実施形態に係る鋼板は、板厚が60〜95mm、降伏応力が390〜690MPaの鋼板として適用可能である。特に、船体、及び海洋構造物用の降伏応力390MPa級、460MPa級またはそれ以上の強度の鋼板の製造に適用可能である。
以上のように本実施形態によれば、アレスト性を示す−20℃におけるKcaを6000N・mm−0.5以上にアレスト性を向上させることができる。また、製造コストが低く、生産性が高く、かつHAZ靭性の劣化がない、アレスト性に優れた高強度厚鋼板とすることができる。
The steel plate according to the present embodiment is applicable as a steel plate having a plate thickness of 60 to 95 mm and a yield stress of 390 to 690 MPa. In particular, the present invention is applicable to the production of steel sheets having a yield stress of 390 MPa class, 460 MPa class or higher for hulls and offshore structures.
As described above, according to the present embodiment, the arrestability can be improved so that Kca at −20 ° C., which exhibits arrestability, is 6000 N · mm −0.5 or more. Moreover, it can be set as the high strength thick steel plate which is low in manufacturing cost, has high productivity, has no HAZ toughness deterioration, and has excellent arrestability.

以下実施例に基づいて本発明の効果について説明する。
製鋼工程において溶鋼の成分組成を調整し、その後、連続鋳造によって鋼片A〜Zを製造した。鋼片A〜Oが発明鋼であり、鋼片P〜Zが比較鋼である。
The effects of the present invention will be described below based on examples.
The component composition of the molten steel was adjusted in the steel making process, and then the steel pieces A to Z were manufactured by continuous casting. Steel slabs A to O are invention steels, and steel slabs P to Z are comparative steels.

実施例1〜20、及び比較例21〜55では、鋼片A〜Zを再加熱し、さらに、厚板圧延を施して厚さが60〜95mmの厚鋼板とし、続いて、厚鋼板を水冷した。ただし、比較例53では、水冷の代わりに空冷を行った。その後、必要に応じて熱処理を行った。   In Examples 1 to 20 and Comparative Examples 21 to 55, the steel slabs A to Z were reheated and further subjected to thick plate rolling to obtain a thick steel plate having a thickness of 60 to 95 mm. Subsequently, the thick steel plate was water-cooled. did. However, in Comparative Example 53, air cooling was performed instead of water cooling. Thereafter, heat treatment was performed as necessary.

表1、表2に鋼片A〜Zの成分組成を示す。表1、表2の下線は、その数値が本発明の範囲外であることを示し、斜体は、不可避的不純物として含まれた量の分析値を示す。
表3〜6に製造方法を示す。圧延はロール半径600mmの圧延機を用いた。生産性は、加熱炉からの抽出時より、圧延が完了し冷却を開始するまでに要した時間で評価し、製造時間1000s未満を良好と規定した。表3〜6の下線は、好ましくない条件であること、または、生産性が上記の良好と規定した値を外れていることを示す。なお、製造方法における温度や冷却速度は、板厚中心位置の値であり、実測の表面温度から、公知の差分法による熱伝導解析により求めた。
Tables 1 and 2 show the composition of the steel pieces A to Z. The underline in Table 1 and Table 2 indicates that the numerical value is outside the range of the present invention, and the italic type indicates the analytical value of the amount contained as an unavoidable impurity.
Tables 3 to 6 show the production methods. For rolling, a rolling mill having a roll radius of 600 mm was used. Productivity was evaluated by the time required from the time of extraction from the heating furnace to the start of cooling after completion of rolling, and the production time of less than 1000 s was defined as good. Underlines in Tables 3 to 6 indicate that the conditions are not preferable, or that the productivity deviates from the value defined as good. The temperature and cooling rate in the manufacturing method are values at the center position of the plate thickness, and were obtained from the measured surface temperature by heat conduction analysis using a known differential method.

製造した各厚鋼板について、ミクロ組織相分率、集合組織、結晶粒界密度、及び機械的性質を測定した。   Each manufactured steel plate was measured for the microstructure fraction, texture, grain boundary density, and mechanical properties.

ミクロ組織相分率は、光学顕微鏡により板厚の1/2部を500倍の倍率でミクロ組織を撮影し、画像解析により各相の総面積を求め、測定面積で除することによって求めた。   The microstructure phase fraction was obtained by photographing the microstructure at a magnification of 500 times at 1/2 part of the plate thickness with an optical microscope, obtaining the total area of each phase by image analysis, and dividing by the measured area.

