JP6693186B2 - Method for producing low-temperature nickel-containing steel sheet excellent in tensile strength and toughness - Google Patents

Method for producing low-temperature nickel-containing steel sheet excellent in tensile strength and toughness Download PDF

Info

Publication number
JP6693186B2
JP6693186B2 JP2016048152A JP2016048152A JP6693186B2 JP 6693186 B2 JP6693186 B2 JP 6693186B2 JP 2016048152 A JP2016048152 A JP 2016048152A JP 2016048152 A JP2016048152 A JP 2016048152A JP 6693186 B2 JP6693186 B2 JP 6693186B2
Authority
JP
Japan
Prior art keywords
less
rolling
toughness
steel sheet
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016048152A
Other languages
Japanese (ja)
Other versions
JP2017160511A (en
Inventor
仁志 古谷
仁志 古谷
康哲 ▲高▼橋
康哲 ▲高▼橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2016048152A priority Critical patent/JP6693186B2/en
Publication of JP2017160511A publication Critical patent/JP2017160511A/en
Application granted granted Critical
Publication of JP6693186B2 publication Critical patent/JP6693186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、引張強度および靭性に優れた低温用ニッケル含有鋼板の製法に関するものである。 The present invention relates to a method for producing a low-temperature nickel-containing steel sheet having excellent tensile strength and toughness.

この製法で製造した鋼板は、造船、橋梁、建築、海洋構造物、圧力容器、タンク、ラインパイプなどの溶接構造物一般に用いることができるが、特に−196℃から−160℃程度の低温での破壊靱性と、690MPa以上830MPa以下の引張強さが要求される低温タンクでの使用において有効である。   The steel plate manufactured by this manufacturing method can be generally used for welded structures such as shipbuilding, bridges, buildings, offshore structures, pressure vessels, tanks, line pipes, etc., but especially at low temperatures of about -196 ° C to -160 ° C. It is effective in use in a low temperature tank that requires fracture toughness and tensile strength of 690 MPa or more and 830 MPa or less.

環境規制の強化に伴い、重油ではなくLNGによりエンジンを駆動して航行するLNG燃料船の開発が進められている。LNG燃料船に搭載されるLNGタンクの材料として、オーステナイト系ステンレス鋼板のほかに、9%Ni鋼や6%Ni鋼などのフェライト系低温用鋼板も使用可能と考えられる。   Along with the tightening of environmental regulations, the development of LNG fueled ships that drive the engine by LNG instead of heavy oil and proceed is underway. As a material for the LNG tank mounted on the LNG fuel ship, it is considered that, in addition to the austenitic stainless steel plate, ferritic low temperature steel plate such as 9% Ni steel and 6% Ni steel can be used.

しかしながら、フェライト系低温用ニッケル含有鋼板は、歪時効による靭性低下がみられることから、この克服が実用化への鍵となる。歪時効後も優れた靭性を維持するためには、母材の時点で−196℃のシャルピー衝撃吸収エネルギーの最低値が150J程度であることが望ましい。現在の水準では、大半の鋼板でこれを達成しているものの、全ての鋼板で達成することは容易ではない。   However, since the ferrite-containing low-temperature nickel-containing steel sheet for low temperature shows a decrease in toughness due to strain aging, overcoming this is a key to practical use. In order to maintain excellent toughness after strain aging, it is desirable that the minimum value of the Charpy impact absorbed energy at -196 ° C at the time of the base material is about 150J. At the current level, most steel sheets achieve this, but it is not easy to achieve with all steel sheets.

フェライト系低温用ニッケル含有鋼板の−196℃でのシャルピー衝撃吸収エネルギーに、ごく低い確率で発生する低値には、介在物が関わっていることがある。連続鋳造で製造される鋼スラブには、数μmの介在物が浮上分離せずに残存しているが、通常の清浄度であれば、そのような独立した介在物が−196℃でのシャルピー衝撃吸収エネルギーに与える影響は軽微である。しかしながら、数μmの介在物が凝集合体したクラスターを形成した場合、−196℃でのシャルピー衝撃吸収エネルギーが150J未満に低下することがある。介在物の主たるものは、アルミナ(Al)である。 Inclusions may be involved in the low value of the Charpy impact absorbed energy at 196 ° C. of the nickel-containing ferritic nickel-containing steel sheet at a low probability. In the steel slab manufactured by continuous casting, inclusions of several μm remain without being floated and separated, but if the cleanliness is normal, such independent inclusions are Charpy at −196 ° C. The impact on shock absorption energy is minor. However, when the inclusions of several μm form an aggregated cluster, the Charpy impact absorption energy at −196 ° C. may decrease to less than 150 J. The main inclusion is alumina (Al 2 O 3 ).

介在物、たとえばMnSなどの伸長介在物による害悪を軽減する方法として、クロス圧延がある。クロス圧延とは、鋼板の形状を作りこむ熱間圧延において、普通は鋼板の長手方向にのみ実施する圧延のうち、一部の圧下を鋼板の幅方向に実施するものであり、介在物がMnSの場合は鋼板長手方向のMnSの伸長が抑制されることから、試験片の長手方向が圧延幅方向と平行になるような試験片を用いたシャルピー試験において、シャルピー衝撃吸収エネルギーが改善する。   Cross rolling is a method for reducing the harmful effects of inclusions, for example, elongated inclusions such as MnS. The cross rolling is a hot rolling for forming the shape of a steel sheet, which is a rolling that is usually performed only in the longitudinal direction of the steel sheet, and a part of the rolling is performed in the width direction of the steel sheet. In the case of, the MnS expansion in the longitudinal direction of the steel sheet is suppressed, so that the Charpy impact absorption energy is improved in the Charpy test using the test piece in which the longitudinal direction of the test piece is parallel to the rolling width direction.

たとえば、特許文献1、特許文献2では、クロス圧延を実施する際の幅方向圧延を未再結晶温度域で行うことで、曲げ加工性や低温靭性を改善している。しかしながら、未再結晶温度域での幅方向圧延を行った場合、圧下前のオーステナイト粒径が大きいまま未再結晶域圧延を行うこととなり、却って靭性が低下することが多く、この方法では前記の目的を達成できない。   For example, in Patent Literature 1 and Patent Literature 2, bending workability and low temperature toughness are improved by performing widthwise rolling when performing cross rolling in a non-recrystallization temperature range. However, when the width direction rolling in the non-recrystallization temperature region is performed, the austenite grain size before reduction is to be performed in the non-recrystallization region while the grain size is large, and the toughness often decreases, and in this method, I cannot achieve my purpose.

