JP2011052244A - METHOD FOR MANUFACTURING THICK HIGH-STRENGTH STEEL SHEET HAVING SUPERIOR CHARACTERISTICS OF STOPPING PROPAGATION OF BRITTLE CRACK SHEET AND SHEET THICKNESS OF 50-125 mm - Google Patents

METHOD FOR MANUFACTURING THICK HIGH-STRENGTH STEEL SHEET HAVING SUPERIOR CHARACTERISTICS OF STOPPING PROPAGATION OF BRITTLE CRACK SHEET AND SHEET THICKNESS OF 50-125 mm Download PDF

Info

Publication number
JP2011052244A
JP2011052244A JP2009199907A JP2009199907A JP2011052244A JP 2011052244 A JP2011052244 A JP 2011052244A JP 2009199907 A JP2009199907 A JP 2009199907A JP 2009199907 A JP2009199907 A JP 2009199907A JP 2011052244 A JP2011052244 A JP 2011052244A
Authority
JP
Japan
Prior art keywords
temperature
steel
steel sheet
thickness
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009199907A
Other languages
Japanese (ja)
Inventor
Hiroyuki Shirahata
浩幸 白幡
Masaaki Fujioka
政昭 藤岡
Ryuji Uemori
龍治 植森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009199907A priority Critical patent/JP2011052244A/en
Publication of JP2011052244A publication Critical patent/JP2011052244A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which can industrially stably and effectively manufacture a thick high-strength steel sheet that has sufficient arrestability as a large-scale structural steel, superior characteristics of stopping the propagation of a brittle crack and a sheet thickness of 50-125 mm. <P>SOLUTION: This manufacturing method includes: heating a steel slab having an appropriate chemical composition to 950-1,150°C; rough-rolling the steel slab with a cumulative rolling reduction of 30% or more at 900°C or higher; finish-rolling the rough-rolled material with a cumulative rolling reduction of 40% or more within a surface temperature range of Ar<SB>3</SB>-60°C to Ar<SB>3</SB>; subsequently acceleration-cooling the finish-rolled material to 200°C or lower with a cooling rate of 8°C/s or more by average in a sheet thickness; subsequently heating the steel sheet with a temperature-raising rate of 1°C/s or more on the surface while keeping the surface of the steel sheet at a higher temperature than that in the central part in the sheet thickness direction by 30°C or higher; stopping heating when the surface of the steel sheet has reached 400-650°C; and tempering the steel sheet on the condition of keeping the surface at 400-650°C. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、脆性き裂伝播停止特性(以下、アレスト性とも言う)に優れた厚手高強度鋼板(以下、厚手高強度高アレスト鋼板または単に高アレスト鋼板とも言う)の製造方法に関し、特に、板厚50mm以上の厚手材(以下、単に厚手材とも言う)で、降伏強度355〜460MPa級でも、Kca=6000N/mm1.5となる温度(以下、アレスト性指標TKca=6000とも言う)が−10℃以下となる、脆性き裂伝播停止特性に優れた、板厚50〜125mmの厚手高強度鋼板の製造方法に関する。本発明を適用した鋼板は、特に、造船、建築、橋梁、タンク、海洋構造物等の溶接構造物に適用され、また、鋼管、コラム等に加工した二次加工品として流通する場合もある。 The present invention relates to a method for producing a thick high strength steel plate (hereinafter also referred to as a thick high strength high arrest steel plate or simply a high arrest steel plate) excellent in brittle crack propagation stopping characteristics (hereinafter also referred to as arrestability). A thick material with a thickness of 50 mm or more (hereinafter also simply referred to as a thick material), and a yield strength of 355 to 460 MPa class has a temperature at which Kca = 6000 N / mm 1.5 (hereinafter also referred to as arrest property index T Kca = 6000 ). The present invention relates to a method for producing a thick high-strength steel sheet having a thickness of 50 to 125 mm, which has excellent brittle crack propagation stopping characteristics at -10 ° C or lower. The steel plate to which the present invention is applied is particularly applied to welded structures such as shipbuilding, architecture, bridges, tanks, and offshore structures, and may be distributed as secondary processed products processed into steel pipes, columns, and the like.

近年、鋼構造物の大型化にともない、使用される鋼材の厚手高強度化とともに、安全性確保の観点から脆性き裂伝播停止特性への要求が厳しくなってきている。しかしながら、一般に、鋼材の強度や板厚が大きくなると、アレスト性の確保は急激に困難さを増すことから、鋼構造物への厚手高強度鋼板の適用を阻害する要因となっている。また、これと同時に、需要側の短納期化に対する要望も年々大きくなっていることから、鋼板製造工程における生産性向上が強く望まれている。   In recent years, with the increase in the size of steel structures, the demand for brittle crack propagation stopping characteristics has become stricter from the viewpoint of ensuring safety, along with the increase in thickness and strength of steel materials used. However, generally, as the strength and thickness of the steel material increase, securing arrestability increases rapidly, which is a factor that hinders the application of thick high-strength steel plates to steel structures. At the same time, demands for shortening the delivery time on the demand side are increasing year by year, and thus there is a strong demand for improving productivity in the steel sheet manufacturing process.

鋼材のアレスト性を向上させる冶金学的な要因としては、(i)結晶粒微細化、(ii)Ni添加、(iii)脆化第二相制御、(iv)集合組織制御等が知られている。
(i)の結晶粒を微細化する方法としては、例えば、特許文献1に記載された技術が挙げられる。これは、Ar点以上の未再結晶域で圧下率50%以上の圧延を施した後、700〜750℃の範囲で30〜50%の二相域圧延を行う方法である。また、鋼板の結晶粒を微細化する特殊な方法としては、圧延前または粗圧延終了後に鋼片表面を冷却し、内部との温度差をつけたまま復熱過程で圧延を行い、表層部のフェライト(α)を再結晶によって細粒化させる方法が、例えば、特許文献2、3に記載されている。
Known metallurgical factors for improving the arrestability of steel materials include (i) grain refinement, (ii) Ni addition, (iii) embrittlement second phase control, (iv) texture control, and the like. Yes.
Examples of the method (i) for refining crystal grains include the technique described in Patent Document 1. This is a method of performing 30 to 50% two-phase rolling in the range of 700 to 750 ° C. after rolling at a reduction rate of 50% or more in an unrecrystallized region of Ar 3 points or more. In addition, as a special method for refining the crystal grains of the steel sheet, the steel slab surface is cooled before rolling or after completion of rough rolling, and rolled in the recuperation process while maintaining a temperature difference from the inside. For example, Patent Documents 2 and 3 describe methods for refining ferrite (α) by recrystallization.

(ii)のNi添加については、低温域における交差すべりを助長することで、脆性き裂の伝播を抑制し(例えば、非特許文献1を参照)、マトリクスのアレスト性を向上させるということが報告されている(例えば、非特許文献2を参照)。
(iii)の脆化第二相を制御する方法としては、例えば、特許文献4に記載された技術が挙げられる。これは、母相のα中に脆化相であるマルテンサイトを微細分散させる技術である。
(iv)の集合組織制御に関しては、極低炭素のベイナイト鋼で低温大圧下圧延を行い、圧延面に並行に(211)面を発達させる方法が、例えば、特許文献5に記載されている。
Regarding Ni addition in (ii), it is reported that by promoting cross-slip in a low temperature region, the propagation of brittle cracks is suppressed (see, for example, Non-Patent Document 1) and the arrestability of the matrix is improved. (For example, see Non-Patent Document 2).
As a method for controlling the embrittled second phase of (iii), for example, the technique described in Patent Document 4 can be mentioned. This is a technique in which martensite, which is an embrittled phase, is finely dispersed in α of the matrix.
Regarding the texture control of (iv), for example, Patent Document 5 describes a method of performing low-temperature, large-pressure rolling with ultra-low carbon bainitic steel and developing the (211) plane in parallel with the rolled surface.

特開平02−129318号公報Japanese Patent Laid-Open No. 02-129318 特公平06−004903号公報Japanese Patent Publication No. 06-004903 特開2003−221619号公報JP 2003-221619 A 特開昭59−047323号公報JP 59-047323 A 特開2002−241891号公報JP 2002-241891 A

田村今男著、「鉄鋼材料強度学」、日刊工業新聞社発行、1969年7月5日、p.125Tamura Imao, “Steel Material Strength Science”, published by Nikkan Kogyo Shimbun, July 5, 1969, p. 125 長谷部、川口、「テーパ形DCB試験によるNi添加鋼板の脆性破壊伝播停止特性について」、鉄と鋼、vol.61(1975)、p.875Hasebe, Kawaguchi, “About the brittle fracture propagation stop property of Ni-added steel sheet by taper type DCB test”, iron and steel, vol. 61 (1975), p. 875

しかしながら、特許文献1に記載された方法は、ミクロ組織がα主体で強度が比較的低く、板厚も20mm程度の低温用鋼を対象としたものである。このため、本発明が対象とするような板厚50mm以上の厚手材に適用する場合には、スラブ厚の観点から、そもそも圧下率確保が困難となり、温度待ち時間が長くなって生産性が著しく低下してしまうという問題がある。   However, the method described in Patent Document 1 is intended for low-temperature steel having a microstructure that is mainly α, a relatively low strength, and a plate thickness of about 20 mm. For this reason, when applied to a thick material having a thickness of 50 mm or more as the object of the present invention, it is difficult in the first place to secure a reduction ratio from the viewpoint of the slab thickness, and the temperature waiting time becomes longer and the productivity is remarkably increased. There is a problem that it falls.

