JP6856129B2 - Manufacturing method of high Mn steel - Google Patents

Manufacturing method of high Mn steel Download PDF

Info

Publication number
JP6856129B2
JP6856129B2 JP2019539597A JP2019539597A JP6856129B2 JP 6856129 B2 JP6856129 B2 JP 6856129B2 JP 2019539597 A JP2019539597 A JP 2019539597A JP 2019539597 A JP2019539597 A JP 2019539597A JP 6856129 B2 JP6856129 B2 JP 6856129B2
Authority
JP
Japan
Prior art keywords
less
steel
rolling
low temperature
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019539597A
Other languages
Japanese (ja)
Other versions
JPWO2019044928A1 (en
Inventor
大地 泉
大地 泉
植田 圭治
圭治 植田
長谷 和邦
和邦 長谷
孝一 中島
孝一 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2019044928A1 publication Critical patent/JPWO2019044928A1/en
Application granted granted Critical
Publication of JP6856129B2 publication Critical patent/JP6856129B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Description

本発明は、例えば液化ガス貯槽用タンク等の、極めて低温の環境で使用される構造用鋼に供して好適な、特に低温での靭性に優れた高Mn鋼およびその製造方法に関する。 The present invention relates to high Mn steel, which is suitable for structural steel used in an extremely low temperature environment, such as a tank for a liquefied gas storage tank, and which is particularly excellent in toughness at low temperature, and a method for producing the same.

液化ガス貯槽用構造物に熱間圧延鋼板を用いるには、使用環境が極めて低温となるため、鋼板は高強度であることに加えて、低温での靱性に優れることも要求される。例えば、液化天然ガスの貯槽に熱間圧延鋼板を使用する場合は、液化天然ガスの沸点:−164℃以下で優れた靱性が確保されている必要がある。鋼材の低温靱性が劣ると、極低温貯槽用構造物としての安全性を維持できなくなる可能性があるため、適用される鋼材に対する低温靱性の向上に対する要求は強い。以下、−164℃の極低温域を含め低温と総称する。 In order to use a hot-rolled steel sheet for a structure for a liquefied gas storage tank, the operating environment is extremely low, so that the steel sheet is required to have high strength and excellent toughness at low temperature. For example, when a hot-rolled steel sheet is used in a storage tank for liquefied natural gas, it is necessary that excellent toughness is ensured at a boiling point of liquefied natural gas: -164 ° C. or lower. If the low temperature toughness of the steel material is inferior, it may not be possible to maintain the safety of the structure for the cryogenic storage tank. Therefore, there is a strong demand for improving the low temperature toughness of the applied steel material. Hereinafter, it is generically referred to as a low temperature including an extremely low temperature range of -164 ° C.

この要求に対して、従来、低温で脆性を示さないオーステナイトを鋼板の組織とするオーステナイト系ステンレス鋼や9%Ni鋼、もしくは5000系アルミニウム合金が使用されてきた。しかしながら、合金コストや製造コストが高いことから、安価で低温靱性に優れる鋼材に対する要望がある。 In response to this requirement, austenitic stainless steels, 9% Ni steels, or 5000-based aluminum alloys having austenitic stainless steel having a structure of steel sheets that do not show brittleness at low temperatures have been conventionally used. However, since the alloy cost and the manufacturing cost are high, there is a demand for a steel material that is inexpensive and has excellent low temperature toughness.

そこで、従来の低温用鋼に代わる新たな鋼材として、比較的安価なオーステナイト安定化元素であるMnを多量に添加した高Mn鋼を低温環境の構造用鋼として使用することが、例えば特許文献1に提案されている。 Therefore, as a new steel material to replace the conventional low-temperature steel, it is possible to use a high-Mn steel to which a large amount of Mn, which is a relatively inexpensive austenite stabilizing element, is added as a structural steel in a low-temperature environment, for example, Patent Document 1. Has been proposed to.

特許文献1には、Mn偏析比を制御して結晶粒界に生成する炭化物が破壊の起点となることを回避する技術が提案されている。 Patent Document 1 proposes a technique for controlling the Mn segregation ratio to prevent carbides generated at grain boundaries from becoming the starting point of fracture.

特開2017−71817号公報Japanese Unexamined Patent Publication No. 2017-7817

特許文献1に記載の技術によって、低温靭性に優れた高Mn鋼の提供が可能であるが、ここに記載の高Mn鋼は靭性を確保する観点からNiの含有を必須とする点、素材コストの低減が求められていた。さらに、Mn偏析比を低減するため、加熱温度(℃)と加熱時間(hr)との積が30000℃・hr以上の拡散熱処理を行う必要があるため、製造コストが高いことも問題であった。 The technique described in Patent Document 1 makes it possible to provide a high Mn steel having excellent low temperature toughness. However, the high Mn steel described here must contain Ni from the viewpoint of ensuring toughness, and the material cost. Was required to be reduced. Further, in order to reduce the Mn segregation ratio, it is necessary to perform diffusion heat treatment in which the product of the heating temperature (° C.) and the heating time (hr) is 30,000 ° C. hr or more, so that the manufacturing cost is high. ..

そこで、本発明は、素材や製造に要するコストを抑えることのできる、低温靱性に優れた高Mn鋼について提供することを目的とする。さらに、本発明は、かような高Mn鋼を製造するための有利な方法について提案することを目的とする。ここで、前記「低温靭性に優れた」とは、−196℃におけるシャルピー衝撃試験の吸収エネルギーvE-196が100J以上であることをいう。Therefore, an object of the present invention is to provide a high Mn steel having excellent low temperature toughness, which can suppress the material and the cost required for manufacturing. Furthermore, it is an object of the present invention to propose an advantageous method for producing such high Mn steels. Here, the above-mentioned "excellent in low temperature toughness" means that the absorbed energy vE -196 of the Charpy impact test at -196 ° C. is 100 J or more.

発明者らは、上記課題を達成するため、高Mn鋼を対象に、鋼板の成分組成および組織を決定する各種要因に関して鋭意研究を行い、以下のa〜dの知見を得た。
a.高Mnのオーステナイト鋼は、Mnの拡散が遅いことから、連続鋳造時に生成するMn濃度の低いMn偏析部が熱間圧延後にも存在する。このMn偏析部のMn濃度が16%未満の場合、低温において加工誘起マルテンサイトが生成し、低温靱性の劣化を招く。このことから高Mn鋼の低温靱性向上には、Mn偏析部のMn濃度を高めることが有効である。
In order to achieve the above problems, the inventors conducted intensive studies on various factors that determine the composition and structure of steel sheets for high Mn steels, and obtained the following findings a to d.
a. In the high Mn austenitic steel, since the diffusion of Mn is slow, the Mn segregated portion having a low Mn concentration generated during continuous casting is present even after hot rolling. When the Mn concentration of the Mn segregated portion is less than 16%, work-induced martensite is generated at a low temperature, which causes deterioration of low temperature toughness. From this, it is effective to increase the Mn concentration of the Mn segregated portion in order to improve the low temperature toughness of the high Mn steel.

b.高Mnのオーステナイト鋼は、Mnの拡散が遅いことから、連続鋳造時に生成するMn濃度の高いMn偏析部が熱間圧延後にも存在する。このMn偏析部が38%超の場合、粒界破壊をまねくために、やはり低温靱性の劣化を招く。このことから高Mn鋼の低温靱性向上には、Mn偏析部のMn濃度を下げることが有効である。 b. In the high Mn austenitic steel, since the diffusion of Mn is slow, the Mn segregated portion having a high Mn concentration generated during continuous casting exists even after hot rolling. If the Mn segregated portion exceeds 38%, the grain boundary fracture is caused, which also causes deterioration of low temperature toughness. Therefore, in order to improve the low temperature toughness of high Mn steel, it is effective to reduce the Mn concentration in the Mn segregated portion.

c.適切な条件で熱間圧延を行えば、拡散熱処理を行うことなしに上記aまたはbを実現でき、製造コストを抑えることができる。 c. If hot rolling is performed under appropriate conditions, the above a or b can be realized without performing diffusion heat treatment, and the manufacturing cost can be suppressed.

d.適切な条件で熱間圧延を施すことによって高い転位密度を与えることが、降伏強度上昇に有効である。 d. Giving a high dislocation density by hot rolling under appropriate conditions is effective in increasing the yield strength.

本発明は、以上の知見にさらに検討を加えてなされたものであり、その要旨は次のとおりである。
1.質量%で、
C:0.100%以上0.700%以下、
Si:0.05%以上1.00%以下、
Mn:20.0%以上35.0%以下、
P:0.030%以下、
S:0.0070%以下、
Al:0.01%以上0.07%以下、
Cr:0.5%以上7.0%以下、
N:0.0050%以上0.0500%以下、
O:0.0050%以下、
Ti:0.0050%以下および
Nb:0.0050%以下
を含み、残部がFeおよび不可避的不純物の成分組成とオーステナイトを基地相とするミクロ組織とを有し、該ミクロ組織におけるMn偏析部のMn濃度が16%以上38%以下あり、KAM(Kernel Average Misorientation)値の平均が0.3以上であり、−196℃におけるシャルピー衝撃試験の吸収エネルギーが100J以上かつ降伏強度が400MPa以上である高Mn鋼。
The present invention has been made by further studying the above findings, and the gist thereof is as follows.
1. 1. By mass%
C: 0.100% or more and 0.700% or less,
Si: 0.05% or more and 1.00% or less,
Mn: 20.0% or more and 35.0% or less,
P: 0.030% or less,
S: 0.0070% or less,
Al: 0.01% or more and 0.07% or less,
Cr: 0.5% or more and 7.0% or less,
N: 0.0050% or more and 0.0500% or less,
O: 0.0050% or less,
It contains Ti: 0.0050% or less and Nb: 0.0050% or less, and the balance has a component composition of Fe and unavoidable impurities and a microstructure having austenite as a matrix phase, and the Mn segregated portion in the microstructure. The Mn concentration is 16% or more and 38% or less, the average KAM (Kernel Average Misorientation) value is 0.3 or more, the absorption energy of the Charpy impact test at -196 ° C is 100 J or more, and the yield strength is 400 MPa or more. Mn steel.

また、KAM値とは、結晶粒内の各ピクセル(0.3μmピッチ)と隣接するピクセルとの方位差の平均値である。熱間圧延後の鋼板について、500μm×200μmの視野におけるEBSD(Electron Backscatter Diffraction)解析を任意の2視野にわたって行った結果から、測定した全領域の平均値を平均KAM値とした。 The KAM value is the average value of the orientation difference between each pixel (0.3 μm pitch) in the crystal grain and the adjacent pixel. From the results of EBSD (Electron Backscatter Diffraction) analysis in a field of view of 500 μm × 200 μm for the steel sheet after hot rolling over any two fields of view, the average value of all the measured regions was taken as the average KAM value.

2.前記成分組成は、さらに、質量%で、
Mo:2.0%以下、
V:2.0%以下、
W:2.0%以下、
Ca:0.0005%以上0.0050%以下、
Mg:0.0005%以上0.0050%以下および
REM:0.0010%以上0.0200%以下
のうちから選ばれる1種または2種以上を含有する前記1に記載の高Mn鋼。
2. The composition of the components is further increased by mass%.
Mo: 2.0% or less,
V: 2.0% or less,
W: 2.0% or less,
Ca: 0.0005% or more and 0.0050% or less,
The high Mn steel according to 1 above, which contains one or more selected from Mg: 0.0005% or more and 0.0050% or less and REM: 0.0010% or more and 0.0200% or less.

3.前記1または2に記載の成分組成を有する鋼素材を、1100℃以上1300℃以下の温度域に加熱し、圧延終了温度が800℃以上かつ総圧下率が20%以上の熱間圧延を行う高Mn鋼の製造方法。 3. 3. A steel material having the component composition described in 1 or 2 above is heated to a temperature range of 1100 ° C. or higher and 1300 ° C. or lower, and hot rolling is performed with a rolling end temperature of 800 ° C. or higher and a total rolling reduction of 20% or higher. Method for manufacturing Mn steel.

4.前記3において、さらに、仕上圧延終了温度が700℃以上950℃未満の熱間圧延を行い、その後、(仕上圧延終了温度−100℃)以上の温度から300℃以上650℃以下の温度域までの平均冷却速度が1.0℃/s以上の冷却処理を行う高Mn鋼の製造方法。
ここで、前記の各温度域は、それぞれ鋼素材または鋼板の表面温度である。
4. In 3 above, hot rolling with a finish rolling end temperature of 700 ° C. or higher and lower than 950 ° C. is further performed, and then from a temperature of (finish rolling end temperature -100 ° C.) or higher to a temperature range of 300 ° C. or higher and 650 ° C. or lower. A method for producing high Mn steel, which is subjected to a cooling treatment having an average cooling rate of 1.0 ° C./s or more.
Here, each of the above temperature ranges is the surface temperature of the steel material or the steel plate, respectively.

本発明によれば、低温靭性に優れた高Mn鋼を提供できる。したがって、本発明の高Mn鋼は、液化ガス貯槽用タンク等の、低温環境で使用される鋼構造物の安全性や寿命の向上に大きく寄与し、産業上格段の効果を奏する。また、本発明の製造方法では、生産性の低下および製造コストの増大を引き起こすことがないため、経済性に優れた方法を提供することができる。 According to the present invention, it is possible to provide a high Mn steel having excellent low temperature toughness. Therefore, the high Mn steel of the present invention greatly contributes to the improvement of safety and life of steel structures used in a low temperature environment such as a tank for a liquefied gas storage tank, and exerts a remarkable industrial effect. Further, since the production method of the present invention does not cause a decrease in productivity and an increase in production cost, it is possible to provide a method having excellent economic efficiency.

Mn偏析部のMn濃度とシャルピー吸収エネルギー(vE-196)との関係を示すグラフである。It is a graph which shows the relationship between the Mn concentration of the Mn segregation part and the Charpy absorption energy (vE -196). Mn偏析部のMn濃度とシャルピー吸収エネルギー(vE-196)との関係を示すグラフである。It is a graph which shows the relationship between the Mn concentration of the Mn segregation part and the Charpy absorption energy (vE -196).

以下、本発明の高Mn鋼について詳しく説明する。
[成分組成]
まず、本発明の高Mn鋼の成分組成とその限定理由について説明する。なお、成分組成における「%」表示は、特に断らない限り「質量%」を意味するものとする。
C:0.100%以上0.700%以下
Cは、安価なオーステナイト安定化元素であり、オーステナイトを得るために重要な元素である。その効果を得るために、Cは0.100%以上の含有を必要とする。一方、0.700%を超えて含有すると、Cr炭化物が過度に生成され、低温靱性が低下する。このため、Cは0.100%以上0.700%以下とする。好ましくは、0.200%以上0.600%以下とする。
Hereinafter, the high Mn steel of the present invention will be described in detail.
[Ingredient composition]
First, the component composition of the high Mn steel of the present invention and the reason for its limitation will be described. The "%" indication in the component composition shall mean "mass%" unless otherwise specified.
C: 0.100% or more and 0.700% or less C is an inexpensive austenite stabilizing element and is an important element for obtaining austenite. In order to obtain the effect, C needs to be contained in an amount of 0.100% or more. On the other hand, if it is contained in excess of 0.700%, Cr carbides are excessively generated and the low temperature toughness is lowered. Therefore, C is set to 0.100% or more and 0.700% or less. Preferably, it is 0.200% or more and 0.600% or less.

