JP6566166B1 - Steel sheet and manufacturing method thereof - Google Patents

Steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP6566166B1
JP6566166B1 JP2019502270A JP2019502270A JP6566166B1 JP 6566166 B1 JP6566166 B1 JP 6566166B1 JP 2019502270 A JP2019502270 A JP 2019502270A JP 2019502270 A JP2019502270 A JP 2019502270A JP 6566166 B1 JP6566166 B1 JP 6566166B1
Authority
JP
Japan
Prior art keywords
less
steel
steel sheet
toughness
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019502270A
Other languages
Japanese (ja)
Other versions
JPWO2020044421A1 (en
Inventor
茂樹 木津谷
茂樹 木津谷
孝一 中島
孝一 中島
植田 圭治
圭治 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Application granted granted Critical
Publication of JP6566166B1 publication Critical patent/JP6566166B1/en
Publication of JPWO2020044421A1 publication Critical patent/JPWO2020044421A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Abstract

板厚中心部の絞り特性に優れた高Mn鋼板を提供する。C:0.20%以上0.70%以下、Si:0.05%以上1.0%以下、Mn:15%以上35%以下、Al:0.1%以下、Cr:8.0%以下、N:0.0010%以上0.0500%以下、P:0.03%以下およびS:0.005%以下を含有し、残部Feおよび不可避的不純物の成分組成とし、引張強度が600MPa以上かつ−196℃における吸収エネルギーが27J以上でさらに板厚方向の絞り値が30%以上とする。Provided is a high Mn steel plate having excellent drawing characteristics at the center of the plate thickness. C: 0.20% to 0.70%, Si: 0.05% to 1.0%, Mn: 15% to 35%, Al: 0.1% or less, Cr: 8.0% or less N: 0.0010% or more and 0.0500% or less, P: 0.03% or less, and S: 0.005% or less, the composition of the remaining Fe and inevitable impurities, the tensile strength is 600 MPa or more and The absorbed energy at −196 ° C. is 27 J or more, and the drawing value in the plate thickness direction is 30% or more.

Description

本発明は、液化ガス貯槽用タンク等、極低温環境で使用される構造用鋼に供して好適な、特に板厚中心部特性に優れる鋼板およびその製造方法に関する。   The present invention relates to a steel sheet suitable for structural steel used in a cryogenic environment, such as a tank for a liquefied gas storage tank, and particularly to a steel sheet excellent in sheet thickness center portion characteristics and a method for producing the same.

液化ガス貯槽用タンク等の構造物は、その使用環境が極低温となるために、この構造物に熱間圧延鋼板を用いるには、該鋼板の強度のみならず極低温での靱性に優れることが要求される。例えば、液化天然ガスの貯槽に用いる熱間圧延鋼板には、液化天然ガスの沸点である−164℃より低い温度域で優れた靱性を確保する必要がある。極低温貯槽用構造物に用いる鋼板の低温靱性が劣ると、該極低温貯槽用構造物としての安全性を維持できなくなる虞があるため、適用される鋼板に対する低温靱性向上の要求は強いものがある。   Structures such as tanks for liquefied gas storage tanks are used at extremely low temperatures, so in order to use hot-rolled steel sheets for these structures, not only the strength of the steel sheets but also the toughness at cryogenic temperatures is excellent. Is required. For example, it is necessary to ensure excellent toughness in a temperature range lower than −164 ° C., which is the boiling point of liquefied natural gas, in a hot-rolled steel sheet used for a liquefied natural gas storage tank. If the low-temperature toughness of the steel sheet used for the cryogenic storage tank structure is inferior, the safety as the cryogenic storage tank structure may not be maintained, so there is a strong demand for improving the low-temperature toughness of the applied steel sheet. is there.

この要求に対して、従来、極低温で脆性を示さないオーステナイト組織を有するオーステナイト系ステンレス鋼板や9%Ni鋼板、もしくは5000系アルミニウム合金が使用されてきた。しかしながら、上述の金属材料は合金コストや製造コストが高いことから、安価で極低温靱性に優れる鋼板への需要がある。そこで、従来の極低温用鋼に代わる新たな鋼板として、比較的安価なオーステナイト安定化元素であるMnを多量に添加してオーステナイト組織とした、高Mn鋼を極低温環境の構造用鋼板として適用することが検討されている。   In response to this requirement, conventionally, an austenitic stainless steel sheet, 9% Ni steel sheet, or 5000 series aluminum alloy having an austenitic structure that does not show brittleness at extremely low temperatures has been used. However, since the above-mentioned metal materials have high alloy costs and manufacturing costs, there is a demand for steel sheets that are inexpensive and have excellent cryogenic toughness. Therefore, as a new steel plate to replace conventional cryogenic steel, high Mn steel is applied as a structural steel plate in a cryogenic environment by adding a large amount of relatively inexpensive austenite stabilizing element Mn to austenite structure. To be considered.

例えば、特許文献1には、Mnを15〜35%、Cu:5%以下、さらにCとCrを適量添加することによって、被削性および溶熱熱影響部の−196℃でのシャルピー衝撃特性を改善した鋼材が開示されている。   For example, in Patent Document 1, by adding Mn in an amount of 15 to 35%, Cu: 5% or less, and appropriate amounts of C and Cr, the machinability and Charpy impact characteristics at −196 ° C. of the heat and heat affected zone are described. A steel material with improved is disclosed.

また、特許文献2には、C:0.25〜0.75%、Si:0.05〜1.0%、Mn:20%を超え35%以下、Ni:0.1%以上7.0%未満、Cr:0.1%以上8.0%未満を添加する低温靱性を改善した高Mn鋼材が開示されている。   In Patent Document 2, C: 0.25 to 0.75%, Si: 0.05 to 1.0%, Mn: more than 20% and 35% or less, Ni: 0.1% or more and 7.0 %, And Cr: 0.1% or more and less than 8.0% is added, and a high Mn steel material with improved low temperature toughness is disclosed.

さらに、特許文献3には、Cを0.001〜0.80%、Mnを15〜35%含有し、Cr、Ti、Si、Al、Mg、Ca、REMといった元素を添加することによって、母材および溶接部の極低温靱性およびを改善した高Mn鋼材が開示されている。   Furthermore, Patent Document 3 contains 0.001 to 0.80% C and 15 to 35% Mn, and by adding elements such as Cr, Ti, Si, Al, Mg, Ca, and REM, A high Mn steel material with improved cryogenic toughness of the material and weld is disclosed.

特表2015−508452号公報JP-T-2015-508452 特開2016−84529号公報JP-A-2006-84529 特開2016−196703号公報Japanese Patent Laid-Open No. 2006-196703

高Mn鋼は、一般的な炭素鋼に比べ高合金であることから融点が低く、しかも融点近傍における粘性が高いために、炭素鋼に比べて粗大な鋳造欠陥が発生しやすい特徴がある。従って、製品に鋳造欠陥が残存していると、十字継手など鋼板の板厚方向に引張応力が作用する場合に、製品に破断が生じて構造物の崩壊につながるおそれがある。   High Mn steel is a high alloy compared to general carbon steel, and therefore has a low melting point and a high viscosity in the vicinity of the melting point, and therefore has a feature that coarse casting defects are likely to occur compared to carbon steel. Therefore, if casting defects remain in the product, the product may break when the tensile stress acts in the thickness direction of the steel plate such as a cruciform joint, leading to the collapse of the structure.

しかしながら、特許文献1、2および3に記載の鋼材は、強度と低温靱性を達成するための製造コストの観点ならびに上述したオーステナイト鋼材の使用に際して構造物の安全性の観点から重要となる、板厚中心部の絞り特性について言及されておらず、未だ検討の余地があった。   However, the steel materials described in Patent Documents 1, 2, and 3 are important from the viewpoint of manufacturing costs for achieving strength and low temperature toughness, and from the viewpoint of the safety of the structure when using the austenitic steel materials described above. There was no mention of the aperture characteristics in the center, and there was still room for study.

本発明は係る問題に鑑み、板厚中心部の絞り特性に優れた高Mn鋼板を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a high Mn steel plate having excellent drawing characteristics at the center of the plate thickness.

本発明者らは、上記課題を解消するために、高Mn鋼を対象にして、鋼板の成分組成や製造方法などに関して鋭意研究を行ったところ、以下の知見を得るに到った。
(i)高Mn鋼をベースに、Sの含有量を0.005%以下に抑制することにより、MnSの生成量を低減させ、板厚方向の引張特性を改善することができる。
(ii)さらに、熱間仕上圧延において、圧下比3以上で圧延することにより鋳造欠陥を無害化し、かつ最終3パスのうち少なくとも2パスについて、1パス当たりの圧下率を10%以上として鋼板全体の整粒化を図って異常粗大粒の残存を抑制することにより、板厚方向の引張特性を改善することができる。
In order to solve the above-mentioned problems, the present inventors have conducted intensive research on the component composition and manufacturing method of steel sheet for high Mn steel, and have obtained the following knowledge.
(I) By suppressing the S content to 0.005% or less based on high Mn steel, the amount of MnS produced can be reduced, and the tensile properties in the plate thickness direction can be improved.
(Ii) Further, in hot finish rolling, the casting defect is rendered harmless by rolling at a reduction ratio of 3 or more, and at least 2 passes among the final 3 passes, the reduction rate per pass is 10% or more. The tensile properties in the plate thickness direction can be improved by reducing the size of the particles and suppressing the remaining of coarse particles.

本発明は、以上の知見にさらに検討を加えてなされたものであり、その要旨は以下のとおりである。
1.質量%で、
C:0.20%以上0.70%以下、
Si:0.05%以上1.0%以下、
Mn:15%以上35%以下、
Al:0.1%以下、
Cr:8.0%以下、
N:0.0010%以上0.0500%以下、
P:0.03%以下および
S:0.005%以下
を含有し、残部Feおよび不可避的不純物の成分組成を有し、引張強度が600MPa以上かつ−196℃における吸収エネルギーが27J以上でさらに板厚方向の絞り値が30%以上である鋼板。
The present invention has been made by further studying the above knowledge, and the gist thereof is as follows.
1. % By mass
C: 0.20% or more and 0.70% or less,
Si: 0.05% or more and 1.0% or less,
Mn: 15% or more and 35% or less,
Al: 0.1% or less,
Cr: 8.0% or less,
N: 0.0010% or more and 0.0500% or less,
P: 0.03% or less and S: 0.005% or less, the composition of the remaining Fe and unavoidable impurities, a tensile strength of 600 MPa or more and an absorbed energy at -196 ° C of 27 J or more, and a further plate A steel sheet having a drawing value in the thickness direction of 30% or more.

ここで、板厚方向の絞り値は、JIS Z3199に準拠した試験にて測定することができる。   Here, the aperture value in the thickness direction can be measured by a test based on JIS Z3199.

2.前記成分組成は、さらに、質量%で、
Nb:0.003%以上0.030%以下、
V:0.01%以上0.10%以下、
Ti:0.003%以上0.040%以下および
B:0.0003%以上0.0100%以下
から選択される1種または2種以上を含有する前記1に記載の鋼板。
2. The component composition is further mass%,
Nb: 0.003% to 0.030%,
V: 0.01% or more and 0.10% or less,
The steel plate according to 1 above, containing one or more selected from Ti: 0.003% to 0.040% and B: 0.0003% to 0.0100%.

3.前記成分組成は、さらに、質量%で、
Cu:0.01%以上0.70%以下、
Ni:0.01%以上0.50%以下、
Sn:0.01%以上0.30%以下、
Sb:0.01%以上0.30%以下、
Mo:0.05%以上2.0%以下および
W:0.05%以上2.0%以下
から選択される1種または2種以上を含有する前記1または2に記載の鋼板。
3. The component composition is further mass%,
Cu: 0.01% or more and 0.70% or less,
Ni: 0.01% or more and 0.50% or less,
Sn: 0.01% or more and 0.30% or less,
Sb: 0.01% or more and 0.30% or less,
The steel plate according to 1 or 2 above, containing one or more selected from Mo: 0.05% to 2.0% and W: 0.05% to 2.0%.

4.前記成分組成は、さらに、質量%で、
Ca:0.0005%以上0.0050%以下、
Mg:0.0005%以上0.0100%以下および
REM:0.0010%以上0.0200%以下
から選択される1種または2種以上を含有する前記1、2または3に記載の鋼板。
4). The component composition is further mass%,
Ca: 0.0005% or more and 0.0050% or less,
The steel plate according to 1, 2 or 3, which contains one or more selected from Mg: 0.0005% to 0.0100% and REM: 0.0010% to 0.0200%.

5.前記1から4のいずれかに記載の鋼板を製造する方法であって、鋼素材を1000℃以上1300℃以下に加熱したのち、熱間圧延を、圧下比:3以上、かつ最終3パスのうちの少なくとも2パスの圧下率が1パス当たり10%以上にて行う鋼板の製造方法。 5. 5. The method for producing a steel plate according to any one of 1 to 4, wherein after the steel material is heated to 1000 ° C. or higher and 1300 ° C. or lower, the hot rolling is performed at a reduction ratio of 3 or more and the final three passes. A method for producing a steel sheet, wherein the rolling reduction of at least two passes is 10% or more per pass.

本発明によれば、板厚中心部の絞り特性に優れる鋼板を提供することができる。そして、本発明の鋼板を、液化ガス貯槽用タンク等の、極低温環境で使用される鋼構造物に適用すれば、該構造物の安全性向上に大きく寄与し、産業上格段の効果をもたらすことになる。また、既存の材料に比べて安価であるため、経済性に優れる利点もある。   ADVANTAGE OF THE INVENTION According to this invention, the steel plate which is excellent in the drawing characteristic of plate | board thickness center part can be provided. If the steel plate of the present invention is applied to a steel structure used in a cryogenic environment, such as a tank for a liquefied gas storage tank, it greatly contributes to improving the safety of the structure and brings about a remarkable industrial effect. It will be. Moreover, since it is cheaper than existing materials, there is also an advantage that it is excellent in economic efficiency.

以下、本発明の鋼板について具体的に説明する。なお、本発明は以下の実施形態に限定されない。
[成分組成]
まず、本発明の鋼板の成分組成と、その限定理由について説明する。なお、成分組成を表す「%」は、特に断らない限り「質量%」を意味するものとする。
Hereinafter, the steel plate of the present invention will be specifically described. In addition, this invention is not limited to the following embodiment.
[Ingredient composition]
First, the component composition of the steel plate of this invention and the reason for limitation are demonstrated. “%” Representing the component composition means “% by mass” unless otherwise specified.

C:0.20%以上0.70%以下
Cは、高強度化に有効であり、さらに、安価なオーステナイト安定化元素であり、オーステナイト組織を得るために重要な元素である。その効果を得るためには、Cは0.20%以上の含有を必要とする。一方、0.70%を超えて含有すると、板厚中心部に偏析し、Cr炭化物およびNb、V、Ti系炭化物の過度な析出を促すため、低温靱性が低下するとともに、絞り値が低下する。このため、Cは0.20%以上0.70%以下とする。好ましくは0.25%以上0.60%以下とする。
C: 0.20% or more and 0.70% or less C is effective for increasing the strength, is an inexpensive austenite stabilizing element, and is an important element for obtaining an austenite structure. In order to acquire the effect, C needs to contain 0.20% or more. On the other hand, if it exceeds 0.70%, it segregates at the center of the plate thickness and promotes excessive precipitation of Cr carbide, Nb, V, and Ti-based carbides, so that low temperature toughness is lowered and drawing value is lowered. . For this reason, C is made 0.20% or more and 0.70% or less. Preferably, the content is 0.25% or more and 0.60% or less.

Si:0.05%以上1.0%以下
Siは、脱酸材として作用し、製鋼上必要であるだけでなく、鋼に固溶して固溶強化により鋼板を高強度化する効果を有する。このような効果を得るためには、Siは0.05%以上の含有を必要とする。一方、1.0%を超えて含有すると、溶接性および表面性状が劣化する。このため、Siは0.05%以上1.0%以下とする。好ましくは0.07%以上0.5%以下とする。
Si: 0.05% or more and 1.0% or less Si acts not only as a deoxidizer and is necessary for steelmaking, but also has the effect of increasing the strength of the steel sheet by solid solution strengthening by solid solution in steel. . In order to acquire such an effect, Si needs to contain 0.05% or more. On the other hand, when it contains exceeding 1.0%, weldability and surface property will deteriorate. For this reason, Si is made 0.05% to 1.0%. Preferably it is 0.07% or more and 0.5% or less.

Mn:15%以上35%以下
Mnは、比較的安価なオーステナイト安定化元素である。本発明では、強度と極低温靱性を両立するために重要な元素である。その効果を得るためには、Mnは15%以上の含有を必要とする。一方、35%を超えて含有する場合、極低温靱性を改善する効果が飽和し、合金コストの上昇を招く。また、溶接性、切断性が劣化する。さらに、偏析を助長し、極低温靭性の低下や板厚方向引張特性の劣化、応力腐食割れの発生を引き起こす。このため、Mnは15%以上35%以下とする。好ましくは、18%以上28%以下の範囲とする。
Mn: 15% to 35% Mn is a relatively inexpensive austenite stabilizing element. In the present invention, it is an important element for achieving both strength and cryogenic toughness. In order to acquire the effect, Mn needs to contain 15% or more. On the other hand, when the content exceeds 35%, the effect of improving the cryogenic toughness is saturated, leading to an increase in alloy cost. In addition, the weldability and cutability are deteriorated. Furthermore, segregation is promoted, causing a reduction in cryogenic toughness, deterioration in tensile properties in the thickness direction, and occurrence of stress corrosion cracking. For this reason, Mn shall be 15% or more and 35% or less. Preferably, the range is 18% or more and 28% or less.

Al:0.1%以下
Alは、脱酸剤として作用し、鋼板の溶鋼脱酸プロセスに於いて、もっとも汎用的に使われる。また、鋼中の固溶Nを固定してAlNを形成し固溶N低減による靱性劣化を抑制する効果を有する。そのためには、0.01%以上で含有することが好ましい。一方、Alは0.1%を超えて含有すると、溶接時に溶接金属部に拡散して、溶接金属の靭性を劣化させるため、0.1%以下とする。好ましくは0.07%以下とする。より好ましくは0.02%以上0.06%以下とする。
Al: 0.1% or less Al acts as a deoxidizer, and is most commonly used in the molten steel deoxidation process of steel sheets. Moreover, it has the effect of fixing solid solution N in steel and forming AlN to suppress toughness deterioration due to reduction of solid solution N. For that purpose, it is preferable to contain 0.01% or more. On the other hand, if the Al content exceeds 0.1%, it diffuses into the weld metal part during welding and deteriorates the toughness of the weld metal, so the content is made 0.1% or less. Preferably it is 0.07% or less. More preferably, it is 0.02% or more and 0.06% or less.

Cr:8.0%以下
Crは、高Mn鋼の低温靭性および耐食性向上に必要な元素である。一方でCrは、圧延中に窒化物、炭化物、炭窒化物等の形態で析出する場合があり、このような析出物の形成により腐食や破壊の起点となって低温靭性が低下するため、上限を8.0%とする。好ましくはCr量を1.0%以上6.0%以下、より好ましくは1.5%以上5.5%以下の範囲とする。
Cr: 8.0% or less Cr is an element necessary for improving low-temperature toughness and corrosion resistance of high-Mn steel. On the other hand, Cr may precipitate in the form of nitrides, carbides, carbonitrides, etc. during rolling, and the formation of such precipitates lowers the low temperature toughness as a starting point of corrosion and fracture. Is set to 8.0%. Preferably, the Cr amount is in the range of 1.0% to 6.0%, more preferably 1.5% to 5.5%.

N:0.0010%以上0.0500%以下
Nは、オーステナイト安定化元素であり、極低温靱性の向上に有効な元素である。また、Nb、VおよびTiと結合し、窒化物または炭窒化物として微細に析出して、拡散性水素のトラップサイトとして応力腐食割れを抑制する効果を有する。このような効果を得るためには、Nを0.0010%以上で含有する必要がある。一方、0.0500%を超えて含有すると、過剰な窒化物または炭窒化物の生成を促し、固溶元素量が低下し耐食性が低下するだけでなく、靭性も低下する。このため、Nは0.0010%以上0.0500%以下とする。好ましくは、N量を0.0020%以上0.0200%以下とする。
N: 0.0010% or more and 0.0500% or less N is an austenite stabilizing element and is an element effective for improving the cryogenic toughness. Moreover, it combines with Nb, V, and Ti, precipitates finely as nitride or carbonitride, and has the effect of suppressing stress corrosion cracking as a diffusible hydrogen trap site. In order to acquire such an effect, it is necessary to contain N at 0.0010% or more. On the other hand, if the content exceeds 0.0500%, the formation of excess nitride or carbonitride is promoted, the amount of solid solution elements is reduced and corrosion resistance is lowered, and the toughness is also lowered. For this reason, N is made into 0.0010% or more and 0.0500% or less. Preferably, the N amount is 0.0020% or more and 0.0200% or less.

P:0.03%以下
Pは、0.03%を超えて含有すると、粒界に偏析し粒界強度を低下させ、破壊起点となる場合がある。そのため、0.03%を上限とし、可能なかぎり低減することが望ましい。したがって、Pは0.03%以下とする。Pは少ないほど特性が向上するため、好ましくは0.025%以下とし、より好ましくは0.020%以下とする。なお、0.0005%未満まで抑制するには、多大な製鋼コストを要することから、経済性の観点からは0.0005%以上とすることが好ましい。
P: 0.03% or less When P is contained in an amount exceeding 0.03%, it may segregate at the grain boundary to lower the grain boundary strength, and may become a fracture starting point. Therefore, it is desirable to make 0.03% as the upper limit and reduce it as much as possible. Therefore, P is set to 0.03% or less. The smaller the P, the better the characteristics. Therefore, it is preferably 0.025% or less, more preferably 0.020% or less. In addition, in order to suppress to less than 0.0005%, since a great steelmaking cost is required, it is preferable to set it as 0.0005% or more from an economical viewpoint.

S:0.005%以下
Sは、鋼中でMnSを形成し低温靭性や板厚方向引張時の絞りを著しく劣化させるため、0.005%を上限とし、可能なかぎり低減することが望ましい。好ましくは、0.002%以下とする。なお、0.0001%未満まで抑制するには、多大な製鋼コストを要することから、経済性の観点からは0.0001%以上とすることが好ましい。
S: 0.005% or less S is desirable to reduce S as much as possible, with 0.005% as the upper limit, because M forms MnS in the steel and significantly deteriorates the low temperature toughness and drawing during tensile in the thickness direction. Preferably, it is 0.002% or less. In addition, in order to control to less than 0.0001%, since a great steelmaking cost is required, it is preferable to set it as 0.0001% or more from an economical viewpoint.

上記した成分以外の残部は、Feおよび不可避的不純物である。不可避的不純物としては、Zr、As などがある。   The balance other than the above components is Fe and inevitable impurities. Inevitable impurities include Zr and As.

本発明では、強度および低温靱性をさらに向上させることを目的として、上記の必須元素に加えて、必要に応じて下記の元素を含有することができる。
Nb:0.003%以上0.030%以下
Nbは、鋼板の強度の向上に有効な元素である。このような効果を得るには、Nbを0.003%以上で添加することが好ましい。一方、0.030%を超えて含有すると、粗大な炭窒化物が析出し、破壊の起点となり板厚方向の引張特性を劣化させることがある。また、析出物が粗大化し、母材靱性を劣化させることがある。このため、Nbを含有する場合は、0.003%以上0.030%以下とすることが好ましい。より好ましくは、0.005%以上、さらには0.007%以上とする。同様に、より好ましくは、0.025%以下、さらには0.022%以下とする。
In the present invention, for the purpose of further improving the strength and the low temperature toughness, the following elements can be contained as required in addition to the above essential elements.
Nb: 0.003% or more and 0.030% or less Nb is an element effective for improving the strength of the steel sheet. In order to obtain such an effect, Nb is preferably added at 0.003% or more. On the other hand, if the content exceeds 0.030%, coarse carbonitrides precipitate, which may become a starting point of fracture and deteriorate the tensile properties in the thickness direction. Further, the precipitates may become coarse and the base material toughness may be deteriorated. For this reason, when it contains Nb, it is preferable to set it as 0.003% or more and 0.030% or less. More preferably, it is 0.005% or more, further 0.007% or more. Similarly, it is more preferably 0.025% or less, and further preferably 0.022% or less.

V:0.01%以上0.10%以下
Vは、鋼板の強度向上に有効な元素である。このような効果を得るには、Vを0.01%以上で含有することが好ましい。一方、0.10%を超えて含有すると、粗大な炭窒化物が析出し、破壊の起点となることがある。また、析出物が粗大化し、母材靱性を劣化させることがある。このため、Vを含有する場合は、0.01%以上0.10%以下とすることが好ましい。より好ましくは、0.02%以上、さらには0.03%以上とする。同様に、より好ましくは、0.09%以下、さらには0.08%以下とする。
V: 0.01% or more and 0.10% or less V is an element effective for improving the strength of the steel sheet. In order to obtain such an effect, it is preferable to contain V at 0.01% or more. On the other hand, if the content exceeds 0.10%, coarse carbonitride precipitates and may become a starting point of fracture. Further, the precipitates may become coarse and the base material toughness may be deteriorated. For this reason, when it contains V, it is preferable to set it as 0.01% or more and 0.10% or less. More preferably, it is 0.02% or more, and further 0.03% or more. Similarly, it is more preferably 0.09% or less, further 0.08% or less.

Ti:0.003%以上0.040%以下
Tiは、窒化物もしくは炭窒化物として析出し、鋼板の強度向上に有効な元素である。このような効果を得るには、Tiを0.003%以上で含有することが好ましい。一方、0.040%を超えて含有すると、析出物が粗大化し、母材靱性を劣化させることがある。また、粗大な炭窒化物が析出し、破壊の起点となることがある。このため、Tiを含有する場合は、0.003%以上0.040%以下とすることが好ましい。より好ましくは、0.005%以上、さらには0.007%以上とする。同様に、より好ましくは、0.035%以下、さらには0.032%以下とする。
Ti: 0.003% or more and 0.040% or less Ti is an element that precipitates as a nitride or carbonitride and is effective in improving the strength of the steel sheet. In order to obtain such an effect, Ti is preferably contained at 0.003% or more. On the other hand, if the content exceeds 0.040%, the precipitates become coarse and the base material toughness may be deteriorated. In addition, coarse carbonitrides may precipitate and become the starting point of fracture. For this reason, when it contains Ti, it is preferable to set it as 0.003% or more and 0.040% or less. More preferably, it is 0.005% or more, further 0.007% or more. Similarly, it is more preferably 0.035% or less, and further 0.032% or less.

B:0.0003%以上0.0100%以下
Bは、オーステナイト粒界強度を高める元素であり、極低温靱性向上に有効な元素である。このような効果を得るには、Bを0.0003%以上で含有することが好ましい。一方、0.0100%を超えて含有すると、粗大なB析出物を生成し、靭性が低下する。このため、Bは0.0100%以下の範囲とすることが好ましい。より好ましくは、0.0030%以下である。
B: 0.0003% or more and 0.0100% or less B is an element that increases the austenite grain boundary strength, and is an element effective for improving the cryogenic toughness. In order to acquire such an effect, it is preferable to contain B at 0.0003% or more. On the other hand, if the content exceeds 0.0100%, coarse B precipitates are generated, and the toughness decreases. For this reason, B is preferably in the range of 0.0100% or less. More preferably, it is 0.0030% or less.

さらに、本発明では、必要に応じて下記の元素を含有することができる。
Cu:0.01%以上0.70%以下、Ni:0.01%以上0.50%以下、Sn:0.01%以上0.30%以下、Sb:0.01%以上0.30%以下、Mo:0.05%以上2.0%以下、W:0.05%以上2.0%以下の1種または2種以上
Furthermore, in this invention, the following elements can be contained as needed.
Cu: 0.01% to 0.70%, Ni: 0.01% to 0.50%, Sn: 0.01% to 0.30%, Sb: 0.01% to 0.30% Hereinafter, Mo: 0.05% to 2.0%, W: 0.05% to 2.0%, one or two or more

Cu、Ni、Sn、Sb、MoおよびWは、Crと複合添加することによって、高Mn鋼の耐食性を向上する元素である。
この効果は、高Mn鋼において、上記いずれかの元素がCrと共存した場合において顕在化し、それぞれ上記した下限値以上で発現する。しかし、いずれの元素も上記した上限値を超えて多く含有させると、溶接性や靱性を劣化させ、コストの観点からも不利になる。
Cu, Ni, Sn, Sb, Mo, and W are elements that improve the corrosion resistance of high-Mn steel by being compounded with Cr.
This effect is manifested in high-Mn steel when any of the above elements coexists with Cr, and is manifested at the above lower limit value or more. However, if any of these elements is contained in excess of the above upper limit, weldability and toughness are deteriorated, which is disadvantageous from the viewpoint of cost.

従って、Cu、Ni、Sn、Sb、MoおよびWは、上記した範囲で添加することが好ましい。より好ましくは、Cu量は0.02%以上0.50%以下、Ni量は0.02%以上0.40%以下、Sn量は0.02%以上0.25%以下、Sb量は0.02%以上0.25%以下、Mo量は0.05%以上1.50%以下、W量は0.05%以上1.50%以下である。   Therefore, Cu, Ni, Sn, Sb, Mo and W are preferably added in the above-described range. More preferably, the Cu content is 0.02% to 0.50%, the Ni content is 0.02% to 0.40%, the Sn content is 0.02% to 0.25%, and the Sb content is 0. 0.02% or more and 0.25% or less, Mo amount is 0.05% or more and 1.50% or less, and W amount is 0.05% or more and 1.50% or less.

さらにまた、本発明では、必要に応じて下記の元素を含有することができる。
Ca:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0100%以下、REM:0.0010%以上0.0200%以下の1種または2種以上
Furthermore, in this invention, the following elements can be contained as needed.
Ca: 0.0005% or more and 0.0050% or less, Mg: 0.0005% or more and 0.0100% or less, REM: 0.0010% or more and 0.0200% or less

Ca、MgおよびREMは、MnS等の介在物の形態制御に有用な元素であり、必要に応じて含有できる。ここで、介在物の形態制御とは、展伸した硫化物系介在物を粒状の介在物とすることをいう。この介在物の形態制御を介して、板厚方向の引張特性、靭性および耐硫化物応力腐食割れ性を向上させることができる。このような効果を得るためには、CaおよびMgは0.0005%以上、REMは0.0010%以上含有することが好ましい。   Ca, Mg, and REM are elements useful for controlling the form of inclusions such as MnS, and can be contained as necessary. Here, the form control of inclusions means that the expanded sulfide inclusions are made into granular inclusions. Through this form control of inclusions, tensile properties in the thickness direction, toughness, and resistance to sulfide stress corrosion cracking can be improved. In order to acquire such an effect, it is preferable to contain 0.0005% or more of Ca and Mg and 0.0010% or more of REM.

一方、いずれの元素も多く含有させると、非金属介在物量が増加し、かえって板厚中心部の特性が低下する場合がある。このため、Caを含有させる場合には0.0050%以下、Mgを含有させる場合には0.0100%以下、REMを含有させる場合には0.0200%以下とすることが好ましい。より好ましくは、Ca量は0.0010%以上0.0040%以下、Mg量は0.0010%以上0.0040%以下、REM量は0.0020%以上0.0150%以下とする。   On the other hand, when a large amount of any element is contained, the amount of non-metallic inclusions increases, and on the contrary, the characteristics at the center portion of the plate thickness may deteriorate. For this reason, when Ca is contained, it is preferably 0.0050% or less, when Mg is contained, 0.0100% or less, and when REM is contained, it is preferably 0.0200% or less. More preferably, the Ca amount is 0.0010% to 0.0040%, the Mg amount is 0.0010% to 0.0040%, and the REM amount is 0.0020% to 0.0150%.

以上の成分組成を有する鋼板は、さらに板厚方向の絞り値が30%以上であることが肝要である。すなわち、板厚方向の絞り値が30%未満の場合、例えば十字溶接継手部などで破壊が発生し構造物としての健全性が著しく損なわれるためである。   It is important that the steel sheet having the above component composition has a drawing value in the thickness direction of 30% or more. That is, when the drawing value in the plate thickness direction is less than 30%, for example, the cross welded joint or the like is broken, and the soundness of the structure is significantly impaired.

次に、本発明の鋼板の製造条件について説明する。すなわち、本発明の鋼板は、上記した成分組成を有する鋼素材を1000℃以上1300℃以下に加熱したのち、熱間圧延を、圧下比:3以上、かつ最終3パスのうちの少なくとも2パスの圧下率が1パス当たり10%以上にて行うことによって、製造することができる。
なお、以下の説明において、温度「℃」は、板厚中心部における温度を意味するものとする。
Next, manufacturing conditions for the steel sheet of the present invention will be described. That is, in the steel sheet of the present invention, after the steel material having the above-described component composition is heated to 1000 ° C. or higher and 1300 ° C. or lower, hot rolling is performed at a reduction ratio of 3 or more and at least 2 passes of the final 3 passes. Manufacture can be performed by performing the rolling reduction at 10% or more per pass.
In the following description, the temperature “° C.” means the temperature at the center of the plate thickness.

[鋼素材の加熱温度:1000℃以上1300℃以下]
鋼素材を1000℃以上に加熱するのは、組織中の析出物を固溶させ、結晶粒径等を均一化するためであり、加熱温度としては、1000℃以上1300℃以下とする。加熱温度が900℃未満の場合、析出物が十分に固溶しないため所望の特性が得られない。また、1300℃以上の加熱は結晶粒径の粗大化による材質劣化に加えて、過剰なエネルギーが必要となり生産性が低下するため加熱温度の上限を1300℃とする。好ましくは1050℃以上1250℃以下、より好ましくは1100℃以上1250℃以下の範囲である。
[Heating temperature of steel material: 1000 ° C or higher and 1300 ° C or lower]
The reason why the steel material is heated to 1000 ° C. or higher is to dissolve precipitates in the structure and make the crystal grain size uniform, and the heating temperature is 1000 ° C. to 1300 ° C. When the heating temperature is less than 900 ° C., the desired properties cannot be obtained because the precipitate is not sufficiently dissolved. In addition, heating at 1300 ° C. or higher requires excessive energy in addition to material deterioration due to the coarsening of the crystal grain size, and the productivity is lowered. Therefore, the upper limit of the heating temperature is set to 1300 ° C. Preferably it is 1050 degreeC or more and 1250 degrees C or less, More preferably, it is the range of 1100 degreeC or more and 1250 degrees C or less.

なお、鋼素材としては、連続鋳造スラブのほか、造塊スラブやブルームなど定法で製造した素材を用いることができる。   In addition, as a steel material, the raw material manufactured by regular methods, such as an ingot slab and a bloom other than a continuous casting slab, can be used.

[熱間圧延における圧下比:3以上]
熱間圧延の圧下比が3未満では、鋳造欠陥の圧着によって板厚方向の引張特性の低下を抑制することが難しくなる。さらに、圧延によって再結晶を促進し整粒化を図ることも不十分となり、粗大なオーステナイト粒が残存してしまう結果、強度および靭性などの特性が劣化することから、圧下比を3以上に限定する。好ましくは、圧下比4以上、より好ましくは圧下比5以上とする。なお、圧下比の上限は特に制限する必要はないが、50以下とすることが好ましい。なぜなら、圧下比が50を超える場合、機械的特性の異方性が著しく大きくなるためである。
[Reduction ratio in hot rolling: 3 or more]
When the rolling reduction ratio of the hot rolling is less than 3, it is difficult to suppress a decrease in tensile properties in the thickness direction due to pressure bonding of casting defects. Furthermore, recrystallization is promoted by rolling, and it becomes insufficient for grain size reduction. As a result of remaining coarse austenite grains, properties such as strength and toughness deteriorate, so the rolling ratio is limited to 3 or more. To do. Preferably, the reduction ratio is 4 or more, more preferably, the reduction ratio is 5 or more. The upper limit of the rolling ratio is not particularly limited, but is preferably 50 or less. This is because when the rolling ratio exceeds 50, the anisotropy of the mechanical characteristics is remarkably increased.

ここで、熱間圧延における圧下比とは、圧延素材の板厚/圧延後の鋼板の板厚で定義される。   Here, the reduction ratio in hot rolling is defined as the thickness of the rolled material / the thickness of the steel sheet after rolling.

[最終3パスのうちの少なくとも2パスの圧下率が1パス当たり10%以上]
鋼板の材質を最終的に決定する最終3パスのうち、少なくとも2パスについては、1パス当たりの圧下率を10%以上とすることによって、まず、鋳造欠陥を確実に無害化し、さらに、鋼板全体の整粒化を図ることで異常粗大粒の残存を抑制することが可能となり、板厚方向の引張試験における絞り値が向上する結果、30%以上の絞り値を確保することができる。
[The reduction ratio of at least two of the last three passes is 10% or more per pass]
Of at least two passes among the final three passes that ultimately determine the material of the steel plate, the reduction rate per pass is set to 10% or more to first make the casting defects harmless, and further to the entire steel plate. By adjusting the grain size, it becomes possible to suppress the remaining of abnormally coarse grains, and as a result of improvement of the drawing value in the tensile test in the thickness direction, a drawing value of 30% or more can be secured.

すなわち、最終3パスのうち少なくとも2パスの圧下率を規制するのは、鋳造欠陥を確実に圧着するためである。従って、最終3パスの全てのパスの圧下率をそれぞれ10%以上とすることが好ましい。一方、最終3パスのうち少なくとも2パスの圧下率が10%未満であると、鋳造欠陥が残存し板厚中心部の絞り値が低下する。なお、圧下率の上限は特に定める必要はないが、圧延荷重などの設備制約から30%とすることが好ましい。   That is, the reason why the rolling reduction rate of at least two passes among the final three passes is regulated is to ensure that the casting defects are crimped. Therefore, it is preferable that the reduction ratios of all the last three passes be 10% or more. On the other hand, if the rolling reduction ratio of at least two passes among the final three passes is less than 10%, casting defects remain and the drawing value at the center of the plate thickness decreases. The upper limit of the rolling reduction is not particularly required, but is preferably 30% due to equipment constraints such as rolling load.

[熱間圧延後の冷却]
鋼板の強度および低温靭性など必要な特性を得るために、熱間圧延後水冷等を実施しても良い。
[Cooling after hot rolling]
In order to obtain necessary characteristics such as strength and low temperature toughness of the steel sheet, water cooling after hot rolling may be performed.

表1に示すNo.1〜26の鋼を溶製してスラブとした後、表2に示す製造条件により板厚が30〜50mmの鋼板とした。かくして得られた試料No.1〜30の鋼板を、次に示す引張試験に供した。この引張試験の結果を表2に併記する。   No. shown in Table 1. 1 to 26 steel was melted to form a slab, and then a steel sheet having a thickness of 30 to 50 mm was prepared according to the manufacturing conditions shown in Table 2. Sample No. obtained in this way. 1 to 30 steel plates were subjected to the following tensile tests. The results of this tensile test are also shown in Table 2.

Figure 0006566166
Figure 0006566166

Figure 0006566166
Figure 0006566166

板厚方向の引張試験による絞り値は、JIS G3199に準拠して評価した。試験片形状はTypeA試験片を用いた。 また、鋼板表面から板厚の1/4の深さ位置(以下、1/4t部という)から採取した丸棒引張試験片により引張強さを、1/4t部から採取したシャルピー試験片を用い−196℃におけるシャルピー吸収エネルギーを3本の平均値として評価した。   The drawing value by the tensile test in the plate thickness direction was evaluated according to JIS G3199. As the test piece shape, a Type A test piece was used. Also, using a round bar tensile test piece taken from a depth position of 1/4 of the plate thickness from the steel sheet surface (hereinafter referred to as 1/4 t part), the tensile strength was used, and a Charpy test piece taken from the 1/4 t part was used. The Charpy absorbed energy at −196 ° C. was evaluated as an average value of three.

本発明に合致する本発明例(試料No.1〜14)は絞りが30%以上を満足することを確認した。一方、本発明の範囲を外れる比較例(試料No.15〜30)は、引張強度、吸収エネルギーおよび絞りのいずれか一つ以上が本願の請求範囲外となっており、上述の目標性能を満足できない。   It was confirmed that the examples of the present invention (sample Nos. 1 to 14) consistent with the present invention satisfied the aperture of 30% or more. On the other hand, in Comparative Examples (Sample Nos. 15 to 30) that are out of the scope of the present invention, any one or more of tensile strength, absorbed energy, and drawing are outside the scope of claims of the present application, and satisfy the above target performance. Can not.

Claims (5)

質量%で、
C:0.20%以上0.70%以下、
Si:0.05%以上1.0%以下、
Mn:15%以上35%以下、
Al:0.1%以下、
Cr:0.70%以上8.0%以下、
N:0.0010%以上0.0500%以下、
P:0.03%以下および
S:0.005%以下
を含有し、残部Feおよび不可避的不純物の成分組成を有し、引張強度が600MPa以上かつ−196℃における吸収エネルギーが27J以上でさらに板厚方向の絞り値が30%以上である鋼板。
% By mass
C: 0.20% or more and 0.70% or less,
Si: 0.05% or more and 1.0% or less,
Mn: 15% or more and 35% or less,
Al: 0.1% or less,
Cr: 0.70% to 8.0%,
N: 0.0010% or more and 0.0500% or less,
P: 0.03% or less and S: 0.005% or less, having a component composition of the balance Fe and inevitable impurities, a tensile strength of 600 MPa or more, and an absorbed energy at −196 ° C. of 27 J or more, and further a plate A steel sheet having a drawing value in the thickness direction of 30% or more.
前記成分組成は、さらに、質量%で、
Nb:0.003%以上0.030%以下、
V:0.01%以上0.10%以下、
Ti:0.003%以上0.040%以下および
B:0.0003%以上0.0100%以下
から選択される1種または2種以上を含有する請求項1に記載の鋼板。
The component composition is further mass%,
Nb: 0.003% to 0.030%,
V: 0.01% or more and 0.10% or less,
The steel plate according to claim 1, containing one or more selected from Ti: 0.003% to 0.040% and B: 0.0003% to 0.0100%.
前記成分組成は、さらに、質量%で、
Cu:0.01%以上0.70%以下、
Ni:0.01%以上0.50%以下、
Sn:0.01%以上0.30%以下、
Sb:0.01%以上0.30%以下、
Mo:0.05%以上2.0%以下および
W:0.05%以上2.0%以下
から選択される1種または2種以上を含有する請求項1または2に記載の鋼板。
The component composition is further mass%,
Cu: 0.01% or more and 0.70% or less,
Ni: 0.01% or more and 0.50% or less,
Sn: 0.01% or more and 0.30% or less,
Sb: 0.01% or more and 0.30% or less,
The steel plate according to claim 1 or 2, containing one or more selected from Mo: 0.05% to 2.0% and W: 0.05% to 2.0%.
前記成分組成は、さらに、質量%で、
Ca:0.0005%以上0.0050%以下、
Mg:0.0005%以上0.0100%以下および
REM:0.0010%以上0.0200%以下
から選択される1種または2種以上を含有する請求項1、2または3に記載の鋼板。
The component composition is further mass%,
Ca: 0.0005% or more and 0.0050% or less,
The steel plate according to claim 1, 2 or 3, which contains one or more selected from Mg: 0.0005% to 0.0100% and REM: 0.0010% to 0.0200%.
請求項1から4のいずれかに記載の鋼板を製造する方法であって、鋼素材を1000℃以上1300℃以下に加熱したのち、熱間圧延を、圧下比:3以上、かつ最終3パスのうちの少なくとも2パスの圧下率が1パス当たり10%以上にて行う鋼板の製造方法。   A method for producing a steel sheet according to any one of claims 1 to 4, wherein the steel material is heated to 1000 ° C or higher and 1300 ° C or lower, and then hot rolling is performed at a reduction ratio of 3 or more and a final 3 passes. A method for producing a steel sheet, wherein the rolling reduction of at least two passes is 10% or more per pass.
JP2019502270A 2018-08-28 2018-08-28 Steel sheet and manufacturing method thereof Active JP6566166B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/031649 WO2020044421A1 (en) 2018-08-28 2018-08-28 Steel sheet and method for producing same

Publications (2)

Publication Number Publication Date
JP6566166B1 true JP6566166B1 (en) 2019-08-28
JPWO2020044421A1 JPWO2020044421A1 (en) 2020-09-10

Family

ID=67766640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019502270A Active JP6566166B1 (en) 2018-08-28 2018-08-28 Steel sheet and manufacturing method thereof

Country Status (9)

Country Link
EP (1) EP3835445A4 (en)
JP (1) JP6566166B1 (en)
KR (1) KR102524703B1 (en)
CN (1) CN112513304A (en)
BR (1) BR112021001870A2 (en)
MY (1) MY196194A (en)
PH (1) PH12021550411A1 (en)
SG (1) SG11202101409TA (en)
WO (1) WO2020044421A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681656A (en) * 1979-12-10 1981-07-03 Japan Steel Works Ltd:The Nonmagnetic steel for cryogenic temperature high magnetic field apparatus
JPH0813092A (en) * 1994-06-30 1996-01-16 Nkk Corp High mn nonmagnetic steel excellent in machinability and weldability
JP2005325387A (en) * 2004-05-13 2005-11-24 Kiyohito Ishida Low specific gravity iron alloy
JP2017008413A (en) * 2015-06-16 2017-01-12 新日鐵住金株式会社 Austenite stainless steel for low temperature hydrogen and manufacturing method therefor
JP2017066470A (en) * 2015-09-30 2017-04-06 新日鐵住金株式会社 Austenitic stainless steel
JP2017071817A (en) * 2015-10-06 2017-04-13 新日鐵住金株式会社 Thick steel sheet for low temperature and manufacturing method therefor
JP2017155300A (en) * 2016-03-03 2017-09-07 新日鐵住金株式会社 Thick steel sheet for low temperature and manufacturing method therefor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6078554B2 (en) 2011-12-27 2017-02-08 ポスコPosco Austenitic steel material excellent in cryogenic toughness in machinability and weld heat affected zone and method for producing the same
CN104152797A (en) * 2014-08-14 2014-11-19 燕山大学 Low-temperature plastic high manganese steel plate and processing method thereof
JP6645103B2 (en) 2014-10-22 2020-02-12 日本製鉄株式会社 High Mn steel material and method for producing the same
KR101647227B1 (en) * 2014-12-24 2016-08-10 주식회사 포스코 Low temperature steels having superior surface quality and method for production thereof
KR20160084529A (en) 2015-01-05 2016-07-14 (주)대한솔루션 Insulation for fuel filter of vehicle
JP6693217B2 (en) 2015-04-02 2020-05-13 日本製鉄株式会社 High Mn steel for cryogenic temperatures
WO2017213781A1 (en) * 2016-06-06 2017-12-14 Exxonmobil Research And Engineering Company High strength cryogenic high manganese steels and methods of making the same
CN106222554A (en) * 2016-08-23 2016-12-14 南京钢铁股份有限公司 A kind of economical steel used at ultra-low temperature and preparation method thereof
WO2018104984A1 (en) * 2016-12-08 2018-06-14 Jfeスチール株式会社 HIGH Mn STEEL SHEET AND PRODUCTION METHOD THEREFOR

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681656A (en) * 1979-12-10 1981-07-03 Japan Steel Works Ltd:The Nonmagnetic steel for cryogenic temperature high magnetic field apparatus
JPH0813092A (en) * 1994-06-30 1996-01-16 Nkk Corp High mn nonmagnetic steel excellent in machinability and weldability
JP2005325387A (en) * 2004-05-13 2005-11-24 Kiyohito Ishida Low specific gravity iron alloy
JP2017008413A (en) * 2015-06-16 2017-01-12 新日鐵住金株式会社 Austenite stainless steel for low temperature hydrogen and manufacturing method therefor
JP2017066470A (en) * 2015-09-30 2017-04-06 新日鐵住金株式会社 Austenitic stainless steel
JP2017071817A (en) * 2015-10-06 2017-04-13 新日鐵住金株式会社 Thick steel sheet for low temperature and manufacturing method therefor
JP2017155300A (en) * 2016-03-03 2017-09-07 新日鐵住金株式会社 Thick steel sheet for low temperature and manufacturing method therefor

Also Published As

Publication number Publication date
SG11202101409TA (en) 2021-03-30
EP3835445A4 (en) 2021-08-18
BR112021001870A2 (en) 2021-04-27
PH12021550411A1 (en) 2021-09-20
JPWO2020044421A1 (en) 2020-09-10
MY196194A (en) 2023-03-22
KR102524703B1 (en) 2023-04-21
CN112513304A (en) 2021-03-16
EP3835445A1 (en) 2021-06-16
KR20210035263A (en) 2021-03-31
WO2020044421A1 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
JP6460292B1 (en) High Mn steel and manufacturing method thereof
JP4718866B2 (en) High-strength refractory steel excellent in weldability and gas-cutting property and method for producing the same
JP6693185B2 (en) Method for manufacturing low temperature nickel steel sheet
JP6856129B2 (en) Manufacturing method of high Mn steel
JP6954475B2 (en) High Mn steel and its manufacturing method
JP2012207237A (en) 500 MPa YIELD STRENGTH THICK STEEL PLATE EXCELLENT IN TOUGHNESS IN MULTILAYER WELD ZONE AND PRODUCTION METHOD THEREOF
KR20090130334A (en) Ferrite heat resistant steel
JP6590117B1 (en) High Mn steel and manufacturing method thereof
JP7272438B2 (en) Steel material, manufacturing method thereof, and tank
JP5741454B2 (en) Ni-added steel sheet excellent in toughness and productivity in which Charpy test value at −196 ° C. is 100 J or more for both base metal and welded joint, and manufacturing method thereof
JP4276576B2 (en) Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness
WO2019059095A1 (en) Steel plate and method for manufacturing same
JP6566166B1 (en) Steel sheet and manufacturing method thereof
CN111788325B (en) High Mn steel and method for producing same
KR102387364B1 (en) High Mn steel and manufacturing method thereof
JP5151510B2 (en) Manufacturing method of high strength steel with excellent low temperature toughness and crack propagation stop properties
JPWO2020036090A1 (en) Steel plate and method of manufacturing the same
TWI671409B (en) Steel plate and method of manufacturing same
KR20150002956A (en) Steel sheet for line pipe and method of manufacturing the same
JP7273298B2 (en) Steel plates for pressure vessels with excellent low-temperature toughness
JP7281314B2 (en) Base material for clad steel, clad steel and method for producing clad steel
KR101467030B1 (en) Method for manufacturing high strength steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190117

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190312

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190715

R150 Certificate of patent or registration of utility model

Ref document number: 6566166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250