また、特許文献2、3に記載された発明を、本発明が対象とするような厚手材に適用しようとする場合には、復熱過程での圧延の累積圧下率を十分確保する必要があり、生産性を大きく阻害するという問題がある。さらに、粗圧延の圧下率が不十分となり、オーステナイト(γ)が十分に細粒化せず、表層領域直下において粗大なαが生成し、アレスト性が低下してしまうという問題がある。   In addition, when the inventions described in Patent Documents 2 and 3 are to be applied to thick materials as the subject of the present invention, it is necessary to ensure a sufficient cumulative rolling reduction ratio in the recuperation process. There is a problem that productivity is greatly hindered. Furthermore, there is a problem that the rolling reduction of rough rolling becomes insufficient, austenite (γ) is not sufficiently finely divided, coarse α is generated immediately below the surface layer region, and arrestability is lowered.

また、上記(ii)のように、Ni添加によって所望のアレスト性を有する鋼板を製造する場合には、合金コストがかかりすぎるという問題がある。
また、厚手材の板厚中心部では達成しうる冷却速度に限界があるため、特許文献4に記載された発明のように、マルテンサイトを微細に分散させることは困難である。
また、特許文献5に記載された発明は、C量が0.03%以下であるため、製鋼コストが増大するとともに、未再結晶γ域での圧下率を75%以上とした場合には、生産性が極端に低下してしまい、工業的生産には適さないという問題がある。
Moreover, when manufacturing the steel plate which has desired arrestability by Ni addition like said (ii), there exists a problem that an alloy cost takes too much.
Further, since there is a limit to the cooling rate that can be achieved at the center of the plate thickness of the thick material, it is difficult to finely disperse martensite as in the invention described in Patent Document 4.
Moreover, since the invention described in Patent Document 5 has a C content of 0.03% or less, the steelmaking cost increases, and when the rolling reduction in the non-recrystallized γ region is 75% or more, There is a problem that productivity is extremely lowered and it is not suitable for industrial production.

上述したように、本発明が対象とする、板厚が50mm以上の厚手材で、降伏強度が355〜460MPa級でもアレスト性指標TKca=6000が−10℃以下となる、大型構造物に適用可能な高アレスト鋼板を、安定的かつ効率的に製造する技術はいまだ確立されていない。 As described above, the present invention is applied to a large structure having a thickness of 50 mm or more and an arrestability index T Kca = 6000 of −10 ° C. or less even when the yield strength is 355 to 460 MPa. A technology for stably and efficiently producing a possible high arrested steel sheet has not yet been established.

本発明は上記事情に鑑みてなされたものであり、大型構造用鋼として十分なアレスト性を有し、しかも工業的に安定的かつ効率的な製造が可能な、脆性き裂伝播停止特性に優れた厚手高強度鋼板の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, has sufficient arrestability as a large structural steel, and is excellent in brittle crack propagation stopping characteristics that can be industrially stable and efficient. An object of the present invention is to provide a method for producing a thick and high-strength steel sheet.

本発明は、上記課題を解決し得る脆性き裂伝播停止特性に優れた、板厚50〜125mmの厚手高強度鋼板の製造方法であり、その要旨とするところは次の通りである。   The present invention is a method for producing a thick high-strength steel sheet having a thickness of 50 to 125 mm, which has excellent brittle crack propagation stopping characteristics that can solve the above-mentioned problems, and the gist thereof is as follows.

[1] 質量%で、C:0.05〜0.15%、Si:0.03〜0.5%、Mn:0.3〜2.0%、P:0.020%以下、S:0.010%以下、Nb:0.005〜0.030%、Ti:0.005〜0.030%、Al:0.002〜0.10%、N:0.0010〜0.0080%を含有し、残部がFeおよび不可避的不純物からなる組成を有する鋼片を用い、前記鋼片を950〜1150℃に加熱し、900℃以上の温度で累積圧下率30%以上の粗圧延を行った後、表面温度がAr−60℃〜Arの範囲で、累積圧下率40%以上の仕上圧延を行い、引き続き、板厚内平均で8℃/s以上の冷却速度で200℃以下の温度となるまで加速冷却を行い、次いで、鋼板表面における昇温速度を1℃/s以上とし、かつ、鋼板表面が板厚方向中心部よりも30℃以上高い温度を保った状態で昇温させ、鋼板表面が400〜650℃に達した時点で昇温を中止し、この400〜650℃の温度で保持する条件で焼戻し処理を行うことを特徴とする脆性き裂伝播停止特性に優れた、板厚50〜125mmの厚手高強度鋼の製造方法。
[2] 前記鋼片が、さらに、質量%で、Cu:0.05〜1.5%、Cr:0.05〜1.0%、Mo:0.05〜1.0%、Ni:0.05〜2.0%、V:0.005〜0.10%、B:0.0002〜0.0030%のうちの1種または2種以上を含有することを特徴とする、上記[1]に記載の脆性き裂伝播停止特性に優れた、板厚50〜125mmの厚手高強度鋼板の製造方法。
[3] 前記鋼片が、さらに、質量%で、Mg:0.0003〜0.0050%、Ca:0.0005〜0.0030%、REM:0.0005〜0.010%のうちの1種または2種以上を含有することを特徴とする、上記[1]または[2]に記載の脆性き裂伝播停止特性に優れた、板厚50〜125mmの厚手高強度鋼板の製造方法。
[1] By mass%, C: 0.05 to 0.15%, Si: 0.03 to 0.5%, Mn: 0.3 to 2.0%, P: 0.020% or less, S: 0.010% or less, Nb: 0.005-0.030%, Ti: 0.005-0.030%, Al: 0.002-0.10%, N: 0.0010-0.0080% The steel slab is contained at the balance, and the balance is composed of Fe and inevitable impurities. The steel slab is heated to 950 to 1150 ° C. and subjected to rough rolling at a temperature of 900 ° C. or higher and a cumulative rolling reduction of 30% or higher. after, in a range the surface temperature of Ar 3 -60 ℃ ~Ar 3, performs the finish rolling 40% or more cumulative rolling reduction, subsequently, the temperature of 200 ° C. or less in thickness on average 8 ° C. / s or more cooling rate Accelerating cooling is performed until the temperature rises, and then the heating rate on the steel sheet surface is set to 1 ° C./s or more, and The temperature is raised with the surface maintained at a temperature 30 ° C. higher than the center in the thickness direction, and the temperature is raised when the surface of the steel sheet reaches 400 to 650 ° C., and the temperature is kept at 400 to 650 ° C. A method for producing a thick high-strength steel having a thickness of 50 to 125 mm and having excellent brittle crack propagation stopping characteristics, characterized in that tempering is performed under the conditions of:
[2] The steel slab is further in mass%, Cu: 0.05 to 1.5%, Cr: 0.05 to 1.0%, Mo: 0.05 to 1.0%, Ni: 0 0.05% to 2.0%, V: 0.005% to 0.10%, B: 0.0002% to 0.0030%, or one or more of the above, [1 ]. The manufacturing method of the thick high-strength steel plate of 50-125 mm in thickness excellent in the brittle crack propagation stop characteristic of description.
[3] The steel slab further includes, in mass%, Mg: 0.0003 to 0.0050%, Ca: 0.0005 to 0.0030%, REM: 0.0005 to 0.010%. A method for producing a thick high-strength steel sheet having a thickness of 50 to 125 mm and having excellent brittle crack propagation stopping characteristics as described in [1] or [2] above, comprising seeds or two or more kinds.

本発明の脆性き裂伝播停止特性に優れた、板厚50〜125mmの厚手高強度鋼板の製造方法によれば、板厚が50mm以上、特に板厚50〜125mmの厚手材で、降伏強度が355〜460MPa級である場合でも、アレスト性指標TKca=6000が−10℃以下となる、大型構造物に適用可能な高アレスト鋼板を、効率的な製造方法によって提供することが可能になることから、産業上の効果は極めて大きい。 According to the method for producing a thick high strength steel plate having a thickness of 50 to 125 mm, which has excellent brittle crack propagation stopping characteristics according to the present invention, the yield strength is a thick material having a thickness of 50 mm or more, particularly a thickness of 50 to 125 mm. Even in the case of the 355 to 460 MPa class, it is possible to provide a high arrest steel plate applicable to a large structure in which the arrestability index T Kca = 6000 is −10 ° C. or less by an efficient manufacturing method. Therefore, the industrial effect is extremely large.

