JP2007302977A - Method for manufacturing high-strength steel of tensile strength of 570 mpa class having excellent toughness of weld heat affected zone - Google Patents

Method for manufacturing high-strength steel of tensile strength of 570 mpa class having excellent toughness of weld heat affected zone Download PDF

Info

Publication number
JP2007302977A
JP2007302977A JP2006135085A JP2006135085A JP2007302977A JP 2007302977 A JP2007302977 A JP 2007302977A JP 2006135085 A JP2006135085 A JP 2006135085A JP 2006135085 A JP2006135085 A JP 2006135085A JP 2007302977 A JP2007302977 A JP 2007302977A
Authority
JP
Japan
Prior art keywords
less
strength
affected zone
toughness
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006135085A
Other languages
Japanese (ja)
Other versions
JP4469353B2 (en
Inventor
Masatake Mizoguchi
昌毅 溝口
Masaaki Fujioka
政昭 藤岡
Manabu Hoshino
学 星野
Yoichi Tanaka
洋一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006135085A priority Critical patent/JP4469353B2/en
Publication of JP2007302977A publication Critical patent/JP2007302977A/en
Application granted granted Critical
Publication of JP4469353B2 publication Critical patent/JP4469353B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturinga high-strength steel of tensile strength of 570 MPa class having excellent toughness of a weld heat affected zone with unexperienced low alloy component and at high productivity. <P>SOLUTION: In the method for manufacturing the high-strength steel of tensile strength of 570 MPa class having excellent toughness of the weld heat affected zone, a steel slab having the composition consisting of, by mass, ≥0.005% and <0.030% C, 0.001-0.105% Si, 0.01-2.0% Mn, 0.001-0.10% Nb, 0.001-0.10% Al, and 0.0001 to 0.010% N with the weld cracking parameter PCM being ≤0.25, and the balance Fe with inevitable impurities is heated to 1,020-1,300°C, and rolled so that the cumulative draft in the temperature range of ≤1,020°C and >920°C is >60%, and the cumulative draft below Ar<SB>3</SB>point is 15-95%, and cooled after the rolling. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、建築、造船、橋梁および土木等の各分野に用いられる、溶接熱影響部の靭性に優れる引張強さ570MPa級高強度鋼材の製造方法に関するものである。   The present invention relates to a method for producing a high strength steel material having a tensile strength of 570 MPa class which is excellent in the toughness of a weld heat affected zone used in various fields such as architecture, shipbuilding, bridges, and civil engineering.

近年、船舶や建築物等の鋼構造物の大型化に伴い、使用される鋼材の高強度化が進行している。高強度鋼材を使用することで、鋼材の使用量を減らすことができるため、構造物内の空間の拡大や重量の低減といったメリットが得られる。   In recent years, with the increase in the size of steel structures such as ships and buildings, the strength of steel materials used has been increasing. By using high-strength steel material, the amount of steel material used can be reduced, so that advantages such as expansion of the space in the structure and reduction in weight can be obtained.

従来、高強度鋼材を製造するにあたっては、実製造上で安定的に強度と靭性を得るために、加速冷却による焼入れを行った後に焼戻し熱処理を行う方法にて製造するのが一般的である。例えば、特許文献1には、鋼板を圧延後、オフラインで再加熱して焼入れし、さらに焼戻し熱処理を行う発明が開示されている。また、特許文献3、4および5には、鋼板を圧延後、オンラインで焼入れを行い、さらにオフラインで焼戻し熱処理を行う発明が示されている。   Conventionally, when manufacturing high-strength steel materials, in order to stably obtain strength and toughness in actual manufacturing, it is common to manufacture by a method of performing tempering heat treatment after quenching by accelerated cooling. For example, Patent Document 1 discloses an invention in which a steel sheet is rolled, reheated and quenched offline, and further subjected to tempering heat treatment. Patent Documents 3, 4 and 5 disclose inventions in which a steel sheet is rolled, then quenched online, and further subjected to tempering heat treatment offline.

しかし、オフラインの焼戻し熱処理は一般に製造時間の増大を招くために生産性の低下が問題となる。そのため、さらに生産性の向上を目差した開発が行われている。例えば、特許文献5には、焼戻し熱処理を行うための加熱炉に誘導加熱方式を用いることで、熱処理時間を短縮する発明が開示されている。   However, the off-line tempering heat treatment generally causes an increase in manufacturing time, so that a decrease in productivity becomes a problem. For this reason, development aimed at further improving productivity is being carried out. For example, Patent Document 5 discloses an invention in which a heat treatment time is shortened by using an induction heating method in a heating furnace for performing a tempering heat treatment.

また、生産性向上のために、焼戻し熱処理自体を省略する製造プロセスの開発も行われている。例えば、特許文献6には、高強度鋼材を製造する方法において、750℃以上で圧延を行い、その後加速冷却を450℃以下の温度まで行う発明が開示されている。また、特許文献7には、高強度鋼材を製造する方法において、1020℃未満、920℃超の範囲で累積圧下率が15%以下となるように圧延を行い、920℃以下、860℃以上の範囲で累積圧下率が20%以上、50%以下となるように圧延を行い、その後800℃以上から加速冷却を行い、700℃以下、600℃以上の範囲で加速冷却を停止する発明が開示されている。また、特許文献8には、高強度鋼材を製造する方法において、Ar3点以上で圧延を行い、その後加速冷却を行い580〜450℃の温度範囲で加速冷却を停止する発明が開示されている。また、特許文献9には、高強度鋼材を製造する方法において、Ar3−10〜Ar1+10℃の範囲で16%以上、30%以下の圧延を行い、Ar1点+50以下、Ar1点+10℃以上の範囲で仕上圧延を行ない、その後空冷する発明が開示されている。また、特許文献10には、高強度鋼材を製造する方法において、800℃以上の温度域で圧延を行い、その後冷却する発明が開示されている。さらに、特許文献11には、高強度鋼材を製造する方法において、800℃以下での全圧下量を5〜15mmとし、Ar3点以下で圧延を終了する発明が開示されている。 In addition, in order to improve productivity, manufacturing processes that omit the tempering heat treatment itself have been developed. For example, Patent Document 6 discloses an invention in which rolling is performed at 750 ° C. or higher and accelerated cooling is performed to a temperature of 450 ° C. or lower in a method for manufacturing a high-strength steel material. Further, in Patent Document 7, in a method for producing a high-strength steel material, rolling is performed so that the cumulative reduction ratio is 15% or less in a range of less than 1020 ° C. and more than 920 ° C., and 920 ° C. or less and 860 ° C. or more. An invention is disclosed in which rolling is performed so that the cumulative reduction ratio is 20% or more and 50% or less in a range, and then accelerated cooling is performed from 800 ° C or more, and accelerated cooling is stopped in a range of 700 ° C or less and 600 ° C or more. ing. Patent Document 8 discloses an invention in which, in a method for producing a high-strength steel material, rolling is performed at an Ar 3 point or higher, then accelerated cooling is performed, and accelerated cooling is stopped in a temperature range of 580 to 450 ° C. . Further, in Patent Document 9, in a method for producing a high-strength steel material, rolling is performed at 16% or more and 30% or less in the range of Ar 3 −10 to Ar 1 + 10 ° C., Ar 1 point +50 or less, Ar 1 point An invention is disclosed in which finish rolling is performed in a range of + 10 ° C. or higher and then air cooling is performed. Patent Document 10 discloses an invention in which rolling is performed in a temperature range of 800 ° C. or higher and then cooled in a method for producing a high-strength steel material. Furthermore, Patent Document 11 discloses an invention in which, in a method for producing a high-strength steel material, the total reduction amount at 800 ° C. or less is set to 5 to 15 mm, and the rolling is finished at an Ar 3 point or less.