結晶粒界密度は、EBSD法により、板厚の1/4部、及び1/2部の500μm×500μmの領域を1μmピッチで測定し、隣接粒との結晶方位差が15°以上の境界を結晶粒界と定義し、そのときの結晶粒界の総長を測定面積で除することによって求めた。   The grain boundary density was measured by measuring the area of ¼ part and ½ part of the thickness of 500 μm × 500 μm at 1 μm pitch by EBSD method, and the boundary where the crystal orientation difference between adjacent grains was 15 ° or more. It was defined as a crystal grain boundary, and was obtained by dividing the total length of the crystal grain boundary at that time by the measurement area.

集合組織は、板厚の1/4部では鋼板の主圧延方向に対し垂直な面に対し15°以内の角度をなす{100}面、及び板厚の1/2部では{110}面のマップをそれぞれ作成し、その総面積を測定面積で除することによって、それらの面積率を求めた。
機械的性質のうち、母材の降伏応力、シャルピー吸収エネルギーは板厚中心部から採取した試験片を用いて試験を行い、その結果を各鋼板の代表値とした。
The texture is {100} plane that forms an angle of 15 ° or less with respect to the plane perpendicular to the main rolling direction of the steel sheet at ¼ part of the plate thickness, and {110} plane at ½ part of the plate thickness. Each map was created, and the total area was divided by the measured area to obtain the area ratio.
Among the mechanical properties, the yield stress and Charpy absorbed energy of the base material were tested using test pieces taken from the center of the plate thickness, and the results were used as representative values for each steel plate.

引張試験は、JIS Z 2241(1998年)の「金属材料引張試験方法」に準拠し、各2本を試験測定し、その平均値を求めた。引張試験片は、JIS Z 2201(1998年)の4号試験片とした。   The tensile test was carried out in accordance with “Metal Material Tensile Test Method” of JIS Z 2241 (1998), and two of them were tested and measured, and the average value was obtained. The tensile test piece was a No. 4 test piece of JIS Z 2201 (1998).

シャルピー吸収エネルギーは、2mmVノッチシャルピー衝撃試験片を用いて、JIS Z 2242(2005年)の「金属材料のシャルピー衝撃試験方法」に準拠し、−40℃で各3本を試験し、吸収エネルギーの平均値を求めた。   Charpy absorbed energy was tested in accordance with JIS Z 2242 (2005) “Charpy impact test method for metallic materials” using a 2 mm V notch Charpy impact test piece. The average value was obtained.

母材のアレスト性は、温度勾配型の標準ESSO試験(元厚及び板幅が500mm)により、−20℃におけるアレスト靭性値Kcaを求めた。   For the arrestability of the base material, the arrest toughness value Kca at −20 ° C. was determined by a temperature gradient type standard ESSO test (original thickness and plate width of 500 mm).

継手靭性は、溶接入熱が10kJ/mmのサブマージアーク溶接法により突き合わせ溶接継手を作製し、板厚の1/4部における溶融線(FL)に沿って2mmVノッチシャルピー衝撃試験片のノッチを入れ、−20℃で各3本の吸収エネルギーの平均値を求めた。シャルピー衝撃試験は、JIS Z 2242(2005年)の「金属材料のシャルピー衝撃試験方法」に準拠した。   As for joint toughness, a butt welded joint was produced by a submerged arc welding method with a welding heat input of 10 kJ / mm, and a notch of a 2 mm V-notch Charpy impact test piece was inserted along the fusion line (FL) at 1/4 part of the plate thickness. The average value of the absorbed energy of each three at -20 ° C. The Charpy impact test was based on “Charpy impact test method for metal materials” of JIS Z 2242 (2005).

実施例1〜20及び比較例21〜55の厚鋼板に対するこれらの測定結果を表7に示す。ここでは、シャルピー吸収エネルギーが100J以上、Kcaが6000N・mm−0.5以上を良好と規定した。
表7の下線は、条件が本発明の範囲外であること、または、鋼板の特性が、上記の良好と規定した値を外れていることを示す。
These measurement results for the thick steel plates of Examples 1 to 20 and Comparative Examples 21 to 55 are shown in Table 7. Here, it is defined that Charpy absorbed energy is 100 J or more and Kca is 6000 N · mm −0.5 or more.
The underline in Table 7 indicates that the conditions are out of the scope of the present invention, or that the characteristics of the steel sheet are outside the values defined as good.