本発明に係る脆性き裂伝播停止特性に優れた、板厚50〜125mmの厚手高強度鋼板の製造方法の一例を説明するための模式図であり、焼戻し時の鋼板表面の昇温速度がアレスト性に及ぼす影響を示すグラフである。It is a schematic diagram for demonstrating an example of the manufacturing method of the thick high strength steel plate of 50-125 mm in thickness excellent in the brittle crack propagation stop characteristic based on this invention, and the temperature increase rate of the steel plate surface at the time of temper is arrest It is a graph which shows the influence which acts on sex. 本発明に係る脆性き裂伝播停止特性に優れた、板厚50〜125mmの厚手高強度鋼板の製造方法の一例を説明するための模式図であり、焼戻し時の鋼板表面と板厚方向中心部との温度差がアレスト性に及ぼす影響を示すグラフである。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram for demonstrating an example of the manufacturing method of the thick high-strength steel plate of 50-125 mm in thickness excellent in the brittle crack propagation stop characteristic based on this invention, and the steel plate surface at the time of tempering and plate thickness direction center part It is a graph which shows the influence which the temperature difference between and has on the arrestability. 本発明に係る脆性き裂伝播停止特性に優れた、板厚50〜125mmの厚手高強度鋼板の製造方法の一例を説明するための模式図であり、焼戻し時の鋼板表面の温度がアレスト性に及ぼす影響を示すグラフである。It is a schematic diagram for demonstrating an example of the manufacturing method of the thick high strength steel plate of 50-125 mm in thickness excellent in the brittle crack propagation stop characteristic based on this invention, and the temperature of the steel plate surface at the time of tempering is arrestability It is a graph which shows the influence which acts.

以下、本発明の脆性き裂伝播停止特性に優れた、板厚50〜125mmの厚手高強度鋼板の製造方法の実施の形態について説明する。なお、この実施形態は、発明の趣旨をより良く理解させるために詳細に説明するものであるから、特に指定の無い限り、本発明を限定するものではない。   Hereinafter, an embodiment of a method for producing a thick high-strength steel sheet having a thickness of 50 to 125 mm and excellent in brittle crack propagation stopping characteristics of the present invention will be described. In addition, since this embodiment is described in detail for better understanding of the gist of the invention, the present invention is not limited unless otherwise specified.

本発明の脆性き裂伝播停止特性に優れた、板厚50〜125mmの厚手高強度鋼板の製造方法は、質量%で、C:0.05〜0.15%、Si:0.03〜0.5%、Mn:0.3〜2.0%、P:0.020%以下、S:0.010%以下、Nb:0.005〜0.030%、Ti:0.005〜0.030%、Al:0.002〜0.10%、N:0.0010〜0.0080%を含有し、残部がFeおよび不可避的不純物からなる組成を有する鋼片を用い、前記鋼片を950〜1150℃に加熱し、900℃以上の温度で累積圧下率30%以上の粗圧延を行った後、表面温度がAr−60℃〜Arの範囲で、累積圧下率40%以上の仕上圧延を行い、引き続き、板厚内平均で8℃/s以上の冷却速度で200℃以下の温度となるまで加速冷却を行い、次いで、鋼板表面における昇温速度を1℃/s以上とし、かつ、鋼板表面が板厚方向中心部よりも30℃以上高い温度を保った状態で昇温させ、鋼板表面が400〜650℃に達した時点で昇温を中止し、この400〜650℃の温度で保持する条件で焼戻し処理を行う方法である。 The method for producing a thick high-strength steel sheet having a thickness of 50 to 125 mm and excellent in brittle crack propagation stopping characteristics of the present invention is mass%, C: 0.05 to 0.15%, Si: 0.03 to 0 0.5%, Mn: 0.3-2.0%, P: 0.020% or less, S: 0.010% or less, Nb: 0.005-0.030%, Ti: 0.005-0. 950%, Al: 0.002 to 0.10%, N: 0.0010 to 0.0080%, the balance is composed of Fe and unavoidable impurities, the steel slab is 950 was heated to to 1150 ° C., 900 after rough rolling of more than 30% cumulative rolling reduction at ° C. or higher, in the range surface temperature of Ar 3 -60 ℃ ~Ar 3, finishing more than 40% cumulative rolling reduction Rolling is performed, and subsequently the temperature within the plate thickness reaches 200 ° C. or lower at a cooling rate of 8 ° C./s or higher. Then, the steel plate surface is heated at a temperature rising rate of 1 ° C./s or more while maintaining a temperature higher by 30 ° C. than the central portion in the plate thickness direction. Is a method in which the temperature rise is stopped when the temperature reaches 400 to 650 ° C., and the tempering process is performed under the condition of maintaining the temperature at 400 to 650 ° C.

<製造条件>
以下に、本発明で規定する製造条件について、詳細に説明する。
一般に、鋼板のアレスト特性(脆性き裂伝播停止特性)は、温度勾配型ESSO試験や二重引張試験によって評価される。試験後の破面を走査型電子顕微鏡(SEM)にて観察し、ティアリッジと呼ばれる延性破壊部で囲まれたへき開面の単位を「破面単位」と定義した場合、この破面単位が細かいほどアレスト性が向上することが知られている。破面単位を微細化する手段としては、できるだけ低い温度域で累積圧下率を大きくして制御圧延(Controlled Rolling;CR)することが有効とされる。ところが、 厚手材の板厚方向中心部の組織を微細化するために、Ar変態点直上の温度域でCRを行うと、鋼板表層部の温度は必然的にArを下回り、加工αが生成して表層部の硬さが顕著に上昇するため、組織が微細であるにも関わらず、アレスト性が低下してしまうことが判明した。
<Production conditions>
Below, the manufacturing conditions prescribed | regulated by this invention are demonstrated in detail.
Generally, the arrest property (brittle crack propagation stop property) of a steel sheet is evaluated by a temperature gradient type ESSO test or a double tensile test. When the fracture surface after the test is observed with a scanning electron microscope (SEM) and the unit of the cleavage plane surrounded by the ductile fracture portion called tear ridge is defined as “fracture surface unit”, the fracture surface unit is fine. It is known that the arrestability is improved. As a means for refining the fracture surface unit, it is effective to perform a controlled rolling (CR) by increasing the cumulative rolling reduction in the lowest possible temperature range. However, when CR is performed in the temperature range immediately above the Ar 3 transformation point in order to refine the microstructure in the center part in the thickness direction of the thick material, the temperature of the steel sheet surface layer is inevitably lower than Ar 3 and the processing α is It was found that since the hardness of the surface layer portion is remarkably increased, the arrestability is lowered despite the fine structure.

そこで、本発明者等は、この表層二相域圧延の組織微細化メリットを活かしつつ、アレスト性を向上させるために、加速冷却後の焼戻しの活用方法を詳細に検討した。その結果、昇温速度を高め、かつ、表層部が板厚方向中心部よりも高温となるように焼戻すことによって、板厚方向の強度分布が均一化し、アレスト性を向上させうる事実を知見した。このような強度均一化の作用は、表層部では圧延によって導入された転位が減少して強度が低下する反面、中心部では急速加熱の効果によって炭化物が微細析出して強度が上昇することに起因する。また、微細な炭化物は、脆性き裂伝播時にマイクロクラックを生成させ、主き裂が伝播する際のき裂先端の応力状態を緩和することで、アレスト性向上にも寄与する。   Therefore, the present inventors examined in detail the method of utilizing tempering after accelerated cooling in order to improve arrestability while taking advantage of the microstructure refinement advantage of this surface layer two-phase region rolling. As a result, we found that the strength distribution in the plate thickness direction can be made uniform and the arrestability can be improved by tempering so that the heating rate is increased and the surface layer portion is hotter than the center portion in the plate thickness direction. did. The strength equalizing action is caused by the fact that dislocations introduced by rolling are reduced in the surface layer portion and the strength is lowered, while carbide is finely precipitated in the center portion due to the effect of rapid heating and the strength is increased. To do. In addition, fine carbides contribute to the improvement of arrestability by generating microcracks during the propagation of brittle cracks and relaxing the stress state at the crack tip when the main crack propagates.

