JP5741454B2 - Ni-added steel sheet excellent in toughness and productivity in which Charpy test value at −196 ° C. is 100 J or more for both base metal and welded joint, and manufacturing method thereof - Google Patents

Ni-added steel sheet excellent in toughness and productivity in which Charpy test value at −196 ° C. is 100 J or more for both base metal and welded joint, and manufacturing method thereof Download PDF

Info

Publication number
JP5741454B2
JP5741454B2 JP2012004553A JP2012004553A JP5741454B2 JP 5741454 B2 JP5741454 B2 JP 5741454B2 JP 2012004553 A JP2012004553 A JP 2012004553A JP 2012004553 A JP2012004553 A JP 2012004553A JP 5741454 B2 JP5741454 B2 JP 5741454B2
Authority
JP
Japan
Prior art keywords
less
toughness
steel sheet
base metal
productivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012004553A
Other languages
Japanese (ja)
Other versions
JP2013142197A (en
Inventor
仁志 古谷
仁志 古谷
斎藤 直樹
直樹 斎藤
康哲 高橋
康哲 高橋
基裕 奥島
基裕 奥島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012004553A priority Critical patent/JP5741454B2/en
Publication of JP2013142197A publication Critical patent/JP2013142197A/en
Application granted granted Critical
Publication of JP5741454B2 publication Critical patent/JP5741454B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、靭性に優れたNi添加鋼板およびその製造方法に関するものである。この製法で製造した鋼板は、造船、橋梁、建築、海洋構造物、圧力容器、タンク、ラインパイプなどの溶接構造物一般に用いることができるが、特に−160℃から−196℃程度の極低温での靭性が要求されるLNGタンクでの使用において有効である。なお、本発明における靭性とは、脆性破壊発生に対する抵抗性を指すものであり、対象部位は鋼板の母材部と溶接継手部の両方である。また、本発明における鋼板の必要強度は、降伏応力が590MPa以上、引張強さが690MPa以上である。   The present invention relates to a Ni-added steel plate excellent in toughness and a method for producing the same. Steel plates produced by this method can be used for general welding structures such as shipbuilding, bridges, buildings, marine structures, pressure vessels, tanks, line pipes, etc., especially at extremely low temperatures of about -160 ° C to -196 ° C. It is effective when used in an LNG tank that requires high toughness. In addition, the toughness in this invention refers to the resistance with respect to brittle fracture occurrence, and an object site | part is both the base material part of a steel plate, and a welded joint part. The required strength of the steel sheet in the present invention is that the yield stress is 590 MPa or more and the tensile strength is 690 MPa or more.

液化天然ガス(LNG)貯槽の内槽に使用される鋼種として、いわゆる9%Ni鋼(Niが質量%で8.5〜9.5%程度含有されていて、おもに焼き戻しマルテンサイトからなる組織を有し、特に低温靱性、例えば−196℃でのシャルピー衝撃吸収エネルギーに優れる鋼材)がある。9%Ni鋼の靱性を向上させる種々の発明がこれまでに開示されている。たとえば、粒界脆化により靱性低下を引き起こすPを低減した発明が特許文献1、特許文献2、特許文献3に開示されている。また、二相域熱処理によって焼戻し脆化感受性を低減して靱性を向上する発明が特許文献4、特許文献5、特許文献6に開示されている。また、焼戻し脆化感受性を高めずに強度増大が可能なMoを添加して、大幅に靱性を向上する発明が、特許文献7、特許文献8、特許文献9に開示されている。さらに、焼戻し脆化感受性を高めるSi量を低減して靱性を向上する発明が特許文献4、特許文献8、特許文献10に開示されている。
昨今の天然ガス需要増大を背景に、LNGタンクの大型化対応のため、タンク靭性のさらなる向上が求められている。前記特許文献1〜10の方法は、靭性の向上にはきわめて有効であるが、コストの増大や生産性の低下を招く。よって、このままではLNGタンクに使用するには制限が大きかった。
As a steel type used for the inner tank of a liquefied natural gas (LNG) storage tank, a so-called 9% Ni steel (Ni is contained in an amount of about 8.5 to 9.5% by mass, and is mainly composed of tempered martensite. In particular, a low temperature toughness, for example, a steel material excellent in Charpy impact absorption energy at −196 ° C.). Various inventions for improving the toughness of 9% Ni steel have been disclosed so far. For example, Patent Document 1, Patent Document 2, and Patent Document 3 disclose an invention in which P that causes a decrease in toughness due to grain boundary embrittlement is disclosed. In addition, Patent Document 4, Patent Document 5, and Patent Document 6 disclose an invention that improves the toughness by reducing the temper embrittlement susceptibility by the two-phase region heat treatment. In addition, Patent Document 7, Patent Document 8, and Patent Document 9 disclose an invention that significantly improves toughness by adding Mo capable of increasing strength without increasing temper embrittlement sensitivity. Further, Patent Document 4, Patent Document 8, and Patent Document 10 disclose inventions that improve the toughness by reducing the amount of Si that increases the temper embrittlement sensitivity.
Against the backdrop of the recent increase in demand for natural gas, further improvement in tank toughness is required in order to cope with the increase in size of LNG tanks. The methods of Patent Documents 1 to 10 are extremely effective in improving toughness, but increase the cost and decrease the productivity. Therefore, there is a large limit to use it in the LNG tank as it is.

特開平7−278734号公報JP-A-7-278734 特開平6−179909号公報JP-A-6-179909 特開昭63−130245号公報JP-A-63-130245 特開平9−143557号公報JP-A-9-143557 特開平4−107219号公報JP-A-4-107219 特開昭56−156715号公報JP 56-156715 A 特開2002−129280号公報JP 2002-129280 A 特開平4−371520号公報JP-A-4-371520 特開昭61−133312号公報Japanese Patent Application Laid-Open No. 61-13312 特開平7−316654号公報JP 7-316654 A

解決しようとする問題点は、−160℃から−196℃程度での靭性に著しく優れ、かつ生産性にも優れた9%Ni添加鋼の鋼板およびその製造方法を提供することである。   The problem to be solved is to provide a steel sheet of 9% Ni-added steel that is remarkably excellent in toughness at about −160 ° C. to −196 ° C. and also excellent in productivity, and a method for producing the same.