実施例1〜20は、本発明の条件を全て満足するため、強度、靭性、アレスト性、継手靭性、及び生産性ともに良好である。   Since Examples 1-20 satisfy all the conditions of the present invention, the strength, toughness, arrestability, joint toughness, and productivity are all good.

比較例21〜55は、下線部の条件が本発明の範囲から外れるため、下記の点で良好な結果が得られなかった。   In Comparative Examples 21 to 55, the underlined condition was not within the scope of the present invention, so that good results were not obtained in the following points.

比較例21〜31は、成分範囲が本発明の範囲から外れるので、強度、靭性、アレスト性、継手靭性の少なくとも一つに問題があった。   Comparative Examples 21 to 31 had a problem in at least one of strength, toughness, arrestability, and joint toughness because the component range deviated from the scope of the present invention.

比較例32は、鋼片の加熱前温度が高すぎたので、結晶粒界密度が小さく、靭性、及びアレスト性が低かった。   In Comparative Example 32, the temperature before heating of the steel slab was too high, so the grain boundary density was low, and the toughness and arrestability were low.

比較例33は、加熱炉の雰囲気温度が高すぎたので、板厚の1/4部の結晶粒界密度が小さく、アレスト性が低かった。   In Comparative Example 33, since the atmosphere temperature of the heating furnace was too high, the crystal grain boundary density at ¼ part of the plate thickness was small, and the arrestability was low.

比較例34は、加熱時間が短すぎたので、結晶粒界密度が小さく、靭性、及びアレスト性が低かった。   In Comparative Example 34, since the heating time was too short, the grain boundary density was small, and the toughness and arrestability were low.

比較例35は、加熱時間が長すぎたので、結晶粒界密度が小さく、靭性、及びアレスト性が低かった。   In Comparative Example 35, since the heating time was too long, the grain boundary density was low, and the toughness and arrestability were low.

比較例36は、加熱抽出温度が高すぎたので、生産性が低く、結晶粒界密度が小さく、靭性、及びアレスト性が低かった。   In Comparative Example 36, the heat extraction temperature was too high, so the productivity was low, the crystal grain boundary density was low, and the toughness and arrestability were low.

比較例37は、加熱抽出温度が低すぎたので、フェライト分率が高く、強度が低かった。   In Comparative Example 37, since the heat extraction temperature was too low, the ferrite fraction was high and the strength was low.

比較例38は、粗圧延の3%未満のパス数が多すぎたので、結晶粒界密度が小さく、靭性、及びアレスト性が低かった。   In Comparative Example 38, since the number of passes of less than 3% in the rough rolling was too large, the grain boundary density was low, and the toughness and arrestability were low.

比較例39は、粗圧延の3〜30%のパス数が少なすぎたので、板厚の1/2部の結晶粒界密度が小さく、アレスト性が低かった。   In Comparative Example 39, since the number of passes of 3 to 30% in the rough rolling was too small, the grain boundary density at ½ part of the plate thickness was small, and the arrestability was low.

比較例40は、粗圧延の3〜30%のパス数が多すぎたので、生産性が著しく低かった。   Since the comparative example 40 had too many 3-30% passes of rough rolling, productivity was remarkably low.

比較例41は、加熱抽出温度が高く、それに伴い粗圧延温度が高すぎたので、結晶粒界密度が小さく、靭性、アレスト性、及び生産性が低かった。   In Comparative Example 41, the heat extraction temperature was high and the rough rolling temperature was too high. Accordingly, the grain boundary density was small, and the toughness, arrestability, and productivity were low.

比較例42は、粗圧延の累積圧下率が小さすぎたので、結晶粒界密度が小さく、靭性、及びアレスト性が低かった。   In Comparative Example 42, since the cumulative rolling reduction of rough rolling was too small, the grain boundary density was low, and the toughness and arrestability were low.

比較例43は、粗圧延の3〜30%のパス数が多く、それに伴い粗圧延の累積圧下率が大きすぎたので、生産性が著しく低かった。   In Comparative Example 43, the number of passes of 3 to 30% of the rough rolling was large, and the cumulative rolling reduction ratio of the rough rolling was excessively large. Accordingly, the productivity was remarkably low.