さらに、本発明者等は、アレスト特性を安定的に確保するためのCRならびに焼戻しの条件の最適な組み合わせを検討し、以下の知見を得た。
まず、仕上圧延(CR)は、鋼板表面がAr−60℃〜Arの温度範囲で、累積圧下率が40%以上となるように実施する必要がある。すなわち、表層部は軽度の二相域圧延、板厚方向中心部はAr直上の温度域での圧延となるようにして、板厚全域にわたって組織を微細化することが狙いである。鋼板の表面温度がAr−60℃を下回ると、表層部はもとより板厚方向中心部まで加工αが生成して硬さが顕著に上昇するため、靭性とアレスト性が低下してしまう。鋼板の表面温度がArよりも高いと、CR効果が小さくなり、特に、板厚方向中心部において組織微細化が達成されない。また、累積圧下率が40%未満の場合も、CR効果が不十分で微細組織が得られず、アレスト性は向上しない。なお、累積圧下率に上限を設ける必要はないが、通常は製品厚と鋳片厚、および粗圧延における累積圧下率の関係から自ずと制限される。
Furthermore, the present inventors have studied the optimal combination of CR and tempering conditions for ensuring stable arrest characteristics, and obtained the following knowledge.
First, finish rolling (CR) is in the temperature range of the steel sheet surface Ar 3 -60 ℃ ~Ar 3, it is necessary to perform as a cumulative rolling reduction of 40% or more. That is, the aim is to refine the structure over the entire thickness of the plate so that the surface layer is light two-phase rolling and the central portion in the thickness direction is rolled in a temperature range immediately above Ar 3 . If the surface temperature of the steel sheet is lower than Ar 3 -60 ° C., the toughness and arrestability are deteriorated because the processing α is generated not only from the surface layer portion but also to the center portion in the plate thickness direction and the hardness is remarkably increased. When the surface temperature of the steel plate is higher than Ar 3 , the CR effect becomes small, and in particular, the refinement of the structure cannot be achieved at the central portion in the plate thickness direction. Further, even when the cumulative rolling reduction is less than 40%, the CR effect is insufficient and a fine structure cannot be obtained, and the arrestability is not improved. Although there is no need to set an upper limit on the cumulative rolling reduction, it is usually limited by the relationship between the product thickness, the slab thickness, and the cumulative rolling reduction in rough rolling.

また、後述の表1に示すような板厚180mmのA鋼片を1120〜1140℃に保持した後、1010〜980℃の間で累積圧下率33%の粗圧延、780〜730℃の間で累積圧下率50%の仕上圧延を行うことで板厚60mmとし、770〜720℃から冷却速度14℃/sにて160〜150℃まで加速冷却した後、加熱炉の上下バーナー火炎噴射制御により、(a)鋼板表面部の昇温速度1.5℃/sで、かつ、(b)昇温中は表面が板厚方向中心部よりも30〜40℃高い状態で加熱し、(c)鋼板表面温度が480〜500℃に達した後、昇温を止め、その温度で5分間の焼戻し処理を行った。その後、WES 3003に記載されている方法をもとに温度勾配型ESSO試験を行うことを基本試験としつつ、以下の試験を行った。   Moreover, after holding A steel slab with a plate thickness of 180 mm as shown in Table 1 to be described later at 1120 to 1140 ° C., rough rolling with a cumulative reduction ratio of 33% between 1010 and 980 ° C., and between 780 and 730 ° C. By performing finish rolling with a cumulative rolling reduction of 50%, the sheet thickness is 60 mm, and after accelerated cooling from 770 to 720 ° C. to 160 to 150 ° C. at a cooling rate of 14 ° C./s, by the upper and lower burner flame injection control of the heating furnace, (A) The heating rate of the steel sheet surface portion is 1.5 ° C./s, and (b) the surface is heated by 30 to 40 ° C. higher than the central portion in the plate thickness direction during the heating, and (c) the steel plate After the surface temperature reached 480 to 500 ° C., the temperature increase was stopped and tempering treatment was performed at that temperature for 5 minutes. Thereafter, the following test was performed while performing a temperature gradient type ESSO test based on the method described in WES 3003 as a basic test.

(i)基本試験のうち、(a)の焼戻しの際の昇温速度のみを、加熱炉のバーナー火炎噴射制御によって1.5℃/sから種々変化させたところ、図1のグラフに示すような結果が得られた。なお、この加熱の際、バーナー火炎近くの表面と板厚方向中心部の温度差が30〜50℃生じることは、板厚60mmについての伝熱計算機シミュレーションで確認した。昇温速度が1℃/s未満であると、析出物が粗大化して、かえって脆性き裂の伝播を促進してしまうことが、試験後の試験片の光学顕微鏡および電子顕微鏡観察によって判明した。その結果、図1に示すように、アレスト性が低下することが確認された。   (I) Of the basic tests, only the heating rate during tempering in (a) was varied from 1.5 ° C./s by the burner flame injection control of the heating furnace, as shown in the graph of FIG. Results were obtained. In this heating, it was confirmed by a heat transfer computer simulation for a plate thickness of 60 mm that a temperature difference between the surface near the burner flame and the central portion in the plate thickness direction was 30 to 50 ° C. It was found by observation with an optical microscope and an electron microscope of the test piece after the test that when the heating rate was less than 1 ° C./s, the precipitates were coarsened and the propagation of the brittle crack was promoted. As a result, as shown in FIG. 1, it was confirmed that the arrestability deteriorates.

(ii)基本試験のうち、(b)の焼戻しの際の鋼板の表面と板厚方向中心部の温度差を、加熱炉のバーナー火炎噴射制御によって種々変化させたところ、図2のグラフに示すような結果が得られた。鋼板の表面と板厚方向中心部の温度差が30℃未満であると、板厚方向の強度分布が均一化できず、図3に示すように、アレスト性が向上しないことが確認された。   (Ii) Among the basic tests, the temperature difference between the surface of the steel sheet and the central part in the thickness direction during the tempering of (b) was variously changed by the burner flame injection control of the heating furnace, and is shown in the graph of FIG. The result was obtained. When the temperature difference between the surface of the steel plate and the central portion in the plate thickness direction is less than 30 ° C., it was confirmed that the strength distribution in the plate thickness direction could not be made uniform and the arrestability was not improved as shown in FIG.

なお、上記(a)について例示した(i)と、(b)について例示した(ii)に挙げている昇温速度1.0℃/s以上の昇温速度および鋼板表面温度と板厚方向中心部温度の差30℃以上を達成する手段としては、前記加熱炉のバーナー火炎噴射制御のみならず、目標温度よりも高温に保持した加熱炉への鋼板の投入の他、誘導加熱や通電加熱等によって鋼板表面を加熱することが考えられるが、その手段を限定する必要はない。   In addition, (i) illustrated for the above (a) and (ii) illustrated for (b), the heating rate of 1.0 ° C./s or higher, the steel plate surface temperature, and the center in the plate thickness direction. Means for achieving a temperature difference of 30 ° C. or more as well as not only the burner flame injection control of the heating furnace, but also the introduction of steel sheet into the heating furnace maintained at a temperature higher than the target temperature, induction heating, electric heating, etc. Although it is conceivable to heat the surface of the steel sheet by means of, it is not necessary to limit the means.

(iii)基本試験のうち、(c)の昇温中止後の鋼板表面の焼戻し処理温度を種々変化させた結果を図3のグラフに示す。図3のグラフ中に示す温度は、いずれも、焼戻し処理のために5〜6分間保持した温度である。図3に示すように、板厚方向中心部の温度が400℃未満では、アレスト性に有効な析出物が十分生成せず、また、650℃超では析出物や組織が粗大化してしまい、いずれもアレスト性が低下してしまうことが明らかである。なお、鋼板が焼戻し温度に到達した後は、板内の温度分布均一化のためにその温度で保持してもよいが、析出物の粗大化を防止するために、10分以下にすることが望ましい。   (Iii) Of the basic tests, the graph of FIG. 3 shows the results of various changes in the tempering treatment temperature of the steel sheet surface after the temperature rise was stopped in (c). The temperatures shown in the graph of FIG. 3 are all temperatures maintained for 5 to 6 minutes for tempering treatment. As shown in FIG. 3, when the temperature in the central part in the thickness direction is less than 400 ° C., precipitates effective for arrestability are not sufficiently generated, and when it exceeds 650 ° C., precipitates and structures become coarse. It is clear that arrestability is also reduced. In addition, after the steel sheet reaches the tempering temperature, it may be maintained at that temperature in order to make the temperature distribution in the plate uniform, but in order to prevent the coarsening of precipitates, it should be 10 minutes or less. desirable.

続いて、本発明におけるその他の製造条件の限定理由について説明する。   Then, the reason for limitation of the other manufacturing conditions in this invention is demonstrated.

「鋼片の再加熱温度」950〜1150℃
本発明では、まず、上記組成を有する鋼片の加熱温度を950〜1150℃とする。
製鋼後の鋼片の再加熱温度が950℃未満だと、合金元素の溶体化が不十分で材質不均一の原因となり、また、1150℃を超えると加熱γ粒径が粗大化してしまい、最終的な組織微細化が困難になるおそれがある。
"Steel reheating temperature" 950-1150 ° C
In the present invention, first, the heating temperature of the steel slab having the above composition is set to 950 to 1150 ° C.
If the reheating temperature of the steel slab after steel making is less than 950 ° C., the solution of the alloy elements is insufficient and causes material non-uniformity, and if it exceeds 1150 ° C., the heated γ grain size becomes coarse, There is a possibility that it is difficult to refine the structure.