本発明は、−160℃から−196℃程度での靭性に著しく優れ、かつ生産性にも優れた9%Ni鋼の鋼板およびその製造方法を提供するものであり、その要旨とするところは以下の通りである。
(1)鋼が、質量%で、C:0.04%以上0.10%以下、Si:0.02%以上0.15%以下、Mn:0.30%以上1.00%以下、P:0.0010%以上0.0100%以下、S:0.0001%以上0.0035%以下、Ni:7.5%超10.0%以下、Al:0.01%以上0.08%以下、N:0.0001%以上0.0070%以下、T−O:0.0001%以上0.0050%以下を含有し、残部がFe及び不可避的不純物からなる鋼組成であり、鋼板表面から鋼板厚さ方向に鋼板厚さの1/4だけ入った部位のPの界面偏析濃度が質量%で、0.100%以下であることを特徴とする、−196℃におけるシャルピー試験値が母材、溶接継手共に100J以上である靭性と生産性に優れたNi添加鋼板。
(2)さらに質量%で、Cr:0.01%以上1.5%以下、Mo:0.01%以上0.4%以下、Cu:0.01%以上1.0%以下、Nb:0.001%以上0.05%以下、Ti:0.001%以上0.05%以下、V:0.001%以上0.05%以下、B:0.0002%以上0.05%以下、Ca:0.0003%以上0.0040%以下、Mg:0.0003%以上0.0040%以下、REM:0.0003%以上0.0040%以下のいずれか1種以上を含有し、残部がFe及び不可避的不純物からなる鋼組成であることを特徴とする前記(1)に記載の−196℃におけるシャルピー試験値が母材、溶接継手共に100J以上である靭性と生産性に優れたNi添加鋼板。
(3)質量%で、C:0.04%以上0.10%以下、Si:0.02%以上0.15%以下、Mn:0.30%以上1.0%以下、P:0.0010%以上0.0100%以下、S:0.0001%以上0.0035%以下、Ni:7.5%超10.0%以下、Al:0.01%以上0.08%以下、N:0.0001%以上0.0070%以下、
T−O:0.0001%以上0.0050%以下を含有し、残部がFe及び不可避的不純物からなる鋼組成であり、連続鋳造後の鋼片を1250℃以上1380℃以下で10時間以上加熱したのち、圧下比を1.1以上10以下、圧延の最終1パス前温度を800℃以上1200℃以下とした第一の熱間圧延を行い、その後300℃以下まで冷却したのち、900℃以上1280℃以下に加熱した後に、圧下比を3.0以上50以下、圧延の最終1パス前温度を650℃以上950℃以下とした第二の熱間圧延を行い、引き続いて必要あれば加熱して750℃以上900℃以下とした後に水冷または空冷する焼き入れを行い、さらに引き続いて500℃以上650℃以下に加熱した後に水冷または空冷する焼き戻しを行うことを特徴とする、−196℃におけるシャルピー試験値が母材、溶接継手共に100J以上である靭性と生産性に優れたNi添加鋼板の製造方法。
(4)さらに質量%で、Cr:0.01%以上1.5%以下、Mo:0.01%以上0.4%以下、Cu:0.01%以上1.0%以下、Nb:0.001%以上0.05%以下、Ti:0.001%以上0.05%以下、V:0.001%以上0.05%以下、B:0.0002%以上0.05%以下、Ca:0.0003%以上0.0040%以下、Mg:0.0003%以上0.0040%以下、REM:0.0003%以上0.0040%以下のいずれか1種以上を含有し、残部がFe及び不可避的不純物からなる鋼組成であることを特徴とする前記(3)に記載の−196℃におけるシャルピー試験値が母材、溶接継手共に100J以上である靭性と生産性に優れたNi添加鋼板の製造方法。
The present invention provides a 9% Ni steel sheet having excellent toughness at about −160 ° C. to −196 ° C. and excellent productivity, and a method for producing the same. It is as follows.
(1) Steel is mass%, C: 0.04% to 0.10%, Si: 0.02% to 0.15%, Mn: 0.30% to 1.00%, P : 0.0010% or more and 0.0100% or less, S: 0.0001% or more and 0.0035% or less, Ni: more than 7.5% and 10.0% or less, Al: 0.01% or more and 0.08% or less , N: 0.0001% or more and 0.0070% or less, TO: 0.0001% or more and 0.0050% or less, and the balance is a steel composition composed of Fe and inevitable impurities. The Charpy test value at −196 ° C. is characterized in that the interfacial segregation concentration of P in the portion where only ¼ of the thickness of the steel sheet enters in the thickness direction is mass% and 0.100% or less. A Ni-added steel sheet with excellent toughness and productivity that is 100 J or more for both welded joints.
(2) Further, by mass%, Cr: 0.01% to 1.5%, Mo: 0.01% to 0.4%, Cu: 0.01% to 1.0%, Nb: 0 0.001% to 0.05%, Ti: 0.001% to 0.05%, V: 0.001% to 0.05%, B: 0.0002% to 0.05%, Ca : 0.0003% or more and 0.0040% or less, Mg: 0.0003% or more and 0.0040% or less, REM: 0.0003% or more and 0.0040% or less, and the balance is Fe The Ni-added steel sheet having excellent toughness and productivity in which the Charpy test value at −196 ° C. at −196 ° C. is 100 J or more for both the base material and the welded joint, which is a steel composition comprising unavoidable impurities and .
(3) By mass%, C: 0.04% to 0.10%, Si: 0.02% to 0.15%, Mn: 0.30% to 1.0%, P: 0.00. 0010% to 0.0100%, S: 0.0001% to 0.0035%, Ni: more than 7.5% to 10.0%, Al: 0.01% to 0.08%, N: 0.0001% or more and 0.0070% or less,
T-O: steel composition containing 0.0001% or more and 0.0050% or less, the balance being Fe and inevitable impurities, and heating the steel slab after continuous casting at 1250 ° C or more and 1380 ° C or less for 10 hours or more After that, the first hot rolling was performed at a rolling ratio of 1.1 to 10 and the temperature before the final one pass of rolling was 800 ° C. to 1200 ° C., and after cooling to 300 ° C., 900 ° C. After heating to 1280 ° C or lower, second hot rolling is performed with a reduction ratio of 3.0 to 50 and a temperature before the final one pass of rolling of 650 ° C to 950 ° C, and subsequently heated if necessary. 750 ° C. or more and 900 ° C. or less, followed by water-cooling or air-cooling quenching, followed by heating to 500 ° C. or more and 650 ° C. or less, followed by water-cooling or air-cooling tempering, Charpy test values preform at 196 ° C., a manufacturing method excellent Ni added steel sheet productivity and toughness is 100J or more welded joints both.
(4) Further, in mass%, Cr: 0.01% to 1.5%, Mo: 0.01% to 0.4%, Cu: 0.01% to 1.0%, Nb: 0 0.001% to 0.05%, Ti: 0.001% to 0.05%, V: 0.001% to 0.05%, B: 0.0002% to 0.05%, Ca : 0.0003% or more and 0.0040% or less, Mg: 0.0003% or more and 0.0040% or less, REM: 0.0003% or more and 0.0040% or less, and the balance is Fe The Ni-added steel sheet having excellent toughness and productivity in which the Charpy test value at −196 ° C. at −196 ° C. is 100 J or more for both the base metal and the welded joint. Manufacturing method.

本発明によれば、9%Ni鋼の母材靱性、溶接継手靱性を大幅に向上でき、かつ生産性にも優れたものとすることができる。つまり、従来よりも高い水準の耐脆性破壊性能を具備したNi添加鋼板およびその製造方法を提供することが可能であり、産業上の価値の高い発明であるといえる。   According to the present invention, the base material toughness and weld joint toughness of 9% Ni steel can be greatly improved, and the productivity can be improved. That is, it is possible to provide a Ni-added steel sheet having a higher level of brittle fracture resistance than before and a method for producing the same, and it can be said that the invention has high industrial value.

Pの界面偏析濃度と母材靭性の指標であるシャルピー衝撃吸収エネルギーの関係を示すグラフである。It is a graph which shows the relationship between the interface segregation density | concentration of P, and the Charpy impact absorption energy which is a parameter | index of base material toughness. 第一の熱間圧延における加熱保持温度と保持時間がPの界面偏析濃度に及ぼす影響を示すグラフである。It is a graph which shows the influence which the heating holding temperature and holding time in 1st hot rolling have on the interface segregation density | concentration of P.

本発明を詳細に説明する。
発明者は、9%Ni鋼の靭性を著しく向上して、かつ生産性も優れたものとする条件を鋭意検討した。その結果、生産性を著しく低下させる脱P工程を短時間化してP量が高くなった場合でも、Pの界面偏析濃度を低減させることが可能で、それにより靭性が向上することを見いだした。即ちPの界面偏析濃度の低減には、Si量の大幅な低減を行い、さらに鋳造後のスラブを2段階に熱間圧延する製造方法の適用が有効である。Pの界面偏析濃度と母材靭性の指標であるシャルピー衝撃吸収エネルギーの関係を図1に示す。このように、優れた靭性を得るためには、Pの界面偏析濃度を質量%で、0.100%以下とする必要があることから、鋼板表面から鋼板厚さ方向に鋼板厚さの1/4だけ入った部位のPの界面偏析濃度を0.100%以下と規定する。なお、Pの界面偏析濃度を測定する部位を鋼板表面から鋼板厚さ方向に鋼板厚さの1/4だけ入った部位としたのは、この部位が一般的に強度や靭性などの材質評価を実施する部位であること、つまり鋼材の材質代表部位として扱われることが多いためである。なお、Pの界面偏析量を0.05%以下とした場合には際だって靭性が向上することから、望ましくはPの界面偏析量を0.05%以下とする。
Pの界面偏析濃度は、透過型電子顕微鏡観察とEDS分析を行うことで測定することが可能である。本発明では、鋼板の板厚表面から板厚の1/4だけ内部に入った部位からサンプルを採取して薄膜を作製し、透過型電子顕微鏡で旧オーステナイト粒界、パケット粒界、ブロック粒界のいずれかの界面の観察を10万倍で50視野行い、測定した界面偏析P量の平均値をもって界面偏析P量とする。
The present invention will be described in detail.
The inventors diligently studied the conditions for significantly improving the toughness of 9% Ni steel and improving the productivity. As a result, it has been found that even when the amount of P is increased by shortening the P removal step that significantly reduces productivity, the interface segregation concentration of P can be reduced, thereby improving toughness. That is, in order to reduce the P segregation concentration of P, it is effective to apply a manufacturing method in which the amount of Si is greatly reduced and the slab after casting is hot-rolled in two stages. FIG. 1 shows the relationship between the P segregation concentration of P and the Charpy impact absorption energy, which is an index of base material toughness. As described above, in order to obtain excellent toughness, the P segregation concentration of P needs to be 0.100% or less in mass%. The interfacial segregation concentration of P in the part containing only 4 is defined as 0.100 % or less. In addition, the part where the interface segregation concentration of P is measured is a part where only ¼ of the steel sheet thickness is entered from the steel sheet surface to the steel sheet thickness direction. This part generally evaluates the material such as strength and toughness. This is because it is a part to be implemented, that is, it is often handled as a material representative part of a steel material. Note that when the P interface segregation amount is 0.05% or less, the toughness is remarkably improved. Therefore, the P interface segregation amount is desirably 0.05% or less.
The interface segregation concentration of P can be measured by observation with a transmission electron microscope and EDS analysis. In the present invention, a thin film is prepared by collecting a sample from a part of the steel sheet that is within ¼ of the thickness of the steel sheet, and the prior austenite grain boundaries, packet grain boundaries, block grain boundaries are obtained with a transmission electron microscope. The interface of any of the above is observed 50 times at 100,000 times, and the average value of the measured amount of interface segregation P is defined as the amount of interface segregation P.