比較例44は、仕上圧延温度が高すぎたので、結晶粒界密度が小さく、靭性、及びアレスト性が低かった。   In Comparative Example 44, since the finish rolling temperature was too high, the grain boundary density was low, and the toughness and arrestability were low.

比較例45は、仕上圧延温度が低すぎたので、板厚の1/2部の{110}面積率が小さく、アレスト性、及び生産性が低かった。   In Comparative Example 45, since the finish rolling temperature was too low, the {110} area ratio of 1/2 part of the plate thickness was small, and the arrestability and productivity were low.

比較例46は、仕上圧延のパス数が少なく、それに伴い形状比が大きすぎたので、板厚の1/4部の{100}面積率が小さく、アレスト性が低かった。   In Comparative Example 46, the number of passes for finish rolling was small, and the shape ratio was too large. Accordingly, the {100} area ratio of ¼ part of the plate thickness was small, and the arrestability was low.

比較例47は、仕上圧延のパス数が多すぎたので、生産性が低かった。   Comparative Example 47 had low productivity because the number of finish rolling passes was too large.

比較例48は、仕上圧延の平均形状比が大きすぎたので、板厚の1/4部の{100}面積率が小さく、アレスト性が低かった。   In Comparative Example 48, since the average shape ratio of finish rolling was too large, the {100} area ratio of ¼ part of the plate thickness was small, and the arrestability was low.

比較例49は、仕上圧延の平均形状比が小さすぎたので、板厚の1/4部の{100}面積率が大きく、アレスト性が低かった。   In Comparative Example 49, since the average shape ratio of finish rolling was too small, the {100} area ratio of 1/4 part of the plate thickness was large, and the arrestability was low.

比較例50は、仕上圧延の累積圧下率が小さすぎたので、板厚の1/4部の{100}面積率、板厚の1/2部の{110}面積率、及び結晶粒界密度が小さく、靭性、及びアレスト性が低かった。   In Comparative Example 50, since the cumulative rolling reduction of finish rolling was too small, the {100} area ratio of ¼ part of the plate thickness, the {110} area ratio of ½ part of the plate thickness, and the grain boundary density The toughness and arrestability were low.

比較例51は、仕上圧延の累積圧下率が大きすぎたので、生産性が低かった。   In Comparative Example 51, since the cumulative rolling reduction of finish rolling was too large, the productivity was low.

比較例52は、冷却開始温度が低すぎたので、板厚の1/4部の{100}面積率、板厚の1/2部の{110}面積率、及び結晶粒界密度が小さく、強度、靭性、アレスト性、及び生産性が低かった。   In Comparative Example 52, since the cooling start temperature was too low, the {100} area ratio of ¼ part of the plate thickness, the {110} area ratio of ½ part of the plate thickness, and the grain boundary density were small. Strength, toughness, arrestability, and productivity were low.

比較例53は、空冷による冷却なので、板厚の1/4部の{100}面積率、板厚の1/2部の{110}面積率、及び結晶粒界密度が小さく、強度、靭性、及びアレスト性が低かった。   Since Comparative Example 53 is cooling by air cooling, the {100} area ratio of ¼ part of the plate thickness, the {110} area ratio of ½ part of the plate thickness, and the grain boundary density are small, and the strength, toughness, And arrestability was low.

比較例54は、冷却停止温度が高すぎたので、結晶粒界密度が小さく、靭性、及びアレスト性が低かった。   In Comparative Example 54, since the cooling stop temperature was too high, the grain boundary density was small, and the toughness and arrestability were low.

比較例55は、焼戻し温度が高すぎたので、強度が低かった。   Comparative Example 55 had a low strength because the tempering temperature was too high.

以上の実施例から、本発明を適用することにより、製造コストが低く、生産性が高く、強度が高く、板厚が厚く、かつHAZ靭性の劣化がない、アレスト性に優れた高強度厚鋼板を提供できることが確認された。   From the above examples, by applying the present invention, a high-strength thick steel plate having low arresting cost, high productivity, high strength, thick plate thickness, and no deterioration in HAZ toughness. It was confirmed that we can provide.

なお、本発明は上述した実施形態に限定されるものではない。本発明の主旨を逸脱しない範囲内で種々変更して実施することが可能である。   In addition, this invention is not limited to embodiment mentioned above. Various modifications can be made without departing from the spirit of the present invention.