また、特許文献3には、クロス圧延を実施する際の幅方向圧延と長手方向圧延の圧下比率を規定することで等方性の高い鋼板としている。介在物の制御に関しては、この方法が有効であるものの、圧下比率の規定のみでは、シャルピー衝撃吸収エネルギーに最も影響する因子である有効結晶粒径を小さくできないため、この方法では前記の目的を達成できない。   Further, in Patent Document 3, a steel plate having high isotropy is defined by defining a reduction ratio of widthwise rolling and longitudinal rolling when performing cross rolling. Regarding the control of inclusions, although this method is effective, the effective crystal grain size, which is the factor that most affects Charpy impact absorbed energy, cannot be reduced only by specifying the reduction ratio, so this method achieves the above object. Can not.

LNGタンクにおいては、前記の低温靭性に加え、高い強度も必要になる。大型のタンクを建造するため引張強さで690MPa以上の引張強さが求められ、一方で溶接性の制約から引張強さで830MPa以下が求められる。つまり、現在の技術では、引張強度および靭性に優れた低温用ニッケル含有鋼板を提供することはできない。   In addition to the above-mentioned low temperature toughness, the LNG tank also requires high strength. In order to construct a large tank, a tensile strength of 690 MPa or more is required, while a weldability constraint of 830 MPa or less is required. That is, the current technology cannot provide a low-temperature nickel-containing steel sheet having excellent tensile strength and toughness.

特許第4897125号公報Japanese Patent No. 4897125 特開2005−226080号公報JP, 2005-226080, A 特開2002−161341号公報JP 2002-161341 A

本発明が解決しようとする問題点は、引張強度および靭性に優れた低温用ニッケル含有鋼板の製造方法を提供することである。 The problem to be solved by the present invention is to provide a method for producing a low-temperature nickel-containing steel sheet having excellent tensile strength and toughness.

本発明の要旨とするところは以下の通りである。 It is a subject matter of the present invention is as shown below.

(1)鋼が、質量%で、C :0.03%以上かつ0.10%以下、Si:0.02%以上かつ0.40%以下、Mn:0.30%以上かつ1.20%以下、Ni:8.0%以上かつ9.5%以下、Al:0.010%以上かつ0.080%以下、T−O:0.0001%以上かつ0.0030%以下を含有し、P:0.0010%以上0.0100%以下、S:0.0001%以上0.0035%以下、N:0.0005%以上0.0070%以下を含有し、残部がFe及び不可避的不純物からなるスラブを900℃以上1270℃以下に加熱したのちに熱間圧延を行い、当該の熱間圧延の全圧下率を0.65以上、熱間圧延のうち圧延幅方向に行うクロス圧延の圧下率を0.1以上0.6以下、クロス圧延の温度範囲を800℃以上1000℃以下、仕上1パス前温度を600℃以上850℃以下として、圧延後は空冷を行い、さらに鋼板を760℃以上880℃以下に加熱した後水冷する焼入れを行い、引き続いて500℃以上かつ650℃以下に加熱した後冷却する焼戻しを行い、SEMの二次電子線像、倍率10倍でシャルピー衝撃試験片の破面写真を撮影し、セパレーション状の縦割れ破面の総長さを(単位:mm)測定し、これを、破面面積(80mm )で除した値として定義されるアルミナクラスター指数が0.030以下であり、有効結晶粒径が7.0μm以下、引張強さの平均値が690MPa以上830MPa以下、かつ−196℃でのシャルピー衝撃吸収エネルギーが150J以上の鋼板を得ることを特徴とする引張強度および靭性に優れた低温用ニッケル含有鋼板の製造方法。 (1) Steel, in mass%, C: 0.03% or more and 0.10% or less, Si: 0.02% or more and 0.40% or less, Mn: 0.30% or more and 1.20% Hereinafter, Ni: 8.0% or more and 9.5% or less, Al: 0.010% or more and 0.080% or less, TO: 0.0001% or more and 0.0030% or less, and P : 0.0010% or more and 0.0100% or less, S: 0.0001% or more and 0.0035% or less, N: 0.0005% or more and 0.0070% or less, and the balance is Fe and inevitable impurities. After heating the slab to 900 ° C. or more and 1270 ° C. or less, hot rolling is performed, the total reduction ratio of the hot rolling is 0.65 or more, and the reduction ratio of cross rolling performed in the rolling width direction among the hot rolling is 0.1 or more and 0.6 or less, the temperature range of cross rolling is 800 ° C. or more and 100 0 ° C or less, the temperature before one pass for finishing is 600 ° C or more and 850 ° C or less, air cooling is performed after rolling, and further quenching is performed by heating the steel sheet to 760 ° C or more and 880 ° C or less and then water cooling, and subsequently 500 ° C or more and After tempering by heating to 650 ° C or lower, tempering is performed, and a SEM secondary electron beam image, a fracture surface photograph of a Charpy impact test piece is taken at a magnification of 10 times, and the total length of the separation-like vertical fracture surface is measured (unit: Alumina cluster index defined as a value obtained by dividing the measured value by the fracture surface area (80 mm 2 ) is 0.030 or less, the effective crystal grain size is 7.0 μm or less, and the average tensile strength is Nitrogen for low temperature with excellent tensile strength and toughness, characterized in that a steel sheet having a value of 690 MPa or more and 830 MPa or less and a Charpy impact absorption energy at -196 ° C. of 150 J or more is obtained. Manufacturing method of Le-containing steel sheet.

(2)さらに、Cr:0.05%以上かつ2.0%以下、Mo:0.02%以上かつ1.0%以下、Cu:0.1%以上かつ3.0%以下、Nb:0.005%以上0.100%以下、V:0.010%以上0.500%以下、Ti:0.005%以上0.500%以下、Ca:0.0001%以上0.0050%以下、Mg:0.0001%以上0.0050%以下、REM:0.0001%以上0.0100%以下、Zr:0.0001%以上0.0100%以下、B:0.0002%以上0.0030%以下の1種または2種以上を含有することを特徴とする前記(1)に記載の引張強度および靭性に優れた低温用ニッケル含有鋼板の製造方法。 (2) Further, Cr: 0.05% or more and 2.0% or less, Mo: 0.02% or more and 1.0% or less, Cu: 0.1% or more and 3.0% or less, Nb: 0. 0.005% to 0.100%, V: 0.010% to 0.500%, Ti: 0.005% to 0.500%, Ca: 0.0001% to 0.0050%, Mg : 0.0001% to 0.0050%, REM: 0.0001% to 0.0100%, Zr: 0.0001% to 0.0100%, B: 0.0002% to 0.0030% 1 or 2 or more are contained, The manufacturing method of the nickel containing steel plate for low temperature excellent in the tensile strength and toughness as described in said (1) characterized by the above-mentioned.

本発明によれば、引張強度および靭性に優れた低温用ニッケル含有鋼板およびその製造方法を提供することが可能であり、産業上の価値の高い発明であるといえる。   According to the present invention, it is possible to provide a low-temperature nickel-containing steel sheet excellent in tensile strength and toughness and a method for producing the same, and it can be said that the invention has a high industrial value.