Pの添加量は、Pの界面偏析濃度を低くするために重要であり、P添加量が0.0100%を超えるとPの界面偏析濃度が0.1%を超える。一方、0.0010%未満では精錬負荷の増大により生産性が大幅に低下する。そこで、Pの添加量を0.0010%以上0.0100%以下と規定する。   The addition amount of P is important for lowering the P segregation concentration of P. When the P addition amount exceeds 0.0100%, the P segregation concentration of P exceeds 0.1%. On the other hand, if it is less than 0.0010%, the productivity is greatly reduced due to an increase in the refining load. Therefore, the addition amount of P is defined as 0.0010% or more and 0.0100% or less.

Siは、Pとの反発的相互作用を有するため、添加量を増やすとPの界面偏析濃度が増大する。発明者は、Pの界面偏析濃度とSi添加量の関係を調査した結果、Pの界面偏析濃度を0.1%以下とするためには添加量を0.15%以下とすることを知見した。一方、0.02%未満では精錬負荷の増大により生産性が大幅に低下する。そこで、Siの添加量を0.02%以上0.15%以下と規定する。なお、Si添加量を0.10%以下とすると一層靭性が向上することから、望ましくはSi添加量を0.10%以下とする。Si添加量を0.06%以下とすると、さらに靭性が向上することから、さらに望ましくはSi添加量を0.06%以下とする。   Since Si has a repulsive interaction with P, increasing the amount of addition increases the P segregation concentration of P. As a result of investigating the relationship between the P segregation concentration of P and the Si addition amount, the inventor has found that the addition amount is 0.15% or less in order to make the P interface segregation concentration 0.1% or less. . On the other hand, if it is less than 0.02%, the productivity is greatly reduced due to an increase in the refining load. Therefore, the addition amount of Si is defined as 0.02% or more and 0.15% or less. Note that when the Si addition amount is 0.10% or less, the toughness is further improved, so the Si addition amount is desirably 0.10% or less. If the Si addition amount is 0.06% or less, the toughness is further improved. Therefore, the Si addition amount is more preferably 0.06% or less.

Mnは、Pとの反発的相互作用を有するため、添加量を増やすとPの界面偏析濃度が増大する。発明者は、Pの界面偏析量とMn添加量の関係を調査した結果、Pの界面偏析濃度を0.1%以下とするためには添加量を1.00%以下とすることを知見した。一方、0.30%未満では引張強さが低下する。そこで、Mnの添加量を0.30%以上1.00%以下と規定する。なお、Mn添加量を0.9%以下とすると一層靭性が向上することから、望ましくはMn添加量を0.9%以下とする。Mn添加量を0.8%以下とすると、さらに靭性が向上することから、さらに望ましくはMn添加量を0.8%以下とする。
以下に他の合金元素の範囲を規定する。
Since Mn has a repulsive interaction with P, increasing the amount added increases the P segregation concentration of P. As a result of investigating the relationship between the amount of interface segregation of P and the amount of Mn added, the inventor has found that the amount of addition is made 1.00% or less in order to make the interface segregation concentration of P or less 0.1% or less. . On the other hand, if it is less than 0.30% , the tensile strength decreases. Therefore, the amount of Mn added is defined as 0.30% or more and 1.00% or less . In addition, since the toughness is further improved when the Mn addition amount is 0.9% or less, the Mn addition amount is desirably 0.9% or less. When the amount of Mn added is 0.8% or less, the toughness is further improved. Therefore, the amount of Mn added is more preferably 0.8% or less.
The range of other alloy elements is specified below.

Cは、強度確保に必須の元素であるため、その添加量を0.04%以上とする。しかし、一方でC量の増大は粗大析出物の生成による母材靱性の低下や溶接性の低下、引張強さの低下を招くためその上限を0.10%とする
Sは、0.0001%未満では精錬負荷の増大により生産性が大幅に低下し、0.0035%を超えると靱性が低下する。よって、Sの添加量を0.0001%以上0.0035%以下と規定する。
Since C is an element essential for ensuring the strength, its addition amount is set to 0.04% or more. However, on the other hand, an increase in the amount of C causes a decrease in base material toughness, weldability, and tensile strength due to the formation of coarse precipitates. Therefore, S with an upper limit of 0.10% is 0.0001%. If the ratio is less than 0.0035%, the productivity is greatly reduced due to an increase in the refining load, and if it exceeds 0.0035%, the toughness is reduced. Therefore, the addition amount of S is defined as 0.0001% or more and 0.0035% or less.

Niは、耐脆性破壊特性の向上に有効な元素である。7.5%以下では耐脆性破壊特性の向上しろが小さく、10.0%を超えると製造コストが増大する。よって、Niの添加量を7.5%超10.0%以下と規定する。   Ni is an element effective for improving the brittle fracture resistance. If it is 7.5% or less, the margin for improving the brittle fracture resistance is small, and if it exceeds 10.0%, the production cost increases. Therefore, the addition amount of Ni is specified to be more than 7.5% and 10.0% or less.

Alは、脱酸材として有効な元素であり、0.01%未満の添加では脱酸が不十分となって母材靱性が低下し、0.08%超の添加では溶接継手靱性の低下を招く。よって、Alの添加量を0.01%以上0.08%以下と規定する。   Al is an element that is effective as a deoxidizing material. If less than 0.01% is added, deoxidation is insufficient and the toughness of the base metal decreases, and if added over 0.08%, the toughness of the welded joint decreases. Invite. Therefore, the addition amount of Al is defined as 0.01% or more and 0.08% or less.

Nは、0.0001%未満では精錬負荷の増大によって生産性が低下し、0.007%を超える添加では母材靱性、溶接継手靱性が低下する。よって、Nの添加量を0.0001%以上0.007%以下と規定する。   When N is less than 0.0001%, productivity decreases due to an increase in the refining load, and when it exceeds 0.007%, the base metal toughness and weld joint toughness decrease. Therefore, the addition amount of N is defined as 0.0001% or more and 0.007% or less.

T−Oは0.0001%未満では、精錬負荷が非常に高く生産性が低下し、0.0050%を超える場合には靱性が低下する。よって、T−O量を0.0001%以上0.0050%以下と規定した。なおT−O量を0.0015%以下とすると靱性向上が著しいことから、望ましくはT−O量を0.0001%以上0.0015%以下とする。
なお、本発明では、さらに以下の元素を添加する。
If T-O is less than 0.0001%, the refining load is very high and the productivity decreases, and if it exceeds 0.0050%, the toughness decreases. Therefore, the T—O amount is regulated to be 0.0001% or more and 0.0050% or less. Note that when the amount of T-O is 0.0015% or less, the toughness is remarkably improved. Therefore, the amount of T-O is desirably 0.0001% or more and 0.0015% or less.
In the present invention, the following elements are further added.

Crは、強度増大に有効な元素であり、最低でも0.01%以上の添加が必要となるが、逆に1.5%を超えて添加すると溶接継手靭性が低下する。よって、Crの添加量を0.01%以上1.5%以下と規定する。   Cr is an element effective for increasing the strength, and at least 0.01% of addition is necessary, but if added over 1.5%, the weld joint toughness decreases. Therefore, the addition amount of Cr is defined as 0.01% or more and 1.5% or less.

Moは、焼戻し脆化感受性を増加させずに強度を高めるのに有効な元素である。添加量が0.01%未満では強度増大の効果が小さく、0.4%を超えると製造コストが増大するとともに、溶接継手靱性が低下する。よって、Moの添加量を0.01%以上0.4%以下と規定する。   Mo is an element effective for increasing strength without increasing susceptibility to temper embrittlement. If the addition amount is less than 0.01%, the effect of increasing the strength is small, and if it exceeds 0.4%, the manufacturing cost increases and the welded joint toughness decreases. Therefore, the addition amount of Mo is defined as 0.01% or more and 0.4% or less.

Cuは、強度確保に有効な元素である。0.01%未満の添加では効果が小さく、1.0%超の添加では溶接継手靱性の低下を招く。よって、Cuの添加量を0.01%以上1.0%以下と規定する。   Cu is an element effective for securing strength. If the addition is less than 0.01%, the effect is small, and if it exceeds 1.0%, the weld joint toughness is reduced. Therefore, the addition amount of Cu is defined as 0.01% or more and 1.0% or less.

Nbは強度確保に有効な元素である。0.001%未満の添加では効果が小さく、0.05%超の添加では溶接継手靱性の低下を招く。よって、Nbの添加量を0.001%以上0.05%以下と規定する。   Nb is an element effective for securing strength. If the addition is less than 0.001%, the effect is small, and if it exceeds 0.05%, the weld joint toughness is lowered. Therefore, the addition amount of Nb is defined as 0.001% or more and 0.05% or less.

Tiは、靭性向上に有効な元素である。0.001%未満の添加では効果が小さく、0.05%超の添加では溶接継手靱性の低下を招く。よって、Tiの添加量を0.001%以上0.05%以下と規定する。   Ti is an element effective for improving toughness. If the addition is less than 0.001%, the effect is small, and if it exceeds 0.05%, the weld joint toughness is lowered. Therefore, the addition amount of Ti is defined as 0.001% or more and 0.05% or less.

Vは、強度確保に有効な元素である。0.001%未満の添加では効果が小さく、0.05%超の添加では溶接継手靱性の低下を招く。よって、Vの添加量を0.001%以上0.05%以下と規定する。   V is an element effective for ensuring the strength. If the addition is less than 0.001%, the effect is small, and if it exceeds 0.05%, the weld joint toughness is lowered. Therefore, the addition amount of V is defined as 0.001% or more and 0.05% or less.

Bは、強度確保に有効な元素である。0.0002%未満の添加では効果が小さく、0.05%超の添加では母材靱性の低下を招く。よって、Bの添加量を0.0002%以上0.05%以下と規定する。   B is an element effective for securing the strength. If the addition is less than 0.0002%, the effect is small, and if it exceeds 0.05%, the toughness of the base material is lowered. Therefore, the addition amount of B is defined as 0.0002% or more and 0.05% or less.

Caは、ノズル閉塞防止に有効な元素である。0.0003%未満の添加ではその効果が小さく、0.0040%超の添加では靭性の低下を招く。よって、Caの添加量を0.0003%以上0.0040%以下と規定する。   Ca is an element effective for preventing nozzle clogging. If the addition is less than 0.0003%, the effect is small, and if the addition exceeds 0.0040%, the toughness is reduced. Therefore, the addition amount of Ca is defined as 0.0003% or more and 0.0040% or less.

Mgは、靭性向上に有効な元素である。0.0003%未満の添加ではその効果が小さく、0.0040%超の添加では靭性の低下を招く。よって、Caの添加量を0.0003%以上0.0040%以下と規定する。   Mg is an element effective for improving toughness. If the addition is less than 0.0003%, the effect is small, and if the addition exceeds 0.0040%, the toughness is reduced. Therefore, the addition amount of Ca is defined as 0.0003% or more and 0.0040% or less.

REMは、ノズル閉塞防止に有効な元素である。0.0003%未満の添加ではその効果が小さく、0.0040%超の添加では靭性の低下を招く。よって、REMの添加量を0.0003%以上0.0040%以下と規定する。
なお、本発明鋼を溶製する上で、添加合金を含めた使用原料または溶製中に炉材等から溶出する不可避的不純物として混入しうる、Zn、Sn、Sb、Zr等も0.002%未満の混入であれば何ら本発明の効果を損なうものではない。
REM is an element effective for preventing nozzle clogging. If the addition is less than 0.0003%, the effect is small, and if the addition exceeds 0.0040%, the toughness is reduced. Therefore, the amount of REM added is specified to be 0.0003% or more and 0.0040% or less.
In addition, Zn, Sn, Sb, Zr, etc., which can be mixed as raw materials including additive alloys or inevitable impurities eluted from furnace materials during melting when the steel of the present invention is melted, are 0.002 If it is less than%, the effect of the present invention is not impaired.

次に、本発明の製造方法について説明する。
鋳造後のスラブを高温で長時間加熱した後に熱間圧延を行う第一の熱間圧延もPの界面偏析濃度を低減するのに重要となる。発明者は、第一の熱間圧延における加熱保持温度と保持時間がPの界面偏析濃度に及ぼす影響を調査した結果、Pの界面偏析濃度を0.100%以下とするためには、図2に示すように加熱保持温度を1250℃以上、保持時間を10時間以上とする必要があることを知見した。高温での加熱によってPの界面偏析が低減し、その結果最終的なPの粒界偏析濃度が低下する。一方、加熱保持温度が1380℃超、保持時間が50時間超では生産性が大幅に低下することから、加熱保持温度を1250℃以上1380℃以下、保持時間を10時間以上50時間以下とすることが好ましい。なお、加熱保持温度を1300℃以上でかつ保持時間を20時間以上とすると一層Pの粒界偏析濃度低減が著しいことから、望ましくは第一の熱間圧延における加熱保持温度を1300℃以上1380℃以下、保持時間を20時間以上50時間以下とする。加熱保持のあとは熱間圧延を行うことが重要になる。熱間圧延によって加工歪が導入されると、Pの拡散が容易になって最終的なPの粒界偏析濃度が低下する。熱間圧延の仕上げ1パス前に表面で測定された温度が1200℃超となると、加工歪みの回復によりPの粒界偏析量低減の効果が小さく、800℃を下回ると生産性が大幅に低下することから、第一の熱間圧延における仕上1パス前温度を800℃以上1200℃以下とする。また、圧下比も重要である。圧下比が1.1を下回ると加工歪みが小さくPの粒界偏析濃度低減の効果が小さく、10を上回ると生産性が大幅に低下する。よって、第一の熱間圧延における圧下比を1.1以上10以下とする。なお、ここで1パス前温度とは、第一の熱間圧延の最終パスの直前に鋼片表面で測定された温度をいい、放射温度計などで測定が可能である。また、ここで圧下率とは、第一の熱間圧延の圧延開始前の鋼片厚さを圧延終了後の鋼片厚さで除した値である。
Next, the manufacturing method of this invention is demonstrated.
The first hot rolling in which hot rolling is performed after the cast slab is heated at a high temperature for a long time is also important for reducing the P segregation concentration of P. As a result of investigating the influence of the heating holding temperature and holding time on the interface segregation concentration of P in the first hot rolling, the inventor found that the P segregation concentration of P is 0.100 % or less as shown in FIG. It was found that it is necessary to set the heating and holding temperature to 1250 ° C. or more and the holding time to 10 hours or more. P interface segregation is reduced by heating at a high temperature, and as a result, the final P grain boundary segregation concentration is lowered. On the other hand, when the heating and holding temperature exceeds 1380 ° C. and the holding time exceeds 50 hours, the productivity is significantly reduced. Therefore, the heating and holding temperature is set to 1250 ° C. to 1380 ° C., and the holding time is set to 10 hours to 50 hours. Is preferred. Note that when the heating and holding temperature is 1300 ° C. or more and the holding time is 20 hours or more, the grain boundary segregation concentration of P is significantly reduced. Therefore, the heating and holding temperature in the first hot rolling is desirably 1300 to 1380 ° C. Hereinafter, the holding time is 20 hours or more and 50 hours or less. It is important to perform hot rolling after heating and holding. When processing strain is introduced by hot rolling, the diffusion of P becomes easy and the final grain boundary segregation concentration of P decreases. If the temperature measured on the surface before the first pass of hot rolling exceeds 1200 ° C, the effect of reducing the amount of P grain boundary segregation is small due to recovery of processing strain, and if it falls below 800 ° C, the productivity is greatly reduced. Therefore, the temperature before the first pass in the first hot rolling is set to 800 ° C. or more and 1200 ° C. or less. The reduction ratio is also important. If the reduction ratio is less than 1.1, the processing strain is small, and the effect of reducing the P grain boundary segregation concentration is small. If the reduction ratio is more than 10, the productivity is significantly reduced. Therefore, the reduction ratio in the first hot rolling is set to 1.1 or more and 10 or less. Here, the temperature before one pass means the temperature measured on the surface of the steel slab immediately before the final pass of the first hot rolling, and can be measured with a radiation thermometer or the like. Here, the reduction ratio is a value obtained by dividing the steel slab thickness before the start of rolling in the first hot rolling by the steel slab thickness after the end of rolling.

前述の第一の熱間圧延の後は第二の熱間圧延を行う。熱間圧延の条件は任意であるが、ここでは標準的な条件を記載する。第一の熱間圧延の後、300℃以下に冷却したのちに再度昇温を行い、900℃以上1280℃以下に加熱したのち、圧下比3.0以上50以下で圧延を行う。圧延の最終1パス温度は650℃以上950℃以下として、以後冷却する。熱間圧延後は、焼き入れを実施する。焼き入れ時の加熱温度が750℃を下回るか、900℃を超えると脆化組織あるいは粗大組織が生成して靭性が低下する。よって、焼き入れ時の加熱温度を750℃以上900℃以下と規定する。第二の熱間圧延最終パス温度範囲の650℃以上950℃以下と、焼き入れの温度範囲の750℃以上900℃以下はその範囲が重複するので、焼き入れ温度範囲にするに際し、必要あれば加熱して焼き入れ温度範囲とする。なお、焼き入れ時の加熱後は保持を行ったのち水冷する。焼き入れに引き続いて、焼き戻しを行う。焼き戻しの加熱温度が500℃を下回るか、650℃を超えると靭性が低下する。よって、焼き戻し時の加熱温度を500℃以上650℃以下と規定する。焼き戻しの加熱後は保持を行ったのち水冷あるいは空冷する。 After the first hot rolling described above, the second hot rolling is performed. The conditions for hot rolling are arbitrary, but standard conditions are described here. After the first hot rolling, the temperature is raised again after cooling to 300 ° C. or lower, heated to 900 ° C. or higher and 1280 ° C. or lower, and then rolled at a reduction ratio of 3.0 or higher and 50 or lower. The final one-pass temperature of rolling is set to 650 ° C. or higher and 950 ° C. or lower, and then cooled. After hot rolling, quenching is performed. When the heating temperature at the time of quenching is lower than 750 ° C. or exceeds 900 ° C., an embrittled structure or a coarse structure is generated and the toughness is lowered. Therefore, the heating temperature at the time of quenching is defined as 750 ° C. or higher and 900 ° C. or lower. Upon a 650 ° C. or higher 950 ° C. or less of the second hot rolling final pass temperature range, below 900 ° C. 750 ° C. or higher temperature range quenching is because the ranges overlap, to a temperature range of hardening, it required any Heat to the quenching temperature range. In addition, after heating at the time of quenching, after holding, it is cooled with water. Following quenching, tempering is performed. When the heating temperature for tempering is less than 500 ° C. or exceeds 650 ° C., the toughness is lowered. Therefore, the heating temperature at the time of tempering is defined as 500 ° C. or more and 650 ° C. or less. After the tempering heating, after holding, it is cooled with water or air.

種々の化学成分、製造条件で製造した板厚6mmから50mmの鋼板について、母材の降伏応力と引張強さ、母材のC方向シャルピー試験、溶接継手のシャルピー試験鋼板の板厚、化学成分、Pの界面偏析濃度、製造方法を表1、2に、特性の評価結果を表3に示す。   For steel plates with a thickness of 6 to 50 mm manufactured under various chemical components and manufacturing conditions, the yield stress and tensile strength of the base material, the C direction Charpy test of the base material, the thickness of the Charpy test steel plate of the welded joint, the chemical composition, Tables 1 and 2 show the interface segregation concentration and production method of P, and Table 3 shows the evaluation results of the characteristics.

降伏応力と引張強さはJIS Z 2241に記載の金属材料引張試験方法により測定した。試験片はJIS Z 2201に記載の金属材料引張試験片とし、板厚20mm以下の鋼板からは5号試験片、板厚40mm以上の鋼板からは鋼板表面から1/4t部から採取した10号試験片を使用した。試験片は、長手方向が圧延方向と垂直になるように採取した。降伏応力はオフセット法で算出した0.2%耐力とした。常温で2本の試験を行い、平均値を採用した。なお、降伏応力が590MPa以上を合格、引張強さが690MPa以上を合格とした。   Yield stress and tensile strength were measured by a metal material tensile test method described in JIS Z 2241. The test piece is a metal material tensile test piece as described in JIS Z 2201, No. 5 test piece from a steel plate with a plate thickness of 20 mm or less, and No. 10 test taken from a 1/4 t portion from the steel plate surface from a steel plate with a plate thickness of 40 mm or more. A piece was used. The test piece was collected so that the longitudinal direction was perpendicular to the rolling direction. The yield stress was 0.2% proof stress calculated by the offset method. Two tests were performed at room temperature, and an average value was adopted. The yield stress was 590 MPa or more, and the tensile strength was 690 MPa or more.

母材および溶接継手の靱性は、シャルピー試験によって評価した。試験片は、板厚12mm以上は断面が10×10mmのフルサイズ試験片を、板厚6mmについては断面が10×5mmのサブサイズ試験片を使用した。母材については試験片の長手方向が圧延方向と垂直になるC方向について評価を行った。溶接継手靭性の評価においては、ノッチ先端が溶接ボンドに相当するように試験片を採取した。試験温度は−196℃とし、3本の試験を行った最低値を採用した。シャルピー試験では、100J以上を合格、100J未満を不合格とした。   The toughness of the base metal and the welded joint was evaluated by a Charpy test. The test piece used was a full-size test piece having a cross section of 10 × 10 mm for a plate thickness of 12 mm or more, and a sub-size test piece having a cross section of 10 × 5 mm for a plate thickness of 6 mm. For the base material, the C direction in which the longitudinal direction of the test piece was perpendicular to the rolling direction was evaluated. In the evaluation of weld joint toughness, test pieces were collected so that the notch tips correspond to weld bonds. The test temperature was −196 ° C., and the lowest value obtained by performing three tests was adopted. In the Charpy test, 100 J or more was accepted and less than 100 J was rejected.

なお、溶接継手のシャルピー試験に使用した溶接継手は、SMAWにより作製した。SMAWの条件は、入熱3.5〜4.0kJ/cm、立向き溶接、予熱およびパス間温度100℃以下である。   In addition, the welded joint used for the Charpy test of the welded joint was produced by SMAW. The conditions for SMAW are heat input of 3.5 to 4.0 kJ / cm, vertical welding, preheating, and interpass temperature of 100 ° C. or less.

発明例1は、板厚6mmの鋼板を製造したものであり、母材靭性、溶接継手靱性に優れている。一方、比較例1は、発明例1と類似の製造方法であるものの、C量が本発明の範囲を外れているため、Pの界面偏析濃度に関わらず母材靱性、溶接継手靱性、に劣る。   Invention Example 1 is a steel sheet having a thickness of 6 mm, which is excellent in base metal toughness and weld joint toughness. On the other hand, although Comparative Example 1 is a production method similar to Invention Example 1, since the C content is outside the scope of the present invention, it is inferior in the base metal toughness and weld joint toughness regardless of the P segregation concentration of P. .

発明例2は、板厚12mmの鋼板を製造したものであり、母材靭性、溶接継手靱性に優れている。一方、比較例2は、発明例2と類似の製造方法であるものの、Si量が本発明の範囲を外れているため、母材靱性、溶接継手靱性に劣る。   Invention Example 2 is a steel sheet having a thickness of 12 mm, and is excellent in base metal toughness and welded joint toughness. On the other hand, although the comparative example 2 is a manufacturing method similar to the invention example 2, since Si amount is outside the scope of the present invention, it is inferior to the base metal toughness and the welded joint toughness.

発明例3は、板厚20mmの鋼板を製造したものであり、母材靭性、溶接継手靱性に優れている。一方、比較例3は、発明例3と類似の成分であるものの、第一の熱間圧延の圧下比が本発明の範囲を外れているため、母材靱性、溶接継手靱性に劣る。   Invention Example 3 is a steel sheet having a thickness of 20 mm, and is excellent in base metal toughness and welded joint toughness. On the other hand, although the comparative example 3 is a component similar to the invention example 3, since the rolling reduction ratio of the first hot rolling is out of the range of the present invention, it is inferior to the base metal toughness and the welded joint toughness.

発明例4は、板厚32mmの鋼板を製造したものであり、母材靭性、溶接継手靱性に優れている。一方、比較例4は、発明例4と類似の製造方法であるものの、全圧下率、P量が本発明の範囲を外れているため、Pの界面偏析濃度に関わらず母材靱性、溶接継手靱性に劣る。   Invention Example 4 is a steel sheet having a thickness of 32 mm, and is excellent in base metal toughness and welded joint toughness. On the other hand, although Comparative Example 4 is a production method similar to Invention Example 4, since the total rolling reduction and P amount are out of the scope of the present invention, the base material toughness and welded joint are independent of the P segregation concentration of P. Inferior toughness.

発明例5は、板厚40mmの鋼板を製造したものであり、母材靭性、溶接継手靱性に優れている。一方、比較例5は、発明例5と類似の製造方法であるものの、S量が本発明の範囲を外れているため、Pの界面偏析濃度に関わらず母材靱性、溶接継手靱性に劣る。   Invention Example 5 is a steel sheet having a thickness of 40 mm, and is excellent in base metal toughness and welded joint toughness. On the other hand, although Comparative Example 5 is a production method similar to Invention Example 5, since the amount of S is outside the range of the present invention, the base metal toughness and weld joint toughness are inferior regardless of the P segregation concentration of P.

発明例6は、板厚40mmの鋼板を製造したものであり、母材靭性、溶接継手靱性に優れている。一方、比較例6は、発明例6と類似の製造方法であるものの、Ni量が本発明の範囲を外れているため、Pの界面偏析濃度に関わらず母材靱性、溶接継手靱性に劣る。   Invention Example 6 is a steel sheet having a thickness of 40 mm, and is excellent in base metal toughness and welded joint toughness. On the other hand, although Comparative Example 6 is a manufacturing method similar to Invention Example 6, since the amount of Ni is outside the scope of the present invention, the base metal toughness and weld joint toughness are inferior regardless of the interface segregation concentration of P.

発明例7は、板厚6mmの鋼板を製造したものであり、母材靭性、溶接継手靱性に優れている。一方、比較例7は、発明例7と類似の製造方法であるものの、Al量が本発明の範囲を外れているため、Pの界面偏析濃度に関わらず母材靱性、溶接継手靱性に劣る。   Invention Example 7 is a steel sheet having a thickness of 6 mm, and is excellent in base metal toughness and welded joint toughness. On the other hand, although Comparative Example 7 is a production method similar to Invention Example 7, since the Al content is outside the range of the present invention, the base material toughness and weld joint toughness are inferior regardless of the P segregation concentration of P.

発明例8は、板厚12mmの鋼板を製造したものであり、母材靭性、溶接継手靱性に優れている。一方、比較例8は、発明例8と類似の成分であるものの、Al量が本発明の範囲を外れているため、Pの界面偏析濃度に関わらず、母材靱性、溶接継手靱性に劣る。   Invention Example 8 is a steel sheet having a thickness of 12 mm, and is excellent in base metal toughness and weld joint toughness. On the other hand, although the comparative example 8 is a component similar to the invention example 8, since the amount of Al is outside the range of the present invention, the base metal toughness and the welded joint toughness are inferior regardless of the interface segregation concentration of P.

発明例9は、板厚20mmの鋼板を製造したものであり、母材靭性、溶接継手靱性に優れている。一方、比較例9は、発明例9と類似の製造方法であるものの、N量が本発明の範囲を外れているため、Pの界面偏析濃度に関わらず母材靱性、溶接継手靱性に劣る。   Invention Example 9 is a steel sheet having a thickness of 20 mm, and is excellent in base metal toughness and welded joint toughness. On the other hand, although Comparative Example 9 is a production method similar to Invention Example 9, since the N amount is outside the scope of the present invention, the base metal toughness and weld joint toughness are inferior regardless of the P segregation concentration of P.

発明例10は、板厚40mmの鋼板を製造したものであり、母材靭性、溶接継手靱性に優れている。一方、比較例10は、発明例10と類似の成分であるものの、第一の熱間圧延における加熱温度および界面偏析P量が本発明の範囲を外れているため、母材靱性、溶接継手靱性に劣る。   Invention Example 10 is a steel sheet having a thickness of 40 mm, and is excellent in base metal toughness and welded joint toughness. On the other hand, although Comparative Example 10 is a component similar to Invention Example 10, the heating temperature and the amount of interfacial segregation P in the first hot rolling are out of the scope of the present invention. Inferior to

発明例11は、板厚40mmの鋼板を製造したものであり、母材靭性、溶接継手靱性に優れている。一方、比較例11は、発明例11と類似の成分であるものの、第一の熱間圧延における最終1パス前温度および界面偏析P量が本発明の範囲を外れているため、母材靱性、溶接継手靱性に劣る。   Invention Example 11 is a steel sheet having a thickness of 40 mm, and is excellent in base metal toughness and welded joint toughness. On the other hand, although Comparative Example 11 is a component similar to Invention Example 11, the final one pass temperature and interface segregation P amount in the first hot rolling are out of the scope of the present invention. Inferior to weld joint toughness.

発明例12は、板厚6mmの鋼板を製造したものであり、母材靭性、溶接継手靱性に優れている。一方、比較例12は、発明例12と類似の成分であるものの、最終1パス前温度および界面偏析P量が本発明の範囲を外れているため、母材靱性、溶接継手靱性に劣る。   Invention Example 12 is a steel sheet having a thickness of 6 mm, and is excellent in base metal toughness and welded joint toughness. On the other hand, although the comparative example 12 is a component similar to the invention example 12, since the temperature before 1 last pass and the amount of interface segregation P are outside the scope of the present invention, the base material toughness and the welded joint toughness are inferior.

発明例13は、板厚12mmの鋼板を製造したものであり、母材靭性、溶接継手靱性に優れている。一方、比較例13は、発明例13と類似の成分であるものの、焼き入れ加熱温度が本発明の範囲を外れているため、Pの界面偏析濃度に関わらず母材靱性、溶接熱影響部靭性に劣る。   Invention Example 13 is a steel sheet having a thickness of 12 mm, and is excellent in base metal toughness and welded joint toughness. On the other hand, although Comparative Example 13 is a component similar to Invention Example 13, since the quenching heating temperature is outside the range of the present invention, the base material toughness and the weld heat affected zone toughness regardless of the P segregation concentration of P. Inferior to

発明例14は、板厚20mmの鋼板を製造したものであり、母材靭性、溶接継手靱性に優れている。一方、比較例14は、発明例14と類似の成分であるものの、焼き入れ加熱温度が本発明の範囲を外れているため、Pの界面偏析濃度に関わらず母材靱性、溶接継手靭性に劣る。   Invention Example 14 is a steel sheet having a thickness of 20 mm, and is excellent in base metal toughness and welded joint toughness. On the other hand, although Comparative Example 14 is a component similar to Invention Example 14, the quenching heating temperature is out of the range of the present invention, so that the base metal toughness and weld joint toughness are inferior regardless of the interface segregation concentration of P. .

発明例15は、板厚32mmの鋼板を製造したものであり、母材靭性、溶接継手靱性に優れている。一方、比較例15は、発明例15と類似の成分であるものの、Pの界面偏析濃度および焼き戻し加熱温度が本発明の範囲を外れているため、母材靱性、溶接継手靭性に劣る。   Invention Example 15 is a steel sheet having a thickness of 32 mm, and is excellent in base metal toughness and welded joint toughness. On the other hand, although Comparative Example 15 is a component similar to Invention Example 15, the interfacial segregation concentration of P and the tempering heating temperature are out of the scope of the present invention, so that the base metal toughness and the welded joint toughness are inferior.

発明例16は、板厚40mmの鋼板を製造したものであり、母材靭性、溶接継手靱性に優れている。一方、比較例16は、発明例16と類似の成分であるものの、焼き戻し加熱温度が本発明の範囲を外れているため、Pの界面偏析濃度に関わらず母材靱性、溶接継手靭性に劣る。   Invention Example 16 is a steel sheet having a thickness of 40 mm, and is excellent in base metal toughness and welded joint toughness. On the other hand, although Comparative Example 16 is a component similar to Invention Example 16, since the tempering heating temperature is out of the range of the present invention, the base metal toughness and weld joint toughness are inferior regardless of the interface segregation concentration of P. .

発明例17は、板厚40mmの鋼板を製造したものであり、母材靭性、溶接継手靱性に優れている。一方、比較例17は、発明例17と類似の成分であるものの、Pの界面偏析濃度と第一の熱間圧延における保持時間が本発明の範囲を外れているため、母材靱性、溶接継手靱性に劣る。   Invention Example 17 is a steel sheet having a thickness of 40 mm, and is excellent in base metal toughness and weld joint toughness. On the other hand, although Comparative Example 17 is a component similar to Invention Example 17, the interface segregation concentration of P and the holding time in the first hot rolling are out of the scope of the present invention. Inferior toughness.

発明例18は、板厚20mmの鋼板を製造したものであり、母材靭性、溶接継手靱性に優れている。一方、比較例18は、発明例18と類似の製造方法であるものの、Mn量が本発明の範囲を外れているため、溶接継手靭性に劣る。   Invention Example 18 is a steel sheet having a thickness of 20 mm, and is excellent in base metal toughness and welded joint toughness. On the other hand, although the comparative example 18 is a manufacturing method similar to the invention example 18, since the amount of Mn is outside the range of this invention, it is inferior to weld joint toughness.

発明例19は、板厚40mmの鋼板を製造したものであり、母材靭性、溶接継手靱性に優れている。一方、比較例19は、発明例19と類似の製造方法であるものの、C量が本発明の範囲を外れているため、強度が低い。   Invention Example 19 is a steel sheet having a thickness of 40 mm, and is excellent in base metal toughness and welded joint toughness. On the other hand, although the comparative example 19 is a manufacturing method similar to the invention example 19, since the amount of C is outside the scope of the present invention, the strength is low.

発明例20は、板厚40mmの鋼板を製造したものであり、母材靭性、溶接継手靱性に優れている。一方、比較例20は、発明例20と類似の製造方法であるものの、Mn量が本発明の範囲を外れているため、強度が低い。   Invention Example 20 is a steel sheet having a thickness of 40 mm, and is excellent in base metal toughness and welded joint toughness. On the other hand, although the comparative example 20 is a manufacturing method similar to the invention example 20, since the amount of Mn is outside the scope of the present invention, the strength is low.

発明例21は、板厚32mmの鋼板を製造したものであり、母材靭性、溶接継手靱性に優れている。一方、比較例21は、発明例21と類似の製造方法であるものの、T−O量が本発明の範囲を外れているため、母材靭性、溶接継手靭性に劣る。
以上の実施例から、本発明により製造された厚鋼板である発明例1〜21の鋼板は、耐破壊性能に優れる鋼板であることは明白である。
Invention Example 21 is a steel sheet having a thickness of 32 mm, and is excellent in base metal toughness and weld joint toughness. On the other hand, although Comparative Example 21 is a manufacturing method similar to Invention Example 21, since the T—O amount is out of the scope of the present invention, it is inferior in the base metal toughness and weld joint toughness.
From the above examples, it is clear that the steel plates of Invention Examples 1 to 21 which are thick steel plates manufactured according to the present invention are steel plates having excellent fracture resistance.

Claims (4)

鋼が、質量%で、
C:0.04%以上0.10%以下、
Si:0.02%以上0.15%以下、
Mn:0.30%以上1.00%以下、
P:0.0010%以上0.0100%以下、
S:0.0001%以上0.0035%以下、
Ni:7.5%超10.0%以下、
Al:0.01%以上0.08%以下、
N:0.0001%以上0.0070%以下、
T−O:0.0001%以上0.0050%以下を含有し、残部がFe及び不可避的不純物からなる鋼組成であり、鋼板表面から鋼板厚さ方向に鋼板厚さの1/4だけ入った部位のPの界面偏析濃度が質量%で、0.100%以下であることを特徴とする、−196℃におけるシャルピー試験値が母材、溶接継手共に100J以上である靭性と生産性に優れたNi添加鋼板。
Steel is mass%
C: 0.04% or more and 0.10% or less,
Si: 0.02% or more and 0.15% or less,
Mn: 0.30% or more and 1.00% or less,
P: 0.0010% or more and 0.0100% or less,
S: 0.0001% to 0.0035%,
Ni: more than 7.5% and 10.0% or less,
Al: 0.01% or more and 0.08% or less,
N: 0.0001% or more and 0.0070% or less,
TO: contains 0.0001% or more and 0.0050% or less, and the balance is a steel composition composed of Fe and inevitable impurities, and enters the steel sheet thickness direction by a quarter of the steel sheet thickness from the steel sheet surface. The interfacial segregation concentration of P in the part is mass% and 0.100% or less, and the Charpy test value at −196 ° C. is 100 J or more for both the base metal and the welded joint, and excellent in toughness and productivity. Ni-added steel sheet.
さらに質量%で、
Cr:0.01%以上1.5%以下、
Mo:0.01%以上0.4%以下、
Cu:0.01%以上1.0%以下、
Nb:0.001%以上0.05%以下、
Ti:0.001%以上0.05%以下、
V:0.001%以上0.05%以下、
B:0.0002%以上0.05%以下、
Ca:0.0003%以上0.0040%以下、
Mg:0.0003%以上0.0040%以下、
REM:0.0003%以上0.0040%以下のいずれか1種以上を含有し、残部がFe及び不可避的不純物からなる鋼組成であることを特徴とする請求項1に記載の−196℃におけるシャルピー試験値が母材、溶接継手共に100J以上である靭性と生産性に優れたNi添加鋼板。
In addition,
Cr: 0.01% or more and 1.5% or less,
Mo: 0.01% to 0.4%,
Cu: 0.01% or more and 1.0% or less,
Nb: 0.001% or more and 0.05% or less,
Ti: 0.001% or more and 0.05% or less,
V: 0.001% to 0.05%,
B: 0.0002% to 0.05%,
Ca: 0.0003% or more and 0.0040% or less,
Mg: 0.0003% or more and 0.0040% or less,
REM: It contains any one of 0.0003% or more and 0.0040% or less, and the balance is a steel composition composed of Fe and inevitable impurities. A Ni-added steel sheet with excellent toughness and productivity with Charpy test values of 100 J or more for both base metal and welded joint.
質量%で、
C:0.04%以上0.10%以下、
Si:0.02%以上0.15%以下、
Mn:0.30%以上1.00%以下、
P:0.0010%以上0.0100%以下、
S:0.0001%以上0.0035%以下、
Ni:7.5%超10.0%以下、
Al:0.01%以上0.08%以下、
N:0.0001%以上0.0070%以下、
T−O:0.0001%以上0.0050%以下を含有し、残部がFe及び不可避的不純物からなる鋼組成である、連続鋳造後の鋼片を、1250℃以上1380℃以下で10時間以上加熱したのち、圧下比を1.1以上10以下、圧延の最終1パス前温度を800℃以上1200℃以下とした第一の熱間圧延を行い、その後300℃以下まで冷却したのち、900℃以上1280℃以下に加熱した後に、圧下比を3.0以上50以下、圧延の最終1パス前温度を650℃以上950℃以下とした第二の熱間圧延を行い、引き続いて必要あれば加熱して750℃以上900℃以下とした後に水冷または空冷する焼き入れを行い、さらに引き続いて500℃以上650℃以下に加熱した後に水冷または空冷する焼き戻しを行うことを特徴とする、−196℃におけるシャルピー試験値が母材、溶接継手共に100J以上である靭性と生産性に優れたNi添加鋼板の製造方法。
% By mass
C: 0.04% or more and 0.10% or less,
Si: 0.02% or more and 0.15% or less,
Mn: 0.30% or more and 1.00% or less,
P: 0.0010% or more and 0.0100% or less,
S: 0.0001% to 0.0035%,
Ni: more than 7.5% and 10.0% or less,
Al: 0.01% or more and 0.08% or less,
N: 0.0001% or more and 0.0070% or less,
T-O: Steel pieces after continuous casting containing 0.0001% or more and 0.0050% or less, with the balance being Fe and inevitable impurities, for 10 hours or more at 1250 ° C or more and 1380 ° C or less After heating, the first hot rolling with a rolling ratio of 1.1 to 10 and a temperature before the final one pass of rolling of 800 ° C. to 1200 ° C. is performed, and after cooling to 300 ° C. or less, 900 ° C. After heating to 1280 ° C. or lower, the second hot rolling is performed with a reduction ratio of 3.0 to 50 and the final one-pass temperature before rolling of 650 ° C. to 950 ° C., and subsequently heated if necessary. Then, quenching is performed by water cooling or air cooling after the temperature is set to 750 ° C. or more and 900 ° C. or less, and further, tempering is performed by heating to 500 ° C. or more and 650 ° C. or less and then water cooling or air cooling. Charpy test value matrix at -196 ° C., a manufacturing method excellent Ni added steel sheet productivity and toughness is 100J or more welded joints both.
さらに質量%で、
Cr:0.01%以上1.5%以下、
Mo:0.01%以上0.4%以下、
Cu:0.01%以上1.0%以下、
Nb:0.001%以上0.05%以下、
Ti:0.001%以上0.05%以下、
V:0.001%以上0.05%以下、
B:0.0002%以上0.05%以下、
Ca:0.0003%以上0.0040%以下、
Mg:0.0003%以上0.0040%以下、
REM:0.0003%以上0.0040%以下のいずれか1種以上を含有し、残部がFe及び不可避的不純物からなる鋼組成であることを特徴とする請求項3に記載の−196℃におけるシャルピー試験値が母材、溶接継手共に100J以上である靭性と生産性に優れたNi添加鋼板の製造方法。
In addition,
Cr: 0.01% or more and 1.5% or less,
Mo: 0.01% to 0.4%,
Cu: 0.01% or more and 1.0% or less,
Nb: 0.001% or more and 0.05% or less,
Ti: 0.001% or more and 0.05% or less,
V: 0.001% to 0.05%,
B: 0.0002% to 0.05%,
Ca: 0.0003% or more and 0.0040% or less,
Mg: 0.0003% or more and 0.0040% or less,
REM: It contains any one of 0.0003% or more and 0.0040% or less, and the balance is a steel composition composed of Fe and unavoidable impurities at −196 ° C. A method for producing a Ni-added steel sheet having excellent toughness and productivity, with Charpy test values of 100 J or more for both the base metal and the welded joint.
JP2012004553A 2012-01-13 2012-01-13 Ni-added steel sheet excellent in toughness and productivity in which Charpy test value at −196 ° C. is 100 J or more for both base metal and welded joint, and manufacturing method thereof Active JP5741454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012004553A JP5741454B2 (en) 2012-01-13 2012-01-13 Ni-added steel sheet excellent in toughness and productivity in which Charpy test value at −196 ° C. is 100 J or more for both base metal and welded joint, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012004553A JP5741454B2 (en) 2012-01-13 2012-01-13 Ni-added steel sheet excellent in toughness and productivity in which Charpy test value at −196 ° C. is 100 J or more for both base metal and welded joint, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013142197A JP2013142197A (en) 2013-07-22
JP5741454B2 true JP5741454B2 (en) 2015-07-01

Family

ID=49038936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012004553A Active JP5741454B2 (en) 2012-01-13 2012-01-13 Ni-added steel sheet excellent in toughness and productivity in which Charpy test value at −196 ° C. is 100 J or more for both base metal and welded joint, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5741454B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6693186B2 (en) * 2016-03-11 2020-05-13 日本製鉄株式会社 Method for producing low-temperature nickel-containing steel sheet excellent in tensile strength and toughness
CN106191661B (en) * 2016-08-23 2017-10-27 南京钢铁股份有限公司 A kind of manufacture method of the tough Thin Specs 9Ni steel plates of high strength and low cost
JP6816467B2 (en) * 2016-11-17 2021-01-20 日本製鉄株式会社 Nickel-containing thick steel sheet for low temperature and its manufacturing method
CN109694987B (en) * 2017-10-20 2021-02-23 鞍钢股份有限公司 High-nickel steel for ultralow-temperature pressure vessel and manufacturing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0920922A (en) * 1995-06-30 1997-01-21 Kawasaki Steel Corp Production of high toughness steel plate for low temperature use
JPH09143557A (en) * 1995-11-22 1997-06-03 Kawasaki Steel Corp Production of thick nickel-containing steel plate excellent in toughness at low temperature and having high strength
JP4514137B2 (en) * 2005-02-04 2010-07-28 新日本製鐵株式会社 Method for preventing rolling surface flaw of Ni-containing steel
JP2009074123A (en) * 2007-09-19 2009-04-09 Nippon Steel Corp METHOD FOR MANUFACTURING Ni-CONTAINING STEEL HAVING EXCELLENT SURFACE QUALITY
JP5257240B2 (en) * 2009-05-26 2013-08-07 新日鐵住金株式会社 Welding materials and welded joints
WO2012005330A1 (en) * 2010-07-09 2012-01-12 新日本製鐵株式会社 Ni-CONTAINING STEEL SHEET AND PROCESS FOR PRODUCING SAME

Also Published As

Publication number Publication date
JP2013142197A (en) 2013-07-22

Similar Documents

Publication Publication Date Title
JP4946758B2 (en) High temperature austenitic stainless steel with excellent workability after long-term use
KR102445683B1 (en) Austenitic Stainless Steel Weld Metals and Weld Structures
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
JP4718866B2 (en) High-strength refractory steel excellent in weldability and gas-cutting property and method for producing the same
EP2385149B1 (en) Steel material for welding and method for producing same
EP2811045A1 (en) Base metal for high-toughness clad steel plate giving weld with excellent toughness, and process for producing said clad steel plate
JP6856129B2 (en) Manufacturing method of high Mn steel
JP6870750B2 (en) Welding materials for austenitic heat-resistant steels, weld metals and welded structures, and methods for manufacturing welded metals and welded structures.
JP7135649B2 (en) Welding consumables for austenitic stainless steel
TW202037734A (en) High-Mn steel and method for manufacturing same
JP4538095B2 (en) Steel plate with excellent low temperature toughness and low strength anisotropy of base metal and weld heat affected zone, and method for producing the same
JP5630321B2 (en) High-tensile steel plate with excellent toughness and manufacturing method thereof
JP5741454B2 (en) Ni-added steel sheet excellent in toughness and productivity in which Charpy test value at −196 ° C. is 100 J or more for both base metal and welded joint, and manufacturing method thereof
KR102506230B1 (en) Austenitic stainless steel
JP7272438B2 (en) Steel material, manufacturing method thereof, and tank
JP4358898B1 (en) Method for producing high-tensile thick steel plate having a tensile strength of 780 MPa or more, excellent in weldability and joint low-temperature toughness
JP2013072118A (en) Steel excellent in high-temperature strength and method for production thereof
WO2018066573A1 (en) Austenitic heat-resistant alloy and welding joint using same
JP6398576B2 (en) Steel sheet with excellent toughness and method for producing the same
JP2007063603A (en) 780 mpa class high tensile strength steel sheet and its manufacturing method
JP6638551B2 (en) Austenitic heat-resistant steel weld metal and welded joint having the same
JP6447253B2 (en) High strength steel for welding
JP6566166B1 (en) Steel sheet and manufacturing method thereof
JP2013086134A (en) Welded joint and welding material
JP2016079424A (en) Steel sheet excellent in toughness and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150413

R151 Written notification of patent or utility model registration

Ref document number: 5741454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350