本発明によれば、製造コストが低く、生産性が高く、強度が高く、板厚が厚く、かつHAZ靭性の劣化がない、アレスト性に優れた高強度厚鋼板を提供することができる。

According to the present invention, it is possible to provide a high-strength thick steel plate that is low in manufacturing cost, high in productivity, high in strength, thick in plate thickness, and free from deterioration of HAZ toughness and excellent in arrestability.

Claims (8)

質量%で、
C:0.04〜0.16%、
Si:0.01〜0.5%、
Mn:0.75〜2.5%、
Al:0.001〜0.1%、
Nb:0.003〜0.05%、
Ti:0.003〜0.05%、
N:0.001〜0.008%
を含有し、
Pが0.03%以下
Sが0.02%以下
Cuが1%以下、
Niが2%以下、
Crが1%以下、
Moが0.5%以下、
Vが0.15%以下、
Bが0.005%以下
Caが0.01%以下、
Mgが0.01%以下、
REMが0.01%以下
に制限され、
残部が鉄および不可避的不純物からなり
下記(1)式の炭素当量Ceq.が0.30〜0.50%である成分組成を有し、
面積率で70%以下のフェライトと、面積率で30%以上のベイナイトを含有するミクロ組織を有し、
板厚の1/4部では、結晶方位差が15°以上の結晶粒界の単位面積当たりの総長さである結晶粒界密度が400〜1000mm/mmであるとともに、主圧延方向に対し垂直な面に対し15°以内の角度をなす{100}面の面積率が10〜40%であり、
前記板厚の1/2部では、前記結晶粒界密度が300〜900mm/mmであるとともに、前記主圧延方向に対し垂直な面に対し15°以内の角度をなす{110}面の面積率が40〜70%であり、降伏応力が390MPa以上690MPa以下である
ことを特徴とする高強度厚鋼板。
Ceq.=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 ・・・(1)式
% By mass
C: 0.04 to 0.16%,
Si: 0.01 to 0.5%,
Mn: 0.75 to 2.5%,
Al: 0.001 to 0.1%,
Nb: 0.003 to 0.05%,
Ti: 0.003 to 0.05%,
N: 0.001 to 0.008%
Containing
P is 0.03% or less S is 0.02% or less Cu is 1% or less,
Ni is 2% or less,
Cr is 1% or less,
Mo is 0.5% or less,
V is 0.15% or less,
B is 0.005% or less, Ca is 0.01% or less,
Mg is 0.01% or less,
REM is limited to 0.01% or less,
And the balance of iron and inevitable impurities,
The carbon equivalent Ceq. Has a component composition of 0.30 to 0.50%,
Having a microstructure containing ferrite of 70% or less in area ratio and bainite of 30% or more in area ratio;
At 1/4 part of the plate thickness, the crystal grain boundary density, which is the total length per unit area of the crystal grain boundary with a crystal orientation difference of 15 ° or more, is 400 to 1000 mm / mm 2 and is perpendicular to the main rolling direction. The area ratio of the {100} plane that forms an angle of 15 ° or less with respect to the plane is 10 to 40%,
In the ½ part of the plate thickness, the area of the {110} plane forming the crystal grain boundary density of 300 to 900 mm / mm 2 and forming an angle of 15 ° or less with respect to the plane perpendicular to the main rolling direction. A high-strength thick steel plate characterized by having a rate of 40 to 70% and a yield stress of 390 MPa to 690 MPa .
Ceq. = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 (1)
前記板厚が60〜95mmであることを特徴とする請求項1に記載の高強度厚鋼板。   The high-strength thick steel plate according to claim 1, wherein the plate thickness is 60 to 95 mm. 前記ミクロ組織が、面積率で10%以下のパーライトを含有することを特徴とする請求項1または請求項2に記載の高強度厚鋼板。 The high-strength thick steel plate according to claim 1 or 2 , wherein the microstructure contains pearlite having an area ratio of 10% or less. 前記ミクロ組織が、フェライト面積率が50%未満で、パーライト面積率が5%以下で、ベイナイト面積率が50%以上であることを特徴とする請求項1〜のいずれか一項に記載の高強度厚鋼板。 The microstructure, ferrite area ratio is less than 50%, pearlite area ratio is 5% or less, bainite area ratio according to any one of claims 1 to 3, characterized in that 50% or more High strength thick steel plate. 前記板厚1/4部の前記結晶粒界密度が500〜900mm/mm
前記板厚1/2部の前記結晶粒界密度が400〜800mm/mm
であることを特徴とする請求項1〜のいずれか一項に記載の高強度厚鋼板。
The crystal grain boundary density of the plate thickness ¼ part is 500 to 900 mm / mm 2 ,
The grain boundary density of the plate thickness ½ part is 400 to 800 mm / mm 2
The high-strength thick steel plate according to any one of claims 1 to 4 , wherein:
前記Cuを0.5%以下、
前記Niを1%以下、
前記Crを0.5%以下、
前記Moを0.2%以下、
前記Vを0.07%以下、
にさらに制限することを特徴とする請求項1〜のいずれか一項に記載の高強度厚鋼板。
Cu is 0.5% or less,
Ni is 1% or less,
Cr is 0.5% or less,
Mo is 0.2% or less,
V is 0.07% or less,
The high-strength thick steel plate according to any one of claims 1 to 5 , further limited to:
前記Bを0.002%以下にさらに制限することを特徴とする請求項1〜のいずれか一項に記載の高強度厚鋼板。 The high-strength thick steel plate according to any one of claims 1 to 6 , wherein the B is further limited to 0.002% or less. 前記Caを0.003%以下、
前記Mgを0.003%以下、
前記REMを0.003%以下
にさらに制限することを特徴とする請求項1〜のいずれか一項に記載の高強度厚鋼板。
0.003% or less of the Ca,
Mg is 0.003% or less,
The high-strength thick steel plate according to any one of claims 1 to 7 , wherein the REM is further limited to 0.003% or less.
JP2013513475A 2012-04-06 2012-12-17 High strength steel plate with excellent arrestability Active JP5445720B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013513475A JP5445720B1 (en) 2012-04-06 2012-12-17 High strength steel plate with excellent arrestability