「粗圧延の条件」温度:900℃以上、累積圧下率:30%以上
本発明においては、粗圧延は900℃以上の温度、30%以上の累積圧下率で行う必要がある。これらの条件を満たさないと、γの再結晶が十分進行せず混粒組織となり、材質不均一の原因となるおそれがある。
“Rough rolling conditions” Temperature: 900 ° C. or higher, cumulative rolling reduction: 30% or higher In the present invention, rough rolling needs to be performed at a temperature of 900 ° C. or higher and a cumulative rolling reduction of 30% or higher. If these conditions are not satisfied, recrystallization of γ does not proceed sufficiently, resulting in a mixed grain structure, which may cause non-uniform material.

「CR(制御圧延)の条件」
上記粗圧延に引き続いて行われるCR(制御圧延;仕上圧延)においては、上述したように、鋼板の表面温度Ar−60℃〜Arの範囲で、累積圧下率40%以上の条件で行う。これにより、鋼板の板厚全域にわたって組織を微細化することが可能となる。
“Conditions for CR (Controlled Rolling)”
CR performed subsequent to the rough rolling; in (controlled rolling finish rolling), as described above, the range of the surface temperature Ar 3 -60 ℃ ~Ar 3 of the steel sheet, performing a cumulative reduction of 40% or more conditions . Thereby, it becomes possible to refine the structure over the entire plate thickness of the steel plate.

「圧延完了後の加速冷却」
本発明では、上記条件の仕上圧延(CR)完了後、引き続き、板厚内平均で8℃/s以上の冷却速度で、200℃以下の温度となるまで加速冷却を行う。冷却速度が8℃/s未満であるか、あるいは冷却停止温度が200℃よりも高いと、強度が不足したり、組織の微細化が不十分となったりするだけでなく、焼戻し工程で必要な固溶C量が不足してしまい、アレスト性の向上が達成できなくなるおそれがある。
"Accelerated cooling after rolling"
In the present invention, after finish rolling (CR) under the above conditions is completed, accelerated cooling is continuously performed at a cooling rate of 8 ° C./s or more on the average in the plate thickness until the temperature reaches 200 ° C. or less. If the cooling rate is less than 8 ° C./s or the cooling stop temperature is higher than 200 ° C., not only the strength is insufficient and the structure is not sufficiently refined, but also necessary in the tempering process. There is a risk that the amount of solid solution C will be insufficient, and improvement in arrestability may not be achieved.

「焼戻し処理」
本発明では、上記条件で加速冷却を行った後、上述したように、鋼板表面における昇温速度を1℃/s以上とし、かつ、鋼板表面が板厚方向中心部よりも30℃以上高い温度を保った状態で昇温させ、鋼板表面が400〜650℃に達した時点で昇温を中止し、この400〜650℃の温度で保持する条件で焼戻し処理を行う。
本発明の製造方法においては、上記条件の焼戻し処理を行うことにより、板厚が50mm以上、特に50〜125mmの厚手材で、降伏強度が355〜460MPa級である場合でも、アレスト性指標TKca=6000が−10℃以下となり、優れたアレスト性を有する厚手高強度鋼板を製造することが可能となる。
"Tempering treatment"
In this invention, after performing accelerated cooling on the said conditions, as mentioned above, the temperature increase rate in a steel plate surface shall be 1 degree-C / s or more, and the steel plate surface is 30 degreeC or more higher than plate thickness direction center part. When the steel sheet surface reaches 400 to 650 ° C., the temperature increase is stopped and tempering is performed under the condition of maintaining the temperature at 400 to 650 ° C.
In the production method of the present invention, by performing the tempering treatment under the above conditions, even if the plate thickness is 50 mm or more, particularly a thick material having a thickness of 50 to 125 mm and the yield strength is 355 to 460 MPa class, the arrestability index T Kca = 6000 becomes −10 ° C. or lower, and a thick high-strength steel sheet having excellent arrestability can be produced.

「鋼板の最終板厚」50〜125mm
本発明において、鋼板の最終板厚を50〜125mmに限定した理由としては、50mm未満では、本発明の技術的特徴である、焼戻し処理のための昇温中に、鋼板の表面と板厚方向中心部の温度差を30℃以上とすることが困難となるためである。逆に、鋼板の最終板厚が125mm超では、十分な圧下率がとれず、本発明の技術的特徴である、粗圧延時の累積圧下率30%以上、かつ、仕上圧延時の累積圧下率40%以上を確保することが困難となるからである。
"Final thickness of steel sheet" 50-125mm
In the present invention, the reason why the final plate thickness of the steel plate is limited to 50 to 125 mm is that the surface of the steel plate and the plate thickness direction are less than 50 mm during the temperature rise for tempering, which is a technical feature of the present invention. This is because it becomes difficult to set the temperature difference at the center to 30 ° C. or more. Conversely, when the final thickness of the steel sheet exceeds 125 mm, a sufficient reduction ratio cannot be obtained, which is a technical feature of the present invention, that is, a cumulative reduction ratio of 30% or more during rough rolling and a cumulative reduction ratio during finish rolling. It is because it becomes difficult to ensure 40% or more.

<化学成分組成>
以下に本発明における鋼の化学成分についての限定理由を説明する。本発明の製造方法においては、以下に示す各元素を含有し、残部がFeおよび不可避的不純物からなる組成を有する鋼片を用いて、厚手高強度鋼板を製造する。
なお、以下の説明における各元素の含有量の単位は、特に指定の限り、質量%で表されるものとする。
<Chemical component composition>
Below, the reason for limitation about the chemical component of steel in this invention is demonstrated. In the production method of the present invention, a thick high-strength steel plate is produced using a steel slab that contains the following elements and the balance is composed of Fe and inevitable impurities.
In addition, unless otherwise specified, the unit of content of each element in the following description shall be represented by mass%.

「C:炭素」0.05〜0.15%、
Cは、安価に鋼板の強度を高めるのに不可欠な元素であるため、0.05%以上を添加する必要がある。一方、Cの添加量が増えると、大入熱HAZ靭性確保が困難となるため、0.15%を上限とする。
“C: carbon” 0.05 to 0.15%,
Since C is an element essential for inexpensively increasing the strength of the steel sheet, it is necessary to add 0.05% or more. On the other hand, if the amount of addition of C increases, it becomes difficult to ensure high heat input HAZ toughness, so 0.15% is made the upper limit.

「Si:ケイ素」0.03〜0.5%
Siは、安価な脱酸元素であり、マトリクスを固溶強化するため0.03%以上添加するが、0.5%を超えると、溶接性とHAZ靭性を劣化させるため、添加量の上限を0.5%とする。
"Si: Silicon" 0.03-0.5%
Si is an inexpensive deoxidizing element and is added in an amount of 0.03% or more in order to strengthen the matrix by solid solution. However, if it exceeds 0.5%, the weldability and the HAZ toughness are deteriorated. 0.5%.

「Mn:マンガン」0.3〜2.0%
Mnは、母材の強度・靭性を向上させる元素として有効であるため0.3%以上添加するが、過剰添加はHAZ靭性や溶接割れ性を劣化させるため、2.0%を上限とする。また、Mnの含有量は、特に、母材の強度・靭性を確実に確保するためには、0.85〜2.0%とすることがより好ましい。
"Mn: Manganese" 0.3-2.0%
Mn is effective as an element for improving the strength and toughness of the base metal, so 0.3% or more is added. However, excessive addition degrades the HAZ toughness and weld cracking property, so 2.0% is the upper limit. Further, the Mn content is more preferably 0.85 to 2.0% in order to ensure the strength and toughness of the base material.

「P:リン」0.020%以下
「S:硫黄」0.010%以下
P、Sは、含有量が少ないほど望ましいが、これを工業的に低減させるためには多大なコストがかかることから、Pは0.020%、Sは0.010%を上限とする。
“P: Phosphorus” 0.020% or less “S: Sulfur” 0.010% or less P and S are desirable as the content is small, but it takes a great deal of cost to reduce this industrially. , P is 0.020%, and S is 0.010%.

「Nb:ニオブ」0.005〜0.030%
Nbは、微量の添加により、組織微細化、変態強化および析出強化に寄与し、母材強度確保に有効な元素であるため0.005%以上添加するが、過剰に添加するとHAZを硬化させ著しく靭性を劣化させるため、0.030%を上限とする。
"Nb: Niobium" 0.005-0.030%
Nb contributes to microstructure refinement, transformation strengthening and precipitation strengthening when added in a very small amount, and is added in an amount of 0.005% or more because it is an effective element for securing the strength of the base material. In order to degrade toughness, 0.030% is made the upper limit.

