JP2007063603A - 780 mpa class high tensile strength steel sheet and its manufacturing method - Google Patents

780 mpa class high tensile strength steel sheet and its manufacturing method Download PDF

Info

Publication number
JP2007063603A
JP2007063603A JP2005249765A JP2005249765A JP2007063603A JP 2007063603 A JP2007063603 A JP 2007063603A JP 2005249765 A JP2005249765 A JP 2005249765A JP 2005249765 A JP2005249765 A JP 2005249765A JP 2007063603 A JP2007063603 A JP 2007063603A
Authority
JP
Japan
Prior art keywords
tensile strength
toughness
steel
cracking
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005249765A
Other languages
Japanese (ja)
Other versions
JP4604917B2 (en
Inventor
Masao Yuga
正雄 柚賀
Shinji Mitao
眞司 三田尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005249765A priority Critical patent/JP4604917B2/en
Publication of JP2007063603A publication Critical patent/JP2007063603A/en
Application granted granted Critical
Publication of JP4604917B2 publication Critical patent/JP4604917B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high tensile strength steel sheet having ≥780 MPa tensile strength and excellent in toughness and SR cracking resistance; and also to provide its manufacturing method. <P>SOLUTION: The high tensile strength steel sheet having ≥780 MPa tensile strength and excellent in toughness and SR cracking resistance has a composition consisting of, by mass, 0.065 to 0.15% C, 0.10 to 0.50% Si, 0.5 to 1.4% Mn, ≤0.02% P, ≤0.005% S, 0.15 to 0.5% Cu, 0.10 to 0.80% Cr, 0.05 to 0.50% Mo, 0.0005 to 0.0050% Ca, 0.005 to 0.025% Ti, 0.0005 to 0.003% B, 0.005 to 0.1% Al, 0.0005 to 0.005% N and the balance Fe with inevitable impurities and satisfying the relation of Mo+2.9V+2Ti≤0.5%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、タンク、圧力容器、ペンストックなど鉄鋼構造物に用いられる高張力鋼板に関し、靭性および耐SR割れ特性に優れた引張強さが780MPa以上の高張力鋼板およびその製造方法を提供するものである。   The present invention relates to a high-tensile steel plate used for steel structures such as tanks, pressure vessels, and penstocks, and provides a high-tensile steel plate having a tensile strength of 780 MPa or more, excellent in toughness and SR cracking resistance, and a method for producing the same. It is.

貯蔵タンク、圧力容器、ペンストックなどの鉄鋼構造物に用いられる鋼板は、強度が高く、靭性が優れていることはもちろん、構造物の安全性の観点から溶接性に優れることが要求される。さらに、それらの使用環境によっては、耐硫化物応力腐食割れ(以下SSCと呼ぶ)特性に優れていることも要求される。球形タンク用780MPa級高張力鋼の場合、SSCの心配のない酸素ガス、窒素ガス、エチレン、プロピレンなどのガスホルダー、あるいは硫化水素濃度が低いLPG貯蔵用タンクで使われるのみで、内容物が硫化水素(H2S)濃度が高いLPGや液化アンモニウムの場合にはSSCが発生するので使用されていない。 Steel sheets used in steel structures such as storage tanks, pressure vessels, and penstocks are required to have excellent weldability from the viewpoint of safety of the structure as well as high strength and excellent toughness. Furthermore, depending on the use environment, it is also required to have excellent sulfide stress corrosion cracking (hereinafter referred to as SSC) characteristics. In the case of 780MPa class high strength steel for spherical tanks, the content is sulfided only by using it in gas holders such as oxygen gas, nitrogen gas, ethylene, propylene, etc. without worrying about SSC, or LPG storage tanks with low hydrogen sulfide concentration. In the case of LPG with high hydrogen (H 2 S) concentration or liquefied ammonium, SSC is generated and is not used.

また、溶接継手部においては、性能向上や溶接による残留応力を除去する目的で、応力除去焼鈍(以下SRと呼ぶ)処理が行われる。しかし、引張強さが780MPa以上の高張力鋼やCr-Mo鋼では、SR処理に起因する割れ(以下SR割れと呼ぶ)が発生しやすいため、耐SR割れ特性に優れることが望まれている。   In addition, in the welded joint portion, stress removal annealing (hereinafter referred to as SR) is performed for the purpose of improving performance and removing residual stress due to welding. However, high-strength steel and Cr-Mo steel with tensile strength of 780 MPa or more are prone to cracking due to SR treatment (hereinafter referred to as SR cracking), so it is desired to have excellent SR cracking resistance. .

SR割れに対しては、SRの必要がない板厚に限定する等、溶接施工面での対策が必要となり、鋼材の使用範囲や施工方法に制約が多い。また、厚肉になるほどSRによる残留応力の緩和が必要となり、780MPa級高張力鋼における耐SR割れ特性の改善が要望されている。従って、このような鋼材において、SR割れの発生を防止することは、溶接構造物の安全性を確保する上で重要であるとともに、鋼材の適用範囲が拡がることによる経済的効果も大きい。   For SR cracking, it is necessary to take measures on the welding work surface, such as limiting to a plate thickness that does not require SR, and there are many restrictions on the range of use and construction method of steel. Also, the thicker the wall, the more the residual stress due to SR needs to be relaxed, and there is a demand for improved SR cracking resistance in 780 MPa class high strength steel. Therefore, in such a steel material, preventing the occurrence of SR cracking is important for ensuring the safety of the welded structure, and has a great economic effect due to the expansion of the application range of the steel material.

鋼材のSR割れ感受性については、下記(1)式や(2)式に示すような、化学成分から判定できるパラメーターが提案されている。   Regarding the SR cracking susceptibility of steel materials, parameters that can be determined from chemical components have been proposed as shown in the following formulas (1) and (2).

ΔG=Cr+3.3Mo+8.1V-2 ・・・・・(1)
PSR=Cr+2Mo+Cu+10V+7Nb+5Ti-2 ・・・・・(2)

すなわち、(1)式または(2)式で表されるSR割れ感受性指数が、負になるような化学成分の組合せを選択すれば、SR割れを防止できるとされている。
しかしながら、従来、C量を低くした溶接性に優れる成分系で、耐SR割れ特性と780MPa以上の引張強さを両立することは困難な場合が多かった。
780MPa級高張力鋼における耐SR割れ特性の改善策としては、例えば、特許文献1が提案されている。

特開平3−150335号公報
ΔG = Cr + 3.3Mo + 8.1V-2 (1)
P SR = Cr + 2Mo + Cu + 10V + 7Nb + 5Ti-2 (2)

That is, SR cracking can be prevented by selecting a combination of chemical components such that the SR cracking susceptibility index represented by formula (1) or formula (2) is negative.
However, in the past, it was often difficult to achieve both SR cracking resistance and a tensile strength of 780 MPa or more with a component system having a low C content and excellent weldability.
For example, Patent Document 1 has been proposed as a measure for improving the SR cracking resistance of 780 MPa class high strength steel.

Japanese Patent Laid-Open No. 3-150335

特許文献1の技術は、Sol.Al量を極端に低くすることに特徴があるが、通常のAl脱酸では制御が困難であり、製造コストがかかるため、実施されていないのが現状である。   The technique of Patent Document 1 is characterized in that the amount of Sol.Al is extremely low, but it is difficult to control with ordinary Al deoxidation and is expensive to manufacture. .

そこで、発明者等は、780MPa級高張力鋼において、靭性、耐SR割れ特性に及ぼす各元素の影響を試験調査した。   Therefore, the inventors conducted a test investigation on the influence of each element on toughness and SR cracking resistance in 780 MPa class high strength steel.

本発明は、上記試験調査の結果に基づいてなされたものであり、靭性および耐SR割れ特性に優れた引張強さが780MPa以上の高張力鋼板および、その経済的に安定して製造する方法を提供することを目的とする。
The present invention was made on the basis of the results of the above-described test investigation, and has a high-tensile steel sheet having a tensile strength of 780 MPa or more excellent in toughness and SR cracking resistance, and a method for economically and stably producing the same. The purpose is to provide.

発明者等は、上記課題を解決すべく鋭意検討を重ねた結果、
(a)従来のSR割れ感受性指数ΔG、PSRの大小だけでは、高加工性780MPa級高張力鋼のSR割れを整理できないこと、
(b)Nb添加は、微量であってもSR割れ感受性を高めること、
(c)Ca添加により、SR割れは大幅に改善されること、
(d)Mo、V、Ti添加はSR割れ感受性を高めること、
等の知見に基づいて本発明を完成させたものである。
本発明の要旨は以下の通りである。
As a result of intensive studies to solve the above problems, the inventors,
(A) conventional SR crack sensitivity index .DELTA.G, only the magnitude of the P SR, inability organize SR cracking of high formability 780MPa grade high-tensile steel,
(B) Nb addition increases SR cracking susceptibility even in trace amounts,
(C) SR cracking is greatly improved by adding Ca,
(D) Addition of Mo, V, Ti increases SR cracking susceptibility,
The present invention has been completed based on these findings.
The gist of the present invention is as follows.

(1)第一の発明は、質量%で、C:0.065〜0.15%、Si:0.10〜0.50%、Mn:0.5〜1.4%、P:0.02%以下、S:0.005%以下、Cu:0.15〜0.5%、Cr:0.10〜0.80%、Mo:0.05〜0.50%、Ca:0.0005〜0.0050%、Ti:0.005〜0.025%、B:0.0005〜0.003%、Al:0.005〜0.1%、N:0.0005〜0.005%を含有し、かつMo+2.9V+2Ti≦0.5%の関係を満足し、残部がFeおよび不可避不純物よりなることを特徴とする靭性および耐SR割れ特性に優れた引張強さが780MPa以上の高張力鋼板である。   (1) 1st invention is the mass%, C: 0.065-0.15%, Si: 0.10-0.50%, Mn: 0.5-1.4%, P: 0.02% or less, S: 0.005% or less, Cu: 0.15- 0.5%, Cr: 0.10-0.80%, Mo: 0.05-0.50%, Ca: 0.0005-0.0050%, Ti: 0.005-0.025%, B: 0.0005-0.003%, Al: 0.005-0.1%, N: 0.0005-0.005 High tensile strength steel plate with a tensile strength of 780 MPa or more, excellent in toughness and SR cracking resistance, characterized in that the content of Mo + 2.9V + 2Ti ≦ 0.5% is satisfied, and the balance consists of Fe and inevitable impurities. It is.

(2)第二の発明は、質量%で、C:0.065〜0.15%、Si:0.10〜0.50%、Mn:0.5〜1.4%、P:0.02%以下、S:0.005%以下、Cu:0.15〜0.5%、Cr:0.10〜0.80%、Mo:0.05〜0.50%、V:0.005〜0.06%、Ca:0.0005〜0.0050%、Ti:0.005〜0.025%、B:0.0005〜0.003%、Al:0.005〜0.1%、N:0.0005〜0.005%を含有し、かつMo+2.9V+2Ti≦0.5%の関係を満足し、残部がFeおよび不可避不純物よりなることを特徴とする靭性および耐SR割れ特性に優れた引張強さが780MPa以上の高張力鋼板である。   (2) The second invention is mass%, C: 0.065 to 0.15%, Si: 0.10 to 0.50%, Mn: 0.5 to 1.4%, P: 0.02% or less, S: 0.005% or less, Cu: 0.15 to 0.5%, Cr: 0.10-0.80%, Mo: 0.05-0.50%, V: 0.005-0.06%, Ca: 0.0005-0.0050%, Ti: 0.005-0.025%, B: 0.0005-0.003%, Al: 0.005-0.1 %, N: 0.0005 to 0.005%, satisfying the relationship of Mo + 2.9V + 2Ti ≦ 0.5%, with the balance consisting of Fe and inevitable impurities, with excellent toughness and excellent SR cracking resistance Is a high-tensile steel plate of 780MPa or more.

(3)第三の発明は、第一の発明または第二の発明に記載の成分の鋼片を、1000℃以上1300℃以下の温度に加熱し、製品板厚まで熱間圧延して鋼板とした後に、鋼板の板厚方向平均温度がAr変態点以上の温度から直接焼入れ処理を行い、その後、板厚方向平均温度が580℃以上、Ac1変態点以下の温度に焼戻処理することを特徴とする靭性および耐SR割れ特性に優れた引張強さが780MPa以上の高張力鋼板の製造方法である。 (3) In the third invention, the steel slab of the component described in the first invention or the second invention is heated to a temperature of 1000 ° C. or higher and 1300 ° C. or lower and hot-rolled to a product thickness to obtain a steel plate After that, the steel sheet is directly quenched from the temperature at which the sheet thickness direction average temperature is equal to or higher than the Ar 3 transformation point, and then the sheet thickness direction average temperature is 580 ° C. or higher and below the Ac 1 transformation point. This is a method for producing a high-tensile steel sheet having a tensile strength of 780 MPa or more, excellent in toughness and SR cracking resistance.

(4)第四の発明は、誘導加熱装置を用いて、鋼板表面の最高到達温度がAc1変態点以下の温度に、急速加熱して、焼戻し処理することを特徴とする第三の発明に記載の靭性および耐SR割れ特性に優れた引張強さが780MPa以上の高張力鋼板の製造方法である。
(4) A fourth invention is a third invention characterized in that an induction heating device is used to rapidly heat and temper the steel sheet surface to a temperature not exceeding the Ac 1 transformation point. This is a method for producing a high-tensile steel plate having a tensile strength of 780 MPa or more and excellent in the toughness and SR cracking resistance described.

本発明は、鋼の成分を吟味したので、耐SR割れ特性に優れ、且つ引張強さが780MPa以上の高張力鋼板を得ることができる。   In the present invention, since the components of the steel are examined, it is possible to obtain a high-tensile steel plate having excellent SR cracking resistance and a tensile strength of 780 MPa or more.

本発明の成分および製造条件について以下に具体的に説明する。   The components and production conditions of the present invention will be specifically described below.

1.成分について
成分の限定理由について説明する。なお、成分における各元素の含有量は、全て質量%を意味する。
1. The reasons for limiting the components will be described. In addition, all content of each element in a component means the mass%.

C:0.065〜0.15%
Cは、高張力鋼板としての母材強度確保に必要な元素である。0.065%未満では焼入性が低下し、強度確保のために、Cu、Ni、Cr、Moなどの焼入性向上元素の多量添加が必要となり、コスト高と、溶接性の低下とを招く。また、0.15%を超える添加は溶接性を著しく低下させることに加え、溶接継手部の靭性低下を招く。従って、C量は0.065〜0.15%の範囲とする。
C: 0.065-0.15%
C is an element necessary for ensuring the strength of the base material as a high-tensile steel plate. If it is less than 0.065%, the hardenability is lowered, and in order to secure the strength, a large amount of a hardenability improving element such as Cu, Ni, Cr, Mo or the like is required, resulting in high cost and poor weldability. Moreover, addition exceeding 0.15% leads to a significant decrease in weldability and a decrease in toughness of the welded joint. Therefore, the C content is in the range of 0.065 to 0.15%.

Si:0.10〜0.50%
Siは、母材強度および溶接継手強度を確保する上で有効であるので、0.10%以上添加することとした。しかし、0.50%を超える多量の添加は、溶接性の低下と溶接継手靭性の低下を招くので、Si量は0.10〜0.50%の範囲とする。
Si: 0.10 to 0.50%
Since Si is effective in securing the strength of the base metal and the welded joint, it was decided to add 0.10% or more. However, a large amount of addition exceeding 0.50% causes a decrease in weldability and a decrease in weld joint toughness, so the Si content is in the range of 0.10 to 0.50%.

Mn:0.5〜1.4%
Mnは、母材強度および溶接継手強度を確保する上で有効に働くので、0.5%以上添加することとした。しかし、1.4%を超える添加は、溶接性を低下させ、焼入性の過剰を招き、母材靭性および溶接継手靭性を低下させるため、Mn量は0.5〜1.4%の範囲とする。
Mn: 0.5-1.4%
Mn works effectively in securing the strength of the base metal and the welded joint, so 0.5% or more was added. However, addition exceeding 1.4% lowers the weldability, leads to excessive hardenability, and lowers the base metal toughness and weld joint toughness, so the Mn content is in the range of 0.5 to 1.4%.

P:0.02%以下
不純物元素であるPは、0.02%を超えると、母材靭性および溶接部靭性を低下させるので、P量は、0.02%以下とする。
P: 0.02% or less If the impurity element P exceeds 0.02%, the base metal toughness and weld zone toughness are deteriorated, so the P content is 0.02% or less.

S:0.005%以下、Ca:0.0005〜0.0050%
耐SR割れ特性に対しては、Sの低減は重要である。Caを0.0005〜0.0050%の範囲で添加することにより固溶Sが低減し、SR割れの発生が抑制できる。Sが0.005%を超えると、固溶S量を低減するために多量のCaが必要となるが、これにより介在物が増加し、鋼板の清浄度が低下し、靭性低下の原因となるので、S量は0.005%以下、Ca量は0.0005〜0.0050%の範囲とする。好ましくは、S量は0.004%以下に抑え、Ca量は0.0010〜0.0040%とする。
S: 0.005% or less, Ca: 0.0005 to 0.0050%
Reduction of S is important for resistance to SR cracking. By adding Ca in the range of 0.0005 to 0.0050%, the solid solution S is reduced and the occurrence of SR cracking can be suppressed. If S exceeds 0.005%, a large amount of Ca is required to reduce the amount of solute S, but this increases inclusions, decreases the cleanliness of the steel sheet, and causes a decrease in toughness. The S content is 0.005% or less, and the Ca content is in the range of 0.0005 to 0.0050%. Preferably, the S content is limited to 0.004% or less, and the Ca content is 0.0010 to 0.0040%.

Cu:0.15%〜0.5%
Cu添加により、焼入性が向上し、母材強度は向上する。また、比較的緩やかなH2S環境では、0.15%以上の添加により水素吸収量が減少するため、SSCの抑制に効果がある。しかし、0.5%を超える添加は、母材および溶接部靭性を低下させるほか、熱間延性も低下させる。従って、Cu量は0.15%〜0.5%の範囲とする。
Cu: 0.15% to 0.5%
Addition of Cu improves hardenability and improves base metal strength. In addition, in a relatively mild H 2 S environment, the amount of hydrogen absorption is reduced by addition of 0.15% or more, which is effective in suppressing SSC. However, addition over 0.5% reduces the base metal and weld toughness as well as the hot ductility. Therefore, the Cu content is set to a range of 0.15% to 0.5%.

Ni:無添加
Ni添加は耐SSC特性を低下させる可能性が非常に高いため、Niは無添加とする。なお、不可避的混入レベルは、0.030%以下である。
Ni: No additive
Since the addition of Ni is very likely to degrade the SSC resistance, Ni is not added. The inevitable mixing level is 0.030% or less.

Cr:0.10〜0.80%
Crは、焼入性を高め、強度確保のために有効な元素であり、0.10%以上の添加が必要であるが、0.80%を超える添加は溶接性を低下させ、さらにSR割れの原因となる。従って、Cr量は0.10〜0.80%の範囲とする。
Cr: 0.10 to 0.80%
Cr is an effective element for enhancing hardenability and ensuring strength, and it is necessary to add 0.10% or more, but addition exceeding 0.80% decreases weldability and further causes SR cracking. . Therefore, the Cr content is in the range of 0.10 to 0.80%.

Mo:0.05〜0.50%
Moは、焼入性の向上と析出物形成による強度確保に有効な元素であり、0.05%以上の添加が必要であるが、0.50%を超える添加は溶接性を低下させ、さらに過剰な焼入れとなる。従って、Mo量は、0.05〜0.50%の範囲とする。
Mo: 0.05-0.50%
Mo is an element effective for improving the hardenability and ensuring the strength by forming precipitates. Addition of 0.05% or more is necessary, but addition over 0.50% lowers weldability and further causes excessive quenching. Become. Therefore, the Mo amount is in the range of 0.05 to 0.50%.

V:0.005〜0.06%
Vは、母材強度を確保する上で有効に働くので、0.005%以上の添加が必要であるが、0.06%を超える添加は溶接性を低下させる。従って、V量は、0.005〜0.06%の範囲とする。
V: 0.005-0.06%
V works effectively in securing the strength of the base metal, so addition of 0.005% or more is necessary, but addition over 0.06% reduces weldability. Therefore, the V amount is in the range of 0.005 to 0.06%.

Ti:0.005〜0.025%
Tiは、ミクロ組織の細粒化に寄与する元素であり、0.005%以上の添加が必要であるが、0.025%を超える添加は母材靭性を低下させる。従って、Ti量は0.005〜0.025%の範囲とする。
Ti: 0.005-0.025%
Ti is an element that contributes to the refinement of the microstructure and needs to be added in an amount of 0.005% or more, but the addition exceeding 0.025% lowers the toughness of the base metal. Therefore, the Ti amount is in the range of 0.005 to 0.025%.

Mo+2.9V+2Ti : 0.5%以下、 Nb: 無添加
SR割れは、溶接時の熱サイクルを受けるとボンド近傍でMo、V、Tiが再固溶し、SR時に粒内に微細に析出し、粒内強化を起こす。そのため、析出強化元素であるMo、V、Ti、Nbの添加量を制御する必要がある。Nb添加鋼では微量添加(例えば0.006%)であってもSR割れが発生することが明らかとなったことから、Nbは無添加とする。なお、Nbの不可避的混入レベルは、0.005%以下である。Mo、V、Tiは、NbほどSR割れに対して悪影響を及ぼさないが、本発明の成分系においては、Mo+2.9V+2Tiが0.5%を超えると、耐SR割れ特性が低下することがわかった。従って、Mo+2.9V+2Tiは0.5%以下とする。
Mo + 2.9V + 2Ti: 0.5% or less, Nb: No additive
SR cracking causes Mo, V, and Ti to re-dissolve in the vicinity of the bond when subjected to a thermal cycle during welding, and finely precipitates within the grains during SR, causing intragranular strengthening. Therefore, it is necessary to control the addition amount of Mo, V, Ti, and Nb that are precipitation strengthening elements. In Nb-added steel, it became clear that SR cracking occurred even with a small amount (for example, 0.006%), so Nb is not added. The inevitable contamination level of Nb is 0.005% or less. Mo, V, and Ti do not have an adverse effect on SR cracking as much as Nb. However, in the component system of the present invention, it was found that when Mo + 2.9V + 2Ti exceeds 0.5%, the SR cracking resistance is deteriorated. Therefore, Mo + 2.9V + 2Ti is 0.5% or less.

B:0.0005〜0.003%
Bは、焼入性の向上のために添加する。0.0005%以上のごく微量の添加で焼入性を高める効果が得られるが、0.003%を超えて添加すると、BNを形成し、逆に焼入性の低下がおこり、また、溶接熱影響部が著しく硬化する。従って、B量は、0.0005〜0.003%の範囲とする。
B: 0.0005-0.003%
B is added to improve hardenability. Addition of a very small amount of 0.0005% or more can improve the hardenability, but if added over 0.003%, BN is formed, conversely the hardenability is reduced, and the weld heat affected zone is reduced. Hardens significantly. Therefore, the B amount is in the range of 0.0005 to 0.003%.

Al:0.005〜0.1%
Alは、鋼の脱酸剤として0.005%以上添加することとした。また、好ましくは、結晶粒の微細化による母材靭性確保のために、0.01%程度添加するのが良い。しかし、0.1%を超えて添加すると、母材靭性が低下する。従ってAl量は、0.005〜0.1%の範囲とする。
Al: 0.005-0.1%
Al was added in an amount of 0.005% or more as a deoxidizer for steel. Moreover, it is preferable to add about 0.01% in order to ensure the base material toughness by refining crystal grains. However, if it exceeds 0.1%, the base material toughness decreases. Therefore, the Al content is in the range of 0.005 to 0.1%.

N:0.0005〜0.005%
Nは、Alと反応して析出物を形成することで、結晶粒を微細化し、母材靭性を向上させる効果があるため添加する。0.0005%未満の添加では、結晶粒の微細化および強度確保に必要な析出物が形成されず、0.005%を超える添加は、むしろ母材および溶接部の靭性を低下させる。従って、N量は、0.0005〜0.005%の範囲とする。
N: 0.0005-0.005%
N is added because it reacts with Al to form precipitates, thereby refining the crystal grains and improving the toughness of the base material. If the amount is less than 0.0005%, precipitates necessary for refining the crystal grains and securing the strength are not formed. If the amount exceeds 0.005%, the toughness of the base metal and the weld is rather lowered. Therefore, the N amount is in the range of 0.0005 to 0.005%.

2.製造条件について
スラブ加熱温度:1000℃以上、1300℃以下
スラブ加熱温度は、鋼中の成分を均一化し、Mo、Vなどの析出強化元素を固溶させるため、1000℃以上とする。好ましくは1050℃以上を確保する必要がある。加熱温度が高過ぎると、結晶粒が粗大化し、母材の靭性低下を招く恐れがあるため、1300℃以下とする。好ましくは1200℃以下である。
2. Manufacturing conditions Slab heating temperature: 1000 ° C. or higher and 1300 ° C. or lower The slab heating temperature is set to 1000 ° C. or higher in order to homogenize the components in the steel and solidify precipitation strengthening elements such as Mo and V. Preferably, it is necessary to ensure 1050 ° C. or higher. If the heating temperature is too high, the crystal grains become coarse and the toughness of the base material may be reduced. Preferably it is 1200 degrees C or less.

また、母材の靭性を向上させ、安定的に維持する観点から、1050℃以下の温度域で圧下率20%以上の累積圧下を付与することが望ましい。これにより、γ粒の再結晶に伴い、組織が細粒化し、母材の靭性の向上および安定化が図れる。同様の効果を狙い、各圧延パス毎の圧下率を5%以上、さらには10%以上とすることが望ましい。   Further, from the viewpoint of improving the toughness of the base material and maintaining it stably, it is desirable to apply a cumulative reduction with a reduction ratio of 20% or more in a temperature range of 1050 ° C. or lower. Thereby, with the recrystallization of γ grains, the structure becomes finer and the toughness of the base material can be improved and stabilized. Aiming at the same effect, it is desirable that the rolling reduction for each rolling pass is 5% or more, further 10% or more.

焼入れ温度:Ar3変態点以上、 焼戻し温度:580℃以上、Ac1変態点以下
直接焼入れ温度をAr3変態点以上とするのは、母材強度および母材靭性確保のためである。
焼戻し温度は、780MPa級高張力鋼板において、適正な母材の強度と靭性を得るために、板厚方向の平均温度が580℃以上、Ac1変態点以下の温度で行う。尚、板厚方向の平均温度は、板厚、表面温度および冷却条件等から、シミュレーション計算等により求められるものを用いることができる。例えば、差分法を用い、板厚方向の温度分布を平均化することにより得られた温度を平均温度とすることができる。
Quenching temperature: Ar 3 transformation point or higher, Tempering temperature: 580 ° C or higher, Ac 1 transformation point or lower The direct quenching temperature is made Ar 3 transformation point or higher in order to secure the base metal strength and base metal toughness.
The tempering temperature is 780 MPa class high-tensile steel sheet, and the average temperature in the thickness direction is 580 ° C. or higher and Ac 1 transformation point or lower in order to obtain appropriate base metal strength and toughness. The average temperature in the plate thickness direction can be determined by simulation calculation or the like from the plate thickness, surface temperature, cooling conditions, and the like. For example, the temperature obtained by averaging the temperature distribution in the plate thickness direction using the difference method can be used as the average temperature.

誘導加熱装置による焼戻し処理
ガス燃焼式の加熱炉によるオフラインでの焼戻し処理の代わりに、例えば、図1に示すように、熱間圧延ライン上や厚板圧延ライン上に設置した、誘導加熱装置で焼戻し処理を行ってもよい。図1中、10は、誘導加熱装置、30は、テーブルローラである。誘導加熱装置で焼戻し処理を行う場合は、鋼板表面の最高到達温度は、Ac1変態点以下とする加熱処理条件で行うこととする。
Tempering treatment by induction heating device Instead of offline tempering treatment by a gas combustion type heating furnace, for example, an induction heating device installed on a hot rolling line or a thick plate rolling line as shown in FIG. A tempering treatment may be performed. In FIG. 1, 10 is an induction heating device, and 30 is a table roller. When tempering is performed with an induction heating device, the maximum temperature reached on the steel sheet surface is determined under the heat treatment conditions that are below the Ac 1 transformation point.

なお、誘導加熱装置の配置は、図1のオンラインの例のほか、オフラインでも構わないが、エネルギーコスト削減あるいはリードタイム短縮の観点からは、直接焼入れ後に加熱が可能なように、オンラインとするのが好ましい。
さらに、オンラインでの加熱の場合、その方式は誘導加熱によるものに限る必要はなく、図2に示すように、被圧延材である鋼板1の幅方向に列設したバーナのバーナ炎2により、鋼板1の表面を加熱する方法等も用いることができる。
In addition to the on-line example in FIG. 1, the induction heating apparatus may be off-line. However, from the viewpoint of reducing energy cost or lead time, the induction heating apparatus should be on-line so that heating can be performed after direct quenching. Is preferred.
Furthermore, in the case of online heating, the method need not be limited to that by induction heating, as shown in FIG. 2, by the burner flame 2 of the burner arranged in the width direction of the steel sheet 1 as the material to be rolled, A method of heating the surface of the steel plate 1 can also be used.

表1に、実施例の化学成分を示す。各元素の含有量は、全て質量%を意味する。鋼A〜Gが発明例であり、鋼H〜Nが比較例である。   Table 1 shows the chemical components of the examples. The content of each element means mass%. Steels A to G are invention examples, and steels H to N are comparative examples.

表2に、製造方法および母材の機械的特性、耐SR割れ特性を示す。No.1〜7および15〜28が発明例、No.8〜14が比較例である。   Table 2 shows the manufacturing method, the mechanical properties of the base metal, and the SR cracking resistance. Nos. 1 to 7 and 15 to 28 are invention examples, and Nos. 8 to 14 are comparative examples.

種々の製造方法にて、所定の板厚に圧延し、引き続き直接焼入れを行い、その後雰囲気炉または誘導加熱装置を用いて焼戻し処理を行った。
母材の機械的特性は、板厚の1/4t部より丸棒引張試験片およびシャルピー衝撃試験片を採取し、それぞれ試験に供した。また、SR割れ試験は、y形溶接割れ試験片(JIS Z 3158)を用い、600℃で3時間のSR処理を行い、試験片断面に発生した割れ率(断面割れ率)を測定した。
The sheet was rolled to a predetermined thickness by various manufacturing methods, followed by direct quenching, followed by tempering using an atmosphere furnace or induction heating device.
As for the mechanical properties of the base material, a round bar tensile test piece and a Charpy impact test piece were sampled from a 1/4 ton part of the plate thickness and subjected to the test. In addition, the SR cracking test was carried out using a y-type weld cracking test piece (JIS Z 3158), subjected to SR treatment at 600 ° C. for 3 hours, and measuring the cracking rate (cross-sectional cracking rate) generated in the test piece cross section.

No.8(鋼H)は、Caを添加しなかったため、SR割れが発生した。
No.9(鋼I)は、Sが発明の範囲の上限を超えており、SR割れが発生した。また、他の実施例に比べて母材靭性は低めである。
No.10(鋼J)は、ΔGとPSRは、共に負であるが、Mo+2.9V+2Tiが0.50%を超えているために、SR割れが発生している。
In No. 8 (steel H), no SR was added, and therefore SR cracking occurred.
In No. 9 (steel I), S exceeded the upper limit of the scope of the invention, and SR cracking occurred. Also, the base material toughness is lower than in the other examples.
No.10 (Steel J) is .DELTA.G and P SR is a both negative, for Mo + 2.9 V + 2Ti is greater than 0.50%, SR cracking occurs.

No.11(鋼K)はMoが発明の範囲の上限を超えており、また、Mo+2.9V+2Tiも0.50%を超えているので、SR割れが発生した。
No.12(鋼L)は、Mo+2.9V+2Tiが0.50%を超えているため、SR割れが発生した。
No.13(鋼M)、No.14(鋼N)は、Mo+2.9V+2Tiは0.50%以内であるものの、Nb添加したために、SR割れが発生した。
In No. 11 (steel K), Mo exceeded the upper limit of the scope of the invention, and Mo + 2.9V + 2Ti also exceeded 0.50%, so SR cracking occurred.
In No.12 (Steel L), SR cracking occurred because Mo + 2.9V + 2Ti exceeded 0.50%.
In No.13 (steel M) and No.14 (steel N), although Mo + 2.9V + 2Ti was within 0.50%, SR cracking occurred because Nb was added.

一方、発明例であるNo.1〜No.7、No.15〜No.28は、本発明の範囲内にあるので、SR割れが無く、且つ靱性に優れた引張強度780MPa以上の高張力鋼が得られた。   On the other hand, No. 1 to No. 7 and No. 15 to No. 28, which are invention examples, are within the scope of the present invention, so there is no SR cracking and high tensile strength steel with a tensile strength of 780 MPa or more excellent in toughness. was gotten.

Figure 2007063603
Figure 2007063603

Figure 2007063603
Figure 2007063603

本発明は、引張強さ780MPa以上の高張力鋼で、耐SR割れ特性に優れるので、従来よりも厚肉の溶接構造物に安全に適用できる。   The present invention is a high-strength steel having a tensile strength of 780 MPa or more and is excellent in SR cracking resistance. Therefore, the present invention can be safely applied to a thicker welded structure.

本発明の実施の形態について説明するための図であり、(a)は平面図を、(b)は側面図を、(c)は正面図を示す。It is a figure for demonstrating embodiment of this invention, (a) is a top view, (b) is a side view, (c) shows a front view. 本発明の実施の形態について説明するための図である。It is a figure for demonstrating embodiment of this invention.