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012087384 2012-04-06
JP2012087384 2012-04-06
JP2013513475A JP5445720B1 (en) 2012-04-06 2012-12-17 High strength steel plate with excellent arrestability
PCT/JP2012/082669 WO2013150687A1 (en) 2012-04-06 2012-12-17 High-strength thick steel plate having excellent arrestability

Publications (2)

Publication Number Publication Date
JP5445720B1 true JP5445720B1 (en) 2014-03-19
JPWO2013150687A1 JPWO2013150687A1 (en) 2015-12-17

Family

ID=49300198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013513475A Active JP5445720B1 (en) 2012-04-06 2012-12-17 High strength steel plate with excellent arrestability

Country Status (5)

Country Link
JP (1) JP5445720B1 (en)
KR (1) KR101444646B1 (en)
CN (1) CN103958715B (en)
TW (1) TWI463018B (en)
WO (1) WO2013150687A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180038029A (en) 2015-09-18 2018-04-13 제이에프이 스틸 가부시키가이샤 High-strength thick steel plate for structural use and manufacturing method therefor
EP3495527A4 (en) * 2016-08-05 2019-12-25 Nippon Steel Corporation Steel sheet and plated steel sheet
EP3495528A4 (en) * 2016-08-05 2020-01-01 Nippon Steel Corporation Steel sheet and plated steel sheet
EP3495529A4 (en) * 2016-08-05 2020-01-01 Nippon Steel Corporation Steel sheet and plated steel sheet
EP3495530A4 (en) * 2016-08-05 2020-01-08 Nippon Steel Corporation Steel sheet and plated steel sheet
US10689737B2 (en) 2015-02-25 2020-06-23 Nippon Steel Corporation Hot-rolled steel sheet
US10752972B2 (en) 2015-02-25 2020-08-25 Nippon Steel Corporation Hot-rolled steel sheet
US10913988B2 (en) 2015-02-20 2021-02-09 Nippon Steel Corporation Hot-rolled steel sheet
US11401571B2 (en) 2015-02-20 2022-08-02 Nippon Steel Corporation Hot-rolled steel sheet