アルミナクラスター指数とクロス圧延圧下率との関係を示すグラフである。It is a graph which shows the relationship between an alumina cluster index and a cross rolling reduction. シャルピー衝撃吸収エネルギーとアルミナクラスター指数との関係を示すグラフである。It is a graph which shows the relationship between Charpy impact absorption energy and an alumina cluster index. 有効結晶粒径とクロス圧延温度との関係を示すグラフである。It is a graph which shows the relationship between an effective crystal grain size and cross rolling temperature. 有効結晶粒径と全圧下率との関係を示すグラフである。It is a graph which shows the relationship between an effective crystal grain size and the total rolling reduction. 靱性と有効結晶粒径との関係を示すグラフである。6 is a graph showing the relationship between toughness and effective crystal grain size.

本発明を詳細に説明する。発明者らは、低温用ニッケル含有鋼板のうち、Ni含有量が8.0%以上9.5%以下の鋼板の靭性に及ぼす、アルミナクラスター、すなわち長径が数μmのアルミナが圧延方向に連続的に分布する集合体の影響を明らかにするため、シャルピー衝撃試験の試験片の破面調査を行った。   The present invention will be described in detail. Among the low-temperature nickel-containing steel sheets, the inventors have found that alumina clusters, that is, alumina having a major axis of several μm, continuously affect the toughness of steel sheets having a Ni content of 8.0% or more and 9.5% or less in the rolling direction. In order to clarify the effect of aggregates distributed on the surface, the fracture surface of the Charpy impact test specimen was investigated.

その結果、シャルピー試験片の長手方向を鋼板の幅方向と平行にした場合には、アルミナクラスターの圧延方向の連続的な分布が、シャルピー試験片の破面となる面に平行となることから、セパレーション状の粗大なボイド合体型破面を形成して、延性き裂進展抵抗の低下や、延性き裂進展から脆性破壊への遷移を通じてシャルピー衝撃吸収エネルギー低下をもたらすことを新たに知見した。発明者らは、シャルピー試験片の破面に平行な面、すなわち鋼板の幅方向に垂直な面上のアルミナの個数を低減することが靭性改善に有効と着想して、その方法を種々検討した結果、鋼板の熱間圧延時、粗圧延の一部を鋼板幅方向への圧下とするクロス圧延を実施する際の種々の条件を厳格に規定することが必要であることを知見した。以下詳細に説明する。   As a result, when the longitudinal direction of the Charpy test piece is parallel to the width direction of the steel sheet, the continuous distribution in the rolling direction of the alumina clusters is parallel to the surface to be the fracture surface of the Charpy test piece. It was newly found that a separation-like coarse void coalescence type fracture surface is formed, which causes reduction of ductile crack growth resistance and reduction of Charpy impact absorption energy through transition from ductile crack growth to brittle fracture. The inventors have conceived that reducing the number of alumina on the plane parallel to the fracture surface of the Charpy test piece, that is, the plane perpendicular to the width direction of the steel sheet is effective for improving the toughness, and variously studied the method. As a result, during hot rolling of steel sheets, it was found that it is necessary to strictly define various conditions when performing cross rolling in which a part of rough rolling is rolled in the width direction of the steel sheet. The details will be described below.

粗圧延の一部を鋼板幅方向への圧下とする、クロス圧延の効果を実験により確認した。ここで、クロス圧延とは、最終的な鋼板長手方向に対してほぼ垂直方向に実施する圧延を指し、粗圧延時に実施される。クロス圧延を行った後は、鋼板の長手方向の圧延を行うため、鋼片を90°程度回転させる。クロス圧延を行うことで、密集していたアルミナは鋼板の幅方向に広がりをもって分布するようになり、鋼板の幅方向に垂直な面、すなわちシャルピー試験片の破面に平行な面上のアルミナ個数は相対的に減少する。鋼板幅方向に垂直な面にほぼ平行なシャルピー試験片の破面上の情報からアルミナクラスターの分布を測定した。SEM(走査型電子顕微鏡)の二次電子線像、倍率10倍でシャルピー衝撃試験片の破面写真を撮影し、セパレーション状の縦割れ破面の総長さを(単位:mm)測定した。これを、破面面積(80mm)で除した値をアルミナクラスター指数と定義した。単位は1/mmである。アルミナクラスター指数とクロス圧延圧下率の関係を図1に示す。クロス圧延圧下率とは、クロス圧延とストレート圧延の合計の圧下量を熱間圧延前の鋼片厚さで除した値である。クロス圧延圧下率の増大とともに、アルミナクラスター指数が低下する傾向がみられる。 The effect of cross rolling, in which a part of the rough rolling is rolled in the width direction of the steel sheet, was confirmed by experiments. Here, the cross rolling refers to rolling performed in a direction substantially perpendicular to the final longitudinal direction of the steel sheet, and is performed during rough rolling. After the cross rolling, the steel strip is rotated about 90 ° in order to roll the steel sheet in the longitudinal direction. By cross-rolling, the densely packed alumina will be spread and distributed in the width direction of the steel sheet, and the number of alumina particles on the plane perpendicular to the steel sheet width direction, that is, the plane parallel to the fracture surface of the Charpy test piece. Is relatively reduced. The distribution of alumina clusters was measured from the information on the fractured surface of the Charpy test piece, which was almost parallel to the plane perpendicular to the steel sheet width direction. A SEM (scanning electron microscope) secondary electron image, a fracture surface photograph of a Charpy impact test piece was taken at a magnification of 10 times, and the total length (unit: mm) of the separation-like vertical crack fracture surface was measured. A value obtained by dividing this by the fracture surface area (80 mm 2 ) was defined as an alumina cluster index. The unit is 1 / mm. The relationship between the alumina cluster index and the cross rolling reduction is shown in FIG. The cross rolling reduction is a value obtained by dividing the total reduction amount of cross rolling and straight rolling by the thickness of the billet before hot rolling . The alumina cluster index tends to decrease with an increase in the cross rolling reduction.

シャルピー衝撃吸収エネルギーとアルミナクラスター指数の関係を図2に示す。アルミナクラスター指数の低下とともに、シャルピー衝撃吸収エネルギーが増大する。靭性改善、すなわちvE−196を150Jとするためには、アルミナクラスター指数を0.030以下とする必要があり、これにはクロス圧延の圧下率を0.1以上とする必要がある。クロス圧延の圧下率が0.6超の場合、鋼板の幅が大きくなり以後の熱間圧延が困難になるという操業上の理由から、クロス圧延の圧下率の上限を0.6とする。   The relationship between the Charpy impact absorption energy and the alumina cluster index is shown in FIG. The Charpy impact absorbed energy increases as the alumina cluster index decreases. In order to improve the toughness, that is, to set vE-196 to 150 J, the alumina cluster index needs to be 0.030 or less, which requires the rolling reduction of the cross rolling to be 0.1 or more. When the rolling reduction of the cross rolling exceeds 0.6, the upper limit of the rolling reduction of the cross rolling is set to 0.6 for the operational reason that the width of the steel sheet becomes large and the subsequent hot rolling becomes difficult.