符号の説明Explanation of symbols

1 鋼板
2 バーナ炎
10 誘導加熱装置
30 テーブルローラ
1 Steel plate 2 Burner flame 10 Induction heating device 30 Table roller

Claims (4)

質量%で、C:0.065〜0.15%、Si:0.10〜0.50%、Mn:0.5〜1.4%、P:0.02%以下、S:0.005%以下、Cu:0.15〜0.5%、Cr:0.10〜0.80%、Mo:0.05〜0.50%、Ca:0.0005〜0.0050%、Ti:0.005〜0.025%、B:0.0005〜0.003%、Al:0.005〜0.1%、N:0.0005〜0.005%を含有し、かつMo+2.9V+2Ti≦0.5%の関係を満足し、残部がFeおよび不可避不純物よりなることを特徴とする靭性および耐SR割れ特性に優れた引張強さが780MPa以上の高張力鋼板。   In mass%, C: 0.065 to 0.15%, Si: 0.10 to 0.50%, Mn: 0.5 to 1.4%, P: 0.02% or less, S: 0.005% or less, Cu: 0.15 to 0.5%, Cr: 0.10 to 0.80% , Mo: 0.05-0.50%, Ca: 0.0005-0.0050%, Ti: 0.005-0.025%, B: 0.0005-0.003%, Al: 0.005-0.1%, N: 0.0005-0.005%, and Mo + 2.9V + 2Ti A high-tensile steel plate with a tensile strength of 780 MPa or more, excellent in toughness and SR cracking resistance, characterized by satisfying the relationship of ≦ 0.5%, the balance being Fe and inevitable impurities. 質量%で、C:0.065〜0.15%、Si:0.10〜0.50%、Mn:0.5〜1.4%、P:0.02%以下、S:0.005%以下、Cu:0.15〜0.5%、Cr:0.10〜0.80%、Mo:0.05〜0.50%、V:0.005〜0.06%、Ca:0.0005〜0.0050%、Ti:0.005〜0.025%、B:0.0005〜0.003%、Al:0.005〜0.1%、N:0.0005〜0.005%を含有し、かつMo+2.9V+2Ti≦0.5%の関係を満足し、残部がFeおよび不可避不純物よりなることを特徴とする靭性および耐SR割れ特性に優れた引張強さが780MPa以上の高張力鋼板。   In mass%, C: 0.065 to 0.15%, Si: 0.10 to 0.50%, Mn: 0.5 to 1.4%, P: 0.02% or less, S: 0.005% or less, Cu: 0.15 to 0.5%, Cr: 0.10 to 0.80% , Mo: 0.05-0.50%, V: 0.005-0.06%, Ca: 0.0005-0.0050%, Ti: 0.005-0.025%, B: 0.0005-0.003%, Al: 0.005-0.1%, N: 0.0005-0.005% A high-tensile steel plate with a tensile strength of 780 MPa or more, excellent in toughness and SR cracking resistance, characterized by containing Mo and satisfying the relationship of Mo + 2.9V + 2Ti ≦ 0.5%, the balance being Fe and inevitable impurities. 請求項1または請求項2に記載の成分の鋼片を、1000℃以上1300℃以下の温度に加熱し、製品板厚まで熱間圧延して鋼板とした後に、鋼板の板厚方向平均温度がAr変態点以上の温度から直接焼入れ処理を行い、その後、板厚方向平均温度が580℃以上、Ac1変態点以下の温度に焼戻し処理することを特徴とする靭性および耐SR割れ特性に優れた引張強さが780MPa以上の高張力鋼板の製造方法。 The steel slab of the component according to claim 1 or claim 2 is heated to a temperature of 1000 ° C. or more and 1300 ° C. or less, and after hot rolling to a product plate thickness to obtain a steel plate, the steel plate thickness direction average temperature of the steel plate is Excellent toughness and SR cracking resistance, characterized by direct quenching from the temperature above the Ar 3 transformation point and then tempering to an average temperature in the thickness direction of 580 ° C or higher and below the Ac 1 transformation point High tensile strength steel sheet with a tensile strength of 780 MPa or more. 誘導加熱装置を用いて、鋼板表面の最高到達温度がAc1変態点以下の温度に、急速加熱して、焼戻し処理することを特徴とする請求項3に記載の靭性および耐SR割れ特性に優れた引張強さが780MPa以上の高張力鋼板の製造方法。
4. Excellent toughness and SR cracking resistance according to claim 3, characterized in that an induction heating device is used to rapidly heat the steel sheet surface to a temperature below the Ac 1 transformation point and to perform tempering treatment. High tensile strength steel sheet with a tensile strength of 780 MPa or more.
JP2005249765A 2005-08-30 2005-08-30 780 MPa class high strength steel sheet and method for producing the same Expired - Fee Related JP4604917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005249765A JP4604917B2 (en) 2005-08-30 2005-08-30 780 MPa class high strength steel sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005249765A JP4604917B2 (en) 2005-08-30 2005-08-30 780 MPa class high strength steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007063603A true JP2007063603A (en) 2007-03-15
JP4604917B2 JP4604917B2 (en) 2011-01-05

Family

ID=37926132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005249765A Expired - Fee Related JP4604917B2 (en) 2005-08-30 2005-08-30 780 MPa class high strength steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP4604917B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104131235A (en) * 2014-07-22 2014-11-05 武汉钢铁(集团)公司 LPG boat storage tank steel plate and production method thereof
CN106834925A (en) * 2017-01-12 2017-06-13 河钢股份有限公司 A kind of 780MPa grades of quenching and tempering type water-power steel plate and production method
CN109112421A (en) * 2018-08-24 2019-01-01 唐山钢铁集团有限责任公司 A kind of steels for pressure vessel use 07Cr2AlMoR and its production method
KR20200123832A (en) 2018-03-29 2020-10-30 제이에프이 스틸 가부시키가이샤 Granulated product, method for producing granulated product and method for producing sintered ore

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03232923A (en) * 1990-02-06 1991-10-16 Nippon Steel Corp Production of high strength steel increased in toughness up to central part of plate thickness and having weldability
JPH08193240A (en) * 1994-11-18 1996-07-30 Nippon Steel Corp Steel material excellent in temper embrittlement resistance and its production
JPH09263828A (en) * 1996-03-27 1997-10-07 Sumitomo Metal Ind Ltd Production of high tensile strength steel material for welding, excellent in arresting property
JP2001288512A (en) * 2000-04-05 2001-10-19 Nippon Steel Corp Method of producing high tensile strength steel excellent in toughness and ductility
JP2002339037A (en) * 2001-03-13 2002-11-27 Sumitomo Metal Ind Ltd High tensile strength steel having excellent low temperature joint toughness and ssc resistance, and production method therefor
JP2004169048A (en) * 2002-11-15 2004-06-17 Nippon Steel Corp Steel for crude-oil tank having superior toughness of weld heat-affected zone
JP2004218081A (en) * 2002-12-25 2004-08-05 Jfe Steel Kk Method for producing high-tension steel plate
WO2005075694A1 (en) * 2004-02-04 2005-08-18 Sumitomo Metal Industries,Ltd. Steel product for line pipe excellent in resistance to hic and line pipe produced by using the steel product

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03232923A (en) * 1990-02-06 1991-10-16 Nippon Steel Corp Production of high strength steel increased in toughness up to central part of plate thickness and having weldability
JPH08193240A (en) * 1994-11-18 1996-07-30 Nippon Steel Corp Steel material excellent in temper embrittlement resistance and its production
JPH09263828A (en) * 1996-03-27 1997-10-07 Sumitomo Metal Ind Ltd Production of high tensile strength steel material for welding, excellent in arresting property
JP2001288512A (en) * 2000-04-05 2001-10-19 Nippon Steel Corp Method of producing high tensile strength steel excellent in toughness and ductility
JP2002339037A (en) * 2001-03-13 2002-11-27 Sumitomo Metal Ind Ltd High tensile strength steel having excellent low temperature joint toughness and ssc resistance, and production method therefor
JP2004169048A (en) * 2002-11-15 2004-06-17 Nippon Steel Corp Steel for crude-oil tank having superior toughness of weld heat-affected zone
JP2004218081A (en) * 2002-12-25 2004-08-05 Jfe Steel Kk Method for producing high-tension steel plate
WO2005075694A1 (en) * 2004-02-04 2005-08-18 Sumitomo Metal Industries,Ltd. Steel product for line pipe excellent in resistance to hic and line pipe produced by using the steel product

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104131235A (en) * 2014-07-22 2014-11-05 武汉钢铁(集团)公司 LPG boat storage tank steel plate and production method thereof
CN104131235B (en) * 2014-07-22 2016-06-29 武汉钢铁(集团)公司 LPG ship storage steel plate for tanks and production method thereof
CN106834925A (en) * 2017-01-12 2017-06-13 河钢股份有限公司 A kind of 780MPa grades of quenching and tempering type water-power steel plate and production method
KR20200123832A (en) 2018-03-29 2020-10-30 제이에프이 스틸 가부시키가이샤 Granulated product, method for producing granulated product and method for producing sintered ore
CN109112421A (en) * 2018-08-24 2019-01-01 唐山钢铁集团有限责任公司 A kind of steels for pressure vessel use 07Cr2AlMoR and its production method
CN109112421B (en) * 2018-08-24 2020-10-02 唐山钢铁集团有限责任公司 Steel 07Cr2AlMoR for pressure vessel and production method thereof

Also Published As

Publication number Publication date
JP4604917B2 (en) 2011-01-05

Similar Documents

Publication Publication Date Title
JP5098256B2 (en) Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect with excellent hydrogen-induced cracking resistance and method for producing the same
JP6253974B2 (en) Thick steel plate for reactor containment vessel with excellent brittle crack propagation stopping characteristics
JP4951997B2 (en) A method for producing a high-tensile steel sheet having a tensile strength of 550 MPa or more.
WO2011142285A1 (en) High-strength steel plate and method for producing same
JP6630812B2 (en) High strength steel with high minimum yield limit and method for producing such steel
JP4696570B2 (en) Manufacturing method of high-tensile steel material with excellent hydrogen embrittlement resistance
JP6834550B2 (en) Steel materials for tanks and their manufacturing methods
JP2019214752A (en) Low-yield-ratio thick steel plate
JP2011202214A (en) Thick high tensile strength steel plate having excellent low temperature toughness in multilayer weld zone and method for producing the same
JP2015183279A (en) Thick steel sheet for marine vessel, for marine structure and for hydraulic pressure steel pipe excellent in brittle crack arrest property
KR20210099627A (en) High-strength steel products and their manufacturing method
JP5509654B2 (en) High-strength steel sheet excellent in PWHT resistance and uniform elongation characteristics and method for producing the same
CN113166903B (en) Steel material having excellent hydrogen-induced cracking resistance and method for producing same
JP6024928B2 (en) Steel plates for marine, marine structures and hydraulic iron pipes with excellent brittle crack propagation stopping properties and methods for producing the same
JP5089224B2 (en) Manufacturing method of on-line cooling type high strength steel sheet
JP4547944B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP2008285703A (en) Method for producing high strength low yield ratio steel plate excellent in toughness at heat affected zone
JP4604917B2 (en) 780 MPa class high strength steel sheet and method for producing the same
JP5741454B2 (en) Ni-added steel sheet excellent in toughness and productivity in which Charpy test value at −196 ° C. is 100 J or more for both base metal and welded joint, and manufacturing method thereof
WO2009123195A1 (en) Process for production of thick high-tensile-strength steel plates
JP3487262B2 (en) High strength thick steel plate excellent in CTOD characteristics and method for producing the same
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP2781000B2 (en) Method for producing high-strength steel sheet excellent in HIC resistance and SSC resistance
JP4951938B2 (en) Manufacturing method of high toughness high tensile steel sheet
JP4710423B2 (en) Method for producing high-tensile steel plate with excellent SSC resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100920

R150 Certificate of patent or registration of utility model

Ref document number: 4604917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees