JP7273298B2 - Steel plates for pressure vessels with excellent low-temperature toughness - Google Patents

Steel plates for pressure vessels with excellent low-temperature toughness Download PDF

Info

Publication number
JP7273298B2
JP7273298B2 JP2019123450A JP2019123450A JP7273298B2 JP 7273298 B2 JP7273298 B2 JP 7273298B2 JP 2019123450 A JP2019123450 A JP 2019123450A JP 2019123450 A JP2019123450 A JP 2019123450A JP 7273298 B2 JP7273298 B2 JP 7273298B2
Authority
JP
Japan
Prior art keywords
less
toughness
content
amount
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019123450A
Other languages
Japanese (ja)
Other versions
JP2021008653A (en
Inventor
仁秀 吉村
洋志 熊谷
仁志 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019123450A priority Critical patent/JP7273298B2/en
Publication of JP2021008653A publication Critical patent/JP2021008653A/en
Application granted granted Critical
Publication of JP7273298B2 publication Critical patent/JP7273298B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、低温靱性に優れる圧力容器用鋼板に関する。 TECHNICAL FIELD The present invention relates to a pressure vessel steel plate having excellent low temperature toughness.

本発明は圧力容器、橋梁、建築、造船などの大型構造体に使用され、650℃×30時間後の溶接後熱処理後の-20℃でのJIS4号シャルピー衝撃吸収エネルギーの平均値が30J以上、降伏応力が485MPa以上、引張強さが620MPa以上795MPa以下であり、板厚120mm以上の高強度厚鋼板に関わり、特に低温靭性に優れるものに関する。 The present invention is used for large structures such as pressure vessels, bridges, buildings, and shipbuilding, and the average value of JIS 4 Charpy impact absorption energy at -20 ° C after post-welding heat treatment at 650 ° C for 30 hours is 30 J or more. The present invention relates to a high-strength steel plate having a yield stress of 485 MPa or more, a tensile strength of 620 MPa or more and 795 MPa or less, and a thickness of 120 mm or more, and particularly to a steel plate having excellent low temperature toughness.

用いられる鋼板は強度に加えて低温靭性が要求される。施工溶接時の残留応力を除去するための溶接後熱処理(Post Weld Heat Treatment 以下、PWHT)後の靭性が要求される。近年では圧力容器、構造体の大型化に伴い鋼板の高強度化、厚手化が求められており、PWHT後の靭性を確保することは難しくなっている。 The steel plate used is required to have low temperature toughness in addition to strength. Toughness after post-weld heat treatment (hereinafter referred to as PWHT) for removing residual stress during construction welding is required. In recent years, as pressure vessels and structures have increased in size, there has been a demand for higher strength and thicker steel sheets, making it difficult to ensure toughness after PWHT.

この種類の圧力容器用鋼の製造にあたっては、熱間圧延後の再加熱焼入れ、焼戻し熱処理が適用され厚手化に伴う板内の強度、靭性を確保するために合金元素を多く添加する。特許文献1には、ミクロ組織の平均旧オーステナイト粒径が50μm以下で、マルテンサイトおよび/またはベイナイト組織が面積分率で80%以上である板厚100mm以上の厚肉高靭性高張力鋼板に関する記載がある。 In the production of this type of pressure vessel steel, reheating, quenching, and tempering heat treatment are applied after hot rolling, and a large amount of alloying elements are added to ensure the strength and toughness of the plate as the thickness increases. Patent Document 1 describes a thick high-toughness high-strength steel sheet with a thickness of 100 mm or more having an average prior austenite grain size of 50 μm or less in the microstructure and a martensite and/or bainite structure having an area fraction of 80% or more. There is

昨今は更に使用環境の過酷化でPWHT条件の厳格化が進んでいる。例えば今回の「650℃×30時間」がそれにあたる。しかし板厚120mm以上で厳格化されたPWHT後における低温靭性条件(650℃×30時間後の溶接後熱処理後の-20℃でのJIS4号シャルピー衝撃吸収エネルギー(vE-20)の平均が30J以上)を満足している鋼板は言及されていない。 These days, the PWHT conditions are getting stricter due to the harsher usage environment. For example, this time "650°C x 30 hours" corresponds to it. However, the low-temperature toughness conditions after PWHT, which are stricter for plate thicknesses of 120 mm or more (650 ° C. × 30 hours after welding after heat treatment, the average of JIS 4 Charpy impact absorption energy (vE-20) at -20 ° C. is 30 J or more. ) are not mentioned.

特許第5928654号Patent No. 5928654

一般に、低温靱性低下による脆性破壊は、瞬時に構造物全体を崩壊させるため、避けるべき破壊形態である。PWHT後は不純物元素の濃化や合金炭化物の粗大化等により低温靱性が低下する。PWHT後の低温靱性を確保するためには、PWHTによる低温靱性低下を抑制する対策が必要となる。
この種類の高強度鋼板は、熱間圧延後の再加熱焼入、焼戻熱処理によって製造され、厚手化に伴う板内の強度、靱性を確保するために合金元素を多く添加する必要がある。一方で、鋼材合金コスト抑制、溶接部健全性確保の観点から合金元素の添加抑制が望まれている。
In general, brittle fracture due to low-temperature toughness reduction is a fracture mode that should be avoided because it instantly collapses the entire structure. After PWHT, the low-temperature toughness is lowered due to the concentration of impurity elements, the coarsening of alloy carbides, and the like. In order to secure the low temperature toughness after PWHT, it is necessary to take measures to suppress the deterioration of low temperature toughness due to PWHT.
This type of high-strength steel sheet is manufactured by reheating quenching and tempering heat treatment after hot rolling, and it is necessary to add a large amount of alloying elements in order to ensure the strength and toughness in the sheet due to the increase in thickness. On the other hand, it is desired to suppress the addition of alloying elements from the viewpoint of suppressing steel material alloy costs and ensuring the soundness of welded joints.

本発明は、このような従来の問題点を解決するものであって、合金元素を抑制しつつ、厳格化した650℃×30時間のPWHT後の強度、低温靱性を確保する低温靱性に優れる圧力容器用鋼板を提供するものである。 The present invention solves such conventional problems, and suppresses the alloying elements, and ensures the strength and low temperature toughness after stricter PWHT at 650 ° C. for 30 hours. Pressure excellent in low temperature toughness A steel plate for containers is provided.

本発明者らは、橋梁、建築、造船、圧力容器等の大型構造体向け引張強さ620MPa以上で板厚120mm以上の高強度厚鋼板について検討した。その結果、C、Cr、Moの添加を適正範囲にすることで、粗大炭化物サイズを制御し、上記目的を達成することができることを見出した。 The present inventors have studied high-strength steel plates having a tensile strength of 620 MPa or more and a plate thickness of 120 mm or more for large structures such as bridges, buildings, ships, and pressure vessels. As a result, it was found that the above object can be achieved by controlling the size of coarse carbides by adjusting the addition of C, Cr, and Mo within appropriate ranges.

本発明は、このような知見に基づいて完成したものである。本発明の要旨とするところは、以下のとおりである。 The present invention has been completed based on such findings. The gist of the present invention is as follows.

(1)質量%で、C:0.201~0.300%、Si:0.10~0.50%、Mn:1.00~1.80%、P:0.0200%以下、S:0.0100%以下、Ni:0.10~0.80%、Cr:0.10~0.80%、Mo:0.10~0.80%、Al:0.010~0.050%、N:0.0080%以下を含有し、残部Feおよび不純物からなり、Cの含有量[C]とCrの含有量[Cr]とMoの含有量[Mo]とがH=1000×([C]-0.3×[Mo])/(1+10×[Cr])+[Cr]<5.0を満足し、650℃×30時間の溶接後熱処理後の粗大炭化物が2.0μm以下、-20℃でのJIS4号シャルピー衝撃吸収エネルギーの平均値が30J以上、降伏応力が485MPa以上、引張強さが620MPa以上795MPa以下であり、板厚120mm以上であることを特徴とする圧力容器用鋼板。 (1) In mass %, C: 0.201 to 0.300%, Si: 0.10 to 0.50%, Mn: 1.00 to 1.80%, P: 0.0200% or less, S: 0.0100% or less, Ni: 0.10 to 0.80%, Cr: 0.10 to 0.80%, Mo: 0.10 to 0.80%, Al: 0.010 to 0.050%, N: contains 0.0080% or less, the balance is Fe and impurities, and the content of C [C], the content of Cr [Cr], and the content of Mo [Mo] is H = 1000 × ([C ]−0.3×[Mo]) 2 /(1+10×[Cr])+[Cr] 2 <5.0 is satisfied, and coarse carbide after heat treatment after welding at 650° C. for 30 hours is 2.0 μm or less. , The average value of JIS4 Charpy impact absorption energy at -20 ° C. is 30 J or more, the yield stress is 485 MPa or more, the tensile strength is 620 MPa or more and 795 MPa or less, and the plate thickness is 120 mm or more. steel plate.

(2)さらに質量%で、Cu:0.05~0.50%、Nb:0.01~0.10%、V:0.005~0.100%、Ti:0.005~0.100%、Ca:0.0003~0.0050%、Mg:0.0003~0.0050%、REM:0.0003~0.0100%のうち1種または2種以上を含有することを特徴とする、請求項1に記載の圧力容器用鋼板。 (2) Furthermore, in mass%, Cu: 0.05 to 0.50%, Nb: 0.01 to 0.10%, V: 0.005 to 0.100%, Ti: 0.005 to 0.100 %, Ca: 0.0003 to 0.0050%, Mg: 0.0003 to 0.0050%, and REM: 0.0003 to 0.0100%. , The steel plate for pressure vessel according to claim 1.

本発明によれば、厳格化したPWHT後でも、低温靭性が安定した圧力容器用鋼板を提供することができ、本発明は産業上の貢献が極めて顕著である。 According to the present invention, it is possible to provide a steel plate for pressure vessels that has stable low-temperature toughness even after stricter PWHT, and the present invention makes an extremely significant contribution to industry.

パラメータHと粗大炭化物サイズの関係を示すグラフである。4 is a graph showing the relationship between parameter H and coarse carbide size. 靭性と粗大炭化物サイズの関係を示すグラフである。4 is a graph showing the relationship between toughness and coarse carbide size.

本発明者らは、鋼板のPWHT後の靭性を向上させるために検討を行い、以下の(A)~(C)の知見を得た。以下に、本発明に係る鋼板及びその製造方法について説明する。以下、各化学成分の含有量の「%」表示は、「質量%」を意味する。 The present inventors conducted studies to improve the toughness of steel sheets after PWHT, and obtained the following findings (A) to (C). A steel sheet and a method for manufacturing the same according to the present invention will be described below. Hereinafter, the "%" display of the content of each chemical component means "% by mass".

(A)化学組成
C:0.201~0.300%
Cは、母材の強度確保のために必要な元素であり、本発明ではC量を0.201%以上とする。また、C量が0.201%未満であると、焼入性が低下し強度が不足する。一方、C量が0.300%を超えると、母材に加え、溶接熱影響部であるHAZ、なかでもFL近傍のHAZの靭性劣化が著しくなる。また強度が過大となる傾向も出てくる。したがって、C量の上限を0.300%とする。C量の好ましい上限は0.280%である。
(A) Chemical composition C: 0.201 to 0.300%
C is an element necessary for ensuring the strength of the base material, and the amount of C is made 0.201% or more in the present invention. On the other hand, if the amount of C is less than 0.201%, the hardenability deteriorates and the strength becomes insufficient. On the other hand, when the amount of C exceeds 0.300%, not only the base metal but also the HAZ, which is the weld heat affected zone, especially the HAZ near the FL deteriorates significantly in toughness. There is also a tendency for the strength to become excessive. Therefore, the upper limit of the amount of C is set to 0.300%. A preferable upper limit of the amount of C is 0.280%.

Si:0.10~0.50%
Siは、脱酸剤かつ強度確保のための元素であり、効果を得るためにSi量を0.10%以上とする。また、Siは、焼戻工程や溶接後熱処理で、過飽和に固溶しているマルテンサイト中からのセメンタイトへの分解析出反応を抑制する元素でもあり、好ましくはSi量を0.20%以上、より好ましくは0.25%以上とする。一方、Si量が0.50%を超えると、島状マルテンサイトが生成し、靭性が低下するため、上限を0.50%とする。好ましくは、Si量の上限を0.40%とし、より好ましくは0.35%とする。
Si: 0.10-0.50%
Si is a deoxidizer and an element for securing strength, and the amount of Si is made 0.10% or more to obtain the effect. In addition, Si is also an element that suppresses the decomposition and precipitation reaction to cementite from the supersaturated solid solution martensite in the tempering process and post-welding heat treatment, and the Si content is preferably 0.20% or more. , more preferably 0.25% or more. On the other hand, if the amount of Si exceeds 0.50%, island-shaped martensite is formed and the toughness decreases, so the upper limit is made 0.50%. Preferably, the upper limit of the amount of Si is 0.40%, more preferably 0.35%.

Mn:1.00~1.80%
Mnは、脱酸剤であり、また、焼入れ性を向上させる元素である。本発明では、母材及びHAZの強度を確保するために、Mn量を1.00%以上とする。好ましくはMn量を1.25%以上、より好ましくは1.35%以上とする。一方、Mn量が1.80%を超えると、偏析の増加、焼入れ性が過剰となるため強度が上昇、靱性が低下するため、Mn量の上限を1.80%とする。好ましくはMn量を1.70%以下、より好ましくは1.65%以下とする。
Mn: 1.00-1.80%
Mn is a deoxidizer and an element that improves hardenability. In the present invention, the amount of Mn is set to 1.00% or more in order to ensure the strength of the base material and HAZ. The Mn content is preferably 1.25% or more, more preferably 1.35% or more. On the other hand, if the Mn content exceeds 1.80%, the segregation increases and the hardenability becomes excessive, resulting in an increase in strength and a decrease in toughness. The Mn content is preferably 1.70% or less, more preferably 1.65% or less.

P:0.0200%以下
Pは不純物であり、粒界に偏析して靭性を低下させるため、P量を0.0200%以下とする。好ましくはP量を0.0080%以下とする。P量は少ないほど好ましいため、下限は特に規定しないが、製造コストの観点から、0.0010%以上を含有してもよい。
P: 0.0200% or less P is an impurity that segregates at grain boundaries and lowers toughness, so the amount of P is made 0.0200% or less. Preferably, the P content is 0.0080% or less. Although the lower limit is not particularly defined because the amount of P is preferably as small as possible, it may be contained in an amount of 0.0010% or more from the viewpoint of manufacturing costs.

S:0.0100%以下
Sは不純物であり、中心偏析を助長し、脆性破壊の起点となる延伸形状のMnSが生成する原因となることがあるため、S量を0.0100%以下とする。好ましくはS量を0.0050%以下とする。S量は少ないほど好ましいため、下限は特に規定しないが、製造コストの観点から、0.0010%以上を含有してもよい。
S: 0.0100% or less S is an impurity, promotes center segregation, and may cause the formation of elongated MnS that is the starting point of brittle fracture, so the S content is 0.0100% or less. . Preferably, the S content is 0.0050% or less. Although the lower limit is not particularly defined because the amount of S is preferably as small as possible, the amount of S may be 0.0010% or more from the viewpoint of manufacturing costs.

Ni:0.10~0.80%
Niは、靭性を確保するために重要な元素であり、0.10%以上を含有させる必要がある。より好ましくは、0.20%以上とする。一方、Niを過剰に含有させると、製造コストが上昇するのに加えて、焼入れ性が過剰となり却って母材の靭性が低下することがあるため、Ni量の上限は0.80%とする。好ましくはNi量を0.65%以下とし、より好ましくは0.60%以下とする。
Ni: 0.10-0.80%
Ni is an important element for ensuring toughness, and should be contained in an amount of 0.10% or more. More preferably, it is 0.20% or more. On the other hand, if Ni is included excessively, the production cost rises and the hardenability becomes excessive and the toughness of the base material may deteriorate, so the upper limit of the Ni content is 0.80%. The Ni content is preferably 0.65% or less, more preferably 0.60% or less.

Cr:0.10~0.80%
Crは焼入れ性の向上に寄与し、強度に影響を与える元素であり、0.10%以上を含有させる必要がある。より好ましくは、0.15%以上とする。一方、Crを過剰に含有させると、焼入れ性が過剰となり却って母材の靭性が低下することがあるため、Ni量の上限は0.80%とする。好ましくはCr量を0.75%以下とし、より好ましくは0.70%以下とする。
Cr: 0.10-0.80%
Cr is an element that contributes to improvement of hardenability and affects strength, and should be contained in an amount of 0.10% or more. More preferably, it is 0.15% or more. On the other hand, if Cr is contained excessively, the hardenability becomes excessive and the toughness of the base material may deteriorate, so the upper limit of the Ni content is made 0.80%. The Cr content is preferably 0.75% or less, more preferably 0.70% or less.

Mo:0.10~0.80%
Moは、母材の強度と靭性を向上させる元素であり、0.10%以上を含有させる必要がある。より好ましくはMo量を0.15%以上とする。一方、Mo量が過剰であると、母材の強度が上昇し、靱性を損なうことがあるため、Mo量を0.80%とする必要がある。好ましくは、Mo量を0.75以下とする。より好ましくは、Mo量を0.70以下とする。
Mo: 0.10-0.80%
Mo is an element that improves the strength and toughness of the base material and should be contained in an amount of 0.10% or more. More preferably, the Mo content is 0.15% or more. On the other hand, if the amount of Mo is excessive, the strength of the base material may increase and the toughness may be impaired, so the amount of Mo should be 0.80%. Preferably, the Mo content is 0.75 or less. More preferably, the Mo content is 0.70 or less.

Al:0.010~0.050%
Alは脱酸およびセメンタイト生成を抑制する元素であり、さらにピン止め粒子AlNとして細粒化にする。その効果を得るため0.010%以上とする。0.050%を超えると介在物が多くなり、靱性低下を招くことがあるためAl量は0.050%以下とする必要がある。
Al: 0.010-0.050%
Al is an element that suppresses deoxidation and cementite formation, and further refines the grains as pinning particles AlN. In order to obtain the effect, it is made 0.010% or more. If the Al content exceeds 0.050%, inclusions increase and the toughness may be lowered, so the Al content should be 0.050% or less.

N:0.0080%以下
Nは不純物であり、靭性を低下させるため、N量を0.0080%以下とする。好ましくは、N量を0.0060%以下、より好ましくは0.0050%以下とする。Nは、可能な範囲で低減することが好ましいが、脱窒のコストの観点から、N量を0.0001%以上としてもよい。
N: 0.0080% or less N is an impurity and lowers toughness, so the N content is made 0.0080% or less. Preferably, the N content is 0.0060% or less, more preferably 0.0050% or less. N is preferably reduced as much as possible, but from the viewpoint of denitrification cost, the N content may be 0.0001% or more.

更に、必要に応じて、Cu、Nb、V、Ti、Ca、Mg、REMの1種又は2種以上を含有してもよい。 Furthermore, one or more of Cu, Nb, V, Ti, Ca, Mg, and REM may be contained as necessary.

Cu:0.05~0.50%
Cuは、強度の上昇に寄与する元素であり、0.05%以上を含有させてもよい。より好ましくは、Cu量を0.15%以上とする。一方、Cuを過剰に含有させると、母材の靱性が低下することがあるため、Cu量の上限は0.50%とする。より好ましくはCu量を0.40%以下とする。
Cu: 0.05-0.50%
Cu is an element that contributes to an increase in strength, and may be contained in an amount of 0.05% or more. More preferably, the amount of Cu is 0.15% or more. On the other hand, if Cu is contained excessively, the toughness of the base metal may be lowered, so the upper limit of the amount of Cu is made 0.50%. More preferably, the amount of Cu is 0.40% or less.

Nb:0.01~0.10%
Nbは、ピン止め効果により組織を微細化し、低温靱性を向上させる元素であり、0.01%以上を含有させてもよい。より好ましくはNb量を0.02%以上とする。一方、過剰なNbを添加するとピン止め効果が飽和し、粗大な炭化物や窒化物析出による靱性劣化を招くことがあるためNb量は0.10%以下とする。好ましくは、Nb量を0.08%以下、より好ましくは、0.05%以下とする。
Nb: 0.01-0.10%
Nb is an element that refines the structure by a pinning effect and improves low-temperature toughness, and may be contained in an amount of 0.01% or more. More preferably, the Nb content is 0.02% or more. On the other hand, if an excessive amount of Nb is added, the pinning effect is saturated, and coarse carbides and nitrides precipitate, which may lead to deterioration of toughness. Preferably, the Nb content is 0.08% or less, more preferably 0.05% or less.

V:0.005~0.100%
Vは、母材の強度の向上に寄与する元素であり、0.005%以上を含有させてもよい。より好ましくはV量を0.020%以上とする。一方、過剰なVを添加しても効果が飽和し、靱性劣化を招くことがあるためV量は0.100%以下とする。好ましくは、V量を0.070以下、より好ましくは、0.060%以下とする。
V: 0.005-0.100%
V is an element that contributes to improving the strength of the base material, and may be contained in an amount of 0.005% or more. More preferably, the V content is 0.020% or more. On the other hand, even if an excessive amount of V is added, the effect is saturated and the toughness may deteriorate, so the amount of V should be 0.100% or less. Preferably, the V content is 0.070% or less, more preferably 0.060% or less.

Ti:0.005~0.100%
Tiは、脱酸に利用すると、Al、Ti、Mnからなる酸化物相を形成し、組織を微細化し強度に影響を与える効果が得られることから、0.005%以上のTiを含有させてもよい。より好ましくはTi量を0.007%以上とし、更に好ましくはTi量を0.010%以上とする。一方、Ti量が0.100%を超えると、Ti酸化物やTi-Al酸化物が形成されて靭性が低下することがあるため、Ti量は0.100%以下とする。より好ましくはTi量を0.080%以下とする。
Ti: 0.005 to 0.100%
When Ti is used for deoxidization, it forms an oxide phase composed of Al, Ti, and Mn, which has the effect of refining the structure and affecting the strength. good too. More preferably, the Ti content is 0.007% or more, and still more preferably 0.010% or more. On the other hand, if the Ti content exceeds 0.100%, Ti oxides and Ti—Al oxides are formed, which may reduce the toughness. More preferably, the Ti content is 0.080% or less.

Ca:0.0003~0.0050%
Caは、酸化物や硫化物の形態を制御する元素であり、好ましくは、Ca量を、0.0003%以上とする。より好ましくは、Ca量を、0.0005%以上、更に好ましくは0.0010%以上とする。Caは、過剰に添加すると効果が飽和し、介在物の形成によって靭性を損なうことがあるため、Ca量を0.0050%以下とする。
Ca: 0.0003-0.0050%
Ca is an element that controls the form of oxides and sulfides, and the amount of Ca is preferably 0.0003% or more. More preferably, the Ca content is 0.0005% or more, more preferably 0.0010% or more. When Ca is added excessively, the effect saturates and the toughness may be impaired by the formation of inclusions, so the amount of Ca is made 0.0050% or less.

Mg:0.0003~0.0050%
Mgは、酸化物や硫化物の形態を制御する元素であり、好ましくは、Mg量を、0.0003%以上とする。より好ましくは、Mg量を、0.0005%以上、更に好ましくは0.0010%以上とする。Mgは、過剰に添加すると効果が飽和し、介在物の形成によって靭性を損なうことがあるため、Mg量を0.0050%以下とする。
Mg: 0.0003-0.0050%
Mg is an element that controls the form of oxides and sulfides, and the Mg content is preferably 0.0003% or more. More preferably, the Mg content is 0.0005% or more, more preferably 0.0010% or more. When Mg is added excessively, the effect saturates and the toughness may be impaired by the formation of inclusions, so the Mg content is made 0.0050% or less.

REM:0.0003~0.0100%
REMは、酸化物や硫化物の形態を制御する元素であり、好ましくは、REMの総量を、0.0003%以上とする。より好ましくは、REMの総量を、0.0005%以上、更に好ましくは0.0010%以上とする。REMは、過剰に添加すると効果が飽和し、介在物の形成によって靭性を損なうことがあるため、REMの総量を0.0100%以下とする。なお、REMは入手の容易さなどから、Y,La、Ce、Nd,Pr,Smの1種または2種以上を用いることが好ましい。
REM: 0.0003-0.0100%
REM is an element that controls the form of oxides and sulfides, and the total amount of REM is preferably 0.0003% or more. More preferably, the total amount of REM is 0.0005% or more, more preferably 0.0010% or more. When REM is added excessively, the effect saturates and the toughness may be impaired by the formation of inclusions, so the total amount of REM is made 0.0100% or less. In addition, it is preferable to use one or more of Y, La, Ce, Nd, Pr, and Sm for REM in view of availability.

また、PWHTによる靭性劣化を抑制するには粗大炭化物サイズの抑制が重要であり、H=1000×([C]-0.3×[Mo])/(1+10×[Cr])+[Cr]と特定されるパラメータHがH<5.0となるように、好ましくはH<4.5となるようにC、Cr、Moの添加量を適正範囲に収める必要がある。図1にパラメータHと粗大炭化物サイズの関係を示す。なお、式中の[C]、[Cr]、[Mo]は各元素の含有量(質量%)である。 In order to suppress toughness deterioration due to PWHT, it is important to suppress the size of coarse carbides. ] The amount of C, Cr, and Mo added must be within an appropriate range so that the parameter H specified as 2 is H<5.0, preferably H<4.5. FIG. 1 shows the relationship between parameter H and coarse carbide size. [C], [Cr], and [Mo] in the formula are the contents (% by mass) of each element.

本発明の圧力容器用鋼板は、上記の成分のほか、残部がFeと不純物からなるものである。ここで、不純物とは、圧力容器用鋼板を工業的に製造する際に、鉱石やスクラップ等のような原料を始めとして、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。 The steel plate for pressure vessels of the present invention contains the above components, and the balance is Fe and impurities. The term "impurities" as used herein refers to components mixed in with various factors in the manufacturing process, including raw materials such as ores and scraps, when the steel plate for pressure vessels is industrially manufactured, which adversely affects the present invention. It means what is allowed as long as it does not give

(B)金属組織
650℃×30時間の溶接後熱処理後の粗大炭化物が2.0μm以下
鋼板中の粗大な炭化物は脆性破壊の起点となり、靱性を低下させる。粗大な炭化物が2.0μmを超えると靱性に悪影響である。図2に靭性と粗大炭化物サイズの関係を示す。ここで粗大炭化物サイズは、電解研磨後のx5000倍の走査型電子顕微鏡写真を10視野(視野サイズは20μm×15μm)以上観察し、炭化物の短径のうち上位10個の平均値とした。
(B) Metallographic structure Coarse carbides after heat treatment after welding at 650°C for 30 hours are 2.0 µm or less Coarse carbides in the steel sheet serve as starting points for brittle fracture and reduce toughness. If coarse carbides exceed 2.0 μm, toughness is adversely affected. FIG. 2 shows the relationship between toughness and coarse carbide size. Here, the coarse carbide size was obtained by observing 10 or more fields of view (field size: 20 µm × 15 µm) of 5000x scanning electron micrographs after electropolishing, and taking the average value of the top 10 shorter diameters of the carbides.

C.製造方法
本発明の圧力容器用鋼板の製造方法の一例について説明する。当該鋼板は造塊法によって製造した鋼塊あるいは連続鋳造法によって製造した鋳片を、圧延工程―焼入処理工程―焼戻工程(工程1~3)で製造することができ、以下、詳細に説明する。尚、熱間圧延に供する鋼片については、本発明の成分範囲であれば、格別にその鋳造条件を規定するものではなく、造塊-分塊スラブを鋼塊として用いてもよいし、連続鋳造スラブを用いてもよい。製造効率、歩留り及び省エネルギーの観点からは、連続鋳造スラブを用いることが好ましい。
C. Manufacturing Method An example of the manufacturing method of the steel plate for pressure vessels of the present invention will be described. The steel plate can be produced by rolling a steel ingot produced by an ingot casting method or a slab produced by a continuous casting method through a rolling process - a quenching treatment process - a tempering process (steps 1 to 3). explain. As for the steel slab to be hot-rolled, the casting conditions are not particularly specified as long as the composition is within the range of the present invention. Cast slabs may also be used. From the viewpoint of production efficiency, yield and energy saving, it is preferable to use a continuously cast slab.

C-1.圧延工程(工程1)
鋼片を再度1000~1250℃に加熱した後、圧下率50%以上で熱間圧延することが好ましい。熱間圧延前の加熱工程での加熱温度は組織粗大化の抑制のため1250℃以下とすることが好ましく、かつ圧延ロール負荷低減のため1000℃以上とすることが好ましい。圧延後は特に制約はなく空冷とする。
C-1. Rolling process (process 1)
It is preferable that the steel slab is heated again to 1000 to 1250° C. and then hot rolled at a rolling reduction of 50% or more. The heating temperature in the heating step before hot rolling is preferably 1,250° C. or lower to suppress coarsening of the structure, and is preferably 1,000° C. or higher to reduce the rolling roll load. After rolling, there are no particular restrictions, and air cooling is performed.

C-2.焼入処理工程(工程2)
熱間圧延後に一旦150℃以下まで冷却して800℃以上に再加熱してから、800-500℃間の冷却速度が1℃/ sec.以上の冷却速度で200℃以下まで冷却する。1℃/sec.未満での冷却もしくは200℃より高温での冷却停止では十分な焼入組織を得ることが困難となり強度を確保できない場合がある。
C-2. Quenching treatment process (process 2)
After hot rolling, the material is once cooled to 150°C or lower, reheated to 800°C or higher, and then cooled to 200°C or lower at a cooling rate of 1°C/sec. or higher between 800-500°C. Cooling at less than 1°C/sec. or stopping cooling at a temperature higher than 200°C makes it difficult to obtain a sufficient quenched structure, and strength may not be ensured.

C-3.焼戻工程(工程3)
焼入後、鋼板を650~730℃以下に加熱する焼戻しを行う。焼戻し後の冷却速度は特に制約はなく空冷とする。
C-3. Tempering process (process 3)
After quenching, tempering is performed by heating the steel sheet to 650 to 730°C or less. There are no particular restrictions on the cooling rate after tempering, and air cooling is used.

以下、実施例により、本発明を更に詳しく説明する。 EXAMPLES The present invention will be described in more detail below with reference to examples.

表1に示す化学組成を有する鋼1~48の鋼片を用い、表2に示す製造条件にて、表3に示す板厚120~210mmの圧力容器用鋼材を作製した。なお、熱間圧延は50%以上の圧下率で製造した。その後650℃×30時間の溶接後熱処理を施した。そして、鋼材中の粗大炭化物サイズを測定した。母材特性として引張特性(降伏強度、引張強さ)を、靭性として-20℃の2mmVノッチシャルピー衝撃吸収エネルギー(vE-20)を評価した。得られた測定値を表3に示す。なお各試験片は板厚1/4tから採取した。評価は降伏強度(YP)が485MPa未満、引張強度(TS)が620MPa未満もしくは795MPaを超える場合を不合格とした。また、-20℃でのJIS4号シャルピー衝撃吸収エネルギー(vE-20)を3本測定し、平均値が30J未満の場合を不合格とした。 Using steel slabs of steels 1 to 48 having the chemical compositions shown in Table 1, under the manufacturing conditions shown in Table 2, steel materials for pressure vessels with plate thicknesses of 120 to 210 mm shown in Table 3 were produced. In addition, the hot rolling was performed at a rolling reduction of 50% or more. After that, post-welding heat treatment was performed at 650° C. for 30 hours. Then, the size of coarse carbides in the steel material was measured. Tensile properties (yield strength, tensile strength) were evaluated as base material properties, and 2 mm V notch Charpy impact absorption energy (vE -20 ) at -20°C was evaluated as toughness. Table 3 shows the measured values obtained. Each test piece was taken from a plate thickness of 1/4t. In the evaluation, a yield strength (YP) of less than 485 MPa and a tensile strength (TS) of less than 620 MPa or more than 795 MPa were rejected. In addition, the JIS No. 4 Charpy impact absorption energy (vE-20) at -20°C was measured for three samples, and the average value of less than 30J was considered unacceptable.

Figure 0007273298000001
Figure 0007273298000001

Figure 0007273298000002
Figure 0007273298000002

Figure 0007273298000003
Figure 0007273298000003

表3から、本発明例に係る圧力容器用鋼材は、母材強度、靭性に優れており、圧力容器用材料として優れていることが分かる。 From Table 3, it can be seen that the steel materials for pressure vessels according to the examples of the present invention are excellent in base material strength and toughness, and are excellent as materials for pressure vessels.

これに対して、本発明で規定する条件を満足しない比較例では、母材強度、靭性において目的とする特性が得られないことが分かる。 On the other hand, it can be seen that the comparative examples, which do not satisfy the conditions specified in the present invention, cannot achieve the target properties in terms of base material strength and toughness.

Claims (2)

質量%で、C:0.201~0.300%、Si:0.10~0.50%、Mn:1.00~1.80%、P:0.0200%以下、S:0.0100%以下、Ni:0.10~0.80%、Cr:0.10~0.80%、Mo:0.10~0.80%、Al:0.010~0.050%、N:0.0080%以下を含有し、残部Feおよび不純物からなり、Cの含有量[C]とCrの含有量[Cr]とMoの含有量[Mo]とがH=1000×([C]-0.3×[Mo])/(1+10×[Cr])+[Cr]<5.0を満足し、650℃×30時間の溶接後熱処理後の粗大炭化物が2.0μm以下、-20℃でのJIS4号シャルピー衝撃吸収エネルギーの平均値が30J以上、降伏応力が485MPa以上、引張強さが620MPa以上795MPa以下であり、板厚120mm以上であることを特徴とする圧力容器用鋼板。 % by mass, C: 0.201 to 0.300%, Si: 0.10 to 0.50%, Mn: 1.00 to 1.80%, P: 0.0200% or less, S: 0.0100 % or less, Ni: 0.10 to 0.80%, Cr: 0.10 to 0.80%, Mo: 0.10 to 0.80%, Al: 0.010 to 0.050%, N: 0 .0080% or less, the balance is Fe and impurities, and the content of C [C], the content of Cr [Cr], and the content of Mo [Mo] is H = 1000 × ([C]-0 .3 × [Mo]) 2 / (1 + 10 × [Cr]) + [Cr] 2 <5.0, coarse carbides after heat treatment after welding at 650 ° C. for 30 hours are 2.0 μm or less, −20 A steel plate for a pressure vessel, having an average value of JIS4 Charpy impact absorption energy at °C of 30 J or more, a yield stress of 485 MPa or more, a tensile strength of 620 MPa or more and 795 MPa or less, and a plate thickness of 120 mm or more. さらに質量%で、Cu:0.05~0.500%、Nb:0.01~0.10%、V:0.005~0.100%、Ti:0.005~0.100%、Ca:0.0003~0.0050%、Mg:0.0003~0.0050%、REM:0.0003~0.0100%のうち1種または2種以上を含有することを特徴とする、請求項1に記載の圧力容器用鋼板。 Furthermore, in mass%, Cu: 0.05 to 0.500%, Nb: 0.01 to 0.10%, V: 0.005 to 0.100%, Ti: 0.005 to 0.100%, Ca : 0.0003 to 0.0050%, Mg: 0.0003 to 0.0050%, and REM: 0.0003 to 0.0100%. 2. The steel plate for pressure vessels according to 1.
JP2019123450A 2019-07-02 2019-07-02 Steel plates for pressure vessels with excellent low-temperature toughness Active JP7273298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019123450A JP7273298B2 (en) 2019-07-02 2019-07-02 Steel plates for pressure vessels with excellent low-temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019123450A JP7273298B2 (en) 2019-07-02 2019-07-02 Steel plates for pressure vessels with excellent low-temperature toughness

Publications (2)

Publication Number Publication Date
JP2021008653A JP2021008653A (en) 2021-01-28
JP7273298B2 true JP7273298B2 (en) 2023-05-15

Family

ID=74198571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019123450A Active JP7273298B2 (en) 2019-07-02 2019-07-02 Steel plates for pressure vessels with excellent low-temperature toughness

Country Status (1)

Country Link
JP (1) JP7273298B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102392195A (en) 2011-12-15 2012-03-28 钢铁研究总院 High-strength high-toughness nuclear power pressure vessel forging steel and its manufacturing method
JP2012188747A (en) 2011-02-24 2012-10-04 Kobe Steel Ltd Forged steel material for nuclear power generation devices, and welded structure for nuclear power generation devices
JP2014201815A (en) 2013-04-09 2014-10-27 Jfeスチール株式会社 Thick steel sheet excellent in low temperature toughness of sheet thickness center part after pwht and manufacturing method therefor
CN105603323A (en) 2016-03-07 2016-05-25 舞阳钢铁有限责任公司 Large-thickness high-strength high-toughness NM360 steel plate and production method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162758A (en) * 1984-02-01 1985-08-24 Kawasaki Steel Corp High-toughness steel for welded structure having very large thickness

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012188747A (en) 2011-02-24 2012-10-04 Kobe Steel Ltd Forged steel material for nuclear power generation devices, and welded structure for nuclear power generation devices
CN102392195A (en) 2011-12-15 2012-03-28 钢铁研究总院 High-strength high-toughness nuclear power pressure vessel forging steel and its manufacturing method
JP2014201815A (en) 2013-04-09 2014-10-27 Jfeスチール株式会社 Thick steel sheet excellent in low temperature toughness of sheet thickness center part after pwht and manufacturing method therefor
CN105603323A (en) 2016-03-07 2016-05-25 舞阳钢铁有限责任公司 Large-thickness high-strength high-toughness NM360 steel plate and production method thereof

Also Published As

Publication number Publication date
JP2021008653A (en) 2021-01-28

Similar Documents

Publication Publication Date Title
JP6779320B2 (en) Clad steel sheet with excellent strength and formability and its manufacturing method
JP5924058B2 (en) High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same
JP5846311B2 (en) Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same
JP5267048B2 (en) Manufacturing method of thick steel plate with excellent weldability and ductility in the thickness direction
KR20190134704A (en) High Mn steel and its manufacturing method
JP5217385B2 (en) Steel sheet for high toughness line pipe and method for producing the same
JP7063364B2 (en) High Mn steel
JP7236540B2 (en) Steel material excellent in toughness of welded heat affected zone and method for producing the same
JP6245352B2 (en) High-tensile steel plate and manufacturing method thereof
JP6311633B2 (en) Stainless steel and manufacturing method thereof
JP6750747B2 (en) High Mn steel and manufacturing method thereof
JP5630321B2 (en) High-tensile steel plate with excellent toughness and manufacturing method thereof
JP6036645B2 (en) Ferritic-martensitic duplex stainless steel with excellent low-temperature toughness and method for producing the same
JP4998708B2 (en) Steel material with small material anisotropy and excellent fatigue crack propagation characteristics and method for producing the same
JP4276576B2 (en) Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness
JP2012188749A (en) Thick steel plate with high toughness in multi-pass welded part and multi-pass welded joint
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP7273298B2 (en) Steel plates for pressure vessels with excellent low-temperature toughness
JP6856083B2 (en) High Mn steel and its manufacturing method
JP5151510B2 (en) Manufacturing method of high strength steel with excellent low temperature toughness and crack propagation stop properties
JP2007277697A (en) High tensile strength thick steel plate having excellent fatigue crack propagation resistance and brittle crack propagation arrest property and its production method
JP2007302977A (en) Method for manufacturing high-strength steel of tensile strength of 570 mpa class having excellent toughness of weld heat affected zone
WO2019168172A1 (en) HIGH Mn STEEL AND METHOD FOR PRODUCING SAME
JP7315874B2 (en) thick steel plate
RU2368692C2 (en) Steel, allowing perfect impact elasticity in area of thermal influence of heating during welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220303

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230315

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230410

R151 Written notification of patent or utility model registration

Ref document number: 7273298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151