特開平01−149923号公報JP-A-01-149923 特開昭52−081014号公報JP 52-081014 A 特開昭63−033521号公報JP-A-63-033521 特開平02−205627号公報Japanese Patent Laid-Open No. 02-205627 特開2002−317227号公報JP 2002-317227 A 特開2004−232056号公報JP 2004-232056 A 特開2005−126819号公報Japanese Patent Laid-Open No. 2005-126819 特許第2776174号公報Japanese Patent No. 2776174 特開平08−188823号公報Japanese Patent Laid-Open No. 08-188823 特開平11−269602号公報JP-A-11-269602 特開平05−171271号公報Japanese Patent Laid-Open No. 05-171271

しかしながら、上記の特許文献1〜4に開示された発明では、鋼板の製造過程においてオフラインでの焼戻し熱処理が必要であり、そのために生産性の低下が避けられないという問題がある。また、特許文献5に記載の発明では、誘導加熱によるオンラインでの急速加熱の焼戻しを行うために、強度範囲によらず生産性向上が図れる点において有利であるが、紹介されている誘導加熱炉の導入に非常に大きな設備投資が必要であるという問題がある。また、特許文献6に記載の発明では、加速冷却の冷却速度や停止温度の変動による強度の変化を抑えるために、C量を0.03%以下に制限しており、その焼入れ性を補うためにMnが1.5%以上、Moが0.2%以下、さらにBが0.0003%以上というように合金元素を多く利用している。その結果、合金コストが高くなるという問題点がある。また、特許文献7に記載の発明では、加速冷却の冷却速度や停止温度の変動による強度の変化を抑えるために、C量を0.03%以上、0.07%以下に制限しており、加速冷却を用いる場合は高い生産性で製造が可能であるが、該当成分系で加速冷却を用いない場合は、熱間圧延の仕上温度を低くする必要があり、生産性が低下するという問題がある。また、特許文献8に記載の発明では、強度確保のために、C量が、規定では0.01〜0.20%、さらに実施例では0.04〜0.18%となっており、C量が多いために、この成分系では、加速冷却の冷速や停止温度の変動により、鋼材の強度が必ずしも安定せず、実製造プロセスには適用し難いという問題がある。また、特許文献9に記載の発明では、強度確保のためにC量を0.10%以上、Moを0.10%以上、Bを0.0005%以上に規定する等、合金添加量が多いために、合金コストが高いという問題や、溶接割れの問題があり、さらには、溶接時の熱影響部の靭性が低下するという問題もある。また、特許文献10に記載の発明では、仕上圧延をAr3点以上で行うため、YSおよびTSを確保するためには、必要以上に合金元素を多量に添加する必要があるという問題がある。また、特許文献11に記載の発明では、C量を0.03〜0.20%、Si量を0.10〜0.60%、Mnを0.90〜2.50%とする等、合金添加量が多いために、溶接割れ性に問題がある、さらには溶接時の熱影響部の靭性が低下するという問題等がある。 However, in the inventions disclosed in the above Patent Documents 1 to 4, offline tempering heat treatment is necessary in the manufacturing process of the steel sheet, and there is a problem in that a decrease in productivity is inevitable. The invention described in Patent Document 5 is advantageous in that productivity can be improved regardless of the strength range in order to perform online rapid tempering by induction heating. There is a problem that a very large capital investment is required to introduce the system. Further, in the invention described in Patent Document 6, the C content is limited to 0.03% or less in order to suppress the change in strength due to the variation in the cooling rate of the accelerated cooling and the stop temperature, so as to supplement the hardenability. In addition, Mn is 1.5% or more, Mo is 0.2% or less, and B is 0.0003% or more. As a result, there is a problem that the alloy cost is increased. Further, in the invention described in Patent Document 7, the C amount is limited to 0.03% or more and 0.07% or less in order to suppress a change in strength due to a change in the cooling rate of the accelerated cooling or the stop temperature. When accelerated cooling is used, it is possible to manufacture with high productivity. However, when accelerated cooling is not used in the corresponding component system, it is necessary to lower the hot rolling finishing temperature, and there is a problem that productivity decreases. is there. In addition, in the invention described in Patent Document 8, in order to ensure strength, the C amount is 0.01 to 0.20% by definition, and 0.04 to 0.18% in the examples. Due to the large amount, this component system has a problem that the strength of the steel material is not necessarily stabilized due to the cold speed of the accelerated cooling and the fluctuation of the stop temperature, and is difficult to apply to the actual manufacturing process. In addition, in the invention described in Patent Document 9, the alloy addition amount is large, such as defining C amount to be 0.10% or more, Mo to be 0.10% or more, and B to be 0.0005% or more in order to ensure strength. Therefore, there are a problem that the alloy cost is high, a problem of weld cracking, and a problem that the toughness of the heat-affected zone during welding is lowered. Moreover, in the invention described in Patent Document 10, since finish rolling is performed at Ar 3 points or more, there is a problem that it is necessary to add an excessive amount of alloy elements more than necessary in order to secure YS and TS. Further, in the invention described in Patent Document 11, an alloy such as C amount of 0.03 to 0.20%, Si amount of 0.10 to 0.60%, Mn of 0.90 to 2.50%, etc. Since there are many addition amounts, there exists a problem in a weld cracking property, and also the problem that the toughness of the heat affected zone at the time of welding falls.

そこで、本発明は、上記の問題点を有利に解決して、従来に無い低合金成分且つ高い生産性にて、溶接熱影響部の靭性に優れる引張強さ570MPa級高強度鋼材の製造方法を提供することを目的とするものである。   Therefore, the present invention advantageously solves the above-described problems, and provides a method for producing a high strength steel material having a tensile strength of 570 MPa class that has an unprecedented low alloy component and high productivity and is excellent in the toughness of the weld heat affected zone. It is intended to provide.

本発明者らは、引張強さ570MPa級高強度鋼材の製造方法に関し、熱間圧延後に空冷することで高い生産性を確保できる製造方法について、実験と解析を通して鋭意研究開発を重ねてきた。その結果、熱間圧延ままで高強度鋼材を製造するプロセスにおいて、鋼のYSおよびTSを支配する因子を明確化し、従来と比べて高い生産性で、低合金成分にて、高強度鋼材を製造するための知見を得た。   The inventors of the present invention have conducted extensive research and development through experiments and analyzes on a method for producing a high strength steel material having a tensile strength of 570 MPa class, which can ensure high productivity by air cooling after hot rolling. As a result, in the process of manufacturing high-strength steel materials as they are hot-rolled, the factors governing YS and TS of steel are clarified, and high-strength steel materials are manufactured with low productivity and higher productivity than before. The knowledge to do was obtained.

すなわち、引張強さ570MPa級以上の高強度鋼材を製造するにあたり、熱間圧延ままで450MPa以上の高いYSを確保するためには、Ar3点の直上の制御圧延による組織の細粒化による強度上昇よりも、Ar3点以下でのフェライト、ベイナイト、およびパーライト等の変態後の組織を圧延することによる加工強化の方が、実製造上、有効である。 That is, in producing high strength steel materials with a tensile strength of 570 MPa or higher, in order to ensure a high YS of 450 MPa or higher in hot rolling, the strength by refining the structure by controlled rolling immediately above the Ar 3 point Rather than the increase, the work strengthening by rolling the transformed structure such as ferrite, bainite, pearlite or the like below the Ar 3 point is more effective in actual production.