靭性に優れた鋼板とするためには、クロス圧延圧下率を前記のように規定する圧下比を確保することに加え、有効結晶粒径を小さくする必要がある。このためには、クロス圧延を実施する温度を規定し、かつ熱間圧延の全圧下率を規定する必要がある。以下詳細に説明する。   In order to obtain a steel sheet having excellent toughness, it is necessary to reduce the effective grain size in addition to ensuring the reduction ratio that regulates the cross rolling reduction ratio as described above. For this purpose, it is necessary to specify the temperature at which the cross rolling is performed and the total rolling reduction of the hot rolling. The details will be described below.

クロス圧延の温度範囲を規定することは、有効結晶粒径の微細化に重要である。クロス圧延温度を1000℃超とした場合、再結晶後の粒成長によりオーステナイトが粗大化して、変態後のマルテンサイトを主体とする組織の有効結晶粒径が粗大化する。逆に、クロス圧延温度が800℃未満の場合も、再結晶がほとんど生じない未再結晶温度域での圧延が主体となるため、有効結晶粒径が粗大化する。有効結晶粒径とクロス圧延温度の関係を図3に示す。ここで、有効結晶粒径とは、変態後の組織にEBSDを行い、方位差15°以上を粒界と定義して算出した平均の結晶粒径を指す。   Defining the temperature range for cross rolling is important for making the effective grain size finer. When the cross rolling temperature is more than 1000 ° C., austenite is coarsened by grain growth after recrystallization, and the effective crystal grain size of the structure mainly composed of martensite after transformation is coarsened. On the contrary, even when the cross rolling temperature is lower than 800 ° C., rolling is mainly performed in the non-recrystallized temperature range where recrystallization hardly occurs, so that the effective crystal grain size becomes coarse. The relationship between effective grain size and cross rolling temperature is shown in FIG. Here, the effective crystal grain size refers to an average crystal grain size calculated by performing EBSD on the structure after transformation and defining an orientation difference of 15 ° or more as a grain boundary.

熱間圧延の全圧下率を規定することも、有効結晶粒径の微細化に重要である。熱間圧延の全圧下率を増大することで有効結晶粒径が小さくなる。これは、再結晶を通じたオーステナイトの微細化と、さらに未再結晶域での圧下を通じたオーステナイト中への転位導入によって、変態後のマルテンサイトを主体とする組織が微細化するためである。図4に、クロス圧延温度を800℃以上1000℃以下とした場合の、有効結晶粒径と全圧下率と靭性の関係を示す。全圧下率を0.65以上とすることで、有効結晶粒径を7.0μm以下と小さくすることができる。ここで、全圧下率とは、熱間圧延前の鋼片厚さから熱間圧延後の鋼板厚を引いた値を、熱間圧延前の鋼片厚さで除した値である。なお、本発明における熱間圧延は、その一部を、最終的な鋼板長手方向に対してほぼ垂直方向に行うクロス圧延で、残部を、最終的な鋼板長手方向に対してほぼ平行方向に行うストレート圧延で行うものであり、全圧下率は、クロス圧延とストレート圧延の合計の圧下量を熱間圧延前の鋼片厚さで除した値、クロス圧延圧下率は、クロス圧延の圧下量を熱間圧延前の鋼片厚さで除した値である。   Prescribing the total reduction ratio of hot rolling is also important for refining the effective grain size. The effective grain size becomes smaller by increasing the total reduction ratio of hot rolling. This is because the refinement of austenite through recrystallization and the introduction of dislocations into austenite through reduction in the unrecrystallized region refines the structure mainly composed of martensite after transformation. FIG. 4 shows the relationship between the effective crystal grain size, the total rolling reduction, and the toughness when the cross rolling temperature is 800 ° C. or higher and 1000 ° C. or lower. By setting the total rolling reduction to 0.65 or more, the effective crystal grain size can be reduced to 7.0 μm or less. Here, the total reduction is a value obtained by dividing the value obtained by subtracting the steel plate thickness after hot rolling from the steel plate thickness before hot rolling by the steel plate thickness before hot rolling. The hot rolling in the present invention is a part of which is a cross rolling which is performed in a direction substantially perpendicular to the longitudinal direction of the steel sheet, and the rest is performed in a direction substantially parallel to the longitudinal direction of the final steel sheet. Straight rolling is performed, and the total reduction is a value obtained by dividing the total reduction amount of cross rolling and straight rolling by the thickness of the billet before hot rolling.The cross rolling reduction is the reduction amount of cross rolling. It is the value divided by the thickness of the steel slab before hot rolling.

クロス圧延の温度範囲や、熱間圧延の全圧下率を規定することで、有効結晶粒径を微細化した場合の、靭性と有効結晶粒径の関係を図5に示す。靭性確保、すなわちvE−196を150J以上とするためには、有効結晶粒径を7.0μm以下とする必要があり、このためには、クロス圧延温度を800℃以上1000℃以下、全圧下率を0.65以上とする必要がある。   FIG. 5 shows the relationship between the toughness and the effective crystal grain size when the effective crystal grain size is refined by defining the temperature range of the cross rolling and the total rolling reduction of the hot rolling. In order to secure the toughness, that is, vE-196 to 150 J or more, the effective crystal grain size needs to be 7.0 μm or less. For this purpose, the cross rolling temperature is 800 ° C. or more and 1000 ° C. or less, and the total rolling reduction is Must be 0.65 or more.

以下に鋼板の合金元素の範囲を規定する。
Cは、690MPa以上の引張強さを確保して、さらに−196℃で150J以上のシャルピー衝撃吸収エネルギーを確保するのに必須の元素であるため、その添加量を0.03%以上とする。しかし、一方でC量を増大すると、靱性が低下して−196℃のシャルピー衝撃吸収エネルギーで150J以上を確保することが困難となり、さらに引張強さが830MPaを超えるため、その上限を0.10%とする。
The range of alloy elements of the steel sheet is specified below.
C is an essential element for ensuring a tensile strength of 690 MPa or more and further ensuring a Charpy impact absorption energy of 150 J or more at -196 ° C, so the addition amount is made 0.03% or more. On the other hand, however, if the amount of C is increased, the toughness decreases and it becomes difficult to secure 150 J or more at Charpy impact absorbed energy at -196 ° C, and the tensile strength exceeds 830 MPa, so the upper limit is 0.10. %.