「Ti:チタン」0.005〜0.030%
Tiは、微量の添加により、組織微細化、析出強化に寄与し、また、微細TiN生成によって母材の強度・靭性、HAZ靭性向上に有効であるため、0.005%以上添加するが、過剰に添加するとHAZ靭性を著しく劣化させるため、0.030%を上限とする。
"Ti: Titanium" 0.005-0.030%
Addition of 0.005% or more of Ti is effective because it contributes to refinement of the structure and strengthening of precipitation by adding a small amount, and is effective in improving the strength / toughness and HAZ toughness of the base material by forming fine TiN. If added to the content, the HAZ toughness is remarkably deteriorated, so 0.030% is made the upper limit.

「Al:アルミニウム」0.002〜0.10%
Alは、重要な脱酸元素であるため、0.002%以上添加するが、過剰に添加すると鋼片の表面品位を損ない、靭性に有害な介在物を形成するため、0.10%を上限とする。
"Al: Aluminum" 0.002-0.10%
Al is an important deoxidizing element, so 0.002% or more is added, but if added excessively, the surface quality of the steel slab is impaired and inclusions harmful to toughness are formed, so the upper limit is 0.10%. And

「N:窒素」0.0010〜0.0080%
Nは、Tiと共に窒化物を形成し、HAZ靭性を向上させるため、0.0010%以上添加するが、過剰に添加すると固溶Nによる脆化が生じるため、0.0080%以下に限定する。
“N: Nitrogen” 0.0010 to 0.0080%
N forms a nitride with Ti and improves the HAZ toughness, so 0.0010% or more is added. However, if excessively added, embrittlement due to solute N occurs, so the content is limited to 0.0080% or less.

本発明の製造方法においては、上記各元素を必須としたうえで、さらに、以下に説明する各元素のうちの1種または2種以上を、選択的に添加することができる。以下、各選択添加元素の含有量の限定理由について説明する。   In the manufacturing method of this invention, after making each said element essential, 1 type (s) or 2 or more types of each element demonstrated below can be added selectively. Hereinafter, the reason for limiting the content of each selectively added element will be described.

「Cu:銅」0.05〜1.5%
「Cr:クロム」0.05〜1.0%
「Mo:モリブデン」0.05〜1.0%
Cu、Cr、Moは、いずれも焼入れ性を向上させ、高強度化に有効であるため、0.05%以上添加する。一方、これら各元素の過度の添加はHAZ靭性を低下させるため、Cuは1.5%以下、CrおよびMoは1.0%以下に制限する。
"Cu: Copper" 0.05-1.5%
"Cr: Chromium" 0.05-1.0%
"Mo: Molybdenum" 0.05-1.0%
Since Cu, Cr, and Mo all improve the hardenability and are effective for increasing the strength, 0.05% or more is added. On the other hand, excessive addition of these elements reduces the HAZ toughness, so Cu is limited to 1.5% or less, and Cr and Mo are limited to 1.0% or less.

「Ni:ニッケル」0.05〜2.0%
Niは、強度確保とアレスト性、HAZ靭性向上に有効であるため、0.05%以上添加するが、Ni量の増加は鋼片コストを上昇させることから2.0%以下に制限する。
"Ni: Nickel" 0.05-2.0%
Ni is effective for ensuring strength, improving arrestability, and improving HAZ toughness, so 0.05% or more is added. However, an increase in the amount of Ni is limited to 2.0% or less because it increases the billet cost.

「V:バナジウム」0.005〜0.10%
Vは、析出強化により強度上昇に寄与するため、0.005%以上添加するが、0.10%超を添加するとHAZ靭性を低下させるため、これを上限とする。
“V: Vanadium” 0.005 to 0.10%
V contributes to an increase in strength by precipitation strengthening, so 0.005% or more is added. However, if over 0.10% is added, HAZ toughness is reduced, so this is the upper limit.

「B:ボロン(ホウ素)」0.0002〜0.0030%
Bは、焼入れ性を向上させる元素であり、適量添加により鋼の強度を高めるのに有効であるが、過度の添加は溶接性を損ねるため、その添加量を0.0002〜0.0030%の範囲に制限する。
“B: Boron” 0.0002 to 0.0030%
B is an element that improves hardenability, and is effective in increasing the strength of steel by adding an appropriate amount. However, excessive addition impairs weldability, so the addition amount is 0.0002 to 0.0030%. Limit to range.

「Mg:マグネシウム」0.0003〜0.0050%、
「Ca:カルシウム」0.0005〜0.0030%
「REM:希土類元素」0.0005〜0.010%
Mg、Ca、REMは、微細な酸化物や硫化物を形成してHAZ靭性向上に寄与するが、過度の添加は介在物を粗大化させ靭性を低下させる。このため、Mgは0.0003〜0.0050%、Caは0.0005〜0.0030%、REMは0.0005〜0.010%の範囲に制限する。
なお、本発明において説明するREMとは、例えば、La、Ce等の希土類元素のことを言う。
“Mg: Magnesium” 0.0003 to 0.0050%,
“Ca: Calcium” 0.0005 to 0.0030%
"REM: rare earth element" 0.0005 to 0.010%
Mg, Ca, and REM form fine oxides and sulfides and contribute to improving HAZ toughness. However, excessive addition coarsens inclusions and lowers toughness. For this reason, Mg is limited to 0.0003 to 0.0050%, Ca is limited to 0.0005 to 0.0030%, and REM is limited to 0.0005 to 0.010%.
In addition, REM demonstrated in this invention means rare earth elements, such as La and Ce, for example.

以上説明したような、本発明に係る脆性き裂伝播停止特性に優れた、板厚50〜125mmの厚手高強度鋼板の製造方法によれば、化学成分組成が適正範囲とされた鋼片を用い、所定条件で再加熱〜粗圧延を行った後、表面温度がAr−60℃〜Arの範囲で累積圧下率40%以上の仕上圧延を行い、引き続いて加速冷却を行った後、鋼板表面における昇温速度を1℃/s以上とし、かつ、鋼板表面が板厚方向中心部よりも30℃以上高い温度を保った状態で昇温させ、鋼板表面が400〜650℃に達した時点で昇温を中止し、この400〜650℃の温度で保持する条件で焼戻し処理を行うことにより、板厚が50mm以上の厚手材で降伏強度が355〜460MPa級である場合でも、アレスト性指標TKca=6000が−10℃以下となる、大型構造物に適用可能な高アレスト鋼板を、効率的な製造方法によって提供することが可能になることから、その産業上の効果は計り知れない。 As described above, according to the method for manufacturing a thick high-strength steel plate having a thickness of 50 to 125 mm, which has excellent brittle crack propagation stop characteristics according to the present invention, a steel slab whose chemical composition is in an appropriate range is used. , after reheating - rough rolling under predetermined conditions, the surface temperature is carried out in the finish rolling 40% or more cumulative rolling reduction in the range of Ar 3 -60 ℃ ~Ar 3, after the accelerated cooling subsequent, steel When the temperature rise rate on the surface is 1 ° C./s or higher, and the steel plate surface is heated at 30 ° C. or higher than the central portion in the plate thickness direction, and the steel plate surface reaches 400 to 650 ° C. The arrestability index is obtained even when the yield strength is 355 to 460 MPa class with a thick material having a plate thickness of 50 mm or more by performing the tempering process under the condition of holding the temperature at 400 to 650 ° C. T Kca = 6000 is -1. Since it is possible to provide a highly arrested steel sheet that can be applied to a large structure at 0 ° C. or less by an efficient manufacturing method, the industrial effect is immeasurable.

以下、本発明に係る脆性き裂伝播停止特性に優れた、板厚50〜125mmの厚手高強度鋼板の製造方法の実施例を挙げ、本発明をより具体的に説明するが、本発明は、もとより下記実施例に限定されるものではなく、前、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれるものである。   Hereinafter, examples of a method for producing a thick high-strength steel sheet having a thickness of 50 to 125 mm, which is excellent in brittle crack propagation stopping characteristics according to the present invention, will be described in more detail. Of course, the present invention is not limited to the following examples, and the present invention can be carried out with appropriate modifications within a range that can be adapted to the gist of the preceding and following descriptions, all of which are included in the technical scope of the present invention. Is.

[厚手高強度鋼板の試作]
製鋼工程において溶鋼の脱酸・脱硫と化学成分を制御し、連続鋳造により、下記表1に示す化学成分を有する板厚180〜300mmの鋼片を作製した。そして、下記表2及び表3に示す製造条件で、前記鋼片を再加熱して厚板圧延することで板厚50〜80mmに仕上げ、加速冷却を行い、さらに、必要に応じてオフラインでの焼戻し処理を行い、厚手高強度鋼板を試作した。
なお、表3に示す焼戻し処理の条件中の「表面−中心温度差」は、伝熱計算機シミュレーションを用いた温度モデルにより、鋼板の各板厚における板厚方向中心温度を求めて計算した値である。
[Prototype of thick high-strength steel sheet]
In the steel making process, deoxidation / desulfurization and chemical components of the molten steel were controlled, and a steel piece having a thickness of 180 to 300 mm having chemical components shown in Table 1 below was produced by continuous casting. And by the manufacturing conditions shown in the following Table 2 and Table 3, the steel slab is reheated and rolled into a thick plate to finish the plate to a thickness of 50 to 80 mm, accelerated cooling is performed, and further, offline as necessary. A tempering treatment was carried out to produce a thick high-strength steel plate.
In addition, the “surface-center temperature difference” in the conditions of the tempering treatment shown in Table 3 is a value calculated by obtaining the center temperature in the plate thickness direction at each plate thickness of the steel plate by a temperature model using a heat transfer computer simulation. is there.

[評価試験]
上記方法によって作製した厚手鋼板のサンプルについて、以下のような評価試験を行い、母材強度とアレスト性の試験結果を下記表4に示した。
ここで、降伏強度(YP)および引張強度(TS)については、鋼板の板厚方向中心部から圧延方向と直角の方向に採取した、JIS Z 2201に準拠した4号引張試験片を用いて評価した。
また、アレスト性については、WES 3003に記載されている方法を基に温度勾配型ESSO試験を行い、Kca=6000N/mm1.5を示す温度にて評価した。
[Evaluation test]
The following evaluation tests were performed on the thick steel plate samples produced by the above method, and the test results of the base metal strength and arrestability are shown in Table 4 below.
Here, the yield strength (YP) and the tensile strength (TS) were evaluated using a No. 4 tensile test piece based on JIS Z 2201, which was taken in the direction perpendicular to the rolling direction from the center of the plate thickness direction of the steel sheet. did.
As for the arrestability, provides temperature gradient type ESSO test based on the method described in WES 3003, was evaluated at a temperature showing a Kca = 6000N / mm 1.5.

本実施例の厚手高強度鋼板の化学成分組成の一覧を表1に示すとともに、鋼板の製造条件の一覧を表2及び表3に示し、また、厚手高強度鋼板の機械的性質の一覧を表4に示す。   A list of chemical composition of the thick high-strength steel sheet of this example is shown in Table 1, a list of manufacturing conditions of the steel sheet is shown in Table 2 and Table 3, and a list of mechanical properties of the thick high-strength steel sheet is shown. 4 shows.

Figure 2011052244
Figure 2011052244

Figure 2011052244
Figure 2011052244

Figure 2011052244
Figure 2011052244

Figure 2011052244
Figure 2011052244

[評価結果]
表1に示す鋼A〜Jは鋼の化学成分が適正化された本発明鋼であり、鋼K、Lは化学成分が本発明の規定範囲外とされた比較鋼である。
また、表2〜4に示すNo.1〜16は、化学成分が所定の範囲内であり、かつ所定の条件で製造した本発明例であり、いずれも、YP:355〜460MPa級鋼として十分な強度を有しており、また、アレスト性指標TKca=6000も−10℃以下と良好であることがわかる。
[Evaluation results]
Steels A to J shown in Table 1 are steels of the present invention in which the chemical components of the steel are optimized, and steels K and L are comparative steels whose chemical components are outside the specified range of the present invention.
Moreover, No. shown in Tables 2-4. Nos. 1 to 16 are examples of the present invention having chemical components within a predetermined range and manufactured under predetermined conditions, all having sufficient strength as YP: 355 to 460 MPa grade steel, It can be seen that the arrestability index T Kca = 6000 is also favorable at −10 ° C. or lower.

一方、表2〜4に示すNo.17〜31は、化学成分、製造条件のいずれかが本発明の範囲を逸脱している比較例であり、アレスト性が低下していることがわかる。   On the other hand, No. shown in Tables 2-4. Nos. 17 to 31 are comparative examples in which either chemical components or production conditions depart from the scope of the present invention, and it is understood that arrestability is reduced.

No.26は加熱温度が高いために、また、No.25は粗圧延の累積圧下率が小さかったために、組織が微細化されず、アレスト性が低下した。
また、No.24は仕上圧延の温度が高いために、また、No.21は仕上圧延の累積圧下率が小さかったために、上記同様、微細組織が得られず、アレスト性が低下した。
No.17、18は、仕上圧延の温度が低過ぎたために、板厚内部まで二相域圧延となり、アレスト性が低下してしまった。
また、No.22は加速冷却の冷却速度が小さいために、また、No.27は冷却停止温度が高かったために、組織と炭化物が粗大化し、十分なアレスト性が得られなかった。
No. No. 26 has a high heating temperature. In No. 25, since the cumulative rolling reduction of rough rolling was small, the structure was not refined and the arrestability was lowered.
No. No. 24 has a high finish rolling temperature. In No. 21, since the cumulative rolling reduction of finish rolling was small, the fine structure was not obtained as described above, and the arrestability was lowered.
No. In Nos. 17 and 18, the finish rolling temperature was too low, so that the two-phase rolling was performed up to the inside of the plate thickness, and the arrestability was lowered.
No. No. 22 has a low cooling rate for accelerated cooling. Since No. 27 had a high cooling stop temperature, the structure and carbides became coarse, and sufficient arrestability could not be obtained.

No.23、28は、焼戻しの昇温速度が小さかったため、炭化物が粗大化してアレスト性が低下した。
No.19は、焼戻し温度が低過ぎたために十分な炭化物が析出せず、アレスト性が向上しなかった。
No.20は、焼戻し温度が高かったために炭化物と組織が粗大化し、アレスト性が低下した。
No.29は、焼戻し時における鋼板の表面と板厚方向中心部との温度差が小さかったために強度分布が均一化せず、アレスト性が低下した。
No. In Nos. 23 and 28, the rate of temperature increase during tempering was small, so that the carbides became coarse and the arrestability decreased.
No. In No. 19, since the tempering temperature was too low, sufficient carbide was not deposited, and the arrestability was not improved.
No. In No. 20, since the tempering temperature was high, the carbide and the structure became coarse, and the arrestability decreased.
No. In No. 29, the temperature difference between the surface of the steel sheet and the central portion in the plate thickness direction during tempering was small, so the strength distribution was not uniform and the arrestability was lowered.

No.30は、C含有量が多かったために強度が過大となり、アレスト性が低下した。
No.31は、Nb量が多かったために、加熱時に残存した粗大な未固溶Nbの影響でアレスト性が低下した。
No. Since No. 30 had much C content, intensity | strength became excessive and arrestability fell.
No. Since No. 31 had a large amount of Nb, the arrestability decreased due to the influence of coarse undissolved Nb remaining during heating.

以上説明した実施例の結果より、本発明の脆性き裂伝播停止特性に優れた、板厚50〜125mmの厚手高強度鋼板の製造方法が、板厚が50mm以上の厚手材で、降伏強度が355〜460MPa級である場合でも、アレスト性指標TKca=6000が−10℃以下となる、大型構造物に適用可能な高アレスト鋼板を、効率的な製造方法によって提供することが可能になることが明らかである。 From the results of the examples described above, the method for producing a thick high-strength steel sheet having a thickness of 50 to 125 mm, which has excellent brittle crack propagation stop characteristics according to the present invention, is a thick material with a thickness of 50 mm or more, and has a yield strength. Even in the case of the 355 to 460 MPa class, it is possible to provide a high arrest steel plate applicable to a large structure in which the arrestability index T Kca = 6000 is −10 ° C. or less by an efficient manufacturing method. Is clear.

Claims (3)

質量%で、
C :0.05〜0.15%、
Si:0.03〜0.5%、
Mn:0.3〜2.0%、
P :0.020%以下、
S :0.010%以下、
Nb:0.005〜0.030%、
Ti:0.005〜0.030%、
Al:0.002〜0.10%、
N :0.0010〜0.0080%
を含有し、残部がFeおよび不可避的不純物からなる組成を有する鋼片を用い、
前記鋼片を950〜1150℃に加熱し、900℃以上の温度で累積圧下率30%以上の粗圧延を行った後、表面温度がAr−60℃〜Arの範囲で、累積圧下率40%以上の仕上圧延を行い、
引き続き、板厚内平均で8℃/s以上の冷却速度で200℃以下の温度となるまで加速冷却を行い、次いで、鋼板表面における昇温速度を1℃/s以上とし、かつ、鋼板表面が板厚方向中心部よりも30℃以上高い温度を保った状態で昇温させ、鋼板表面が400〜650℃に達した時点で昇温を中止し、この400〜650℃の温度で保持する条件で焼戻し処理を行うことを特徴とする脆性き裂伝播停止特性に優れた、板厚50〜125mmの厚手高強度鋼の製造方法。
% By mass
C: 0.05 to 0.15%,
Si: 0.03 to 0.5%,
Mn: 0.3 to 2.0%,
P: 0.020% or less,
S: 0.010% or less,
Nb: 0.005 to 0.030%,
Ti: 0.005 to 0.030%,
Al: 0.002 to 0.10%,
N: 0.0010 to 0.0080%
A steel slab having a composition consisting of Fe and inevitable impurities in the balance,
Heating the steel strip to 950 to 1150 ° C., after rough rolling of more than 30% cumulative rolling reduction at 900 ° C. or higher, the surface temperature is in the range of Ar 3 -60 ℃ ~Ar 3, the cumulative rolling reduction Finish rolling over 40%,
Subsequently, accelerated cooling is performed at a cooling rate of 8 ° C./s or more on average in the plate thickness until a temperature of 200 ° C. or less is reached, then the temperature rising rate on the steel plate surface is set to 1 ° C./s or more, and the steel plate surface is The temperature is raised while maintaining a temperature 30 ° C. higher than the central portion in the plate thickness direction, the temperature rise is stopped when the steel plate surface reaches 400 to 650 ° C., and the temperature is kept at 400 to 650 ° C. A method for producing a thick high-strength steel having a thickness of 50 to 125 mm, which is excellent in brittle crack propagation stopping characteristics, characterized by performing a tempering process.
前記鋼片が、さらに、質量%で、
Cu:0.05〜1.5%、
Cr:0.05〜1.0%、
Mo:0.05〜1.0%、
Ni:0.05〜2.0%、
V :0.005〜0.10%、
B :0.0002〜0.0030%
のうちの1種または2種以上を含有することを特徴とする、請求項1に記載の脆性き裂伝播停止特性に優れた、板厚50〜125mmの厚手高強度鋼板の製造方法。
The billet is further in mass%,
Cu: 0.05 to 1.5%,
Cr: 0.05 to 1.0%,
Mo: 0.05-1.0%,
Ni: 0.05-2.0%,
V: 0.005-0.10%,
B: 0.0002 to 0.0030%
The method for producing a thick high-strength steel sheet having a thickness of 50 to 125 mm and having excellent brittle crack propagation stopping characteristics according to claim 1, comprising one or more of them.
前記鋼片が、さらに、質量%で、
Mg:0.0003〜0.0050%、
Ca:0.0005〜0.0030%、
REM:0.0005〜0.010%
のうちの1種または2種以上を含有することを特徴とする、請求項1または請求項2に記載の脆性き裂伝播停止特性に優れた、板厚50〜125mmの厚手高強度鋼板の製造方法。
The billet is further in mass%,
Mg: 0.0003 to 0.0050%,
Ca: 0.0005 to 0.0030%,
REM: 0.0005 to 0.010%
A high-strength steel sheet having a thickness of 50 to 125 mm and having excellent brittle crack propagation stopping characteristics according to claim 1, wherein the steel sheet contains one or more of them. Method.
JP2009199907A 2009-08-31 2009-08-31 METHOD FOR MANUFACTURING THICK HIGH-STRENGTH STEEL SHEET HAVING SUPERIOR CHARACTERISTICS OF STOPPING PROPAGATION OF BRITTLE CRACK SHEET AND SHEET THICKNESS OF 50-125 mm Withdrawn JP2011052244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009199907A JP2011052244A (en) 2009-08-31 2009-08-31 METHOD FOR MANUFACTURING THICK HIGH-STRENGTH STEEL SHEET HAVING SUPERIOR CHARACTERISTICS OF STOPPING PROPAGATION OF BRITTLE CRACK SHEET AND SHEET THICKNESS OF 50-125 mm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009199907A JP2011052244A (en) 2009-08-31 2009-08-31 METHOD FOR MANUFACTURING THICK HIGH-STRENGTH STEEL SHEET HAVING SUPERIOR CHARACTERISTICS OF STOPPING PROPAGATION OF BRITTLE CRACK SHEET AND SHEET THICKNESS OF 50-125 mm

Publications (1)

Publication Number Publication Date
JP2011052244A true JP2011052244A (en) 2011-03-17

Family

ID=43941544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009199907A Withdrawn JP2011052244A (en) 2009-08-31 2009-08-31 METHOD FOR MANUFACTURING THICK HIGH-STRENGTH STEEL SHEET HAVING SUPERIOR CHARACTERISTICS OF STOPPING PROPAGATION OF BRITTLE CRACK SHEET AND SHEET THICKNESS OF 50-125 mm

Country Status (1)

Country Link
JP (1) JP2011052244A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072423A (en) * 2010-09-28 2012-04-12 Nippon Steel Corp Method of manufacturing high-strength steel plate for line pipe
JP2016011443A (en) * 2014-06-30 2016-01-21 Jfeスチール株式会社 Thick and high strength thick steel plate and production method therefor
KR20160079163A (en) * 2014-12-25 2016-07-06 주식회사 포스코 Steel having superior brittle crack arrestability and method for manufacturing the steel
CN107012395A (en) * 2017-03-02 2017-08-04 唐山钢铁集团有限责任公司 A kind of method that rough rolling step improves low-alloy special heavy plate center portion quality
CN111566247A (en) * 2017-12-24 2020-08-21 株式会社Posco Steel material for structure excellent in brittle crack propagation resistance and method for producing same
CN112792307A (en) * 2020-12-28 2021-05-14 江苏永钢集团有限公司 Process method for improving surface quality of low-carbon tube blank steel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072423A (en) * 2010-09-28 2012-04-12 Nippon Steel Corp Method of manufacturing high-strength steel plate for line pipe
JP2016011443A (en) * 2014-06-30 2016-01-21 Jfeスチール株式会社 Thick and high strength thick steel plate and production method therefor
KR20160079163A (en) * 2014-12-25 2016-07-06 주식회사 포스코 Steel having superior brittle crack arrestability and method for manufacturing the steel
KR101657840B1 (en) 2014-12-25 2016-09-20 주식회사 포스코 Steel having superior brittle crack arrestability and method for manufacturing the steel
CN107012395A (en) * 2017-03-02 2017-08-04 唐山钢铁集团有限责任公司 A kind of method that rough rolling step improves low-alloy special heavy plate center portion quality
CN107012395B (en) * 2017-03-02 2018-06-19 唐山钢铁集团有限责任公司 A kind of method that rough rolling step improves low-alloy special heavy plate center portion quality
CN111566247A (en) * 2017-12-24 2020-08-21 株式会社Posco Steel material for structure excellent in brittle crack propagation resistance and method for producing same
US11572600B2 (en) 2017-12-24 2023-02-07 Posco Co., Ltd Structural steel having excellent brittle crack propagation resistance, and manufacturing method therefor
CN112792307A (en) * 2020-12-28 2021-05-14 江苏永钢集团有限公司 Process method for improving surface quality of low-carbon tube blank steel

Similar Documents

Publication Publication Date Title
JP5522084B2 (en) Thick steel plate manufacturing method
US10378073B2 (en) High-toughness hot-rolling high-strength steel with yield strength of 800 MPa, and preparation method thereof
JP4874434B1 (en) Thick steel plate manufacturing method
JP4874435B2 (en) Thick steel plate manufacturing method
JP5871109B1 (en) Thick steel plate and manufacturing method thereof
US8926766B2 (en) Low yield ratio, high strength and high uniform elongation steel plate and method for manufacturing the same
JP6048626B1 (en) Thick, high toughness, high strength steel plate and method for producing the same
JPWO2014080818A1 (en) H-section steel and its manufacturing method
JP7339339B2 (en) Ultra-high-strength steel material with excellent cold workability and SSC resistance, and method for producing the same
JP2008266758A (en) High tensile strength steel having excellent low temperature toughness and reduced strength anisotropy, and method for producing the same
JP2010159473A (en) Thick steel plate and method for producing the same
JP2020510749A (en) High-strength steel excellent in fracture initiation and propagation resistance at low temperature and method for producing the same
JP2020504236A (en) High-strength steel excellent in fracture initiation and propagation resistance at low temperature, and method for producing the same
JP2016509129A (en) High strength steel plate and manufacturing method thereof
JP2011052244A (en) METHOD FOR MANUFACTURING THICK HIGH-STRENGTH STEEL SHEET HAVING SUPERIOR CHARACTERISTICS OF STOPPING PROPAGATION OF BRITTLE CRACK SHEET AND SHEET THICKNESS OF 50-125 mm
JP2012172243A (en) High-tensile steel sheet having excellent toughness and method for manufacturing the same
JP2010248621A (en) Method for manufacturing high-strength high-toughness steel
JP7082669B2 (en) High-strength, high-toughness hot-rolled steel sheet and its manufacturing method
JP2012172242A (en) High-tensile steel sheet having superior toughness and method for manufacturing the same
JP2008189973A (en) Method for producing high-toughness and high-tension steel sheet excellent in strength-elongation balance
JP2010222681A (en) Thick high toughness steel pipe stock and method for producing the same
JP2008261030A (en) Method of manufacturing thick high-strength steel plate excellent in brittle crack propagation stopping characteristic
JP2013129885A (en) Method of producing high-strength thick steel plate excellent in brittle crack propagation arrest property
JP2008013812A (en) High toughness and high tensile strength thick steel plate and its production method
JP2011052243A (en) Method for manufacturing thick high-strength steel sheet superior in characteristics of stopping propagation of brittle crack

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20121106