Si:0.05%以上1.00%以下
Siは、脱酸材として作用し、製鋼上必要であるだけでなく、鋼に固溶して固溶強化により鋼板を高強度化する効果を有する。このような効果を得るために、Siは0.05%以上の含有を必要とする。一方、1.00%を超えて含有すると、溶接性が劣化する。このため、Siは0.05%以上1.00%以下とする。好ましくは、0.07%以上0.50%以下とする。
Si: 0.05% or more and 1.00% or less Si acts as a deoxidizing material and is not only necessary for steelmaking, but also has the effect of dissolving in steel and increasing the strength of the steel sheet by solid solution strengthening. .. In order to obtain such an effect, Si needs to be contained in an amount of 0.05% or more. On the other hand, if it is contained in excess of 1.00%, the weldability deteriorates. Therefore, Si is set to 0.05% or more and 1.00% or less. Preferably, it is 0.07% or more and 0.50% or less.

Mn:20.0%以上35.0%以下
Mnは、比較的安価なオーステナイト安定化元素である。本発明では、強度と低温靱性を両立するために重要な元素である。その効果を得るために、Mnは20.0%以上の含有を必要とする。一方、35.0%を超えて含有した場合、低温靱性が劣化する。また、溶接性、切断性が劣化する。さらに、偏析を助長し、応力腐食割れの発生を助長する。このため、Mnは20.0%以上35.0%以下とする。好ましくは、23.0%以上30.0%以下とする。より好ましくは、28.0%以下とする。
Mn: 20.0% or more and 35.0% or less Mn is a relatively inexpensive austenite stabilizing element. In the present invention, it is an important element for achieving both strength and low temperature toughness. In order to obtain the effect, Mn needs to be contained in an amount of 20.0% or more. On the other hand, if it is contained in excess of 35.0%, the low temperature toughness deteriorates. In addition, weldability and cutability deteriorate. Furthermore, it promotes segregation and promotes the occurrence of stress corrosion cracking. Therefore, Mn is set to 20.0% or more and 35.0% or less. Preferably, it is 23.0% or more and 30.0% or less. More preferably, it is 28.0% or less.

P:0.030%以下
Pは、0.030%を超えて含有すると、粒界に偏析し、応力腐食割れの発生起点となる。このため、0.030%を上限とし、可能なかぎり低減することが望ましい。したがって、Pは0.030%以下とする。尚、過度のP低減は精錬コストを高騰させ経済的に不利となるため、0.002%以上とすることが望ましい。好ましくは、0.005%以上0.028%以下、さらに好ましくは0.024%以下とする。
P: 0.030% or less If P is contained in excess of 0.030%, it segregates at the grain boundaries and becomes the starting point for stress corrosion cracking. Therefore, it is desirable to limit the amount to 0.030% as much as possible. Therefore, P is 0.030% or less. It should be noted that excessive P reduction increases the refining cost and is economically disadvantageous, so it is desirable to set it to 0.002% or more. It is preferably 0.005% or more and 0.028% or less, and more preferably 0.024% or less.

S:0.0070%以下
Sは、母材の低温靭性や延性を劣化させるため、0.0070%を上限とし、可能なかぎり低減することが望ましい。したがって、Sは0.0070%以下とする。尚、過度のSの低減は精錬コストを高騰させ経済的に不利となるため、0.001%以上とすることが望ましい。好ましくは0.0020%以上0.0060%以下とする。
S: 0.0070% or less Since S deteriorates the low temperature toughness and ductility of the base material, it is desirable to limit it to 0.0070% and reduce it as much as possible. Therefore, S is set to 0.0070% or less. It should be noted that excessive reduction of S increases the refining cost and is economically disadvantageous, so it is desirable to set it to 0.001% or more. It is preferably 0.0020% or more and 0.0060% or less.

Al:0.01%以上0.07%以下
Alは、脱酸剤として作用し、鋼板の溶鋼脱酸プロセスに於いて、もっとも汎用的に使われる。このような効果を得るためには、Alは0.01%以上の含有を必要とする。一方、0.07%を超えて含有すると、溶接時に溶接金属部に混入して、溶接金属の靭性を劣化させるため、0.07%以下とする。このため、Alは0.01%以上0.07%以下とする。好ましくは0.02%以上0.06%以下とする。
Al: 0.01% or more and 0.07% or less Al acts as a deoxidizing agent and is most commonly used in the molten steel deoxidizing process of steel sheets. In order to obtain such an effect, Al needs to be contained in an amount of 0.01% or more. On the other hand, if it is contained in excess of 0.07%, it is mixed in the weld metal portion during welding and deteriorates the toughness of the weld metal, so the content is set to 0.07% or less. Therefore, Al is set to 0.01% or more and 0.07% or less. It is preferably 0.02% or more and 0.06% or less.

Cr:0.5%以上7.0%以下
Crは、適量の添加でオーステナイトを安定化させ、低温靱性と母材強度の向上に有効な元素である。このような効果を得るためには、Crは0.5%以上の含有を必要とする。一方、7.0%を超えて含有すると、Cr炭化物の生成により、低温靭性および耐応力腐食割れ性が低下する。このため、Crは0.5%以上7.0%以下とする。好ましくは1.0%以上6.7%以下、より好ましくは1.2%以上6.5%以下とする。また、耐応力腐食割れをさらに向上させるためには、2.0%以上6.0%以下がさらに好ましい。
Cr: 0.5% or more and 7.0% or less Cr is an element effective for stabilizing austenite by adding an appropriate amount and improving low temperature toughness and base metal strength. In order to obtain such an effect, Cr needs to be contained in an amount of 0.5% or more. On the other hand, if it is contained in excess of 7.0%, low temperature toughness and stress corrosion cracking resistance are lowered due to the formation of Cr carbides. Therefore, Cr is set to 0.5% or more and 7.0% or less. It is preferably 1.0% or more and 6.7% or less, and more preferably 1.2% or more and 6.5% or less. Further, in order to further improve the stress corrosion cracking resistance, 2.0% or more and 6.0% or less are more preferable.

N:0.0050%以上0.0500%以下
Nは、オーステナイト安定化元素であり、低温靱性向上に有効な元素である。このような効果を得るためには、Nは0.0050%以上の含有を必要とする。一方、0.0500%を超えて含有すると、窒化物または炭窒化物が粗大化し、靭性が低下する。このため、Nは0.0050%以上0.0500%以下とする。好ましくは0.0060%以上0.0400%以下とする。
N: 0.0050% or more and 0.0500% or less N is an austenite stabilizing element and is an element effective for improving low temperature toughness. In order to obtain such an effect, N needs to be contained in an amount of 0.0050% or more. On the other hand, if it is contained in excess of 0.0500%, the nitride or carbonitride becomes coarse and the toughness decreases. Therefore, N is set to 0.0050% or more and 0.0500% or less. It is preferably 0.0060% or more and 0.0400% or less.

O:0.0050%以下
Oは、酸化物の形成により低温靱性を劣化させる。このため、Oは0.0050%以下の範囲とする。好ましくは、0.0045%以下である。尚、過度のOの低減は精錬コストを高騰させ経済的に不利となるため、0.0010%以上とすることが望ましい。
O: 0.0050% or less O deteriorates low temperature toughness due to the formation of oxides. Therefore, O is in the range of 0.0050% or less. Preferably, it is 0.0045% or less. It should be noted that excessive reduction of O increases the refining cost and is economically disadvantageous, so it is desirable to set it to 0.0010% or more.

TiおよびNbの含有量を各々0.005%以下に抑制
TiおよびNbは、鋼中で高融点の炭窒化物を形成し結晶粒の粗大化を抑制し、その結果破壊の起点や亀裂伝播の経路となる。特に、高Mn鋼においては低温靭性を高め、延性を向上するための組織制御の妨げとなるため、意図的に抑制する必要がある。すなわち、TiおよびNbは、原材料などから不可避的に混入する成分であり、Ti:0.005%超0.010%以下およびNb:0.005%超0.010%以下の範囲で混入するのが通例である。そこで、後述する手法に従って、TiおよびNbの不可避混入を回避し、TiおよびNbの含有量を各々0.005%以下に抑制する必要がある。TiおよびNbの含有量を各々0.005%以下に抑制することによって、上記した炭窒化物の悪影響を排除し、優れた低温靭性並びに延性を確保することができる。好ましくは、TiおよびNbの含有量を0.003%以下とする。勿論、TiおよびNbの含有量は0%であってもよい。
上記した成分以外の残部は鉄および不可避的不純物である。ここでの不可避的不純物としては、Hなどが挙げられ、合計で0.01%以下であれば許容できる。
Suppressing the content of Ti and Nb to 0.005% or less, respectively Ti and Nb form high melting point carbonitrides in steel and suppress the coarsening of crystal grains, resulting in the origin of fracture and crack propagation. It becomes a route. In particular, in high Mn steel, it is necessary to intentionally suppress it because it hinders the structure control for increasing the low temperature toughness and improving the ductility. That is, Ti and Nb are components that are inevitably mixed from raw materials and the like, and are mixed in the range of Ti: more than 0.005% and 0.010% or less and Nb: more than 0.005% and 0.010% or less. Is customary. Therefore, it is necessary to avoid unavoidable mixing of Ti and Nb and suppress the content of Ti and Nb to 0.005% or less, respectively, according to the method described later. By suppressing the contents of Ti and Nb to 0.005% or less, the adverse effects of the above-mentioned carbonitride can be eliminated, and excellent low temperature toughness and ductility can be ensured. Preferably, the content of Ti and Nb is 0.003% or less. Of course, the content of Ti and Nb may be 0%.
The rest other than the above components are iron and unavoidable impurities. Examples of the unavoidable impurities here include H and the like, and a total of 0.01% or less is acceptable.

[組織]
オーステナイトを基地相とするミクロ組織
鋼材の結晶構造が体心立方構造(bcc)である場合、該鋼材は低温環境下で脆性破壊を起こす可能性があるため、低温環境下での使用には適していない。ここに、低温環境下での使用を想定したとき、鋼材の基地相は、結晶構造が面心立方構造(fcc)であるオーステナイト組織であることが必須となる。なお、「オーステナイトを基地相とする」とは、オーステナイト相が面積率で90%以上であることを意味する。オーステナイト相以外の残部は、フェライト相またはマルテンサイト相である。さらに好ましくは95%以上である。
[Organization]
Microstructure with austenite as the base phase When the crystal structure of the steel material is a body-centered cubic structure (bcc), the steel material may cause brittle fracture in a low temperature environment, so it is suitable for use in a low temperature environment. Not. Here, assuming use in a low temperature environment, it is essential that the matrix phase of the steel material has an austenite structure in which the crystal structure is a face-centered cubic structure (fcc). In addition, "using austenite as a base phase" means that the austenite phase has an area ratio of 90% or more. The rest other than the austenite phase is a ferrite phase or a martensite phase. More preferably, it is 95% or more.

上記の通り、Mnを20.0%以上35.0%以下で含む高Mn鋼では、成分組成におけるMn含有量に比べてMn濃度の低い偏析部および同Mn濃度の高い偏析部が生成される。これらMnの濃度差のある部分は、低温靭性を悪化する要因になることが、以下に示すように判明した。
すなわち、上記した成分組成の鋼素材に種々の条件の熱間圧延を施して得た鋼板について、Mn偏析部のMn濃度並びに、−196℃におけるシャルピー衝撃試験の吸収エネルギーを測定した。ここで、Mn偏析部とは、Mn偏析バンド間のMn濃度が低いまたは高い領域であり、具体的には、熱間圧延後の鋼板の圧延方向断面の研磨面におけるEBSD(Electron Backscatter Diffraction)解析によって測定されるMn濃度が最も低いまたは高い領域で代表される。
As described above, in the high Mn steel containing Mn of 20.0% or more and 35.0% or less, an segregation part having a low Mn concentration and a segregation part having a high Mn concentration are generated as compared with the Mn content in the component composition. .. As shown below, it was found that the portion having a difference in the concentration of Mn becomes a factor for deteriorating the low temperature toughness.
That is, with respect to the steel sheet obtained by hot rolling the steel material having the above-mentioned composition under various conditions, the Mn concentration of the Mn segregated portion and the absorbed energy of the Charpy impact test at -196 ° C. were measured. Here, the Mn segregation portion is a region where the Mn concentration between the Mn segregation bands is low or high, and specifically, EBSD (Electron Backscatter Diffraction) analysis on the polished surface of the rolling direction cross section of the steel sheet after hot rolling. It is represented by the region where the Mn concentration measured by is the lowest or the highest.

ミクロ組織におけるMn偏析部のMn濃度が16%以上38%以下
まず、Mn濃度の低いMn偏析部について、そのMn濃度並びに−196℃におけるシャルピー衝撃試験の吸収エネルギーを測定した結果を図1に示すように、Mn偏析部のMn濃度を16%以上とすれば、前記吸収エネルギー:100J以上が実現されることがわかる。Mn偏析部のMn濃度は好ましくは17%以上である。
The Mn concentration of the Mn segregated portion in the microstructure is 16% or more and 38% or less. First, for the Mn segregated portion having a low Mn concentration, the results of measuring the Mn concentration and the absorbed energy of the Charpy impact test at -196 ° C. are shown in FIG. As described above, it can be seen that when the Mn concentration of the Mn segregated portion is 16% or more, the absorbed energy: 100 J or more is realized. The Mn concentration of the Mn segregated portion is preferably 17% or more.

さらに、Mn濃度の高いMn偏析部について、そのMn濃度並びに−196℃におけるシャルピー衝撃試験の吸収エネルギーを測定した結果を図2に示すように、Mn偏析部のMn濃度を38%以下とすれば、前記吸収エネルギー:100J以上が実現されることがわかる。Mn偏析部のMn濃度は好ましくは37%以下である。 Further, as shown in FIG. 2, the result of measuring the Mn concentration and the absorbed energy of the Charpy impact test at -196 ° C. for the Mn segregated portion having a high Mn concentration is such that the Mn concentration of the Mn segregated portion is 38% or less. , It can be seen that the absorbed energy: 100 J or more is realized. The Mn concentration of the Mn segregated portion is preferably 37% or less.

KAM(Kernel Average Misorientation)値の平均が0.3以上
KAM値は、上述の通り、熱間圧延後の鋼板について、500μm×200μmの視野におけるEBSD(Electron Backscatter Diffraction)解析を任意の2視野にわたって行った結果から、結晶粒内の各ピクセル(0.3μmピッチ)と隣接するピクセルとの方位差の平均値として求められる値である。このKAM値は、組織における転位による局所的結晶方位変化を反映しており、KAM値が高いほど、測定点と隣り合った部位との方位差が大きいことを示している。すなわち、KAM値が高いほど、粒内の局所的な変形度合が高いことを意味するため、圧延後の鋼板においてKAM値が高いほど、転位密度が高いことになる。そして、このKAM値の平均が0.3以上であれば、多量の転位が蓄積されているため、降伏強度が向上する。好ましくは、0.5以上である。一方、KAM値の平均が1.3を超えると靱性が劣化するおそれがあるため、1.3以下とすることが好ましい。
The average of KAM (Kernel Average Misorientation) values is 0.3 or more. As described above, the KAM value is obtained by performing EBSD (Electron Backscatter Diffraction) analysis in a field of view of 500 μm × 200 μm for the steel sheet after hot rolling over any two fields of view. From the results, it is a value obtained as the average value of the orientation differences between each pixel (0.3 μm pitch) in the crystal grain and the adjacent pixel. This KAM value reflects the local change in crystal orientation due to dislocations in the structure, and the higher the KAM value, the larger the orientation difference between the measurement point and the adjacent portion. That is, the higher the KAM value, the higher the degree of local deformation in the grain, and therefore, the higher the KAM value in the rolled steel sheet, the higher the dislocation density. When the average of the KAM values is 0.3 or more, a large amount of dislocations are accumulated, so that the yield strength is improved. Preferably, it is 0.5 or more. On the other hand, if the average KAM value exceeds 1.3, the toughness may deteriorate, so it is preferably 1.3 or less.

以上のMn偏析部のMn濃度:16%以上38%以下と、KAM値平均:0.3以上とは、上記した成分組成の下、後述する条件に従う熱間圧延を行うことによって実現することができる。 The above Mn concentration of the Mn segregated portion: 16% or more and 38% or less and the average KAM value: 0.3 or more can be realized by hot rolling according to the conditions described later under the above-mentioned component composition. it can.

本発明では、強度および低温靱性をさらに向上させることを目的として、上記の必須元素に加えて、必要に応じて下記の元素を含有することができる。
Mo:2.0%以下、V:2.0%以下、W:2.0%以下、Ca:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0050%以下、REM:0.0010%以上0.0200%以下の1種または2種以上
Mo、V、W:2.0%以下
Mo、VおよびWは、オーステナイトの安定化に寄与するとともに母材強度の向上に寄与する。このような効果を得るためには、Mo、VおよびWは0.001%以上で含有することが好ましい。一方、2.0%を超えて含有すると、粗大な炭窒化物が生成し、破壊の起点となることがある他、製造コストを圧迫する。このため、これらの合金元素を含有する場合は、その含有量は2.0%とする。好ましくは0.003%以上1.7%以下、より好ましくは1.5%以下とする。
In the present invention, in addition to the above essential elements, the following elements can be contained, if necessary, for the purpose of further improving the strength and low temperature toughness.
Mo: 2.0% or less, V: 2.0% or less, W: 2.0% or less, Ca: 0.0005% or more and 0.0050% or less, Mg: 0.0005% or more and 0.0050% or less, REM: 0.0010% or more and 0.0200% or less One or two types Mo, V, W: 2.0% or less Mo, V and W contribute to the stabilization of austenite and improve the strength of the base metal. Contribute to. In order to obtain such an effect, Mo, V and W are preferably contained in an amount of 0.001% or more. On the other hand, if it is contained in excess of 2.0%, coarse carbonitride is formed, which may be a starting point of fracture and puts pressure on the manufacturing cost. Therefore, when these alloying elements are contained, the content thereof is set to 2.0%. It is preferably 0.003% or more and 1.7% or less, and more preferably 1.5% or less.

Ca:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0050%以下、REM:0.0010%以上0.0200%以下
Ca、MgおよびREMは、介在物の形態制御に有用な元素であり、必要に応じて含有できる。介在物の形態制御とは、展伸した硫化物系介在物を粒状の介在物とすることをいう。この介在物の形態制御を介して、延性、靭性および耐硫化物応力腐食割れ性を向上させる。このような効果を得るためには、Ca、Mgは0.0005%以上、REMは0.0010%以上含有することが好ましい。一方、いずれの元素も多く含有させると、非金属介在物量が増加し、かえって延性、靭性、耐硫化物応力腐食割れ性が低下する場合がある。また、経済的に不利になる場合がある。
このため、CaおよびMgを含有する場合には、それぞれ0.0005%以上0.0050%以下、REMを含有する場合には、0.0010%以上0.0200%以下とする。好ましくは、Ca量は0.0010%以上0.0040%以下、Mg量は0.0010%以上0.0040%以下、REM量は0.0020%以上0.0150%以下とする。
Ca: 0.0005% or more and 0.0050% or less, Mg: 0.0005% or more and 0.0050% or less, REM: 0.0010% or more and 0.0200% or less Ca, Mg and REM control the morphology of inclusions. It is a useful element and can be contained as needed. Morphological control of inclusions means that the expanded sulfide-based inclusions are made into granular inclusions. Through morphological control of this inclusion, ductility, toughness and sulfide stress corrosion cracking resistance are improved. In order to obtain such an effect, it is preferable that Ca and Mg are contained in an amount of 0.0005% or more and REM is contained in an amount of 0.0010% or more. On the other hand, if a large amount of any of the elements is contained, the amount of non-metal inclusions may increase, and the ductility, toughness, and sulfide stress corrosion cracking resistance may decrease. It may also be economically disadvantageous.
Therefore, when Ca and Mg are contained, the content is 0.0005% or more and 0.0050% or less, respectively, and when REM is contained, the content is 0.0010% or more and 0.0200% or less. Preferably, the Ca amount is 0.0010% or more and 0.0040% or less, the Mg amount is 0.0010% or more and 0.0040% or less, and the REM amount is 0.0020% or more and 0.0150% or less.

本発明に係る高Mn鋼は、上記した成分組成を有する溶鋼を、転炉、電気炉等、公知の溶製方法で溶製することができる。また、真空脱ガス炉にて2次精錬を行ってもよい。その際、好適な組織制御の妨げとなるTiおよびNbを上述の範囲に制限するために、原料などから不可避的に混入することを回避し、これらの含有量を低減する措置を取る必要がある。例えば、精錬段階におけるスラグの塩基度を下げることによって、これらの合金をスラグへ濃化させて排出し最終的なスラブ製品におけるTiおよびNbの濃度を低減する。また、酸素を吹き込んで酸化させ、還流時にTiおよびNbの合金を浮上分離させるなどの方法でも良い。その後、連続鋳造法等、公知の鋳造方法により、所定寸法のスラブ等の鋼素材とすることが好ましい。 In the high Mn steel according to the present invention, molten steel having the above-mentioned composition can be melted by a known melting method such as a converter or an electric furnace. Further, the secondary refining may be performed in a vacuum degassing furnace. At that time, in order to limit Ti and Nb, which hinder suitable tissue control, to the above range, it is necessary to avoid inevitably mixing from raw materials and take measures to reduce their contents. .. For example, by lowering the basicity of the slag during the refining step, these alloys are concentrated into the slag and discharged to reduce the concentration of Ti and Nb in the final slag product. Alternatively, a method such as blowing oxygen to oxidize the alloy and floating and separating the alloy of Ti and Nb at reflux may be used. After that, it is preferable to use a known casting method such as a continuous casting method to obtain a steel material such as a slab having a predetermined size.

さらに、上記鋼素材を低温靭性に優れた鋼材へと造りこむための製造条件について規定する。
[鋼素材加熱温度:1100℃以上1300℃以下]
上記した構成の高Mn鋼を得るためには、1100℃以上1300℃以下の温度域に加熱し、圧延終了温度が800℃以上かつ総圧下率が20%以上の熱間圧延を行うことが重要である。ここでの温度制御は、鋼素材の表面温度を基準とする。
すなわち、熱間圧延にてMnの拡散を促進するために、圧延前の加熱温度は1100℃以上とする。一方、1300℃を超えると鋼の溶解が始まってしまう懸念があるため、加熱温度の上限は1300℃とする。好ましくは、1150℃以上1250℃以下である。
Further, the manufacturing conditions for incorporating the above steel material into a steel material having excellent low temperature toughness are specified.
[Steel material heating temperature: 1100 ° C or higher and 1300 ° C or lower]
In order to obtain a high Mn steel having the above-mentioned structure, it is important to heat it in a temperature range of 1100 ° C. or higher and 1300 ° C. or lower, and perform hot rolling with a rolling end temperature of 800 ° C. or higher and a total rolling reduction of 20% or higher. Is. The temperature control here is based on the surface temperature of the steel material.
That is, in order to promote the diffusion of Mn in hot rolling, the heating temperature before rolling is set to 1100 ° C. or higher. On the other hand, if the temperature exceeds 1300 ° C., there is a concern that the steel will start melting, so the upper limit of the heating temperature is set to 1300 ° C. Preferably, it is 1150 ° C. or higher and 1250 ° C. or lower.

[圧延終了温度が800℃以上かつ総圧下率が20%以上]
さらに、圧延時の総圧下率を20%以上と高くすることによって、Mn偏析部と偏析部との距離を縮めてMnの拡散を促進することも重要である。同様に、圧延時のMnの拡散を促進する観点から、圧延終了温度を800℃以上とする。なぜなら、800℃未満ではMnの融点の3分の2を大きく下回るため、十分にMnを拡散できないからである。好ましくは950℃以上であり、さらに好ましくは1000℃以上1050℃以下である。また、総圧下率は好ましくは30%以上である。なお、総圧下率の上限は特に定める必要はないが、圧延能率向上の観点から、98%とすることが好ましい。
[Rolling end temperature is 800 ° C or higher and total rolling reduction is 20% or higher]
Further, it is also important to shorten the distance between the Mn segregated portion and promote the diffusion of Mn by increasing the total rolling reduction ratio at the time of rolling to 20% or more. Similarly, from the viewpoint of promoting the diffusion of Mn during rolling, the rolling end temperature is set to 800 ° C. or higher. This is because below 800 ° C., Mn cannot be sufficiently diffused because it is far below two-thirds of the melting point of Mn. It is preferably 950 ° C. or higher, and more preferably 1000 ° C. or higher and 1050 ° C. or lower. The total reduction rate is preferably 30% or more. The upper limit of the total rolling reduction ratio does not need to be set in particular, but it is preferably 98% from the viewpoint of improving the rolling efficiency.

また、必要に応じて、上記した熱間圧延後に、次の条件を満足する2回目の熱間圧延を追加することがKAM値を高めるために有利である。その際、上記した1回目の熱間圧延の終了温度が1100℃以上であれば、そのまま2回目の熱間圧延を続行すればよいが、1100℃に満たない場合は、1100℃以上の再加熱を行う。ここでも、1300℃を超えると鋼の溶解が始まってしまう懸念があるため、加熱温度の上限は1300℃とする。なお、温度制御は、鋼素材の表面温度を基準とする。好ましくは、1150℃以上1250℃以下である。 Further, if necessary, it is advantageous to add a second hot rolling that satisfies the following conditions after the hot rolling described above in order to increase the KAM value. At that time, if the end temperature of the first hot rolling described above is 1100 ° C. or higher, the second hot rolling may be continued as it is, but if it is less than 1100 ° C., reheating of 1100 ° C. or higher is performed. I do. Here, too, the upper limit of the heating temperature is set to 1300 ° C. because there is a concern that the steel will start melting if the temperature exceeds 1300 ° C. The temperature control is based on the surface temperature of the steel material. Preferably, it is 1150 ° C. or higher and 1250 ° C. or lower.

[仕上圧延終了温度:700℃以上950℃未満]
2回目の熱間圧延は、700℃以上950℃未満で1パス以上の最終仕上圧延を必要とする。すなわち、950℃未満にて好ましくは10%以上の圧延を1パス以上行うことにより、1回目の圧延で導入された転位が回復しにくく残留しやすくなるため、KAM値を高めることができる。また、950℃以上の温度領域で仕上げると、結晶粒径が過度に粗大となり所望の降伏強度が得られなくなる。そのため950℃未満で1パス以上の最終仕上圧延を行うことが好ましい。仕上温度は好ましくは900℃以下、より好ましくは850℃以下である。
[Finish rolling end temperature: 700 ° C or more and less than 950 ° C]
The second hot rolling requires one or more passes of final finish rolling at 700 ° C. or higher and lower than 950 ° C. That is, by performing rolling of preferably 10% or more at a temperature lower than 950 ° C. for one pass or more, the dislocations introduced in the first rolling are difficult to recover and tend to remain, so that the KAM value can be increased. Further, when finished in a temperature range of 950 ° C. or higher, the crystal grain size becomes excessively coarse and a desired yield strength cannot be obtained. Therefore, it is preferable to perform final finish rolling at a temperature of less than 950 ° C. for one pass or more. The finishing temperature is preferably 900 ° C. or lower, more preferably 850 ° C. or lower.

一方、仕上温度が700℃未満になると靱性が劣化するため、700℃以上とする。さらに、750℃以上であることが好ましい。なお、950℃未満の圧下率は好ましくは20%以上、より好ましくは50%以上である。ただし、95%超えの圧下を行うと、靱性が劣化するため95%以下が好ましい。 On the other hand, if the finishing temperature is less than 700 ° C., the toughness deteriorates, so the temperature is set to 700 ° C. or higher. Further, it is preferably 750 ° C. or higher. The reduction rate below 950 ° C. is preferably 20% or more, more preferably 50% or more. However, if the reduction is more than 95%, the toughness deteriorates, so 95% or less is preferable.

[(仕上圧延終了温度−100℃)以上の温度から300℃以上650℃以下の温度域までの平均冷却速度:1.0℃/s以上]
熱間圧延終了後は速やかに冷却を行う。熱間圧延後の鋼板を緩やかに冷却させると析出物の生成が促進され低温靭性の劣化を招く。これら析出物の生成は、1.0℃/s以上の冷却速度で冷却することで抑制できる。また、過度な冷却を行うと鋼板が歪んでしまい、生産性を低下させる。特に板厚10mm未満の鋼材では空冷するのが好ましい。そのため、冷却開始温度の上限は900℃とする。以上の理由から、熱間圧延後の冷却は、(仕上圧延終了温度−100℃)以上の温度から300℃以上650℃以下の温度域までの鋼板表面の平均冷却速度は1.0℃/s以上とする。尚、圧延ままでMn偏析部のMn濃度の範囲が狭くなっているので、その後の熱処理は不要である。
[Average cooling rate from (finish rolling end temperature -100 ° C) or higher to a temperature range of 300 ° C or higher and 650 ° C or lower: 1.0 ° C / s or higher]
After the hot rolling is completed, it is cooled immediately. When the steel sheet after hot rolling is gently cooled, the formation of precipitates is promoted and the low temperature toughness deteriorates. The formation of these precipitates can be suppressed by cooling at a cooling rate of 1.0 ° C./s or higher. In addition, excessive cooling distorts the steel sheet, reducing productivity. In particular, steel materials with a plate thickness of less than 10 mm are preferably air-cooled. Therefore, the upper limit of the cooling start temperature is 900 ° C. For the above reasons, the average cooling rate of the steel sheet surface from the temperature of (finish rolling end temperature -100 ° C) or higher to the temperature range of 300 ° C or higher and 650 ° C or lower is 1.0 ° C / s. That's all. Since the range of Mn concentration in the Mn segregated portion is narrowed as it is rolled, no subsequent heat treatment is required.

以下、本発明を実施例により詳細に説明する。なお、本発明は以下の実施例に限定されない。
転炉−取鍋精錬−連続鋳造法にて、表1に示す成分組成になる鋼スラブを作製した。次いで、得られた鋼スラブを表2に示す条件で分塊圧延(第1回熱間圧延)および熱間圧延(第2回熱間圧延)により10〜30mm厚の鋼板とした。得られた鋼板について、引張特性、靭性および組織評価を下記の要領で実施した。
Hereinafter, the present invention will be described in detail with reference to Examples. The present invention is not limited to the following examples.
A steel slab having the composition shown in Table 1 was prepared by a converter-ladle refining-continuous casting method. Next, the obtained steel slab was subjected to bulk rolling (first hot rolling) and hot rolling (second hot rolling) under the conditions shown in Table 2 to obtain a steel sheet having a thickness of 10 to 30 mm. Tensile properties, toughness and microstructure evaluation of the obtained steel sheet were carried out as follows.

(1)引張試験特性
得られた各鋼板より、JIS5号引張試験片を採取し、JIS Z 2241(1998年)の規定に準拠して引張試験を実施し、引張試験特性を調査した。本発明では、降伏強度400MPa以上および引張強度800MPa以上を引張特性に優れるものと判定した。さらに、伸び40%以上を延性に優れるものと判定した。
(1) Tensile test characteristics Tensile test pieces of JIS No. 5 were collected from each of the obtained steel sheets, and a tensile test was carried out in accordance with the provisions of JIS Z 2241 (1998) to investigate the tensile test characteristics. In the present invention, it was determined that the yield strength of 400 MPa or more and the tensile strength of 800 MPa or more are excellent in tensile properties. Further, it was determined that the elongation of 40% or more was excellent in ductility.

(2)低温靭性
板厚20mmを超える各鋼板の板厚1/4位置、もしくは板厚20mm以下の各鋼板の板厚1/2位置の圧延方向と平行な方向から、JIS Z 2242(2005年)の規定に準拠してシャルピーVノッチ試験片を採取し、JIS Z 2242(2005年)の規定に準拠して各鋼板について3本のシャルピー衝撃試験を実施し、−196℃での吸収エネルギーを求め、母材靭性を評価した。本発明では、3本の吸収エネルギー(vE-196)の平均値が100J以上を母材靭性に優れるものとした。なお、板厚10mm未満の各鋼板については、板厚1/2位置の圧延方向と平行な方向から、JIS Z 2242(2005年)の規定に準拠して5mmサブサイズのシャルピーVノッチ試験片を採取し、JIS Z 2242(2005年)の規定に準拠して各鋼板について3本のシャルピー衝撃試験をー196℃で実施した。ここでは、3本の吸収エネルギー(vE-196)の平均値が67J以上を母材靭性に優れるものとした。
(2) Low temperature toughness JIS Z 2242 (2005) from the direction parallel to the rolling direction at the 1/4 position of the plate thickness of each steel plate exceeding 20 mm or the 1/2 position of the plate thickness of each steel plate with a plate thickness of 20 mm or less. ), And three Charpy impact tests were conducted on each steel sheet in accordance with JIS Z 2242 (2005) to obtain the absorbed energy at -196 ° C. The toughness of the base metal was evaluated. In the present invention, the average value of the three absorbed energies (vE -196 ) of 100 J or more is considered to be excellent in the base metal toughness. For each steel plate with a plate thickness of less than 10 mm, a 5 mm sub-sized Charpy V notch test piece is used in accordance with JIS Z 2242 (2005) from a direction parallel to the rolling direction at the plate thickness 1/2 position. The samples were sampled and three Charpy impact tests were performed on each steel sheet at −196 ° C. in accordance with JIS Z 2242 (2005). Here, it is assumed that the average value of the three absorbed energies (vE -196 ) is 67 J or more, which is excellent in the toughness of the base metal.

脆性破面率
−196℃でシャルピー衝撃試験後、SEM観察(500倍で10視野)を行い、脆性破面率を測定した。脆性破面率が0%を低温靭性に優れるものとした。
Brittle fracture surface ratio After the Charpy impact test at -196 ° C, SEM observation (10 fields of view at 500 times) was performed to measure the brittle fracture surface ratio. A brittle fracture surface ratio of 0% was defined as having excellent low temperature toughness.

(3)組織評価
KAM値
熱間圧延後の鋼板について、圧延方向断面の研磨面における、500μm×200μmの視野におけるEBSD(Electron Backscatter Diffraction)解析(測定ステップ:0.3μm)を任意の2視野(板厚4分の1位置および板厚2分の1位置)にわたって行って測定した全領域の平均値を平均KAM値とした。
(3) Structure evaluation KAM value For the steel sheet after hot rolling, EBSD (Electron Backscatter Diffraction) analysis (measurement step: 0.3 μm) in the field of view of 500 μm × 200 μm on the polished surface of the cross section in the rolling direction can be performed in any two fields (measurement step: 0.3 μm). The average value of all the regions measured over the plate thickness of 1/4 position and the plate thickness of 1/2 position was taken as the average KAM value.

加工誘起マルテンサイト
シャルピー衝撃試験後、試験片をノッチ底まで追込み研磨し、EBSD解析(測定ステップ:0.08μm)により、100μm×100μmの視野を5視野観察し、加工誘起マルテンサイトの有無を測定した。
Process-induced martensite After the Charpy impact test, the test piece is driven to the bottom of the notch and polished, and the presence or absence of process-induced martensite is measured by observing 5 fields of 100 μm × 100 μm by EBSD analysis (measurement step: 0.08 μm). did.

Mn濃度
さらに、上記KAM値のEBSD測定位置において、EPMA(Electron Probe Micro Analyzer)分析を行うことによって、Mn濃度を求め、Mn濃度が最も低い所および最も高い所を偏析部とした。
以上により得られた結果を、表3に示す。
Mn concentration Further, the Mn concentration was determined by performing EPMA (Electron Probe Micro Analyzer) analysis at the EBSD measurement position of the KAM value, and the place where the Mn concentration was the lowest and the place where the Mn concentration was the highest were set as the segregation part.
The results obtained as described above are shown in Table 3.

Figure 0006856129
Figure 0006856129

Figure 0006856129
Figure 0006856129

Figure 0006856129
Figure 0006856129

本発明に従う高Mn鋼は、上述の目標性能(母材の降伏強度が400MPa以上、低温靭性が吸収エネルギー(vE-196)の平均値で100J以上)を満足することが確認された。一方、本発明の範囲を外れる比較例は、降伏強度および低温靭性のいずれか1つ以上が、上述の目標性能を満足できていない。It was confirmed that the high Mn steel according to the present invention satisfies the above-mentioned target performance (yield strength of the base material is 400 MPa or more, low temperature toughness is 100 J or more on average of absorbed energy (vE -196)). On the other hand, in the comparative example outside the scope of the present invention, any one or more of the yield strength and the low temperature toughness does not satisfy the above-mentioned target performance.

Claims (2)

C:0.100%以上0.700%以下、
Si:0.05%以上1.00%以下、
Mn:20.0%以上35.0%以下、
P:0.030%以下、
S:0.0070%以下、
Al:0.01%以上0.07%以下、
Cr:0.5%以上7.0%以下、
N:0.0050%以上0.0500%以下、
O:0.0050%以下、
Ti:0.005%以下および
Nb:0.005%以下
を含み、残部がFeおよび不可避的不純物の成分組成を有する鋼素材を、1100℃以上1300℃以下の温度域に加熱し、圧延終了温度が800℃以上かつ総圧下率が20%以上の熱間圧延を行ない、
さらに、仕上圧延終了温度が700℃以上950℃未満の熱間圧延を行い、その後、(仕上圧延終了温度−100℃)以上の温度から300℃以上650℃以下の温度域までの平均冷却速度が1.0℃/s以上の冷却処理を行う、高Mn鋼の製造方法であって、
前記高Mn鋼は、オーステナイトを基地相とするミクロ組織を有し、該ミクロ組織におけるMn偏析部のMn濃度が16%以上38%以下あり、KAM(Kernel Average Misorientation)値の平均が0.3以上であり、−196℃におけるシャルピー衝撃試験の吸収エネルギーが100J以上かつ降伏強度が400MPa以上である、高Mn鋼の製造方法。
C: 0.100% or more and 0.700% or less,
Si: 0.05% or more and 1.00% or less,
Mn: 20.0% or more and 35.0% or less,
P: 0.030% or less,
S: 0.0070% or less,
Al: 0.01% or more and 0.07% or less,
Cr: 0.5% or more and 7.0% or less,
N: 0.0050% or more and 0.0500% or less,
O: 0.0050% or less,
Ti: 0.005% or less and
Nb: 0.005% or less
A steel material containing Fe and an unavoidable impurity component composition is heated to a temperature range of 1100 ° C. or higher and 1300 ° C. or lower, and the rolling end temperature is 800 ° C. or higher and the total rolling reduction ratio is 20% or higher. no line rolling,
Further, hot rolling with a finish rolling end temperature of 700 ° C. or higher and lower than 950 ° C. is performed, and then the average cooling rate from a temperature of (finish rolling end temperature of -100 ° C.) or higher to a temperature range of 300 ° C. or higher and 650 ° C. or lower is obtained. A method for producing high Mn steel , which is cooled at 1.0 ° C./s or higher.
The high Mn steel has a microstructure having austenite as a matrix phase, the Mn concentration of the Mn segregated portion in the microstructure is 16% or more and 38% or less, and the average KAM (Kernel Average Misorientation) value is 0.3. The method for producing a high Mn steel, wherein the absorption energy of the Charpy impact test at -196 ° C. is 100 J or more and the yield strength is 400 MPa or more.
前記成分組成は、さらに、質量%で、 The composition of the components is further increased by mass%.
Mo:2.0%以下、 Mo: 2.0% or less,
V:2.0%以下、 V: 2.0% or less,
W:2.0%以下、 W: 2.0% or less,
Ca:0.0005%以上0.0050%以下、 Ca: 0.0005% or more and 0.0050% or less,
Mg:0.0005%以上0.0050%以下および Mg: 0.0005% or more and 0.0050% or less and
REM:0.0010%以上0.0200%以下 REM: 0.0010% or more and 0.0200% or less
のうちから選ばれる1種または2種以上を含有する、請求項1に記載の高Mn鋼の製造方法。The method for producing a high Mn steel according to claim 1, which contains one or more selected from the above.
JP2019539597A 2017-09-01 2018-08-29 Manufacturing method of high Mn steel Active JP6856129B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017168857 2017-09-01
JP2017168857 2017-09-01
PCT/JP2018/032022 WO2019044928A1 (en) 2017-09-01 2018-08-29 High-mn steel and production method therefor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020184625A Division JP7063364B2 (en) 2017-09-01 2020-11-04 High Mn steel

Publications (2)

Publication Number Publication Date
JPWO2019044928A1 JPWO2019044928A1 (en) 2020-03-26
JP6856129B2 true JP6856129B2 (en) 2021-04-07

Family

ID=65527524

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019539597A Active JP6856129B2 (en) 2017-09-01 2018-08-29 Manufacturing method of high Mn steel
JP2020184625A Active JP7063364B2 (en) 2017-09-01 2020-11-04 High Mn steel

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020184625A Active JP7063364B2 (en) 2017-09-01 2020-11-04 High Mn steel

Country Status (8)

Country Link
EP (1) EP3677700B1 (en)
JP (2) JP6856129B2 (en)
KR (1) KR102355570B1 (en)
CN (1) CN111051553B (en)
MY (1) MY194444A (en)
PH (1) PH12020550068A1 (en)
SG (1) SG11202001418YA (en)
WO (1) WO2019044928A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112021001434A2 (en) 2018-08-03 2021-04-27 Jfe Steel Corporation steel with a high manganese content and production method
KR20220030292A (en) * 2019-08-21 2022-03-10 제이에프이 스틸 가부시키가이샤 Steel and its manufacturing method
EP4019657A4 (en) * 2019-08-21 2022-06-29 JFE Steel Corporation Steel, and method for producing same
WO2022130759A1 (en) * 2020-12-17 2022-06-23 Jfeスチール株式会社 Submerged arc welding wire, and method for manufacturing weld joint using same
JP7338792B2 (en) 2021-02-08 2023-09-05 Jfeスチール株式会社 Steel material and manufacturing method thereof, tank and manufacturing method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56258A (en) * 1979-06-12 1981-01-06 Sumitomo Metal Ind Ltd No-nickel high-manganese-content steel for low temperature
JPS5942068B2 (en) * 1981-06-01 1984-10-12 川崎製鉄株式会社 High manganese non-magnetic steel for cryogenic temperatures
JPS5867824A (en) * 1981-10-17 1983-04-22 Kawasaki Steel Corp Hot processing of high tenacity high manganese non- magnetic steel
JPS60204864A (en) * 1984-03-29 1985-10-16 Sanyo Tokushu Seikou Kk Nonmagnetic high-mn steel having superior toughness at ordinary and low temperatures
US5833919A (en) * 1997-01-09 1998-11-10 Korea Advanced Institute Of Science And Technology Fe-Mn-Cr-Al cryogenix alloy and method of making
FR2857980B1 (en) * 2003-07-22 2006-01-13 Usinor PROCESS FOR MANUFACTURING HIGH-STRENGTH FERRO-CARBON-MANGANESE AUSTENITIC STEEL SHEET, EXCELLENT TENACITY AND COLD SHAPINGABILITY, AND SHEETS THUS PRODUCED
JP4529872B2 (en) * 2005-11-04 2010-08-25 住友金属工業株式会社 High Mn steel material and manufacturing method thereof
JP5003785B2 (en) * 2010-03-30 2012-08-15 Jfeスチール株式会社 High tensile steel plate with excellent ductility and method for producing the same
ES2753266T3 (en) * 2013-12-06 2020-04-07 Posco High strength solder joint having excellent impact hardness at very low temperature, and a corresponding flux cored arc welding wire
JP6645103B2 (en) * 2014-10-22 2020-02-12 日本製鉄株式会社 High Mn steel material and method for producing the same
JP6693217B2 (en) * 2015-04-02 2020-05-13 日本製鉄株式会社 High Mn steel for cryogenic temperatures
JP6589535B2 (en) 2015-10-06 2019-10-16 日本製鉄株式会社 Low temperature thick steel plate and method for producing the same
KR101797319B1 (en) * 2015-12-23 2017-11-14 주식회사 포스코 Hot rolled steel sheet having excellent weldability and ductility for pipe and method for manufacturing the same

Also Published As

Publication number Publication date
SG11202001418YA (en) 2020-03-30
KR102355570B1 (en) 2022-01-25
EP3677700A4 (en) 2020-07-08
CN111051553B (en) 2022-04-12
PH12020550068A1 (en) 2021-02-08
KR20200033901A (en) 2020-03-30
WO2019044928A1 (en) 2019-03-07
JPWO2019044928A1 (en) 2020-03-26
CN111051553A (en) 2020-04-21
BR112020003351A2 (en) 2020-08-18
JP2021036077A (en) 2021-03-04
EP3677700B1 (en) 2023-05-10
EP3677700A1 (en) 2020-07-08
MY194444A (en) 2022-11-30
JP7063364B2 (en) 2022-05-09

Similar Documents

Publication Publication Date Title
JP7063364B2 (en) High Mn steel
JPWO2018199145A1 (en) High Mn steel and method of manufacturing the same
JP7147960B2 (en) Steel plate and its manufacturing method
JP6954475B2 (en) High Mn steel and its manufacturing method
EP3722448B1 (en) High-mn steel and method for manufacturing same
US11959157B2 (en) High-Mn steel and method of producing same
JP7272438B2 (en) Steel material, manufacturing method thereof, and tank
KR102387364B1 (en) High Mn steel and manufacturing method thereof
JP6856083B2 (en) High Mn steel and its manufacturing method
JP6947330B2 (en) Steel and its manufacturing method
JP6947331B2 (en) Steel and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210301

R150 Certificate of patent or registration of utility model

Ref document number: 6856129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250