Siは、690MPa以上の引張強さを確保するのに必須の元素であるため、その添加量を0.02%以上とする。しかし、一方で0.40%超のSi添加は靭性が低下して、−196℃のシャルピー衝撃吸収エネルギーで150J以上を確保することが困難となるためその上限を0.40%とする。   Since Si is an essential element for ensuring a tensile strength of 690 MPa or more, its addition amount is set to 0.02% or more. However, on the other hand, addition of Si in excess of 0.40% lowers toughness and makes it difficult to secure 150 J or more at Charpy impact absorbed energy at -196 ° C, so the upper limit is made 0.40%.

Mnは、690MPa以上の引張強さを確保するのに有効な元素であり、最低でも0.30%以上の添加が必要となるが、逆に1.20%を超えて添加すると焼戻し脆化感受性が高くなって靭性が低下して−196℃のシャルピー衝撃吸収エネルギーで150J以上を確保することが困難となり、さらに引張強さが830MPaを超える。よって、Mnの添加量を0.30%以上1.20%以下と規定する。   Mn is an element effective for ensuring a tensile strength of 690 MPa or more, and at least 0.30% or more is required to be added, but conversely, if it is added in excess of 1.20%, it is susceptible to temper embrittlement. Becomes higher, the toughness decreases, and it becomes difficult to secure 150 J or more with Charpy impact absorbed energy at -196 ° C, and the tensile strength exceeds 830 MPa. Therefore, the amount of Mn added is specified to be 0.30% or more and 1.20% or less.

Niは、下限については靭性確保、すなわち−196℃のシャルピー衝撃吸収エネルギーで150J以上を確保するため、最低でも8.0%以上の添加が必要となる。上限は特に規定しないものの、9.5%超では製造コストが大幅に増大するため9.5%以下が好ましい。よって、Niの添加量を8.0%以上9.5%以下とする。   The lower limit of Ni is to ensure toughness, that is, to secure 150 J or more in Charpy impact absorption energy at -196 ° C, so Ni must be added at least 8.0% or more. Although the upper limit is not particularly specified, if it exceeds 9.5%, the manufacturing cost greatly increases, so 9.5% or less is preferable. Therefore, the addition amount of Ni is set to 8.0% or more and 9.5% or less.

Alは、脱酸に有効な元素であり、最低でも0.010%以上の添加が必要となる。0.010%未満や逆に0.080%を超えた添加では、介在物の体積分率増大を通じて靭性が低下して、−196℃のシャルピー衝撃吸収エネルギーで150J以上を確保することが困難となる。よって、Alの添加量を0.010%以上0.080%以下と規定する。   Al is an element effective for deoxidation, and at least 0.010% or more needs to be added. Addition of less than 0.010% or conversely more than 0.080% makes it difficult to secure 150 J or more at a Charpy impact absorbed energy of -196 ° C because the volume fraction of inclusions increases and the toughness decreases. Become. Therefore, the addition amount of Al is specified to be 0.010% or more and 0.080% or less.

T−Oは、下限については特に規定はないものの、0.0001%未満では精錬負荷の増大によって生産性が低下するため0.0001%以上が好ましい。0.0030%を超えて添加するとアルミナクラスター形成を通じて靭性が低下して、−196℃のシャルピー衝撃吸収エネルギーで150J以上を確保することが困難となるため上限は0.0030%とする。よって、T−Oの添加量を0.0001%以上0.0030%以下とする。   The lower limit of T-O is not particularly specified, but if it is less than 0.0001%, the productivity decreases due to an increase in the refining load, so 0.0001% or more is preferable. If added in excess of 0.0030%, the toughness will decrease due to the formation of alumina clusters, and it will be difficult to secure 150 J or more at Charpy impact absorbed energy at -196 ° C, so the upper limit is made 0.0030%. Therefore, the amount of T-O added is set to 0.0001% or more and 0.0030% or less.

Pは、下限については特に規定はないものの、0.0010%未満とするには精錬負荷の増大により生産性が大幅に低下するため0.0010%以上が好ましい。また0.0100%を超えると焼戻し脆化により靭性が低下して、−196℃のシャルピー衝撃吸収エネルギーで150J以上を確保することが困難となるため上限は0.0100%とする。よって、Pの添加量を0.0010%以上0.0100%以下とする。   The lower limit of P is not particularly specified, but if it is less than 0.0010%, the productivity is greatly reduced due to an increase in the refining load, so 0.0010% or more is preferable. If it exceeds 0.0100%, the toughness decreases due to temper embrittlement, and it becomes difficult to secure 150 J or more at Charpy impact absorbed energy at -196 ° C, so the upper limit is made 0.0100%. Therefore, the amount of P added is set to 0.0010% or more and 0.0100% or less.

Sは、下限については特に規定はないものの、0.0001%未満では精錬負荷の増大により生産性が大幅に低下するため0.0001%以上が好ましい。また0.0035%を超えると靱性が低下して、−196℃のシャルピー衝撃吸収エネルギーで150J以上を確保することが困難となるため上限は0.0035%とする。よって、Sの添加量を0.0001%以上0.0035%以下とする。   The lower limit of S is not particularly specified, but if it is less than 0.0001%, the productivity is greatly reduced due to an increase in the refining load, so 0.0001% or more is preferable. Further, if it exceeds 0.0035%, the toughness decreases, and it becomes difficult to secure 150 J or more at the Charpy impact absorbed energy at -196 ° C, so the upper limit is made 0.0035%. Therefore, the addition amount of S is set to 0.0001% or more and 0.0035% or less.

Nは、下限については特に規定はないものの、0.0005%未満では精錬負荷の増大によって生産性が低下するため0.0005%以上が好ましい。し、また0.0070%を超える添加では靭性が低下して、−196℃のシャルピー衝撃吸収エネルギーで150J以上を確保することが困難となるため上限は0.0070%とする。よって、Nの添加量を0.0005%以上0.0070%以下とする。   The lower limit of N is not particularly specified, but if it is less than 0.0005%, the productivity decreases due to an increase in the refining load, so 0.0005% or more is preferable. However, if added in excess of 0.0070%, the toughness decreases and it becomes difficult to secure 150 J or more at Charpy impact absorbed energy at -196 ° C, so the upper limit is made 0.0070%. Therefore, the amount of N added is set to 0.0005% or more and 0.0070% or less.

なお、本発明では、さらに以下の元素を添加することができる。
Crは、焼入性の確保に有効な元素であり、最低でも0.05%以上の添加が必要となるが、逆に2.0%を超えて添加すると靭性と溶接性が低下する。よって、Crの添加量を0.05%以上2.0%以下と規定する。
In the present invention, the following elements can be further added.
Cr is an element effective in ensuring hardenability, and it is necessary to add at least 0.05%, but if it is added in excess of 2.0%, toughness and weldability are deteriorated. Therefore, the addition amount of Cr is specified to be 0.05% or more and 2.0% or less.

Moは、焼戻し脆化の軽減に有効な元素であり、最低でも0.02%の添加が必要となるが、逆に1.0%を超えて添加すると靭性と溶接性が低下する。よって、Moの添加量を0.02%以上1.0%以下と規定する。   Mo is an element effective in reducing temper embrittlement, and it is necessary to add 0.02% at a minimum. Conversely, if it is added in excess of 1.0%, toughness and weldability deteriorate. Therefore, the addition amount of Mo is specified to be 0.02% or more and 1.0% or less.

Cuは、強度確保のため、最低でも0.1%以上の添加が必要となるが、3.0%を超えると靭性が低下する。よって、Cuの添加量を0.1%以上3.0%以下と規定する。   Cu needs to be added at least 0.1% or more to secure the strength, but if it exceeds 3.0%, the toughness decreases. Therefore, the additive amount of Cu is specified to be 0.1% or more and 3.0% or less.

Nbは強度確保に有効な元素である。0.005%未満の添加では効果が小さく、0.100%超の添加では靱性の低下を招く。よって、Nbの添加量を0.005%以上0.100%以下と規定する。   Nb is an element effective in securing strength. If it is less than 0.005%, the effect is small, and if it exceeds 0.100%, the toughness is lowered. Therefore, the amount of Nb added is specified to be 0.005% or more and 0.100% or less.

Vは、強度確保に有効な元素である。0.010%未満の添加では効果が小さく、0.500%超の添加では靱性の低下を招く。よって、Vの添加量を0.010%以上0.500%以下と規定する。   V is an element effective for ensuring strength. If it is less than 0.010%, the effect is small, and if it exceeds 0.500%, the toughness is lowered. Therefore, the addition amount of V is specified to be 0.010% or more and 0.500% or less.

Tiは、強度確保に有効な元素である。0.005%未満の添加では効果が小さく、0.500%超の添加では靭性の低下を招く。よって、Tiの添加量を0.005%以上0.500%以下と規定する。   Ti is an element effective for ensuring strength. If it is less than 0.005%, the effect is small, and if it exceeds 0.500%, the toughness is lowered. Therefore, the addition amount of Ti is specified to be 0.005% or more and 0.500% or less.

Caは、ノズル閉塞防止に有効な元素である。0.0001%未満の添加ではその効果が小さく、0.0050%超の添加では靭性の低下を招く。よって、Caの添加量を0.0001%以上0.0050%以下と規定する。   Ca is an element effective in preventing nozzle clogging. If it is less than 0.0001%, the effect is small, and if it exceeds 0.0050%, the toughness is lowered. Therefore, the amount of Ca added is specified to be 0.0001% or more and 0.0050% or less.

Mgは、靱性向上に有効な元素である。0.0001%未満の添加ではその効果が小さく、0.0050%超の添加では靭性の低下を招く。よって、Mgの添加量を0.0001%以上0.0050%以下と規定する。   Mg is an element effective in improving toughness. If it is less than 0.0001%, the effect is small, and if it exceeds 0.0050%, the toughness is lowered. Therefore, the addition amount of Mg is defined as 0.0001% or more and 0.0050% or less.

REMは、靱性向上に有効な元素である。0.0001%未満の添加ではその効果が小さく、0.0100%超の添加では靭性の低下を招く。よって、REMの添加量を0.0001%以上0.0100%以下と規定する。   REM is an element effective in improving toughness. If it is less than 0.0001%, its effect is small, and if it is more than 0.0100%, toughness is lowered. Therefore, the amount of REM added is specified to be 0.0001% or more and 0.0100% or less.

Zrは、靱性向上に有効な元素である。0.0001%未満の添加ではその効果が小さく、0.0100%超の添加では靭性の低下を招く。よって、Zrの添加量を0.0001%以上0.0100%以下と規定する。   Zr is an element effective in improving toughness. If it is less than 0.0001%, its effect is small, and if it is more than 0.0100%, toughness is lowered. Therefore, the added amount of Zr is specified to be 0.0001% or more and 0.0100% or less.

Bは、焼入性の向上に有効な元素である。0.0002%未満ではその効果が小さく、0.0030%を超える添加では靭性が低下する。よって、Bの添加量を0.0002%以上0.0030%以下と規定する。   B is an element effective for improving hardenability. If it is less than 0.0002%, its effect is small, and if it exceeds 0.0030%, the toughness decreases. Therefore, the addition amount of B is specified to be 0.0002% or more and 0.0030% or less.

なお、鋼板および溶接材料を製造する上で、添加合金を含めた使用原料または溶製中に炉材等から溶出する不可避的不純物として混入しうる、Zn、Sn、Sb等も0.002%未満の混入であれば何ら本発明の効果を損なうものではない。   When manufacturing steel sheets and welding materials, Zn, Sn, Sb, etc., which can be mixed as raw materials including additive alloys or inevitable impurities eluted from furnace materials during melting, are less than 0.002%. If it is mixed in, the effect of the present invention is not impaired.

次に本発明の鋼板の製造方法について記載する。鋼板は、連続鋳造で製造されたスラブを前記の方法で熱間圧延する方法で製造されるが、前記以外に、一般的にマルテンサイトを主体とする組織を微細化するために実施する下記の条件も必要になる。鋼片の加熱温度は、1270℃以上ではオーステナイトの粒成長により変態後のマルテンサイトを主体とする組織が粗大化することで靭性が低下し、−196℃でのシャルピー衝撃吸収エネルギーで150J以上を確保することが困難になり、900℃未満では熱間圧延が困難になることから、900℃以上1270℃以下とする。クロス圧延の後に実施する圧延における仕上1パス前温度は、850℃超では未再結晶域圧下が少なくなり、変態後のマルテンサイトを主体とする組織が粗大化すること、600℃未満では熱間圧延が困難になることから、仕上1パス前温度を600℃以上850℃以下とする。   Next, a method for manufacturing the steel sheet of the present invention will be described. The steel sheet is produced by a method of hot rolling the slab produced by continuous casting by the method described above, but in addition to the above, the following is generally performed to refine the structure mainly composed of martensite. Conditions are also required. When the heating temperature of the steel slab is 1270 ° C. or higher, the toughness decreases due to the coarsening of the structure mainly composed of martensite after transformation due to grain growth of austenite, and the Charpy impact absorption energy at −196 ° C. is 150 J or higher. Since it becomes difficult to secure the temperature and hot rolling becomes difficult at less than 900 ° C, the temperature is set to 900 ° C or more and 1270 ° C or less. If the temperature before finishing 1 pass in the rolling performed after the cross rolling exceeds 850 ° C, the reduction in the unrecrystallized region becomes small, and the structure mainly composed of martensite after transformation becomes coarse. Since rolling becomes difficult, the temperature before finishing one pass is set to 600 ° C or more and 850 ° C or less.

圧延後は空冷を行い、さらに鋼板を760℃以上880℃以下に加熱した後水冷する焼入れを行い、引き続いて焼戻しを行う。焼戻し温度が500℃未満では焼戻し脆化により、650℃超ではフレッシュマルテンサイトの生成により靭性が低下し、−196℃でのシャルピー衝撃吸収エネルギーで150J以上を確保することが困難になることから、焼戻しの際の加熱温度を500℃以上650℃以下とする。
前記熱処理により、最適温度に焼戻された焼戻しマルテンサイトを主体として、残部が安定なオーステナイトからなる組織とすることができ、靭性が向上する。
After the rolling, air cooling is performed, the steel sheet is further heated to 760 ° C. or higher and 880 ° C. or lower, and then quenched by water cooling, and subsequently tempered. If the tempering temperature is less than 500 ° C., temper embrittlement occurs, and if it exceeds 650 ° C., toughness decreases due to formation of fresh martensite, and it becomes difficult to secure 150 J or more in Charpy impact absorption energy at −196 ° C. The heating temperature during tempering is set to 500 ° C. or higher and 650 ° C. or lower.
By the heat treatment, a structure mainly composed of tempered martensite that has been tempered to the optimum temperature can be formed, and the balance can be a stable austenite structure, and the toughness is improved.

種々の化学成分、製造条件で製造した板厚20、50mmの鋼板について、引張試験およびシャルピー衝撃試験を実施した。鋼板の化学成分、アルミナクラスター指数、有効結晶粒径、板厚、熱間圧延条件、熱処理条件、機械的特性の評価結果を表1−1、表1−2(表1−1続き)に示す。引張試験はJIS Z 2241に記載の金属材料引張試験方法に基づいて行った。試験片は、板厚の1/4だけ鋼板表面から内部に入った部位において、試験片の長手方向が圧延方向と垂直になるように採取した。常温で2本の試験を行い、引張強さの平均値が690MPa以上830MPa以下を合格とした。シャルピー衝撃試験は、2mmVノッチ試験片のフルサイズ試験片を、板厚の1/4だけ鋼板表面から内部に入った部位において、試験片の長手方向が圧延方向と垂直になるように、またノッチの前縁を結ぶ線が板厚方向に平行になるように採取した。試験温度−196℃で3本の試験を行い、3本の平均値が150J以上を合格とした。実施例1〜38に示すように、本発明に規定した成分および製造方法で鋼板を製造することにより、優れた引張強度および靭性の鋼板が得られた。   Tensile tests and Charpy impact tests were carried out on steel plates with thicknesses of 20 and 50 mm manufactured under various chemical components and manufacturing conditions. Table 1-1 and Table 1-2 (continued from Table 1-1) show the evaluation results of the chemical composition of the steel sheet, alumina cluster index, effective crystal grain size, sheet thickness, hot rolling conditions, heat treatment conditions, and mechanical properties. .. The tensile test was performed based on the metallic material tensile test method described in JIS Z2241. The test piece was sampled so that the longitudinal direction of the test piece was perpendicular to the rolling direction at a portion that entered from the surface of the steel plate by 1/4 of the plate thickness. Two tests were conducted at room temperature, and an average tensile strength value of 690 MPa or more and 830 MPa or less was regarded as acceptable. The Charpy impact test is performed by notching the full-size test piece of the 2 mm V notch test piece so that the longitudinal direction of the test piece is perpendicular to the rolling direction at a portion that enters from the steel plate surface by 1/4 of the plate thickness. Sampling was performed so that the line connecting the front edges of was parallel to the plate thickness direction. Three tests were conducted at a test temperature of -196 ° C, and the average value of the three tests was 150 J or more. As shown in Examples 1 to 38, the steel sheet having excellent tensile strength and toughness was obtained by producing the steel sheet with the components and the production method specified in the present invention.

Figure 0006693186
Figure 0006693186

Figure 0006693186
Figure 0006693186

以上の実施例から、本発明により製造された実施例1〜38の鋼板は、引張強度および靭性に優れた鋼板であることは明白である。   From the above examples, it is clear that the steel sheets of Examples 1 to 38 produced according to the present invention are steel sheets excellent in tensile strength and toughness.

Claims (2)

鋼が、質量%で、
C :0.03%以上かつ0.10%以下、
Si:0.02%以上かつ0.40%以下、
Mn:0.30%以上かつ1.20%以下、
Ni:8.0%以上かつ9.5%以下、
Al:0.010%以上かつ0.080%以下、
T−O:0.0001%以上かつ0.0030%以下を含有し、
P:0.0010%以上0.0100%以下、
S:0.0001%以上0.0035%以下、
N:0.0005%以上0.0070%以下を含有し、残部がFe及び不可避的不純物からなるスラブを900℃以上1270℃以下に加熱したのちに熱間圧延を行い、当該の熱間圧延の全圧下率を0.65以上、熱間圧延のうち圧延幅方向に行うクロス圧延の圧下率を0.1以上0.6以下、クロス圧延の温度範囲を800℃以上1000℃以下、仕上1パス前温度を600℃以上850℃以下として、圧延後は空冷を行い、さらに鋼板を760℃以上880℃以下に加熱した後水冷する焼入れを行い、引き続いて500℃以上かつ650℃以下に加熱した後冷却する焼戻しを行い、SEMの二次電子線像、倍率10倍でシャルピー衝撃試験片の破面写真を撮影し、セパレーション状の縦割れ破面の総長さを(単位:mm)測定し、これを、破面面積(80mm )で除した値として定義されるアルミナクラスター指数が0.030以下であり、有効結晶粒径が7.0μm以下、引張強さの平均値が690MPa以上830MPa以下、かつ−196℃でのシャルピー衝撃吸収エネルギーが150J以上の鋼板を得ることを特徴とする引張強度および靭性に優れた低温用ニッケル含有鋼板の製造方法。
Steel, in mass%,
C: 0.03% or more and 0.10% or less,
Si: 0.02% or more and 0.40% or less,
Mn: 0.30% or more and 1.20% or less,
Ni: 8.0% or more and 9.5% or less,
Al: 0.010% or more and 0.080% or less,
TO: containing 0.0001% or more and 0.0030% or less,
P: 0.0010% or more and 0.0100% or less,
S: 0.0001% or more and 0.0035% or less,
N: 0.0005% or more and 0.0070% or less is contained, and the balance is composed of Fe and unavoidable impurities. The slab is heated to 900 ° C. or more and 1270 ° C. or less and then hot-rolled. Total rolling reduction is 0.65 or more, rolling reduction of hot rolling in the width direction is 0.1 or more and 0.6 or less, temperature range of cross rolling is 800 ° C or more and 1000 ° C or less, finishing 1 pass After rolling at a pre-temperature of 600 ° C or higher and 850 ° C or lower, air-cooling is performed after rolling, and then steel plate is heated to 760 ° C or higher and 880 ° C or lower and then water-cooled, followed by heating to 500 ° C or higher and 650 ° C or lower After cooling and tempering, a SEM secondary electron image, a photograph of a fracture surface of a Charpy impact test piece was taken at a magnification of 10 times, and the total length of the separation-like vertical fracture surface was measured (unit: mm). To Alumina cluster index defined as divided by the fracture area (80 mm 2) it is 0.030 or less, the effective crystal grain size of 7.0μm or less, or more the average value of the tensile strength is 690 MPa 830 MPa or less, and - A method for producing a low-temperature nickel-containing steel sheet having excellent tensile strength and toughness, characterized in that a steel sheet having a Charpy impact absorption energy at 196 ° C of 150 J or more is obtained .
さらに、
Cr:0.05%以上かつ2.0%以下、
Mo:0.02%以上かつ1.0%以下、
Cu:0.1%以上かつ3.0%以下、
Nb:0.005%以上0.100%以下、
V:0.010%以上0.500%以下、
Ti:0.005%以上0.500%以下、
Ca:0.0001%以上0.0050%以下、
Mg:0.0001%以上0.0050%以下、
REM:0.0001%以上0.0100%以下、
Zr:0.0001%以上0.0100%以下、
B:0.0002%以上0.0030%以下の1種または2種以上を含有することを特徴とする請求項1に記載の引張強度および靭性に優れた低温用ニッケル含有鋼板の製造方法。
further,
Cr: 0.05% or more and 2.0% or less,
Mo: 0.02% or more and 1.0% or less,
Cu: 0.1% or more and 3.0% or less,
Nb: 0.005% or more and 0.100% or less,
V: 0.010% or more and 0.500% or less,
Ti: 0.005% or more and 0.500% or less,
Ca: 0.0001% or more and 0.0050% or less,
Mg: 0.0001% or more and 0.0050% or less,
REM: 0.0001% or more and 0.0100% or less,
Zr: 0.0001% or more and 0.0100% or less,
B: 0.0002% or more and 0.0030% or less of 1 type or 2 types or more are contained , The manufacturing method of the low temperature nickel containing steel plate excellent in the tensile strength and toughness of Claim 1 characterized by the above-mentioned .
JP2016048152A 2016-03-11 2016-03-11 Method for producing low-temperature nickel-containing steel sheet excellent in tensile strength and toughness Active JP6693186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016048152A JP6693186B2 (en) 2016-03-11 2016-03-11 Method for producing low-temperature nickel-containing steel sheet excellent in tensile strength and toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016048152A JP6693186B2 (en) 2016-03-11 2016-03-11 Method for producing low-temperature nickel-containing steel sheet excellent in tensile strength and toughness

Publications (2)

Publication Number Publication Date
JP2017160511A JP2017160511A (en) 2017-09-14
JP6693186B2 true JP6693186B2 (en) 2020-05-13

Family

ID=59853942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016048152A Active JP6693186B2 (en) 2016-03-11 2016-03-11 Method for producing low-temperature nickel-containing steel sheet excellent in tensile strength and toughness

Country Status (1)

Country Link
JP (1) JP6693186B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6816467B2 (en) * 2016-11-17 2021-01-20 日本製鉄株式会社 Nickel-containing thick steel sheet for low temperature and its manufacturing method
JP7453498B2 (en) 2019-01-15 2024-03-21 日本製鉄株式会社 How to manage LNG storage tanks for ships

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5354118A (en) * 1976-10-28 1978-05-17 Nippon Steel Corp Production of high tensile steel sheet with excellent brittleness crackpropagation stopping properties
JP4430341B2 (en) * 2003-06-12 2010-03-10 新日本製鐵株式会社 Steel material with few alumina clusters
JP4760299B2 (en) * 2005-10-26 2011-08-31 住友金属工業株式会社 Welded joint and manufacturing method thereof
JP5494166B2 (en) * 2010-04-14 2014-05-14 新日鐵住金株式会社 Cryogenic steel plate and manufacturing method thereof
JP5741454B2 (en) * 2012-01-13 2015-07-01 新日鐵住金株式会社 Ni-added steel sheet excellent in toughness and productivity in which Charpy test value at −196 ° C. is 100 J or more for both base metal and welded joint, and manufacturing method thereof

Also Published As

Publication number Publication date
JP2017160511A (en) 2017-09-14

Similar Documents

Publication Publication Date Title
JP6693185B2 (en) Method for manufacturing low temperature nickel steel sheet
JP5522084B2 (en) Thick steel plate manufacturing method
JP5445720B1 (en) High strength steel plate with excellent arrestability
JP4309946B2 (en) Thick high-strength steel sheet excellent in brittle crack propagation stopping characteristics and method for producing the same
JP5574059B2 (en) High-strength H-section steel with excellent low-temperature toughness and method for producing the same
JP6418358B1 (en) High Mn steel sheet and method for producing the same
JP6007968B2 (en) High-strength and highly ductile steel plate and its manufacturing method
JP5884201B2 (en) Hot-rolled steel sheet for high-strength line pipe with a tensile strength of 540 MPa or more
WO2015162939A1 (en) Thick steel plate and manufacturing method for same
JP6015602B2 (en) High toughness, high ductility, high strength hot-rolled steel sheet and method for producing the same
TWI500774B (en) High-strength steel sheet for high-heat input welding for high-strength steel sheet and its manufacturing method
JP2011219848A (en) Thick steel plate for ultra-low temperature and method for producing the same
JP2010202931A (en) High-strength thick steel plate for structure excellent in brittle crack propagation arrest property, and method for producing the same
JP6149776B2 (en) High toughness, high ductility, high strength hot-rolled steel sheet and method for producing the same
WO2014175122A1 (en) H-shaped steel and method for producing same
JP2019214752A (en) Low-yield-ratio thick steel plate
JPWO2020004410A1 (en) Clad steel plate and method for manufacturing the same
JP2015227483A (en) Steel sheet excellent in shock resistance and manufacturing method therefor
JP5874664B2 (en) High strength steel plate with excellent drop weight characteristics and method for producing the same
JP6610352B2 (en) Low temperature nickel-containing steel sheet with excellent tensile strength and toughness and method for producing the same
JP6693186B2 (en) Method for producing low-temperature nickel-containing steel sheet excellent in tensile strength and toughness
CN111051555B (en) Steel sheet and method for producing same
JP2010090406A (en) Low yield ratio steel for low temperature use, and producing method of the same
JP2019081929A (en) Nickel-containing steel plate and method for manufacturing the same
JP4250113B2 (en) Steel plate manufacturing method with excellent earthquake resistance and weldability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200330

R151 Written notification of patent or utility model registration

Ref document number: 6693186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151