JP6954475B2 - High Mn steel and its manufacturing method - Google Patents

High Mn steel and its manufacturing method Download PDF

Info

Publication number
JP6954475B2
JP6954475B2 JP2020533178A JP2020533178A JP6954475B2 JP 6954475 B2 JP6954475 B2 JP 6954475B2 JP 2020533178 A JP2020533178 A JP 2020533178A JP 2020533178 A JP2020533178 A JP 2020533178A JP 6954475 B2 JP6954475 B2 JP 6954475B2
Authority
JP
Japan
Prior art keywords
less
steel
amount
toughness
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020533178A
Other languages
Japanese (ja)
Other versions
JPWO2020166538A1 (en
Inventor
孝一 中島
孝一 中島
植田 圭治
圭治 植田
陽一 伊藤
陽一 伊藤
聡 伊木
聡 伊木
知宏 小野
知宏 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2020166538A1 publication Critical patent/JPWO2020166538A1/en
Application granted granted Critical
Publication of JP6954475B2 publication Critical patent/JP6954475B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、例えば液化ガス貯槽用タンク等の、極低温環境で使用される構造物に供して好適な高Mn鋼およびその製造方法に関する。 The present invention relates to high Mn steel suitable for use in structures used in a cryogenic environment, such as a tank for a liquefied gas storage tank, and a method for producing the same.

液化ガス貯槽用構造物は、その使用環境が極低温となるため、この種の構造物に用いる鋼板は高強度であることに加えて、極低温での靱性に優れることも要求される。例えば、液化天然ガスの貯槽に熱間圧延鋼板を使用する場合は、液化天然ガスの沸点:−164℃以下の極低温で優れた靱性が確保されている必要がある。鋼材の低温靱性が劣ると、極低温貯槽用構造物としての安全性を維持できなくなる可能性があるため、適用される鋼材に対する低温靱性の向上に対する要求は強い。 Since the environment in which the liquefied gas storage tank is used is extremely low, the steel plate used for this type of structure is required to have high strength and excellent toughness at extremely low temperatures. For example, when a hot-rolled steel sheet is used in a storage tank for liquefied natural gas, it is necessary to ensure excellent toughness at an extremely low temperature of liquefied natural gas boiling point: -164 ° C. or lower. If the low temperature toughness of the steel material is inferior, it may not be possible to maintain the safety of the structure for the cryogenic storage tank. Therefore, there is a strong demand for improving the low temperature toughness of the applied steel material.

この要求に対して、従来、極低温で脆性を示さないオーステナイトを鋼板の主組織とするオーステナイト系ステンレス鋼、9%Ni鋼、又は5000系アルミニウム合金が使用されてきた。しかしながら、これらの鋼及び合金は、合金コストや製造コストが高いことから、安価で低温靱性に優れる鋼材に対する要望がある。 In response to this requirement, conventionally, austenitic stainless steel, 9% Ni steel, or 5000-based aluminum alloy having austenite as the main structure of the steel sheet, which does not show brittleness at extremely low temperatures, has been used. However, since these steels and alloys have high alloy costs and manufacturing costs, there is a demand for steel materials that are inexpensive and have excellent low temperature toughness.

そこで、従来の極低温用鋼に代わる新たな鋼材として、比較的安価であり、オーステナイト安定化元素であるMnを多量に添加した、高Mn鋼を極低温環境下における構造用鋼として使用することが、特許文献1や特許文献2において提案されている。 Therefore, as a new steel material to replace the conventional cryogenic steel, a high Mn steel which is relatively inexpensive and contains a large amount of Mn, which is an austenite stabilizing element, should be used as a structural steel in a cryogenic environment. Is proposed in Patent Document 1 and Patent Document 2.

すなわち、特許文献1には、オーステナイト結晶粒界の炭化物被覆率を制御することが提案されている。また、特許文献2には、炭化物被覆物、ならびにMg、Ca、REMの添加によりオーステナイト結晶粒径を制御することが提案されている。 That is, Patent Document 1 proposes to control the carbide coverage of austenite grain boundaries. Further, Patent Document 2 proposes to control the austenite crystal grain size by adding a carbide coating and Mg, Ca, and REM.

特開2016−84529号公報Japanese Unexamined Patent Publication No. 2016-84529 特開2016−196703号公報Japanese Unexamined Patent Publication No. 2016-196703

上記の特許文献1および特許文献2に記載された極低温用鋼として使用されるオーステナイト鋼は、引張変形時の変形初期から最大応力(引張強さ)に到達するまでにおける加工硬化が大きく、塑性変形能に優れていることから、変形中期までの延性に優れる。一方で、引張試験において計測される応力が最大(引張強さ)に到達した後の、変形後期における変形性能も、構造部材として重要な特性である。なぜなら、変形後期における変形性能は、最終的な破壊に至る終局段階の性能であるからである。この観点から、変形後期における延性、中でも絞り値が十分に確保される必要があり、高強度鋼の延性確保の観点からは、50%以上の絞り値が望ましい。 The austenite steel used as the ultra-low temperature steel described in Patent Documents 1 and 2 described above has a large work hardening from the initial stage of deformation during tensile deformation until the maximum stress (tensile strength) is reached, and is plastic. Since it has excellent deformability, it has excellent ductility until the middle stage of deformation. On the other hand, the deformation performance in the latter stage of deformation after the stress measured in the tensile test reaches the maximum (tensile strength) is also an important characteristic as a structural member. This is because the deformation performance in the latter stage of deformation is the performance at the final stage leading to the final fracture. From this point of view, it is necessary to secure sufficient ductility in the latter stage of deformation, especially the drawing value, and from the viewpoint of ensuring the ductility of high-strength steel, a drawing value of 50% or more is desirable.

本発明は、高強度かつ低温靱性に優れることは勿論、さらに延性に優れる高Mn鋼とその製造方法を提供することを目的とする。ここで、前記「高強度」とは、室温において400MPa以上の降伏強さ及び800MPa以上の引張強さを有することをいう。また、前記「低温靭性に優れる」とは、−196°CにおいてJIS Z2242(1998年)に準拠したシャルピー衝撃試験を実施し、板厚10mm以上の鋼板であり、フルサイズ試験片(10mm×10mm×55mm)を用いた場合についてはシャルピー衝撃吸収エネルギー(平均値)が母材で100J以上(板厚10mm未満の鋼板であり、ハーフサイズ試験片(10mm×5mm×55mm)を用いた場合については、シャルピーVノッチハーフサイズ試験により20J以上)となることをいう。そして、前記「延性に優れる」とは、絞り値50%以上を有することをいう。 An object of the present invention is to provide a high Mn steel having excellent ductility as well as high strength and excellent low temperature toughness and a method for producing the same. Here, the "high strength" means having a yield strength of 400 MPa or more and a tensile strength of 800 MPa or more at room temperature. Further, the above-mentioned "excellent in low temperature toughness" is a steel plate having a thickness of 10 mm or more obtained by performing a Charpy impact test in accordance with JIS Z2242 (1998) at -196 ° C, and is a full-size test piece (10 mm × 10 mm). When using (× 55 mm), the Charpy impact absorption energy (average value) is 100 J or more (a steel plate with a plate thickness of less than 10 mm, and when a half-size test piece (10 mm × 5 mm × 55 mm) is used, the Charpy impact absorption energy (average value) is 100 J or more. , 20J or more by Charpy V notch half size test). The term "excellent in ductility" means having a diaphragm value of 50% or more.

発明者らは、高Mn鋼を対象にして、上記課題を解決するための方途について鋭意研究を行った結果、以下の知見を得るに到った。
すなわち、高Mn鋼において、Ca系介在物の形態を制御することにより、靭性を向上するとともに、引張変形時の延性(絞り値)を確保することができること、また、そのためには、Ca量とS量とのバランスを適正な範囲内にすることが有効であることを見出した。
また、該高Mn鋼の製造時において、鋼素材加熱温度、仕上圧延終了温度および、(仕上圧延終了温度−100℃)以上の温度から300℃以上650℃以下の温度域までの平均冷却速度を限定することにより、結晶粒径を制御するとともに、析出物を抑制し、低温靭性を向上することができることを見出した。
As a result of diligent research on ways to solve the above problems for high Mn steels, the inventors have obtained the following findings.
That is, in high Mn steel, by controlling the morphology of Ca-based inclusions, the toughness can be improved and the ductility (drawing value) at the time of tensile deformation can be secured, and for that purpose, the Ca amount and It was found that it is effective to keep the balance with the amount of S within an appropriate range.
Further, during the production of the high Mn steel, the heating temperature of the steel material, the finish rolling end temperature, and the average cooling rate from a temperature of (finish rolling end temperature −100 ° C.) or higher to a temperature range of 300 ° C. or higher and 650 ° C. or lower are measured. It has been found that by limiting the temperature, the crystal grain size can be controlled, precipitation can be suppressed, and low temperature toughness can be improved.

ところで、高Mn鋼がCuを含有する場合、Cuは、低塩化物濃度環境下では耐塩化物応力腐食割れ性を改善する効果を有する。しかし、Cuは、高塩化物濃度環境下では、逆に耐塩化物応力腐食割れ性を悪化させてしまう。この問題に対し、発明者らは、Cuを含有する場合の高Mn鋼において、Cu量とNi量とのバランスを適正化してNiを添加することにより、高塩化物濃度環境下であっても優れた耐塩化物応力腐食割れ性を発揮し得ることを見出した。これにより、Cuを含有する高Mn鋼に対し、塩化物濃度によらず、優れた耐塩化物応力腐食割れ性を付与できる。
なお、本明細書において、塩化物応力腐食割れとは、高Mn鋼に特有の腐食環境、とりわけ塩化物イオンが存在する環境において、高Mn鋼に与えられる引張応力が当該高Mn鋼の引張強さ以下であっても、高Mn鋼が割れ又は破断に至る現象を指す。そして、耐塩化物応力腐食割れ性とは、この塩化物応力腐食割れに対する耐性を示す。
By the way, when the high Mn steel contains Cu, Cu has an effect of improving the chloride stress corrosion cracking resistance in a low chloride concentration environment. However, Cu adversely deteriorates the chloride stress corrosion cracking resistance in a high chloride concentration environment. In response to this problem, the inventors have solved this problem by adding Ni in a high Mn steel containing Cu by optimizing the balance between the amount of Cu and the amount of Ni, even in a high chloride concentration environment. It has been found that excellent chloride stress corrosion cracking resistance can be exhibited. As a result, excellent chloride stress corrosion cracking resistance can be imparted to high Mn steel containing Cu regardless of the chloride concentration.
In the present specification, chloride stress corrosion cracking means that the tensile stress given to a high Mn steel is the tensile strength of the high Mn steel in a corrosive environment peculiar to the high Mn steel, particularly in an environment in which chloride ions are present. Even if it is less than or equal to that, it refers to a phenomenon in which high Mn steel cracks or breaks. The chloride stress corrosion cracking resistance indicates the resistance to the chloride stress corrosion cracking.

本発明は、以上の知見にさらに検討を加えてなされたものであり、その要旨は次のとおりである。
1.質量%で、
C:0.10%以上0.70%以下、
Si:0.10%以上0.90%以下、
Mn:20%以上30%以下、
P:0.030%以下、
S:0.0070%以下、
Al:0.01%以上0.07%以下、
Cr:1.8%以上7.0%以下、
Ni:0.01%以上1.0%未満、
Ca:0.0005%以上0.010%以下、
N:0.0050%以上0.0500%以下、
O:0.0050%以下、
Ti:0.0050%以下および
Nb:0.0050%以下
を含有し、下記式(1)を満たし、残部がFeおよび不可避的不純物の成分組成と、オーステナイトを基地相とする組織とを有し、
降伏強度が400MPa以上であり、
−196°Cにおけるシャルピー衝撃吸収エネルギーの平均値が、フルサイズ試験片を用いた場合は100J以上であり、ハーフサイズ試験片を用いた場合は20J以上である、高Mn鋼。
Ca/S≧1.0・・・(1)
The present invention has been made by further studying the above findings, and the gist thereof is as follows.
1. 1. By mass%
C: 0.10% or more and 0.70% or less,
Si: 0.10% or more and 0.90% or less,
Mn: 20% or more and 30% or less,
P: 0.030% or less,
S: 0.0070% or less,
Al: 0.01% or more and 0.07% or less,
Cr: 1.8% or more and 7.0% or less,
Ni: 0.01% or more and less than 1.0%,
Ca: 0.0005% or more and 0.010% or less,
N: 0.0050% or more and 0.0500% or less,
O: 0.0050% or less,
It contains Ti: 0.0050% or less and Nb: 0.0050% or less, satisfies the following formula (1), has a component composition of Fe and unavoidable impurities in the balance, and a structure having austenite as a base phase. ,
Yield strength is 400 MPa or more,
A high Mn steel having an average value of Charpy impact absorption energy at -196 ° C of 100 J or more when a full-size test piece is used and 20 J or more when a half-size test piece is used.
Ca / S ≧ 1.0 ... (1)

2.前記成分組成は、さらに、質量%で、
Cu:2.0%未満、
Mo:2.0%以下、
V:2.0%以下、
W:2.0%以下、
Mg:0.0005%以上0.0050%以下および
REM(希土類金属):0.0010%以上0.0200%以下
のうちから選ばれる1種または2種以上を含有する前記1に記載の高Mn鋼。
2. The composition of the components is further increased by mass%.
Cu: less than 2.0%,
Mo: 2.0% or less,
V: 2.0% or less,
W: 2.0% or less,
The high Mn according to 1 above, which contains one or more selected from Mg: 0.0005% or more and 0.0050% or less and REM (rare earth metal): 0.0010% or more and 0.0200% or less. steel.

3.前記1または2に記載の成分組成を有する鋼素材を1100℃以上1300℃以下の温度域に加熱した後、仕上圧延終了温度が750℃以上950℃未満である熱間圧延を施し、その後、(仕上圧延終了温度−100℃)以上の温度から300℃以上650℃以下の温度域までの平均冷却速度が0.5℃/s以上の冷却処理を行う高Mn鋼の製造方法。 3. 3. After heating the steel material having the component composition according to 1 or 2 to a temperature range of 1100 ° C. or higher and 1300 ° C. or lower, hot rolling in which the finish rolling end temperature is 750 ° C. or higher and lower than 950 ° C. is performed, and then ( A method for producing high Mn steel, which performs a cooling treatment having an average cooling rate of 0.5 ° C./s or more from a temperature of -100 ° C. or higher to a temperature range of 300 ° C. or higher and 650 ° C. or lower.

4.質量%で、
C:0.10%以上0.70%以下、
Si:0.10%以上0.90%以下、
Mn:20%以上30%以下、
P:0.030%以下、
S:0.0070%以下、
Al:0.01%以上0.07%以下、
Cr:1.8%以上7.0%以下、
Cu:0.2%以上2.0%未満
Ni:0.1%以上1.0%未満、
Ca:0.0005%以上0.010%以下、
N:0.0050%以上0.0500%以下、
O:0.0050%以下、
Ti:0.0050%以下および
Nb:0.0050%以下
を含有し、下記式(1)、(2)を満たし、残部がFeおよび不可避的不純物の成分組成と、オーステナイトを基地相とする組織とを有する高Mn鋼。
Ca/S≧1.0・・・(1)
0<Cu/Ni≦2・・・(2)
4. By mass%
C: 0.10% or more and 0.70% or less,
Si: 0.10% or more and 0.90% or less,
Mn: 20% or more and 30% or less,
P: 0.030% or less,
S: 0.0070% or less,
Al: 0.01% or more and 0.07% or less,
Cr: 1.8% or more and 7.0% or less,
Cu: 0.2% or more and less than 2.0% Ni: 0.1% or more and less than 1.0%,
Ca: 0.0005% or more and 0.010% or less,
N: 0.0050% or more and 0.0500% or less,
O: 0.0050% or less,
Ti: 0.0050% or less and Nb: 0.0050% or less, satisfying the following formulas (1) and (2), the balance is the composition of Fe and unavoidable impurities, and the structure with austenite as the base phase. High Mn steel with and.
Ca / S ≧ 1.0 ... (1)
0 <Cu / Ni ≦ 2 ... (2)

5.前記4に記載の成分組成を有する鋼素材を、1100℃以上1300℃以下の温度域に加熱した後、仕上圧延終了温度が750℃以上950℃未満である熱間圧延を施し、その後、(仕上圧延終了温度−100℃)以上の温度から300℃以上650℃以下の温度域までの平均冷却速度が0.5℃/s以上の冷却処理を行う高Mn鋼の製造方法。 5. After heating the steel material having the component composition described in 4 above to a temperature range of 1100 ° C. or higher and 1300 ° C. or lower, hot rolling is performed in which the finish rolling end temperature is 750 ° C. or higher and lower than 950 ° C., and then (finishing). A method for producing high Mn steel, which performs a cooling treatment having an average cooling rate of 0.5 ° C./s or more from a rolling end temperature (-100 ° C.) or higher to a temperature range of 300 ° C. or higher and 650 ° C. or lower.

本発明の一形態によれば、高強度で、特に極低温域での低温靭性に優れ、かつ優れた延性を有する高Mn鋼を提供することができる。したがって、本発明の高Mn鋼を用いることによって、液化ガス貯槽用タンク等の、極低温環境で使用される鋼構造物の安全性や寿命の向上を実現することができ、産業上格段の効果を奏する。
また、本発明の別形態によれば、塩化物濃度によらず優れた耐塩化物応力腐食割れ性を発揮する高Mn鋼を提供することができる。
According to one embodiment of the present invention, it is possible to provide a high Mn steel having high strength, excellent low temperature toughness particularly in an extremely low temperature region, and excellent ductility. Therefore, by using the high Mn steel of the present invention, it is possible to improve the safety and life of the steel structure used in the cryogenic environment such as the tank for the liquefied gas storage tank, which is a remarkable industrial effect. Play.
Further, according to another embodiment of the present invention, it is possible to provide a high Mn steel exhibiting excellent chloride stress corrosion cracking resistance regardless of the chloride concentration.

以下、本発明の高Mn鋼について詳しく説明する。
[成分組成]
まず、本発明の高Mn鋼の成分組成とその限定理由について説明する。なお、成分組成における「%」表示は、特に断らない限り「質量%」を意味するものとする。
C:0.10%以上0.70%以下
Cは、安価なオーステナイト安定化元素であり、オーステナイトを得るために重要な元素である。その効果を得るには、Cを0.10%以上で含有する必要がある。一方、Cを0.70%を超えて含有すると、Cr炭化物が過度に生成され、低温靱性が低下する。従って、C量は0.10〜0.70%とする。C量は、0.20%以上が好ましく、0.60%以下が好ましく、0.20%以上0.60%以下がより好ましい。
Hereinafter, the high Mn steel of the present invention will be described in detail.
[Ingredient composition]
First, the component composition of the high Mn steel of the present invention and the reason for its limitation will be described. The "%" indication in the component composition shall mean "mass%" unless otherwise specified.
C: 0.10% or more and 0.70% or less C is an inexpensive austenite stabilizing element and is an important element for obtaining austenite. In order to obtain the effect, it is necessary to contain C in an amount of 0.10% or more. On the other hand, if C is contained in an amount of more than 0.70%, Cr carbides are excessively generated and the low temperature toughness is lowered. Therefore, the amount of C is set to 0.10 to 0.70%. The amount of C is preferably 0.20% or more, preferably 0.60% or less, and more preferably 0.20% or more and 0.60% or less.

Si:0.10%以上0.90%以下
Siは、脱酸材として作用し、製鋼上必要であるだけでなく、鋼に固溶して固溶強化により鋼板を高強度化する効果も有する。これらの効果を得るには、Siを0.10%以上で含有する必要がある。一方、Siを0.90%を超えて含有すると、溶接性が劣化するとともに低温靭性、特に極低温での靭性が低位となる。従って、Si量は0.10%以上0.90%以下とする。Si量は、0.12%以上が好ましく、0.70%以下が好ましく、0.12%以上0.70%以下がより好ましい。
Si: 0.10% or more and 0.90% or less Si acts as a deoxidizing material and is not only necessary for steelmaking, but also has the effect of dissolving in steel and increasing the strength of the steel sheet by solid solution strengthening. .. In order to obtain these effects, it is necessary to contain Si at 0.10% or more. On the other hand, if Si is contained in an amount of more than 0.90%, the weldability is deteriorated and the low temperature toughness, particularly the toughness at extremely low temperature is low. Therefore, the amount of Si is set to 0.10% or more and 0.90% or less. The amount of Si is preferably 0.12% or more, preferably 0.70% or less, and more preferably 0.12% or more and 0.70% or less.

Mn:20%以上30%以下
Mnは、比較的安価なオーステナイト安定化元素である。Mnは、本発明において、強度と極低温靱性を両立するために重要な元素である。その効果を得るためには、Mnを20%以上で含有する必要がある。一方、Mnを30%を超えて含有しても、低温靱性を改善する効果は飽和し、合金コストの上昇を招く。また、溶接性、切断性が劣化する。従って、Mn量は20%以上30%以下とする。Mn量は、23%以上が好ましく、28%以下が好ましく、23%以上28%以下がより好ましい。
Mn: 20% or more and 30% or less Mn is a relatively inexpensive austenite stabilizing element. Mn is an important element in the present invention in order to achieve both strength and cryogenic toughness. In order to obtain the effect, it is necessary to contain Mn in an amount of 20% or more. On the other hand, even if Mn is contained in an amount of more than 30%, the effect of improving low temperature toughness is saturated and the alloy cost is increased. In addition, weldability and cutability deteriorate. Therefore, the amount of Mn is set to 20% or more and 30% or less. The amount of Mn is preferably 23% or more, preferably 28% or less, and more preferably 23% or more and 28% or less.

P:0.030%以下
Pは、0.030%を超えて含有すると、粒界に偏析し、応力腐食割れの発生起点となる。このため、P量は0.030%を上限とし、可能なかぎり低減することが望ましい。したがって、P量は0.030%以下とする。尚、過度のP低減は精錬コストを高騰させ経済的に不利となるため、P量は0.002%以上とすることが望ましい。P量は、0.005%以上が好ましく、0.028%以下が好ましく、0.024%以下がより好ましい。また、P量は、0.005%以上0.028%以下がより好ましい。
P: 0.030% or less If P is contained in excess of 0.030%, it segregates at the grain boundaries and becomes the starting point for stress corrosion cracking. Therefore, it is desirable to limit the amount of P to 0.030% and reduce it as much as possible. Therefore, the amount of P is set to 0.030% or less. It is desirable that the amount of P is 0.002% or more because excessive reduction of P increases the refining cost and is economically disadvantageous. The amount of P is preferably 0.005% or more, preferably 0.028% or less, and more preferably 0.024% or less. The amount of P is more preferably 0.005% or more and 0.028% or less.

S:0.0070%以下
Sは、母材の低温靭性や延性を劣化させるため、0.0070%を上限とし、可能なかぎり低減することが望ましい。したがって、S量は0.0070%以下とする。尚、過度のSの低減は精錬コストを高騰させ経済的に不利となるため、S量は0.001%以上とすることが望ましい。S量は、0.0020%以上が好ましく、0.0060%以下が好ましく、0.0020%以上0.0060%以下がより好ましい。
S: 0.0070% or less Since S deteriorates the low temperature toughness and ductility of the base material, it is desirable to limit it to 0.0070% and reduce it as much as possible. Therefore, the amount of S is set to 0.0070% or less. Since excessive reduction of S increases the refining cost and is economically disadvantageous, it is desirable that the amount of S is 0.001% or more. The amount of S is preferably 0.0020% or more, preferably 0.0060% or less, and more preferably 0.0020% or more and 0.0060% or less.

Al:0.01%以上0.07%以下
Alは、脱酸剤として作用し、鋼板の溶鋼脱酸プロセスに於いて、もっとも汎用的に使われる。このような効果を得るためには、Alを0.01%以上で含有する必要がある。一方、Alを0.07%を超えて含有すると、溶接時に溶接金属部に混入して、溶接金属の靭性を劣化させるため、Al量は0.07%以下とする。従って、Al量は0.01%以上0.07%以下とする。Al量は、0.02%以上が好ましく、0.06%以下が好ましく、0.02%以上0.06%以下がより好ましい。
Al: 0.01% or more and 0.07% or less Al acts as a deoxidizing agent and is most commonly used in the molten steel deoxidizing process of steel sheets. In order to obtain such an effect, it is necessary to contain Al in an amount of 0.01% or more. On the other hand, if Al is contained in an amount of more than 0.07%, it is mixed in the weld metal portion at the time of welding and deteriorates the toughness of the weld metal. Therefore, the amount of Al is set to 0.07% or less. Therefore, the amount of Al is set to 0.01% or more and 0.07% or less. The amount of Al is preferably 0.02% or more, preferably 0.06% or less, and more preferably 0.02% or more and 0.06% or less.

Cr:1.8%以上7.0%以下
Crは、適量の添加でオーステナイトを安定化させ、低温靱性及び母材強度の向上に有効な元素である。このような効果を得るためには、Crを1.8%以上で含有する必要がある。一方、Crを7.0%を超えて含有すると、Cr炭化物の生成により、低温靭性および耐応力腐食割れ性が低下する。このため、Cr量は1.8%以上7.0%以下とする。Cr量は、2.0%以上が好ましく、6.7%以下が好ましく、2.0%以上6.7%以下がより好ましい。また、耐応力腐食割れ性を向上させるためには、Cr量は2.0%以上6.0%以下がさらに好ましい。
Cr: 1.8% or more and 7.0% or less Cr is an element that stabilizes austenite by adding an appropriate amount and is effective in improving low temperature toughness and base metal strength. In order to obtain such an effect, it is necessary to contain Cr in an amount of 1.8% or more. On the other hand, when Cr is contained in an amount of more than 7.0%, low temperature toughness and stress corrosion cracking resistance are lowered due to the formation of Cr carbides. Therefore, the amount of Cr is set to 1.8% or more and 7.0% or less. The amount of Cr is preferably 2.0% or more, preferably 6.7% or less, and more preferably 2.0% or more and 6.7% or less. Further, in order to improve the stress corrosion cracking resistance, the Cr amount is more preferably 2.0% or more and 6.0% or less.

Ni:0.01%以上1.0%未満
Niは、鋼に固溶して固溶強化により鋼板を高強度化する効果を有するとともに、低温靭性、特に極低温での靭性を向上する効果を有することから、0.01%以上で含有させる。一方、合金コストの点からNi量を必要最小限とすることが望ましく、この観点からNiの添加量は1.0%未満とする。Ni量は、0.03%以上が好ましく、0.8%以下が好ましく、0.03%以上0.8%以下がより好ましい。ここで、低温靱性に優れるオーステナイト鋼としてSUS304やSUS316などのステンレス鋼があるが、これらの鋼は、オーステナイト組織を得るための合金設計としてNi当量やCr当量の適正化が図られていることから、多量のNiが添加されている。これらの鋼に対して、本発明は、Niを必要最小限とすることによって低廉化した、オーステナイト材料である。なお、このNiの必要最小限化は、Mn添加量の適正化により実現した。
Ni: 0.01% or more and less than 1.0% Ni has the effect of increasing the strength of the steel sheet by solid solution strengthening by solid solution in steel, and also has the effect of improving low temperature toughness, especially toughness at extremely low temperatures. Since it has, it is contained in an amount of 0.01% or more. On the other hand, it is desirable to minimize the amount of Ni from the viewpoint of alloy cost, and from this viewpoint, the amount of Ni added is less than 1.0%. The amount of Ni is preferably 0.03% or more, preferably 0.8% or less, and more preferably 0.03% or more and 0.8% or less. Here, there are stainless steels such as SUS304 and SUS316 as austenitic steels having excellent low temperature toughness, but these steels have been optimized for Ni equivalent and Cr equivalent as an alloy design for obtaining an austenitic structure. , A large amount of Ni is added. With respect to these steels, the present invention is an austenite material that has been reduced in cost by minimizing Ni. The minimum required amount of Ni was realized by optimizing the amount of Mn added.

Ni:0.1%以上1.0%未満
また、高Mn鋼が所定量のCuを含有する場合、Cu量とNi量とのバランスを適正化してNiを添加することにより、塩化物濃度によらず優れた耐塩化物応力腐食割れ性を発揮させることができる。この観点から、後述するようにCuを0.2%以上2.0%未満の範囲で含有する高Mn鋼においては、Ni量を0.1%以上1.0%未満とする。Ni量が0.1%に満たないと応力腐食割れに対する効果が得られず、Ni量が1.0%以上であるとコストアップを招く。
Ni: 0.1% or more and less than 1.0% When the high Mn steel contains a predetermined amount of Cu, the chloride concentration can be increased by adjusting the balance between the Cu amount and the Ni amount and adding Ni. Therefore, excellent chloride stress corrosion cracking resistance can be exhibited. From this point of view, in the high Mn steel containing Cu in the range of 0.2% or more and less than 2.0% as described later, the amount of Ni is set to 0.1% or more and less than 1.0%. If the amount of Ni is less than 0.1%, the effect on stress corrosion cracking cannot be obtained, and if the amount of Ni is 1.0% or more, the cost increases.

Ca:0.0005%以上0.010%以下
Caは、下記に記載の介在物の形態制御により靭性を向上させるとともに、引張変形時の延性(絞り値)確保に有効に作用する。このような効果を得るためには、Caは0.0005%以上必要である。一方、Caを0.010%を超えて添加すると、かえって延性、靭性が低下する場合がある。このため、Ca量は0.0005%以上0.010%以下とする。Ca量は、0.0010%以上が好ましく、0.0090%以下が好ましく、0.0010%以上0.0090%以下がより好ましい。
Ca: 0.0005% or more and 0.010% or less Ca improves toughness by controlling the morphology of the inclusions described below, and effectively acts to secure ductility (drawing value) during tensile deformation. In order to obtain such an effect, Ca is required to be 0.0005% or more. On the other hand, if Ca is added in an amount of more than 0.010%, the ductility and toughness may be lowered. Therefore, the amount of Ca is set to 0.0005% or more and 0.010% or less. The amount of Ca is preferably 0.0010% or more, preferably 0.0090% or less, and more preferably 0.0010% or more and 0.0090% or less.

Ca/S≧1.0
上記したCa量とS量とにおいて、さらにCa/Sを適正な範囲内にすることによって、Ca系介在物の形態を制御することが重要である。すなわち、Ca/S≧1.0とすることにより、Ca系介在物を核として結晶粒内にMnSの複合析出を促進することによって、結晶粒界上のMnSの析出・粗大化を抑制し、靭性を向上させるとともに、引張変形時の延性確保、具体的には絞り値を50%以上とするのに有効である。このような効果を得るためには、Ca/Sは1.0以上とする必要がある。好ましくは、Ca/Sは1.7以上である。
Ca / S ≧ 1.0
It is important to control the morphology of Ca-based inclusions by further keeping Ca / S within an appropriate range in the above-mentioned Ca amount and S amount. That is, by setting Ca / S ≧ 1.0, the complex precipitation of MnS in the crystal grains is promoted with the Ca-based inclusions as nuclei, thereby suppressing the precipitation and coarsening of MnS on the grain boundaries. It is effective for improving toughness, ensuring ductility at the time of tensile deformation, specifically, setting the drawing value to 50% or more. In order to obtain such an effect, Ca / S needs to be 1.0 or more. Preferably, Ca / S is 1.7 or more.

N:0.0050%以上0.0500%以下
Nは、オーステナイト安定化元素であり、低温靱性の向上に有効な元素である。このような効果を得るためには、Nを0.0050%以上で含有する必要がある。一方、Nを0.0500%を超えて含有すると、窒化物または炭窒化物が粗大化し、靭性が低下する。従って、N量は0.0050%以上0.0500%以下とする。N量は、0.0060%以上が好ましく、0.0400%以下が好ましく、0.0060%以上0.0400%以下がより好ましい。
N: 0.0050% or more and 0.0500% or less N is an austenite stabilizing element and is an element effective for improving low temperature toughness. In order to obtain such an effect, it is necessary to contain N in an amount of 0.0050% or more. On the other hand, if N is contained in an amount of more than 0.0500%, the nitride or carbonitride becomes coarse and the toughness decreases. Therefore, the amount of N is set to 0.0050% or more and 0.0500% or less. The amount of N is preferably 0.0060% or more, preferably 0.0400% or less, and more preferably 0.0060% or more and 0.0400% or less.

O:0.0050%以下
Oは、酸化物の形成により低温靱性を劣化させる。このため、Oは0.0050%以下の範囲とする。好ましくは、O量は0.0045%以下である。尚、過度のO量の低減は精錬コストを高騰させ経済的に不利となるため、O量を0.0003%以上とすることが望ましい。
O: 0.0050% or less O deteriorates low temperature toughness due to the formation of oxides. Therefore, O is in the range of 0.0050% or less. Preferably, the amount of O is 0.0045% or less. It is desirable that the amount of O is 0.0003% or more because excessive reduction of the amount of O increases the refining cost and is economically disadvantageous.

TiおよびNbの含有量を各々0.0050%以下に抑制
TiおよびNbは、鋼中で高融点の炭窒化物を形成し結晶粒の粗大化を抑制し、その結果破壊の起点や亀裂伝播の経路となる。特に、高Mn鋼においては低温靭性を高め、延性を向上するための組織制御の妨げとなるため、TiおよびNbを意図的に抑制する必要がある。すなわち、TiおよびNbは、原材料などから不可避的に混入する成分であり、Ti:0.005超〜0.010%およびNb:0.005超〜0.010%の範囲で混入するのが通例である。そこで、後述する手法に従って、TiおよびNbの不可避混入を回避し、TiおよびNbの含有量を各々0.0050%以下に抑制する必要がある。TiおよびNbの含有量を各々0.0050%以下に抑制することによって、上記した炭窒化物の悪影響を排除し、優れた低温靭性並びに延性を確保することができる。好ましくは、TiおよびNbの含有量を0.0050%未満とし、より好ましくは0.003%以下とする。
Suppressing the content of Ti and Nb to 0.0050% or less, respectively Ti and Nb form high melting point carbonitrides in steel and suppress the coarsening of crystal grains, resulting in the origin of fracture and crack propagation. It becomes a route. In particular, in high Mn steel, it is necessary to intentionally suppress Ti and Nb because it hinders the structure control for increasing the low temperature toughness and improving the ductility. That is, Ti and Nb are components that are inevitably mixed from raw materials and the like, and are usually mixed in the range of Ti: more than 0.005 to 0.010% and Nb: more than 0.005 to 0.010%. Is. Therefore, it is necessary to avoid unavoidable contamination of Ti and Nb and suppress the content of Ti and Nb to 0.0050% or less, respectively, according to the method described later. By suppressing the contents of Ti and Nb to 0.0050% or less, the adverse effects of the above-mentioned carbonitride can be eliminated, and excellent low temperature toughness and ductility can be ensured. The content of Ti and Nb is preferably less than 0.0050%, more preferably 0.003% or less.

Cu:0.2%以上2.0%未満
Cuは、低塩化物濃度環境下では耐塩化物応力腐食割れ性を改善する効果を有する。この観点から、Cuを0.2%以上含有させることが有効である。一方、Cuは、高塩化物濃度環境下では、逆に耐塩化物応力腐食割れ性を悪化させてしまう。したがって、Cuを含有する場合は、Cu量を2.0%未満とする。Cu量が0.2%に満たないと応力腐食割れ性に対する効果が得られず、Cu量が2.0%以上であると上記の問題に加えてコストアップを招く。Cu量は0.3%以上が好ましく、0.8%以下が好ましく、0.3%以上0.8%以下がより好ましい。
Cu: 0.2% or more and less than 2.0% Cu has an effect of improving chloride stress corrosion cracking resistance in a low chloride concentration environment. From this point of view, it is effective to contain Cu in an amount of 0.2% or more. On the other hand, Cu deteriorates the chloride stress corrosion cracking resistance in a high chloride concentration environment. Therefore, when Cu is contained, the amount of Cu is set to less than 2.0%. If the amount of Cu is less than 0.2%, the effect on stress corrosion cracking property cannot be obtained, and if the amount of Cu is 2.0% or more, the cost increases in addition to the above problems. The amount of Cu is preferably 0.3% or more, preferably 0.8% or less, and more preferably 0.3% or more and 0.8% or less.

0<Cu/Ni≦2
ここで、Cu及びNiを含有する高Mn鋼において、塩化物濃度によらず優れた耐塩化物腐食割れ性を確実なものとするには、Cu及びNiの量を上述した範囲内に制御することに加え、Cu量とNi量とのバランスを、0<Cu/Ni≦2を満たすように適正化することが肝要である。Cu/Ni>2では、Cu量に対してNi量が少なすぎ、高塩化物濃度環境下において優れた耐塩化物応力腐食割れ性を発揮できない。
0 <Cu / Ni ≦ 2
Here, in a high Mn steel containing Cu and Ni, in order to ensure excellent chloride corrosion cracking resistance regardless of the chloride concentration, the amounts of Cu and Ni should be controlled within the above-mentioned range. In addition, it is important to optimize the balance between the amount of Cu and the amount of Ni so as to satisfy 0 <Cu / Ni ≦ 2. When Cu / Ni> 2, the amount of Ni is too small with respect to the amount of Cu, and excellent chloride stress corrosion cracking resistance cannot be exhibited in a high chloride concentration environment.

上記した必須成分以外の残部は鉄および不可避的不純物である。ここでの不可避的不純物としてはHなどが挙げられ、合計で0.01%以下であれば許容できる。 The rest other than the essential components mentioned above are iron and unavoidable impurities. Examples of the unavoidable impurities here include H, and a total of 0.01% or less is acceptable.

本発明では、強度および低温靱性をさらに向上させることを目的として、上記の必須成分に加えて、必要に応じて下記の元素を含有することができる。
Mo:2.0%以下、V:2.0%以下、W:2.0%以下、Mg:0.0005〜0.0050%、REM:0.0010〜0.0200%の1種または2種以上
In the present invention, for the purpose of further improving the strength and low temperature toughness, the following elements can be contained, if necessary, in addition to the above essential components.
Mo: 2.0% or less, V: 2.0% or less, W: 2.0% or less, Mg: 0.0005 to 0.0050%, REM: 0.0010 to 0.0200% 1 or 2 More than seeds

Mo、V、W:各々2.0%以下
Mo、VおよびWは、オーステナイトの安定化に寄与するとともに母材強度の向上に寄与する。このような効果を得るためには、Mo、VおよびWは0.001%以上で含有することが好ましい。一方、Mo、VおよびWがそれぞれ2.0%を超えて含有すると、粗大な炭窒化物が生成し、破壊の起点となることがある他、製造コストを圧迫する。このため、これらの合金元素を含有する場合は、その含有量は2.0%以下とする。Mo、VおよびWの各量は、0.003%以上がより好ましく、1.7%以下が好ましく、1.5%以下がより好ましい。また、Mo、VおよびWの各量は、好ましくは0.003%以上1.7%以下、より好ましくは0.003%以上1.5%以下とする。
Mo, V, W: 2.0% or less, respectively Mo, V and W contribute to the stabilization of austenite and the improvement of the strength of the base metal. In order to obtain such an effect, Mo, V and W are preferably contained in an amount of 0.001% or more. On the other hand, if Mo, V and W are contained in an amount of more than 2.0%, coarse carbonitride may be formed, which may be a starting point of fracture and put pressure on the manufacturing cost. Therefore, when these alloying elements are contained, the content thereof is set to 2.0% or less. The amount of each of Mo, V and W is more preferably 0.003% or more, preferably 1.7% or less, and more preferably 1.5% or less. The amounts of Mo, V, and W are preferably 0.003% or more and 1.7% or less, and more preferably 0.003% or more and 1.5% or less.

Mg:0.0005〜0.0050%、REM:0.0010〜0.0200%
MgおよびREMは、介在物の形態制御に有用な元素であり、必要に応じて含有できる。介在物の形態制御とは、展伸した硫化物系介在物を粒状の介在物とすることをいう。この介在物の形態制御を介して、延性、靭性および耐硫化物応力腐食割れ性を向上させる。このような効果を得るためには、Mgは0.0005%以上、REMは0.0010%以上で含有することが好ましい。一方、いずれの元素も多く含有させると、非金属介在物量が増加し、かえって延性、靭性、耐硫化物応力腐食割れ性が低下する場合がある。また、経済的に不利になる場合がある。このため、Mgを含有する場合には、0.0005〜0.0050%、REMを含有する場合には、0.0010%〜0.0200%とすることが好ましい。Mg量は、0.0010%以上がより好ましく、0.0040%以下がより好ましく、0.0010%以上0.0040%以下が更に好ましい。REM量は、0.0020%以上がより好ましく、0.0150%以下がより好ましく、0.0020%以上0.0150%以下が更に好ましい。
Mg: 0.0005 to 0.0050%, REM: 0.0010 to 0.0200%
Mg and REM are elements useful for controlling the morphology of inclusions and can be contained as needed. Morphological control of inclusions means that the expanded sulfide-based inclusions are made into granular inclusions. Through morphological control of this inclusion, ductility, toughness and sulfide stress corrosion cracking resistance are improved. In order to obtain such an effect, it is preferable that Mg is contained in an amount of 0.0005% or more and REM is contained in an amount of 0.0010% or more. On the other hand, if a large amount of any of the elements is contained, the amount of non-metal inclusions may increase, and the ductility, toughness, and sulfide stress corrosion cracking resistance may decrease. It may also be economically disadvantageous. Therefore, when Mg is contained, it is preferably 0.0005 to 0.0050%, and when REM is contained, it is preferably 0.0010% to 0.0200%. The amount of Mg is more preferably 0.0010% or more, more preferably 0.0040% or less, and further preferably 0.0010% or more and 0.0040% or less. The amount of REM is more preferably 0.0020% or more, more preferably 0.0150% or less, and further preferably 0.0020% or more and 0.0150% or less.

[組織]
オーステナイトを基地相とするミクロ組織
鋼材の結晶構造が体心立方構造(bcc)である場合、該鋼材は低温環境下で脆性破壊を起こす可能性があるため、低温環境下での使用には適していない。ここに、低温環境下での使用を想定したとき、鋼材の基地相は、結晶構造が面心立方構造(fcc)であるオーステナイト組織であることが必須となる。ここで、「オーステナイトを基地相とする」とは、オーステナイト相が面積率で90%以上であることを意味する。オーステナイト相以外の残部は、フェライト相またはマルテンサイト相であるが、オーステナイト相が100%であってもよいのは勿論である。
[Organization]
Microstructure with austenite as the base phase When the crystal structure of the steel material is a body-centered cubic structure (bcc), the steel material may cause brittle fracture in a low temperature environment, so it is suitable for use in a low temperature environment. Not. Here, assuming use in a low temperature environment, it is essential that the matrix phase of the steel material has an austenite structure in which the crystal structure is a face-centered cubic structure (fcc). Here, "using austenite as the base phase" means that the austenite phase has an area ratio of 90% or more. The rest other than the austenite phase is a ferrite phase or a martensite phase, but it goes without saying that the austenite phase may be 100%.

[製造方法]
本発明の高Mn鋼の製造方法は、上述した成分組成を有する鋼素材を加熱する工程、加熱した鋼素材に対して熱間圧延を施す工程、及び、熱間圧延を施した熱延板に冷却処理を施す工程を含む。そして、本発明の高Mn鋼の製造方法では、上記鋼素材を加熱する工程における温度域を1100℃以上1300℃以下とすること、上記熱間圧延を施す工程における仕上圧延終了温度を750℃以上950℃未満とすること、及び、上記冷却処理を施す工程における(仕上圧延終了温度−100℃)以上の温度から300℃以上650℃以下の温度域までの平均冷却速度を0.5℃/s以上とすることを特徴とする。
[Production method]
The method for producing high Mn steel of the present invention includes a step of heating a steel material having the above-mentioned composition, a step of hot-rolling the heated steel material, and a hot-rolled hot-rolled plate. Includes a step of performing cooling treatment. In the method for producing high Mn steel of the present invention, the temperature range in the step of heating the steel material is set to 1100 ° C. or higher and 1300 ° C. or lower, and the finish rolling end temperature in the step of performing hot rolling is set to 750 ° C. or higher. The average cooling rate from a temperature of (finish rolling end temperature -100 ° C) or higher to a temperature range of 300 ° C or higher and 650 ° C or lower in the step of performing the cooling treatment is 0.5 ° C / s. It is characterized by the above.

本発明に係る高Mn鋼を製造するに当たり、まず、鋼素材は、上記した成分組成を有する溶鋼を転炉や電気炉等、公知の溶製方法で溶製することができる。また、真空脱ガス炉にて2次精錬を行ってもよい。その際、好適な組織制御の妨げとなるTiおよびNbを上述の範囲に制限するために、原料などからTiおよびNbが不可避的に混入することを回避し、これらの含有量を低減する措置を取る必要がある。例えば、精錬段階におけるスラグの塩基度を下げることによって、これらの合金をスラグへ濃化させて排出し最終的なスラブ製品におけるTiおよびNbの濃度を低減する。また、酸素を吹き込んで酸化させ、還流時にTiおよびNbの合金を浮上分離させるなどの方法でもよい。その後、連続鋳造法、造塊法等、公知の鋳造方法により、所定寸法のスラブ等の鋼素材とすることが好ましい。なお、連続鋳造後のスラブに分塊圧延を行って鋼素材としてもよい。 In producing the high Mn steel according to the present invention, first, as the steel material, molten steel having the above-mentioned composition can be melted by a known melting method such as a converter or an electric furnace. Further, secondary refining may be performed in a vacuum degassing furnace. At that time, in order to limit Ti and Nb that hinder suitable tissue control to the above range, measures are taken to prevent unavoidable mixing of Ti and Nb from raw materials and the like and reduce their contents. Need to take. For example, by lowering the basicity of the slag during the refining step, these alloys are concentrated into the slag and discharged to reduce the concentration of Ti and Nb in the final slab product. Alternatively, a method such as blowing oxygen to oxidize the alloy and floating and separating the alloy of Ti and Nb at reflux may be used. After that, it is preferable to use a known casting method such as a continuous casting method or an ingot forming method to obtain a steel material such as a slab having a predetermined size. The slab after continuous casting may be subjected to bulk rolling to obtain a steel material.

さらに、上記鋼素材を、高強度、低温靭性、及び延性に優れた鋼材へと造りこむための製造条件について具体的に規定する。
鋼素材加熱温度:1100℃以上1300℃以下
鋼材のミクロ組織の結晶粒径を粗大にするために、熱間圧延前の加熱温度は1100℃以上とする。ただし、加熱温度が1300℃を超えると一部溶解が始まってしまう懸念があるため、加熱温度の上限は1300℃とする。ここでの温度制御は、鋼素材の表面温度を基準とする。
Further, the manufacturing conditions for incorporating the above steel material into a steel material having excellent high strength, low temperature toughness, and ductility are specifically specified.
Steel material heating temperature: 1100 ° C or higher and 1300 ° C or lower The heating temperature before hot rolling is set to 1100 ° C or higher in order to coarsen the crystal grain size of the microstructure of the steel material. However, if the heating temperature exceeds 1300 ° C., there is a concern that partial melting may start, so the upper limit of the heating temperature is set to 1300 ° C. The temperature control here is based on the surface temperature of the steel material.

仕上圧延終了温度:750℃以上950℃未満
鋼素材(鋼塊または鋼片)を加熱したのち、熱間圧延を行う。粗大な結晶粒を作りこむためには高温での累積圧下率を高めることが好ましい。すなわち、低温で熱間圧延を行うとミクロ組織は微細になり、また過度な加工ひずみが入るため低温靭性の低下を招く。そのため、熱間圧延における仕上圧延終了温度の下限は鋼板の表面温度で750℃とする。一方、950℃以上の温度領域で仕上げると、結晶粒径が過度に粗大となり所望の降伏強さが得られなくなる。そのため950℃未満で1パス以上の最終仕上圧延が必要である。
Finish rolling end temperature: 750 ° C or higher and lower than 950 ° C After heating the steel material (steel ingot or steel piece), hot rolling is performed. In order to produce coarse crystal grains, it is preferable to increase the cumulative reduction rate at high temperature. That is, when hot rolling is performed at a low temperature, the microstructure becomes fine and excessive processing strain is applied, which causes a decrease in low temperature toughness. Therefore, the lower limit of the finish rolling end temperature in hot rolling is 750 ° C. at the surface temperature of the steel sheet. On the other hand, when finished in the temperature range of 950 ° C. or higher, the crystal grain size becomes excessively coarse and the desired yield strength cannot be obtained. Therefore, final finish rolling of 1 pass or more is required at a temperature lower than 950 ° C.

(仕上圧延終了温度−100℃)以上の温度から300℃以上650℃以下の温度域までの平均冷却速度:0.5℃/s以上
熱間圧延終了後は速やかに冷却を行う。熱間圧延後の鋼板を緩やかに冷却させると析出物の生成が促進され低温靭性の劣化を招く。所定温度域において0.5℃/s以上の冷却速度で冷却することでこれら析出物の生成を抑制できる。また、過度な冷却を行うと鋼板が歪んでしまい、生産性を低下させる。そのためには、冷却開始温度の上限を900℃とすることができる。また、冷却開始温度の下限は(仕上圧延終了温度−100℃)とする。上記温度未満の温度から冷却を開始すると、熱間圧延後に析出物の生成が促進され低温靭性が低下してしまうためである。また、冷却終了温度を300℃以上650℃以下の温度域とする。なぜなら、上記温度域までの冷却を行うことで靭性低下の要因となる炭化物の析出を抑制できるからである。以上の理由から、熱間圧延後の冷却処理においては、鋼板の表面温度で(仕上圧延終了温度−100℃)以上の温度から300℃以上650℃以下の温度域までの鋼板表面の平均冷却速度を0.5℃/s以上とする。一方、工業的生産の観点からは、前記平均冷却速度を200℃/s以下とすることが好ましい。冷却速度は表面の温度変化を基にしたシミュレーション計算により鋼板の平均冷却速度として算出する。
Average cooling rate from (finish rolling end temperature -100 ° C.) or higher to a temperature range of 300 ° C. or higher and 650 ° C. or lower: 0.5 ° C./s or higher After hot rolling is completed, cooling is performed promptly. When the steel sheet after hot rolling is gently cooled, the formation of precipitates is promoted and the low temperature toughness deteriorates. The formation of these precipitates can be suppressed by cooling at a cooling rate of 0.5 ° C./s or higher in a predetermined temperature range. In addition, excessive cooling distorts the steel sheet, reducing productivity. For that purpose, the upper limit of the cooling start temperature can be set to 900 ° C. The lower limit of the cooling start temperature is (finish rolling end temperature −100 ° C.). This is because if cooling is started from a temperature lower than the above temperature, the formation of precipitates is promoted after hot rolling and the low temperature toughness is lowered. Further, the cooling end temperature is set to a temperature range of 300 ° C. or higher and 650 ° C. or lower. This is because the precipitation of carbides, which causes a decrease in toughness, can be suppressed by cooling to the above temperature range. For the above reasons, in the cooling process after hot rolling, the average cooling rate of the steel sheet surface from the temperature above the surface temperature of the steel sheet (finish rolling end temperature -100 ° C) to the temperature range of 300 ° C or more and 650 ° C or less. Is 0.5 ° C./s or higher. On the other hand, from the viewpoint of industrial production, the average cooling rate is preferably 200 ° C./s or less. The cooling rate is calculated as the average cooling rate of the steel sheet by simulation calculation based on the temperature change of the surface.

更に、上述した鋳造工程においては、冷却時に、鋼の表面温度として1400℃から1300℃までの温度範囲における冷却時間を100s以下に制御することが好ましい。鋳造工程における冷却時間を上記のとおり制御することにより、Ca(O,S)等のCa系介在物を核としたMnSの複合析出が促進され、(Ca,Mn)Sの個数が増大する。その結果、MnSが結晶粒界又は結晶粒内で成長せずに、伸長したMnSの割合が減少する。このようなCa系介在物の形態制御により、51%以上の良好な絞り値を有する高Mn鋼を得ることができる。 Further, in the casting step described above, it is preferable to control the cooling time in the temperature range of 1400 ° C. to 1300 ° C. as the surface temperature of the steel to 100 s or less at the time of cooling. By controlling the cooling time in the casting step as described above, the composite precipitation of MnS centered on Ca-based inclusions such as Ca (O, S) is promoted, and the number of (Ca, Mn) S increases. As a result, MnS does not grow at the grain boundaries or within the crystal grains, and the proportion of elongated MnS decreases. By controlling the morphology of Ca-based inclusions in this way, a high Mn steel having a good drawing value of 51% or more can be obtained.

以下、本発明を実施例により詳細に説明する。なお、本発明は以下の実施例に限定されない。
転炉−取鍋精錬−連続鋳造法にて、表1に示す成分組成を有する鋼スラブを鋼素材として作製した。次いで、得られた鋼スラブを、表2に示す条件で、分塊圧延および熱間圧延により最大で32mm厚さの鋼板とした。鋼板について、引張特性、靭性および組織評価を下記の要領で実施した。
Hereinafter, the present invention will be described in detail with reference to Examples. The present invention is not limited to the following examples.
A steel slab having the composition shown in Table 1 was prepared as a steel material by a converter-ladle refining-continuous casting method. Next, the obtained steel slab was subjected to bulk rolling and hot rolling under the conditions shown in Table 2 to obtain a steel plate having a maximum thickness of 32 mm. Tensile properties, toughness and microstructure evaluation of the steel sheet were carried out as follows.

(1)引張試験特性
得られた各鋼板より、板厚15mmを超える鋼板ではJIS4号引張試験片を採取し、板厚15mm未満の鋼板では、平行部直径6mm、標点間距離25mmの丸棒引張試験片を採取して引張試験を実施し、引張試験特性を調査した。本発明では、降伏強さ400MPa以上および引張強さ800MPa以上を引張特性に優れ、高強度であるものと判定した。さらに、絞り値50%以上を延性に優れるものと判定した。
(1) Tensile test characteristics From each of the obtained steel plates, JIS No. 4 tensile test pieces were collected for steel plates with a plate thickness of more than 15 mm, and for steel plates with a plate thickness of less than 15 mm, a round bar with a parallel portion diameter of 6 mm and a distance between gauge points of 25 mm. Tensile test pieces were collected and subjected to a tensile test to investigate the characteristics of the tensile test. In the present invention, it was determined that the yield strength of 400 MPa or more and the tensile strength of 800 MPa or more were excellent in tensile properties and high strength. Further, it was determined that the aperture value of 50% or more was excellent in ductility.

(2)低温靭性
板厚20mmを超える各鋼板の表面から板厚の1/4までの位置(以下、板厚1/4位置と示す)、もしくは板厚20mm以下の各鋼板の板厚の1/2までの位置(以下、板厚1/2位置と示す)の圧延方向と平行な方向から、JIS Z2202(1998年)の規定に準拠してシャルピーVノッチフルサイズ試験片を採取し、JIS Z2242(1998年)の規定に準拠して各鋼板について3本のシャルピー衝撃試験を実施し、−196℃での吸収エネルギーを求め、母材の低温靭性を評価した。本発明では、3本の吸収エネルギー(vE−196)の平均値が100J以上を母材の低温靭性に優れるものとした。なお、板厚10mm未満の鋼板については、シャルピーVノッチハーフサイズ試験片を採取し同様のシャルピー衝撃試験を実施した。板厚10mm未満の鋼板では平均値が20J以上を母材の低温靭性に優れるものとした。
(2) Low temperature toughness A position from the surface of each steel plate having a plate thickness of more than 20 mm to 1/4 of the plate thickness (hereinafter referred to as a plate thickness of 1/4 position), or 1 of the plate thickness of each steel plate having a plate thickness of 20 mm or less. Charpy V notch full size test pieces are collected in accordance with the regulations of JIS Z2202 (1998) from the direction parallel to the rolling direction at the positions up to / 2 (hereinafter referred to as the plate thickness 1/2 position), and JIS. Three Charpy impact tests were carried out on each steel sheet in accordance with the provisions of Z2242 (1998), the absorbed energy at -196 ° C. was determined, and the low temperature toughness of the base metal was evaluated. In the present invention, the average value of three absorbed energy (vE -196) is more than 100J was excellent in low temperature toughness of the base material. For steel sheets with a thickness of less than 10 mm, Charpy V notch half-size test pieces were collected and the same Charpy impact test was carried out. For steel sheets with a plate thickness of less than 10 mm, an average value of 20 J or more was considered to be excellent in low temperature toughness of the base material.

(3)応力腐食割れ試験
サンプル32および33について、ASTM G36に準拠した沸騰塩化マグネシウム応力腐食割れ試験を実施した。試験片はASTM G30 Example aに準拠したU曲げ試験片とした。鋼板の表面下1mmの位置からC方向で2.5mm厚×20mm幅×80mm長の試験片を採取し、試験片長手方向中央部を5Rで曲げて、試験に供試した。
試験時間は400時間とした。試験後、表面に割れが確認されない試験片を、耐塩化物応力腐食割れ性に優れていると判断した。表3においては、目視で表面に割れが確認されなかった場合を〇、目視で表面に割れが確認された場合を×として示した。
(3) Stress Corrosion Cracking Test Samples 32 and 33 were subjected to a boiling magnesium chloride stress corrosion cracking test in accordance with ASTM G36. The test piece was a U-bending test piece conforming to ASTM G30 Example a. A test piece having a thickness of 2.5 mm, a width of 20 mm, and a length of 80 mm was collected from a position 1 mm below the surface of the steel sheet in the C direction, and the central portion in the longitudinal direction of the test piece was bent by 5R and used for the test.
The test time was 400 hours. After the test, the test piece in which no crack was confirmed on the surface was judged to have excellent chloride stress corrosion cracking resistance. In Table 3, the case where no crack was visually confirmed on the surface was shown as ◯, and the case where crack was visually confirmed on the surface was shown as x.

本発明に従う高Mn鋼は、上述の目標性能(母材の降伏強さが400MPa以上、絞り値が50%以上、低温靭性が吸収エネルギー(vE−196)の平均値で100J以上(ハーフサイズ試験片の場合は20J以上))を満足することが確認された。一方、本発明の範囲を外れる比較例は、降伏強さ、絞り値および低温靭性のいずれか1つ以上が、上述の目標性能を満足できていない。High Mn steel according to the invention, the aforementioned target performance (yield strength of the base material more than 400 MPa, the aperture value is 50% or more, 100 J or more at low temperature toughness average value of absorbed energy (vE -196) (half-size test In the case of one piece, it was confirmed that 20J or more)) was satisfied. On the other hand, in the comparative example outside the scope of the present invention, any one or more of the yield strength, the drawing value and the low temperature toughness does not satisfy the above-mentioned target performance.

また、Cu/Niが所定範囲内となるようにCuおよびNiを含有するサンプル32では、優れた耐塩化物応力腐食割れ性を発揮した。一方、Cu/Niが所定範囲外であるサンプル33では、十分な耐塩化物応力腐食割れ性が確認できなかった。 Further, in the sample 32 containing Cu and Ni so that Cu / Ni was within a predetermined range, excellent chloride stress corrosion cracking resistance was exhibited. On the other hand, in the sample 33 in which Cu / Ni was out of the predetermined range, sufficient chloride stress corrosion cracking resistance could not be confirmed.

Figure 0006954475
Figure 0006954475

Figure 0006954475
Figure 0006954475

Figure 0006954475
Figure 0006954475

Claims (3)

質量%で、
C:0.10%以上0.70%以下、
Si:0.10%以上0.90%以下、
Mn:20%以上30%以下、
P:0.030%以下、
S:0.0070%以下、
Al:0.01%以上0.07%以下、
Cr:1.8%以上7.0%以下、
Ni:0.01%以上1.0%未満、
Ca:0.0005%以上0.010%以下、
N:0.0050%以上0.0500%以下、
O:0.0050%以下、
Ti:0.0050%以下および
Nb:0.0050%以下
を含有し、下記式(1)を満たし、残部がFeおよび不可避的不純物の成分組成と、オーステナイトを基地相とする組織とを有し、
降伏強度が400MPa以上であり、
−196°Cにおけるシャルピー衝撃吸収エネルギーの平均値が、フルサイズ試験片を用いた場合は100J以上であり、ハーフサイズ試験片を用いた場合は20J以上であり、絞り値が51%以上である、高Mn鋼。
Ca/S≧1.0・・・(1)
By mass%
C: 0.10% or more and 0.70% or less,
Si: 0.10% or more and 0.90% or less,
Mn: 20% or more and 30% or less,
P: 0.030% or less,
S: 0.0070% or less,
Al: 0.01% or more and 0.07% or less,
Cr: 1.8% or more and 7.0% or less,
Ni: 0.01% or more and less than 1.0%,
Ca: 0.0005% or more and 0.010% or less,
N: 0.0050% or more and 0.0500% or less,
O: 0.0050% or less,
It contains Ti: 0.0050% or less and Nb: 0.0050% or less, satisfies the following formula (1), has a component composition of Fe and unavoidable impurities in the balance, and a structure having austenite as a base phase. ,
Yield strength is 400 MPa or more,
The average value of the Charpy impact absorption energy at -196 ° C is, it is 100J or more in the case of using a full size test piece state, and are more 20J in the case of using half-size specimens, aperture value more than 51% Oh Ru, high-Mn steel.
Ca / S ≧ 1.0 ... (1)
前記成分組成は、さらに、質量%で、
Cu:2.0%未満、
Mo:2.0%以下、
V:2.0%以下、
W:2.0%以下、
Mg:0.0005%以上0.0050%以下および
REM:0.0010%以上0.0200%以下
のうちから選ばれる1種または2種以上を含有する請求項1に記載の高Mn鋼。
The composition of the components is further increased by mass%.
Cu: less than 2.0%,
Mo: 2.0% or less,
V: 2.0% or less,
W: 2.0% or less,
The high Mn steel according to claim 1, which contains one or more selected from Mg: 0.0005% or more and 0.0050% or less and REM: 0.0010% or more and 0.0200% or less.
請求項1または2に記載の成分組成を有する鋼素材を、1100℃以上1300℃以下の温度域に加熱した後、仕上圧延終了温度が750℃以上950℃未満である熱間圧延を施し、その後、(仕上圧延終了温度−100℃)以上の温度から300℃以上650℃以下の温度域までの平均冷却速度が0.5℃/s以上の冷却処理を行うことにより、請求項1または2に記載の高Mn鋼を得る、高Mn鋼の製造方法。 After heating the steel material having the component composition according to claim 1 or 2 to a temperature range of 1100 ° C. or higher and 1300 ° C. or lower, hot rolling is performed in which the finish rolling end temperature is 750 ° C. or higher and lower than 950 ° C. , (Finish rolling end temperature -100 ° C) or higher to a temperature range of 300 ° C or higher and 650 ° C or lower with an average cooling rate of 0.5 ° C / s or higher , according to claim 1 or 2. A method for producing a high Mn steel, which obtains the above-mentioned high Mn steel.
JP2020533178A 2019-02-12 2020-02-10 High Mn steel and its manufacturing method Active JP6954475B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019022910 2019-02-12
JP2019022910 2019-02-12
PCT/JP2020/005017 WO2020166538A1 (en) 2019-02-12 2020-02-10 High-mn steel and method for manufacturing same

Publications (2)

Publication Number Publication Date
JPWO2020166538A1 JPWO2020166538A1 (en) 2021-03-11
JP6954475B2 true JP6954475B2 (en) 2021-10-27

Family

ID=72044469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020533178A Active JP6954475B2 (en) 2019-02-12 2020-02-10 High Mn steel and its manufacturing method

Country Status (9)

Country Link
EP (1) EP3926057A4 (en)
JP (1) JP6954475B2 (en)
KR (1) KR102628769B1 (en)
CN (1) CN113412337B (en)
BR (1) BR112021015919A2 (en)
MY (1) MY194355A (en)
SG (1) SG11202108594QA (en)
TW (1) TWI754893B (en)
WO (1) WO2020166538A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4234741A1 (en) * 2020-12-17 2023-08-30 JFE Steel Corporation Tig welding filler material and production method for welded joint part using same
CN116981539A (en) * 2021-03-01 2023-10-31 杰富意钢铁株式会社 TIG welding head
KR20230133347A (en) * 2021-03-01 2023-09-19 제이에프이 스틸 가부시키가이샤 Submerged arc welded joints
CN116121662B (en) * 2023-04-17 2023-09-26 太原科技大学 High-manganese steel for high-vanadium low-temperature storage tank and two-stage controlled cooling preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118913A (en) * 1974-08-09 1976-02-14 Nippon Steel Corp Teionjinseito netsukankakoseinosugureta oosutenaitoko
JPS60128242A (en) * 1983-12-15 1985-07-09 Nippon Steel Corp High manganese steel for nonmagnetic drill collar
JP4529872B2 (en) * 2005-11-04 2010-08-25 住友金属工業株式会社 High Mn steel material and manufacturing method thereof
JP6645103B2 (en) * 2014-10-22 2020-02-12 日本製鉄株式会社 High Mn steel material and method for producing the same
JP6693217B2 (en) * 2015-04-02 2020-05-13 日本製鉄株式会社 High Mn steel for cryogenic temperatures
JP6589535B2 (en) * 2015-10-06 2019-10-16 日本製鉄株式会社 Low temperature thick steel plate and method for producing the same
JP6728779B2 (en) * 2016-03-03 2020-07-22 日本製鉄株式会社 Low temperature thick steel plate and method of manufacturing the same
WO2018104984A1 (en) * 2016-12-08 2018-06-14 Jfeスチール株式会社 HIGH Mn STEEL SHEET AND PRODUCTION METHOD THEREFOR
BR112019022088A2 (en) * 2017-04-26 2020-05-05 Jfe Steel Corp high mn steel and production method

Also Published As

Publication number Publication date
SG11202108594QA (en) 2021-11-29
EP3926057A4 (en) 2022-05-18
MY194355A (en) 2022-11-29
TWI754893B (en) 2022-02-11
KR20210113682A (en) 2021-09-16
CN113412337A (en) 2021-09-17
KR102628769B1 (en) 2024-01-23
EP3926057A1 (en) 2021-12-22
JPWO2020166538A1 (en) 2021-03-11
TW202037734A (en) 2020-10-16
CN113412337B (en) 2023-12-05
BR112021015919A2 (en) 2021-10-05
WO2020166538A1 (en) 2020-08-20

Similar Documents

Publication Publication Date Title
JP6460292B1 (en) High Mn steel and manufacturing method thereof
JP6954475B2 (en) High Mn steel and its manufacturing method
JP7063364B2 (en) High Mn steel
CN111433381B (en) High Mn steel and method for producing same
CN112513307A (en) High Mn steel and method for producing same
CN111788325B (en) High Mn steel and method for producing same
KR102387364B1 (en) High Mn steel and manufacturing method thereof
JP6947331B2 (en) Steel and its manufacturing method
JP6947330B2 (en) Steel and its manufacturing method
KR102524703B1 (en) Steel plate and method of producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210913

R150 Certificate of patent or registration of utility model

Ref document number: 6954475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150