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6252291B2 (en) * 2014-03-26 2017-12-27 新日鐵住金株式会社 Steel sheet and manufacturing method thereof
CN107109590A (en) 2014-12-24 2017-08-29 Posco公司 The high strength steel and its manufacture method for the resistant expansibility excellent of resistance to brittle crack
KR101657827B1 (en) * 2014-12-24 2016-09-20 주식회사 포스코 Steel having excellent in resistibility of brittle crack arrestbility and manufacturing method thereof
WO2016105064A1 (en) 2014-12-24 2016-06-30 주식회사 포스코 High-strength steel having excellent resistance to brittle crack propagation, and production method therefor
WO2016105062A1 (en) * 2014-12-24 2016-06-30 주식회사 포스코 High-strength steel having excellent resistance to brittle crack propagation, and production method therefor
CN104694850B (en) * 2015-03-12 2017-03-15 东北大学 A kind of excellent steel plate of crack arrest characteristic and its manufacture method
JP6354790B2 (en) * 2015-05-29 2018-07-11 Jfeスチール株式会社 Manufacturing method of steel plate for high strength and high toughness steel pipe and steel plate for high strength and high toughness steel pipe
JP6620575B2 (en) * 2016-02-01 2019-12-18 日本製鉄株式会社 Thick steel plate and manufacturing method thereof
JP6766642B2 (en) * 2016-02-25 2020-10-14 日本製鉄株式会社 Steel sheet with excellent brittle crack propagation stop characteristics and its manufacturing method
JP6692200B2 (en) * 2016-03-31 2020-05-13 株式会社神戸製鋼所 Method for manufacturing mechanical clinch joint parts
JP6682967B2 (en) * 2016-04-06 2020-04-15 日本製鉄株式会社 Steel plate and method of manufacturing the same
JP6665659B2 (en) * 2016-04-21 2020-03-13 日本製鉄株式会社 Thick steel plate and manufacturing method thereof
CN107557662B (en) * 2016-06-30 2019-03-22 鞍钢股份有限公司 800MPa grades of low-cost and easy-to welding thick steel plates of quenching and tempering type and its production method
CN108660389B (en) * 2017-03-29 2020-04-24 鞍钢股份有限公司 High-strength thick steel plate with excellent crack resistance and manufacturing method thereof
CN109112419B (en) * 2017-06-26 2020-02-18 鞍钢股份有限公司 Quenched and tempered EH550 super-thick steel plate for ocean engineering and manufacturing method thereof
KR102131527B1 (en) * 2018-11-26 2020-07-08 주식회사 포스코 High-strength steel sheet with excellent durability and method for manufacturing thereof
US20220112569A1 (en) * 2019-02-15 2022-04-14 Nippon Steel Corporation Steel sheet and method for producing same
US20220259692A1 (en) * 2019-11-06 2022-08-18 Nippon Steel Corporation Hot-rolled steel sheet and method of manufacturing same
TWI719857B (en) * 2020-03-12 2021-02-21 日商杰富意鋼鐵股份有限公司 Steel and its manufacturing method and trough
WO2022045353A1 (en) * 2020-08-31 2022-03-03 日本製鉄株式会社 Steel sheet and method for manufacturing same
KR20220147126A (en) * 2020-08-31 2022-11-02 닛폰세이테츠 가부시키가이샤 Steel plate and its manufacturing method
CN112795840A (en) * 2020-12-24 2021-05-14 舞阳钢铁有限责任公司 690 MPa-grade steel plate and production method thereof
CN114672722A (en) * 2022-01-27 2022-06-28 唐山中厚板材有限公司 Steel plate for ship plate and production method thereof
CN114480809B (en) * 2022-04-18 2022-08-19 江苏省沙钢钢铁研究院有限公司 500 MPa-grade crack arrest steel plate and production method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302993A (en) * 2006-04-13 2007-11-22 Nippon Steel Corp High-strength steel plate with superior arrestability
JP2008169468A (en) * 2006-12-14 2008-07-24 Nippon Steel Corp High-strength thick steel plate having excellent brittle crack propagation-stopping performance
JP2010031309A (en) * 2008-07-25 2010-02-12 Kobe Steel Ltd Thick steel plate and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302993A (en) * 2006-04-13 2007-11-22 Nippon Steel Corp High-strength steel plate with superior arrestability
JP2008169468A (en) * 2006-12-14 2008-07-24 Nippon Steel Corp High-strength thick steel plate having excellent brittle crack propagation-stopping performance
JP2010031309A (en) * 2008-07-25 2010-02-12 Kobe Steel Ltd Thick steel plate and method for producing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11401571B2 (en) 2015-02-20 2022-08-02 Nippon Steel Corporation Hot-rolled steel sheet
US10913988B2 (en) 2015-02-20 2021-02-09 Nippon Steel Corporation Hot-rolled steel sheet
US10689737B2 (en) 2015-02-25 2020-06-23 Nippon Steel Corporation Hot-rolled steel sheet
US10752972B2 (en) 2015-02-25 2020-08-25 Nippon Steel Corporation Hot-rolled steel sheet
KR20180038029A (en) 2015-09-18 2018-04-13 제이에프이 스틸 가부시키가이샤 High-strength thick steel plate for structural use and manufacturing method therefor
EP3495529A4 (en) * 2016-08-05 2020-01-01 Nippon Steel Corporation Steel sheet and plated steel sheet
EP3495530A4 (en) * 2016-08-05 2020-01-08 Nippon Steel Corporation Steel sheet and plated steel sheet
US10889879B2 (en) 2016-08-05 2021-01-12 Nippon Steel Corporation Steel sheet and plated steel sheet
EP3495528A4 (en) * 2016-08-05 2020-01-01 Nippon Steel Corporation Steel sheet and plated steel sheet
US11230755B2 (en) 2016-08-05 2022-01-25 Nippon Steel Corporation Steel sheet and plated steel sheet
US11236412B2 (en) 2016-08-05 2022-02-01 Nippon Steel Corporation Steel sheet and plated steel sheet
EP3495527A4 (en) * 2016-08-05 2019-12-25 Nippon Steel Corporation Steel sheet and plated steel sheet
US11649531B2 (en) 2016-08-05 2023-05-16 Nippon Steel Corporation Steel sheet and plated steel sheet

Also Published As

Publication number Publication date
CN103958715B (en) 2015-09-16
TW201341543A (en) 2013-10-16
KR101444646B1 (en) 2014-09-26
KR20140079861A (en) 2014-06-27
TWI463018B (en) 2014-12-01
JPWO2013150687A1 (en) 2015-12-17
WO2013150687A1 (en) 2013-10-10
CN103958715A (en) 2014-07-30

Similar Documents

Publication Publication Date Title
JP5445720B1 (en) High strength steel plate with excellent arrestability
EP3042976B1 (en) Steel sheet for thick-walled high-strength line pipe having exceptional corrosion resistance, crush resistance properties, and low-temperature ductility, and line pipe
JP5522084B2 (en) Thick steel plate manufacturing method
JP5679091B1 (en) Hot-rolled steel sheet and manufacturing method thereof
KR101668546B1 (en) High strength steel plate having low yield ratio excellent in terms of strain ageing resistance, method for manufacturing the same and high strength welded steel pipe made of the same
WO2013145770A1 (en) Low yield ratio high-strength steel plate having superior strain aging resistance, production method therefor, and high-strength welded steel pipe using same
JP5418251B2 (en) Manufacturing method of thick-walled high-tensile hot-rolled steel sheet with excellent HIC resistance
JP5499731B2 (en) Thick high-tensile hot-rolled steel sheet with excellent HIC resistance and method for producing the same
JP4897126B2 (en) Thick steel plate manufacturing method
JPWO2011096456A1 (en) Thick steel plate manufacturing method
JP5413537B2 (en) High strength steel plate and high strength steel pipe excellent in deformation performance and low temperature toughness, and methods for producing them
JP5991175B2 (en) High-strength steel sheet for line pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP2010202931A (en) High-strength thick steel plate for structure excellent in brittle crack propagation arrest property, and method for producing the same
WO2014175122A1 (en) H-shaped steel and method for producing same
WO2016157863A1 (en) High strength/high toughness steel sheet and method for producing same
JP6241570B2 (en) High strength steel and method for manufacturing the same, steel pipe and method for manufacturing the steel pipe
JP5064149B2 (en) High strength thick steel plate with excellent brittle crack propagation stopping performance and method for producing the same
JP4341395B2 (en) High strength steel and weld metal for high heat input welding
JP5812193B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5991174B2 (en) High-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP5668668B2 (en) Steel with excellent toughness of weld heat affected zone, welded joint, and method for manufacturing welded joint
JP7048378B2 (en) High strength and high ductility steel sheet
JP2018076573A (en) Steel plate excellent brittle crack propagation stopping characteristics and manufacturing method therefor
WO2017145651A1 (en) High strength ultra-thick steel plate having excellent brittle crack propagation stopping characteristics and manufaturing method of same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

R151 Written notification of patent or utility model registration

Ref document number: 5445720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350