一般に、引張強さ570MPa級以上の高強度鋼材の製造では、鋼の焼入れ性を高めることを狙って合金元素の成分設計を行う。しかし、焼入れ性を高める合金元素にはAr3点を低下させるものが多い。そのため、Ar3点以下での圧延による加工強化を利用する際には、鋼片の温度が下がるのを待つ時間が長くなり、生産性の低下を招くという問題があること、および、圧延温度の低下に伴い、超音波探傷を行う際の音響異方性が増大する、という問題がある。 In general, in the production of high strength steel materials having a tensile strength of 570 MPa class or higher, the alloy elements are designed with the aim of improving the hardenability of the steel. However, many alloying elements that improve hardenability reduce the Ar 3 point. Therefore, when using the processing strengthening by rolling at Ar 3 or less, there is a problem that the time for waiting for the temperature of the steel slab to decrease is increased, resulting in a decrease in productivity, and the rolling temperature. Along with the decrease, there is a problem that the acoustic anisotropy at the time of ultrasonic flaw detection increases.

また、本発明者らの検討により、Ar3点が低下すると、合金元素の加工誘起析出による析出強化量の低下を招くために、Ar3点以下での圧延による加工強化量が低下する問題が判明している。さらに、Ar3点の低い成分系の場合は上降伏点が消失し易いが、本発明者らの検討により、このような成分系の場合は、Ar3点以下での圧延を大きく行っても上降伏点が回復し難いことが分かっている。そのために高いYSを確保するための熱間圧延条件が厳しくなる。 Further, as a result of studies by the present inventors, when the Ar 3 point is lowered, the amount of precipitation strengthening due to work-induced precipitation of alloy elements is reduced, so that the amount of work strengthening due to rolling below the Ar 3 point is reduced. It turns out. Furthermore, in the case of a component system having a low Ar 3 point, the upper yield point tends to disappear. However, in the case of such a component system, even if rolling is performed largely below the Ar 3 point, the inventors have studied. It is known that the upper yield point is difficult to recover. Therefore, the hot rolling conditions for ensuring high YS become severe.

その他、焼入れ性を高める合金元素の多量の添加により、組織中の島状MAの生成量を増大させ、これがYSの低下を招くということが知られている。従って、引張強さ570MPa級以上の高強度鋼材を従来にない低合金系且つ高い生産性で製造するために、従来の高強度鋼の成分設計とは異なり、焼入れ性を向上する元素の添加を極力避けてAr3点を上昇させること、および島状MAの生成を抑制すること、さらに、Ar3点以下での強化量を増大させるために、フェライトおよびベイナイト中での加工誘起析出の速度が速い合金元素を積極的に利用すること、が非常に有効であるとの結論に至った。 In addition, it is known that addition of a large amount of alloying elements that enhance hardenability increases the amount of island-shaped MA produced in the structure, which leads to a decrease in YS. Therefore, in order to produce high-strength steel materials with a tensile strength of 570 MPa or higher with a low alloy system and high productivity that are not conventional, unlike conventional high-strength steel component designs, elements that improve hardenability are added. In order to increase the Ar 3 point while avoiding it as much as possible, to suppress the formation of island MA, and to increase the amount of strengthening below the Ar 3 point, the rate of work-induced precipitation in ferrite and bainite is It was concluded that positive utilization of fast alloying elements is very effective.

本発明者らは、このよう知見に従い、引張強さ570MPa級の高強度鋼材において、Ar3点を従来の高強度鋼材が想定していないレベルまで高温化するための成分組成、熱間圧延の必要条件等、必要な特性を満足するための具体的要件を鋭意検討し、引張強さ570MPa級の強度を達成するのみならず、従来に無い低合金成分且つ高い生産性にて、良好な溶接熱影響部の靭性を得ることのできる本発明を成すに至った。 In accordance with such knowledge, the present inventors, in a high-strength steel material having a tensile strength of 570 MPa, have a component composition for increasing the temperature of the Ar 3 point to a level that is not assumed by conventional high-strength steel materials, Extensive examination of specific requirements for satisfying necessary properties such as necessary conditions, not only achieving a tensile strength of 570MPa class, but also good welding with unprecedented low alloy components and high productivity It came to make this invention which can acquire the toughness of a heat affected zone.

本発明の要旨は以下に述べる通りである。
(1) 質量%で、C:0.005%以上、0.030%未満、Si:0.001%以上、0.10%以下、Mn:0.01%以上、2.0%以下、Nb:0.001%以上、0.10%以下、Al:0.001%以上、0.10%以下、N:0.0001%以上、0.010%以下を含有し、下記式1で表される溶接割れ感受性指数PCMが0.25以下であり、Ar3点が780℃以上であり、残部がFeおよび不可避的不純物からなる成分組成を有する鋼片を、1020℃以上、1300℃以下に加熱し、その後圧延するにあたり、1020℃以下、920℃超の範囲での累積圧下率を60%未満とし、Ar3点未満での累積圧下率を15%以上、95%以下となるように行い、圧延終了後冷却することを特徴とする、溶接熱影響部の靭性に優れる引張強さ570MPa級高強度鋼材の製造方法。
式1: PCM=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5[B]
なお、式1中の[ ]は各合金元素の添加量を質量%で表したものである。下記式2も同様である。
(2) さらに、質量%で、Cr:0.01%以上、3.0%以下、Ti:0.001%以上、0.010%以下、Cu:0.01%以上、1.0%以下、Ni:0.01%以上、2.0%以下、Mo:0.01%以上、0.50%以下、V:0.001%以上、0.050%以下、W:0.01%以上、3.0%以下の内の1種または2種以上を含有することを特徴とする、上記(1)に記載の溶接熱影響部の靭性に優れる引張強さ570MPa級高強度鋼材の製造方法。
(3) さらに、質量%で、B:0.0001%以上、0.0050%以下を下記式2の関係を満たすように含有することを特徴とする、上記(1)または(2)に記載の溶接熱影響部の靭性に優れる引張強さ570MPa級高強度鋼材の製造方法。
式2:[B]/10.8≦[N]/14.0−[Ti]/47.9
(4) さらに、質量%で、Zr:0.001〜0.010、Ca:0.001〜0.010、Mg:0.001〜0.010、Hf:0.001〜0.010、REM:0.001〜0.010の内の1種または2種以上を含有することを特徴とする、上記(1)ないし(3)のいずれか1項に記載の溶接熱影響部の靭性に優れる引張強さ570MPa級高強度鋼材の製造方法。
(5) さらに、Ac1点以下の温度で、焼戻し熱処理を行うことを特徴とする、上記(1)ないし(4)のいずれか1項に記載の溶接熱影響部の靭性に優れる引張強さ570MPa級高強度鋼材の製造方法。
The gist of the present invention is as follows.
(1) By mass%, C: 0.005% or more, less than 0.030%, Si: 0.001% or more, 0.10% or less, Mn: 0.01% or more, 2.0% or less, Nb : 0.001% or more, 0.10% or less, Al: 0.001% or more, 0.10% or less, N: 0.0001% or more, 0.010% or less, represented by the following formula 1 that weld crack sensitivity index P CM is 0.25 or less, and the Ar 3 point is 780 ° C. or higher, the steel slab having the component composition and the balance being Fe and unavoidable impurities, 1020 ° C. or more, the 1300 ° C. or less When heating and then rolling, the cumulative rolling reduction in the range of 1020 ° C. or lower and over 920 ° C. is set to less than 60%, and the cumulative rolling reduction at less than Ar 3 point is set to 15% or more and 95% or less. , Toughness of heat affected zone of welding, characterized by cooling after rolling Excellent tensile strength of 570MPa grade high strength method of manufacturing the steel.
Equation 1: P CM = [C] + [Si] / 30 + [Mn] / 20 + [Cu] / 20 + [Ni] / 60 + [Cr] / 20 + [Mo] / 15 + [V] / 10 + 5 [B]
In addition, [] in Formula 1 represents the addition amount of each alloy element in mass%. The following formula 2 is also the same.
(2) Further, by mass, Cr: 0.01% or more, 3.0% or less, Ti: 0.001% or more, 0.010% or less, Cu: 0.01% or more, 1.0% or less Ni: 0.01% or more, 2.0% or less, Mo: 0.01% or more, 0.50% or less, V: 0.001% or more, 0.050% or less, W: 0.01% or more The method for producing a high-strength steel material having a tensile strength of 570 MPa class excellent in toughness of the weld heat-affected zone as described in (1) above, comprising one or more of 3.0% or less .
(3) Furthermore, it contains B: 0.0001% or more and 0.0050% or less by mass% so as to satisfy the relationship of the following formula 2. The above (1) or (2) A method for producing a high-strength steel material having a tensile strength of 570 MPa that is excellent in the toughness of the weld heat affected zone.
Formula 2: [B] /10.8≦ [N] /14.0- [Ti] /47.9
(4) Further, by mass%, Zr: 0.001 to 0.010, Ca: 0.001 to 0.010, Mg: 0.001 to 0.010, Hf: 0.001 to 0.010, REM : It is excellent in the toughness of the weld heat affected zone according to any one of the above (1) to (3), characterized by containing one or more of 0.001 to 0.010. A method for producing a high strength steel material having a tensile strength of 570 MPa.
(5) Further, the tempering heat treatment is performed at a temperature of Ac 1 point or less, and the tensile strength excellent in the toughness of the weld heat affected zone according to any one of (1) to (4) above 570 MPa class high strength steel manufacturing method.

本発明によれば、溶接熱影響部の靭性に優れる引張強さ570MPa級の高強度鋼板を合金元素の少ない経済的成分系と生産性の高い非調質の製造方法にて得ることが可能となり、その産業上の効果は計り知れない。   According to the present invention, it becomes possible to obtain a high-strength steel sheet having a tensile strength of 570 MPa class, which is excellent in the toughness of the heat affected zone by an economical component system with less alloy elements and a highly productive non-tempered manufacturing method. The industrial effects are immeasurable.

以下に、本発明における成分組成と圧延条件の限定理由について述べる。   The reasons for limiting the component composition and rolling conditions in the present invention will be described below.

まず、本発明においては、先に述べたように、引張強さ570MPa級の高強度鋼のYSおよびTSを確保するために、二相域圧延を積極的に利用することが目的であり、その加工誘起析出による強化、および音響異方性の低減や生産性の向上を目的として、従来以上のAr3点の上昇や低合金組成を、圧延条件と併せて実現することが特徴である。 First, in the present invention, as described above, in order to secure YS and TS of a high strength steel having a tensile strength of 570 MPa, the purpose is to actively use two-phase rolling, For the purpose of strengthening by work-induced precipitation, reduction of acoustic anisotropy, and improvement of productivity, it is characterized by realizing a higher Ar 3 point and a lower alloy composition than conventional ones together with rolling conditions.

まず、本発明における熱間圧延条件について述べる。   First, hot rolling conditions in the present invention will be described.

本発明では、Ar3点を780℃以上と規定する。本発明ではAr3点以下での圧延を用いることが特徴の一つであり、Ar3点が低いと鋼材の温度がAr3点以下に下がるのを待つ時間が長くなり、生産性を阻害することとなる。Ar3点が780℃以上であれば、このような問題を発生させずに生産性の良好な圧延を実施することができる。 In the present invention, the Ar 3 point is defined as 780 ° C. or higher. In the present invention, it is one of the characteristics to use rolling at an Ar 3 point or less. If the Ar 3 point is low, the time for waiting for the temperature of the steel material to fall below the Ar 3 point becomes long, and the productivity is hindered. It will be. When the Ar 3 point is 780 ° C. or higher, rolling with good productivity can be performed without causing such a problem.

本発明では、鋼片を1020℃以上1300℃以下に加熱し、その後圧延する。1020℃未満のオーステナイト中で長時間保持するとNbやTiが粗大析出してしまい、強度上昇に寄与しなくなるロスが大きくなるので、下限を1020℃とした。一方、本発明鋼の用途及び成分系から考えて、1300℃を超える温度で加熱する必要はなく、また1300℃を超える温度での加熱では不必要に鋼材表面の酸化を助長するので、上限を1300℃とした。   In the present invention, the steel slab is heated to 1020 ° C. or higher and 1300 ° C. or lower and then rolled. If kept for a long time in austenite of less than 1020 ° C., Nb and Ti will coarsely precipitate and increase the loss that does not contribute to the increase in strength, so the lower limit was made 1020 ° C. On the other hand, considering the use and the component system of the steel of the present invention, it is not necessary to heat at a temperature exceeding 1300 ° C, and heating at a temperature exceeding 1300 ° C unnecessarily promotes oxidation of the surface of the steel material. The temperature was 1300 ° C.

本発明では、Ar3点以下での圧延による加工誘起析出の最大限の利用を目指すため、フェライトおよびベイナイト中での析出が最も速いNbもしくはTiを析出強化元素として利用する。この圧延段階でのNb、Tiの析出は圧延歪によって促進される。しかし、高温のオーステナイト中での粗圧延中にNb、Tiの析出が起こると、これら析出物は急速に粗大化し、鋼板製造後の強度上昇には寄与しない無駄な析出となることが、特許文献7に記載の発明により明らかにされている。従って、このオーステナイト中での粗大析出によるロスを最小限に抑えるためには、920℃超、1020℃以下の温度範囲での圧延を極力行わないことが好ましい。ところが、本発明では、焼入れ性の低下と溶接熱影響部の靭性向上のために特許文献7に記載の発明よりCの成分範囲を低く制限している。そのため、本発明では、Nb−Cの溶解度積から決まるオーステナイト中での固溶限界温度が低下しており、その結果、920℃超、1020℃以下での圧延も許容されるが、その許容される累積圧下量の上限は60%未満である。 In the present invention, Nb or Ti that precipitates most rapidly in ferrite and bainite is used as a precipitation strengthening element in order to maximize the use of work-induced precipitation by rolling at an Ar 3 point or less. The precipitation of Nb and Ti at this rolling stage is promoted by rolling strain. However, when precipitation of Nb and Ti occurs during rough rolling in high-temperature austenite, these precipitates rapidly become coarse, resulting in useless precipitation that does not contribute to an increase in strength after steel sheet production. This is clarified by the invention described in Item 7. Therefore, in order to minimize the loss due to coarse precipitation in the austenite, it is preferable not to perform rolling in a temperature range higher than 920 ° C. and not higher than 1020 ° C. as much as possible. However, in the present invention, the component range of C is limited to be lower than that of the invention described in Patent Document 7 in order to reduce the hardenability and improve the toughness of the weld heat affected zone. Therefore, in the present invention, the solid solution limit temperature in austenite determined from the solubility product of Nb—C is lowered, and as a result, rolling above 920 ° C. and below 1020 ° C. is allowed, but this is not allowed. The upper limit of the cumulative reduction amount is less than 60%.

次に、本発明のポイントであるAr3点の水準、およびAr3点以下での加工誘起析出の大きさについてであるが、これらは熱間圧延のパススケジュールの影響を強く受ける。 Next, regarding the level of the Ar 3 point, which is the point of the present invention, and the magnitude of work-induced precipitation below the Ar 3 point, these are strongly influenced by the hot rolling pass schedule.

Ar3点は、その上限をAe3点として、圧延歪量が大きい程高くなる。従って、Ar3点直上での歪量を増やすためには、このAr3点直上での累積圧下量を増やすことが望ましく、10%以上の圧延を行うことが好ましいが、これは必ずしも必要な条件ではない。 Ar 3 point becomes higher as the amount of rolling strain increases, with the upper limit being Ae 3 point. Therefore, in order to increase the amount of strain just above Ar 3 point, it is desirable to increase the cumulative reduction ratio at just above the Ar 3 point, it is preferable to perform rolling at least 10%, which is not always necessary condition is not.

Ar3点未満の温度域での圧下に関しては、その圧下量が大きい程、強度が上昇するが、累積圧下量15%未満ではその強度上昇が充分に得られないこと、および、95%超では強化が飽和することから、累積圧下量を15%以上、95%以下と規定する。 Regarding the reduction in the temperature range below Ar 3 point, the strength increases as the amount of reduction increases, but if the cumulative reduction amount is less than 15%, the strength cannot be sufficiently increased, and if it exceeds 95%, Since the strengthening is saturated, the cumulative reduction amount is defined as 15% or more and 95% or less.

なお、本発明では、このAr3点以下の圧延による加工強化が大きく得られるように成分設計されているので、圧延後は空気中での放冷で構わないが、さらにこの後に加速冷却を行うと強度をさらに上昇させることが可能である。 In the present invention, the components are designed so that the processing strengthening by rolling at the Ar 3 point or less can be greatly obtained. Therefore, it is possible to cool in the air after rolling, but further accelerated cooling is performed thereafter. It is possible to further increase the strength.

この際、C含有量が少なく、NbもしくはTiの析出強化を利用しており、さらに島状MAの生成量が少ないため、本発明鋼は水冷停止400〜650℃の広い範囲で、YSおよびTSが安定する結果が得られる。但し、この加速冷却の停止温度は、強度上昇を得るために650℃以下に設定する必要がある。   At this time, since the C content is low, the precipitation strengthening of Nb or Ti is used, and the amount of island-like MA produced is small, the steel according to the present invention is YS and TS in a wide range of water cooling stop 400 to 650 ° C. Stable results are obtained. However, the accelerated cooling stop temperature needs to be set to 650 ° C. or lower in order to obtain an increase in strength.

さらに、圧延後、空気中での放冷を行った後もしくは加速冷却を行った後に、焼戻し熱処理を行うことによりさらに強度を上昇させ、安定化することも可能である。この焼戻し熱処理の温度は、安定的な強度の確保の観点から、Ac1点以下に制限する必要がある。 Further, the strength can be further increased and stabilized by performing a tempering heat treatment after rolling, after cooling in the air, or after performing accelerated cooling. The temperature of this tempering heat treatment needs to be limited to Ac 1 point or less from the viewpoint of securing stable strength.

以下に、本発明における成分組成の限定理由について述べる。   The reasons for limiting the component composition in the present invention will be described below.

Cは、Ar3点の高温化のため、溶接HAZ(熱影響部)靭性の向上のため、および、オーステナイト中におけるNbの粗大析出を抑制するために、添加量を0.030%未満に抑える必要がある。なお、C添加量を0.005%未満に抑えると、Nb、Ti等の他の合金元素と形成する炭化物の析出量が低下する等により強度が低下するために、0.005%以上の添加が必要である。 C suppresses the addition amount to less than 0.030% in order to increase the temperature of the Ar 3 point, to improve the weld HAZ (heat affected zone) toughness, and to suppress coarse precipitation of Nb in austenite. There is a need. If the C addition amount is suppressed to less than 0.005%, the strength decreases due to a decrease in the precipitation amount of carbide formed with other alloy elements such as Nb and Ti. is required.

Siは、強度上昇に有効な元素であり0.001%以上の添加を行うが、特にYSを低下させる残留MAの生成量を減らすために、0.10%以下に制限する必要がある。   Si is an element effective for increasing the strength, and is added in an amount of 0.001% or more. In particular, in order to reduce the amount of residual MA that lowers YS, it is necessary to limit it to 0.10% or less.

Mnは、強度上昇に有効な元素であり0.01%以上の添加を行うが、Ar3点を低下させるので添加量を抑えることが望ましいため、2.0%以下と限定する。 Mn is an element effective for increasing the strength and is added in an amount of 0.01% or more. However, since it is desirable to suppress the amount of addition because it lowers the Ar 3 point, it is limited to 2.0% or less.

Nbは、フェライトまたはベイナイト中での析出が速いために、Ar3点以下での加工誘起析出を得るために有効であり、また、組織の細粒化にも寄与するために、0.001%以上の添加を行うが、0.10%超の添加では溶接部HAZ靭性を著しく低下させるために0.10%以下と限定する。 Nb is effective for obtaining work-induced precipitation at an Ar 3 point or less because precipitation in ferrite or bainite is fast, and also contributes to refinement of the structure. The above addition is performed. However, if the addition exceeds 0.10%, the weld zone HAZ toughness is remarkably lowered, so the content is limited to 0.10% or less.

Alは、脱酸および加速冷却前のオーステナイト粒径の細粒化等に有効な元素であり、さらに、Ar3点を高温化する効果もあるため、0.001%以上を添加する必要があるが、0.10%を超えて添加すると粗大な酸化物の形成により延性・靭性を大きく低下させるため、0.001〜0.10%の範囲内とする。 Al is an element effective for deoxidation and refinement of the austenite grain size before accelerated cooling, and also has an effect of increasing the temperature of the Ar 3 point, so it is necessary to add 0.001% or more. However, if added over 0.10%, the ductility and toughness are greatly reduced due to the formation of coarse oxides, so the content is made 0.001 to 0.10%.

Nは、AlやNbと結合して、オーステナイト粒の微細化や、フェライトまたはベイナイト中での析出強化に有効な元素であるために0.0001%以上を添加するが、多量の添加では固溶N量を増加させ靭性を劣化させるので、上限を0.010%に限定する。   N is an element effective for refining austenite grains and precipitation strengthening in ferrite or bainite by combining with Al or Nb, so 0.0001% or more is added. Since the amount of N is increased and the toughness is deteriorated, the upper limit is limited to 0.010%.

Crは、強度上昇に有効な元素であり、明瞭な強度上昇を得るためには0.01%以上の添加が必要である。しかし、3.0%超の添加は溶接部HAZ靭性を低下させるため、Crを添加する場合は0.01%以上、3.0%以下の範囲とする。   Cr is an effective element for increasing the strength, and in order to obtain a clear increase in strength, it is necessary to add 0.01% or more. However, addition of more than 3.0% lowers the weld zone HAZ toughness, so when adding Cr, the range is 0.01% or more and 3.0% or less.

Tiは、フェライトまたはベイナイト中での析出が速いために、Ar3点以下での加工誘起析出を得るために有効であり、組織の細粒化強化にも大きく寄与し、さらに、強いフェライト安定化元素でありAr3点を高温化することにも寄与する。これらの効果を発揮するためには0.001%以上の添加が必要であるが、0.010%超の添加では溶接熱影響部の靭性を著しく低下させるために、Tiを添加する場合は0.001%以上、0.010%以下の範囲とする。 Since Ti precipitates quickly in ferrite or bainite, it is effective for obtaining work-induced precipitation below the Ar 3 point, greatly contributes to strengthening the refinement of the structure, and further stabilizes ferrite. It is an element and contributes to increasing the temperature of the Ar 3 point. In order to exert these effects, 0.001% or more must be added. However, if over 0.010% is added, the toughness of the weld heat affected zone is remarkably reduced. The range is 0.001% or more and 0.010% or less.

Cuは、空冷の冷速では焼入れ性を大きく上昇させず、また、析出強化と固溶強化をもたらすために強度上昇に有効な元素である。これらの効果を発揮するためには0.01%以上の添加が必要であるが、1.0%超の添加では溶接熱影響部の靭性を低下させるため、Cuを添加する場合は0.01%以上、1.0%以下の範囲とする。   Cu is an element effective in increasing the strength because it does not significantly increase the hardenability at the air-cooled cooling speed and also brings about precipitation strengthening and solid solution strengthening. In order to exert these effects, addition of 0.01% or more is necessary, but addition of more than 1.0% lowers the toughness of the weld heat affected zone, so when adding Cu, 0.01% % Or more and 1.0% or less.

Niは、強度と靭性を高める効果を有し、これらの効果を得るためには0.01%以上の添加が必要であるが、2.0%を越える添加ではコストが高くなるため、Niを添加する場合は0.01%以上、2.0%以下の範囲とする。   Ni has the effect of increasing strength and toughness, and in order to obtain these effects, it is necessary to add 0.01% or more, but the addition exceeding 2.0% increases the cost. When added, the content is in the range of 0.01% to 2.0%.

Moは、組織強化による強度上昇に有効であり、明瞭な強度上昇を得るためには0.01%以上の添加を必要とするが、0.50%を超えて添加すると、残留MAの生成によりYSを下げること、および溶接熱影響部の靭性を著しく低下させること等の問題があるために、Moを添加する場合は0.01%以上、0.50%以下の範囲とする。   Mo is effective in increasing the strength by strengthening the structure, and in order to obtain a clear increase in strength, addition of 0.01% or more is required. However, if added over 0.50%, residual MA is generated. Since there are problems such as lowering YS and significantly reducing the toughness of the weld heat affected zone, when adding Mo, the range is 0.01% or more and 0.50% or less.

Vは、析出強化による強度上昇に有効であり、明瞭な強度上昇を得るためには0.001%以上の添加を必要とするが、0.050%を超える添加では溶接部HAZ靭性を低下させるため、Vを添加する場合は0.001%以上、0.050%以下に限定する。   V is effective for increasing the strength by precipitation strengthening, and 0.001% or more is necessary to obtain a clear increase in strength, but if added over 0.050%, the weld HAZ toughness is decreased. Therefore, when adding V, it is limited to 0.001% or more and 0.050% or less.

Wは、固溶強化や組織強化により強度上昇に有効な元素であり、この効果を得るためには0.01%以上の添加を必要とするが、3.0%を超えて添加するとコストが高くなるため、Wを添加する場合は0.01%以上、3.0%以下の範囲とする。   W is an element effective for increasing the strength by solid solution strengthening and structure strengthening, and in order to obtain this effect, addition of 0.01% or more is required, but if added over 3.0%, the cost is increased. Therefore, when W is added, the range is 0.01% or more and 3.0% or less.

Bは、鋼材に入熱5kJ/mmを超える大入熱溶接を行う際、溶接熱影響部の旧オーステナイト粒界上に生成するフェライトの生成を抑制すること、および旧オーステナイトの粒内ではBN析出物を形成しフェライトの生成を促進して強度を下げることにより、溶接部靭性を向上させる効果がある。これらの効果を得るためには0.0001%以上の添加が必要であるが、0.0050%を超える過剰なBは靭性を劣化させることから、上限を0.0050%に制限する。さらに、鋼材の製造時に、オーステナイト中でBが固溶している場合は、空冷の冷速でもAr3点を低下させるため、Bに関しては、上限を0.0050%に制限すると共に下記の式2に示されるように添加量を制限する必要がある。従って、Bを添加する場合は、0.0001%以上、0.0050%以下、且つ式2を満たす範囲とする。
式2:[B]/10.8≦[N]/14.0−[Ti]/47.9
B suppresses the generation of ferrite formed on the prior austenite grain boundaries of the weld heat affected zone when performing high heat input welding with a heat input exceeding 5 kJ / mm on the steel material, and BN precipitates in the grains of the prior austenite By forming an object and promoting the formation of ferrite to lower the strength, there is an effect of improving the weld zone toughness. In order to obtain these effects, addition of 0.0001% or more is necessary, but excessive B exceeding 0.0050% deteriorates toughness, so the upper limit is limited to 0.0050%. Further, when B is dissolved in austenite at the time of manufacturing the steel material, the Ar 3 point is lowered even at the cooling rate of air cooling. Therefore, for B, the upper limit is limited to 0.0050% and the following formula: It is necessary to limit the addition amount as shown in FIG. Therefore, when adding B, it is made into the range with which 0.0001% or more and 0.0050% or less and Formula 2 are satisfy | filled.
Formula 2: [B] /10.8≦ [N] /14.0- [Ti] /47.9

Zr、Ca、Mg、HfおよびREMに関しては、脱酸や靭性の向上のために添加を行うことができる。これらの効果を得るためには0.001%以上の添加が必要であるが、コストの問題から上限を0.010%と制限する。従って、Zr、Ca、Mg、HfおよびREMを添加する場合は、0.001%以上、0.010%以下の範囲とする。   Zr, Ca, Mg, Hf and REM can be added to improve deoxidation and toughness. Addition of 0.001% or more is necessary to obtain these effects, but the upper limit is limited to 0.010% due to cost problems. Therefore, when adding Zr, Ca, Mg, Hf, and REM, it is set as 0.001% or more and 0.010% or less.

なお、本発明による成分系は、Cをはじめ焼入れ性に寄与する元素の添加を極力避けているため、溶接の際の熱影響部の靭性についても非常に良好な結果を示す。また、前記式1で示した溶接割れ感受性指数PCMも0.25%以下の水準に抑えており、溶接割れも防止される範囲となっている。 In addition, since the component system according to the present invention avoids the addition of elements that contribute to hardenability including C as much as possible, the toughness of the heat-affected zone during welding also shows very good results. Further, the formula is kept to weld cracking sensitivity index P CM also: 0.25% level shown in 1, has a range of weld crack is prevented.

表1に示す成分組成の溶鋼を真空溶解炉にて作製しインゴット形に鋳造した。その鋼片を、適宜圧延、鍛造、もしくは切断して、厚さ60〜500mmのスラブを作製し、そのスラブに対して、表2に示す条件の熱間圧延、加速冷却、および焼戻し熱処理を行い、厚さ6〜50mmの厚鋼板とした。   Molten steel having the composition shown in Table 1 was produced in a vacuum melting furnace and cast into an ingot shape. The steel slab is appropriately rolled, forged, or cut to produce a slab having a thickness of 60 to 500 mm. The slab is subjected to hot rolling, accelerated cooling, and tempering heat treatment under the conditions shown in Table 2. The steel plate was 6 to 50 mm thick.

Ar3点温度は圧延方法によっても若干変動するが、本実施例の範囲であれば鋼成分のみによってほぼ確定することができる。表2に示すAr3点温度は、実験データ及び文献から校正した次の式に基づいて計算している。
Ar3=910−310×[C]−80×[Mn]−15[Nb]−50×[Ni]−80×[Mo]−15×[Cr]−20×[Cu]−15×[W]−1050×[B]+24.6×[Si]+700×[P]+60×[Ti]+190×[V]+40×[Al]
なお、式中の[ ]は各合金元素の添加量を質量%で表したものである。
Although the Ar 3 point temperature varies slightly depending on the rolling method, it can be almost determined only by the steel component within the range of the present embodiment. The Ar 3 point temperatures shown in Table 2 are calculated based on the following equation calibrated from experimental data and literature.
Ar 3 = 910-310 × [C] -80 × [Mn] -15 [Nb] -50 × [Ni] -80 × [Mo] -15 × [Cr] -20 × [Cu] -15 × [W ] −1050 × [B] + 24.6 × [Si] + 700 × [P] + 60 × [Ti] + 190 × [V] + 40 × [Al]
In addition, [] in a formula represents the addition amount of each alloy element in the mass%.

Figure 2007302977
Figure 2007302977

Figure 2007302977
Figure 2007302977

これらの厚鋼板について、JIS Z 2241に準拠の引張試験を行いYSおよびTS等を測定した結果を表2中に示す。引張試験片はJIS Z 2201に準拠の13B号もしくは10号試験片を用いた。また、これらの厚鋼板について、JIS Z 3158準拠の斜めy型溶接割れ試験を行った結果を表2中に示す。また、これらの厚鋼板について、入熱10kJ/mmのサブマージアーク溶接時の熱影響部1mm位置(HAZ1)に相当する熱サイクルを与えたJIS Z 2202に準拠の2mmVノッチ試験片もしくはサブサイズ2mmVノッチ試験片を用いて−5℃にてシャルピー試験を行った結果を表2中に示す。なお、各特性の目標値は、YSが450MPa、TSが570MPa、溶接熱影響部靭性が吸収エネルギー100J以上、溶接割れ試験は割れないことである。   Table 2 shows the results of YS and TS measured for these thick steel plates by performing a tensile test in accordance with JIS Z 2241. As the tensile test piece, a No. 13B or No. 10 test piece based on JIS Z 2201 was used. In addition, Table 2 shows the results of an oblique y-type weld cracking test based on JIS Z 3158 for these thick steel plates. Moreover, about these thick steel plates, the 2 mmV notch test piece or subsize 2mmV notch based on JIS Z2202 which gave the thermal cycle equivalent to the heat affected zone 1mm position (HAZ1) at the time of submerged arc welding of heat input 10kJ / mm Table 2 shows the results of the Charpy test performed at -5 ° C using the test pieces. In addition, the target value of each characteristic is that YS is 450 MPa, TS is 570 MPa, the weld heat affected zone toughness is an absorption energy of 100 J or more, and the weld crack test does not crack.

表1、表2の結果から、本発明法に従った成分組成および製造方法は、YS、TSおよび溶接割れ等、全て良好な結果を示すことがわかる。これに対し、本発明鋼の範囲を逸脱する比較鋼は、YS、TSおよび溶接割等の基本特性が少なくとも一つ以上不充分であることが分かる。   From the results of Tables 1 and 2, it can be seen that the component composition and the production method according to the method of the present invention all show good results such as YS, TS and weld cracks. On the other hand, it can be seen that the comparative steel deviating from the scope of the steel of the present invention has at least one or more basic characteristics such as YS, TS and weld split.

また、表1と表2の結果を、Ar3点以下の圧下量を横軸に、YSおよびTSを縦軸に取ってプロットした結果を図1に示す。図1中では、本発明鋼は丸、比較鋼は三角にてプロットをしているが、本発明鋼は全て目標の強度範囲を満たす。比較鋼の場合は、強度範囲を満たさないか、もしくは、強度範囲を満たすものの、溶接熱影響部の靭性が悪かったものか、または溶接割れを起こしたものである。 The results of Tables 1 and 2 are plotted in FIG. 1 with the amount of reduction at Ar 3 or less plotted on the horizontal axis and YS and TS plotted on the vertical axis. In FIG. 1, the steel of the present invention is plotted with a circle and the comparative steel is plotted with a triangle, but the steels of the present invention all satisfy the target strength range. In the case of the comparative steel, the strength range is not satisfied, or the strength range is satisfied, but the toughness of the weld heat affected zone is poor or weld cracking occurs.

本発明の実施例による鋼材のAr3点以下の累積圧下率とYS、TSの関係を示す図である。Cumulative rolling reduction and YS below Ar 3 point of the steel according to an embodiment of the present invention, is a diagram showing the relationship between TS.

Claims (5)

質量%で、
C :0.005%以上、0.030%未満、
Si:0.001%以上、0.10%以下、
Mn:0.01%以上、2.0%以下、
Nb:0.001%以上、0.10%以下、
Al:0.001%以上、0.10%以下、
N :0.0001%以上、0.010%以下
を含有し、下記式1で表される溶接割れ感受性指数PCMが0.25以下であり、Ar3点が780℃以上であり、残部がFeおよび不可避的不純物からなる成分組成を有する鋼片を、1020℃以上、1300℃以下に加熱し、その後圧延するにあたり、1020℃以下、920℃超の範囲での累積圧下率を60%未満とし、Ar3点未満での累積圧下率を15%以上、95%以下となるように行い、圧延終了後冷却することを特徴とする、溶接熱影響部の靭性に優れる引張強さ570MPa級高強度鋼材の製造方法。
式1: PCM=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5[B]
なお、式1中の[ ]は各合金元素の添加量を質量%で表したものである。下記式2も同様である。
% By mass
C: 0.005% or more, less than 0.030%,
Si: 0.001% or more, 0.10% or less,
Mn: 0.01% or more, 2.0% or less,
Nb: 0.001% or more, 0.10% or less,
Al: 0.001% or more, 0.10% or less,
N: 0.0001% or more, containing 0.010% or less, the welding crack sensitivity index P CM represented by the following formula 1 is not less than 0.25, and the Ar 3 point is 780 ° C. or higher, the balance When a steel slab having a composition composed of Fe and inevitable impurities is heated to 1020 ° C. or higher and 1300 ° C. or lower and then rolled, the cumulative rolling reduction in the range of 1020 ° C. or lower and over 920 ° C. is set to less than 60%. , Characterized in that the cumulative rolling reduction at less than Ar 3 point is 15% or more and 95% or less, and is cooled after the end of rolling, and has a tensile strength of 570 MPa class which is excellent in the toughness of the weld heat affected zone. Steel manufacturing method.
Equation 1: P CM = [C] + [Si] / 30 + [Mn] / 20 + [Cu] / 20 + [Ni] / 60 + [Cr] / 20 + [Mo] / 15 + [V] / 10 + 5 [B]
In addition, [] in Formula 1 represents the addition amount of each alloy element in mass%. The following formula 2 is similar.
さらに、質量%で、
Cr:0.01%以上、3.0%以下、
Ti:0.001%以上、0.010%以下、
Cu:0.01%以上、1.0%以下、
Ni:0.01%以上、2.0%以下、
Mo:0.01%以上、0.50%以下、
V :0.001%以上、0.050%以下、
W :0.01%以上、3.0%以下
の内の1種または2種以上を含有することを特徴とする、請求項1に記載の溶接熱影響部の靭性に優れる引張強さ570MPa級高強度鋼材の製造方法。
Furthermore, in mass%,
Cr: 0.01% or more, 3.0% or less,
Ti: 0.001% or more, 0.010% or less,
Cu: 0.01% or more, 1.0% or less,
Ni: 0.01% or more, 2.0% or less,
Mo: 0.01% or more, 0.50% or less,
V: 0.001% or more, 0.050% or less,
The tensile strength of 570 MPa, which is excellent in toughness of the weld heat-affected zone according to claim 1, characterized by containing one or more of W: 0.01% or more and 3.0% or less. Manufacturing method of high strength steel.
さらに、質量%で、
B :0.0001%以上、0.0050%以下
を下記式2の関係を満たすように含有することを特徴とする、請求項1または2に記載の溶接熱影響部の靭性に優れる引張強さ570MPa級高強度鋼材の製造方法。
式2:[B]/10.8≦[N]/14.0−[Ti]/47.9
Furthermore, in mass%,
B: 0.0001% or more and 0.0050% or less is contained so as to satisfy the relationship of the following formula 2. Tensile strength excellent in toughness of weld heat affected zone according to claim 1 or 2 570 MPa class high strength steel manufacturing method.
Formula 2: [B] /10.8≦ [N] /14.0- [Ti] /47.9
さらに、質量%で、
Zr:0.001〜0.010、
Ca:0.001〜0.010、
Mg:0.001〜0.010、
Hf:0.001〜0.010、
REM:0.001〜0.010
の内の1種または2種以上を含有することを特徴とする、請求項1ないし3のいずれか1項に記載の溶接熱影響部の靭性に優れる引張強さ570MPa級高強度鋼材の製造方法。
Furthermore, in mass%,
Zr: 0.001 to 0.010,
Ca: 0.001 to 0.010,
Mg: 0.001 to 0.010,
Hf: 0.001 to 0.010,
REM: 0.001 to 0.010
The manufacturing method of the tensile strength 570 MPa class high strength steel materials excellent in the toughness of the welding heat affected zone of any one of Claim 1 thru | or 3 characterized by including 1 type or 2 types or more of these .
さらに、Ac1点以下の温度で、焼戻し熱処理を行うことを特徴とする、請求項1ないし4のいずれか1項に記載の溶接熱影響部の靭性に優れる引張強さ570MPa級高強度鋼材の製造方法。 Furthermore, tempering heat treatment is performed at a temperature of Ac 1 point or less, and the tensile strength 570 MPa class high strength steel material excellent in toughness of the weld heat affected zone according to any one of claims 1 to 4. Production method.
JP2006135085A 2006-05-15 2006-05-15 Method for producing high strength steel material having tensile strength of 570 MPa class excellent in toughness of weld heat affected zone Expired - Fee Related JP4469353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006135085A JP4469353B2 (en) 2006-05-15 2006-05-15 Method for producing high strength steel material having tensile strength of 570 MPa class excellent in toughness of weld heat affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006135085A JP4469353B2 (en) 2006-05-15 2006-05-15 Method for producing high strength steel material having tensile strength of 570 MPa class excellent in toughness of weld heat affected zone

Publications (2)

Publication Number Publication Date
JP2007302977A true JP2007302977A (en) 2007-11-22
JP4469353B2 JP4469353B2 (en) 2010-05-26

Family

ID=38837153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006135085A Expired - Fee Related JP4469353B2 (en) 2006-05-15 2006-05-15 Method for producing high strength steel material having tensile strength of 570 MPa class excellent in toughness of weld heat affected zone

Country Status (1)

Country Link
JP (1) JP4469353B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219297A (en) * 2011-04-06 2012-11-12 Kobe Steel Ltd Thick steel plate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5037203B2 (en) * 2007-04-12 2012-09-26 新日本製鐵株式会社 Method for producing high-strength steel material having yield stress of 470 MPa or more and tensile strength of 570 MPa or more excellent in toughness of weld heat-affected zone
JP5037204B2 (en) * 2007-04-12 2012-09-26 新日本製鐵株式会社 Method for producing high-strength steel material having yield stress of 500 MPa or more and tensile strength of 570 MPa or more which is excellent in toughness of weld heat affected zone

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219297A (en) * 2011-04-06 2012-11-12 Kobe Steel Ltd Thick steel plate

Also Published As

Publication number Publication date
JP4469353B2 (en) 2010-05-26

Similar Documents

Publication Publication Date Title
JP6048626B1 (en) Thick, high toughness, high strength steel plate and method for producing the same
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
KR100920536B1 (en) High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof
KR20190134704A (en) High Mn steel and its manufacturing method
JP5630322B2 (en) High-tensile steel plate with excellent toughness and manufacturing method thereof
JP6426621B2 (en) High strength steel plate and method of manufacturing the same
JP5477089B2 (en) Manufacturing method of high strength and high toughness steel
JP5630321B2 (en) High-tensile steel plate with excellent toughness and manufacturing method thereof
JP6036645B2 (en) Ferritic-martensitic duplex stainless steel with excellent low-temperature toughness and method for producing the same
JP5272759B2 (en) Thick steel plate manufacturing method
JP5874664B2 (en) High strength steel plate with excellent drop weight characteristics and method for producing the same
JP2013104065A (en) Thick high-tensile strength steel plate excellent in low temperature toughness of weld zone and method for producing the same
JP7411072B2 (en) High-strength, extra-thick steel material with excellent low-temperature impact toughness and method for producing the same
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
JP2012246520A (en) Steel material excellent in fatigue-crack propagation resistance and low-temperature toughness at weld heat-affected zone, and method for production thereof
JP5037204B2 (en) Method for producing high-strength steel material having yield stress of 500 MPa or more and tensile strength of 570 MPa or more which is excellent in toughness of weld heat affected zone
JP4469353B2 (en) Method for producing high strength steel material having tensile strength of 570 MPa class excellent in toughness of weld heat affected zone
JP2013129885A (en) Method of producing high-strength thick steel plate excellent in brittle crack propagation arrest property
JP4469354B2 (en) Method for producing high strength steel material with tensile strength of 780 MPa excellent in toughness of weld heat affected zone
JP5552967B2 (en) Thick high-strength steel sheet with excellent low-temperature toughness of welds and method for producing the same
JP5151510B2 (en) Manufacturing method of high strength steel with excellent low temperature toughness and crack propagation stop properties
JP2007277697A (en) High tensile strength thick steel plate having excellent fatigue crack propagation resistance and brittle crack propagation arrest property and its production method
JP6135595B2 (en) High-efficiency manufacturing method for steel plates with excellent impact resistance
JP5037203B2 (en) Method for producing high-strength steel material having yield stress of 470 MPa or more and tensile strength of 570 MPa or more excellent in toughness of weld heat-affected zone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100226

R151 Written notification of patent or utility model registration

Ref document number: 4469353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees