JP6007968B2 - High-strength and highly ductile steel plate and its manufacturing method - Google Patents

High-strength and highly ductile steel plate and its manufacturing method Download PDF

Info

Publication number
JP6007968B2
JP6007968B2 JP2014265161A JP2014265161A JP6007968B2 JP 6007968 B2 JP6007968 B2 JP 6007968B2 JP 2014265161 A JP2014265161 A JP 2014265161A JP 2014265161 A JP2014265161 A JP 2014265161A JP 6007968 B2 JP6007968 B2 JP 6007968B2
Authority
JP
Japan
Prior art keywords
strength
thickness
steel plate
less
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014265161A
Other languages
Japanese (ja)
Other versions
JP2016125077A (en
Inventor
和寿 柳田
和寿 柳田
鉄平 大川
鉄平 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2014265161A priority Critical patent/JP6007968B2/en
Publication of JP2016125077A publication Critical patent/JP2016125077A/en
Application granted granted Critical
Publication of JP6007968B2 publication Critical patent/JP6007968B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、高強度高延性厚板鋼板およびその製造方法に関し、例えばタンカーの衝突による油流出事故に代表されるような船舶の衝突が万一起きた場合でも、船舶側面部の破口を抑制等することができる板厚5mm以上の高強度高延性厚板鋼板及びその製造方法に関する。   The present invention relates to a high-strength and highly ductile thick steel plate and a method for manufacturing the same. For example, even when a ship collision such as an oil spill accident caused by a tanker collision occurs, a breakage in a side surface of the ship is suppressed. The present invention relates to a high-strength and highly ductile thick steel plate having a thickness of 5 mm or more and a method for producing the same.

近年、大型タンカーの座礁や衝突による油流出による環境汚染が問題となっている。そのため、最近の造船分野においては、万一船舶同士が衝突事故を起こしてもその破壊(破口)を最小限にくい止め、タンカーからの油流出や破損部からの浸水等の被害を最小限にするための技術が検討されている。   In recent years, environmental pollution due to oil spills caused by landing of large tankers and collisions has become a problem. Therefore, in the recent shipbuilding field, even if a ship has a collision accident, its destruction (break) is kept to a minimum, and damage such as oil spills from tankers and inundation from damaged parts is minimized. Techniques for doing this are being considered.

その中でも、船体用鋼材面からの取り組みとして、衝突時のエネルギーを鋼材自体に多く吸収させ船体の破壊を抑制することが提案されている。   Among them, as an approach from the steel material side for the hull, it has been proposed that the energy at the time of collision is absorbed in the steel material itself to suppress the destruction of the hull.

例えば、衝突時のエネルギー吸収能力を向上させる方法としては、鋼板の組織をフェライト(α)主体とし、かつα相を強化する技術が特許文献1に提案されている。この技術は、α分率Fが80%以上であり、かつαの硬さHについては下限値(H≧400−2.6×F)を規定することを特徴としている。   For example, as a method for improving the energy absorption capability at the time of collision, Patent Document 1 proposes a technique in which the structure of a steel sheet is mainly composed of ferrite (α) and the α phase is strengthened. This technique is characterized in that the α fraction F is 80% or more and the lower limit (H ≧ 400−2.6 × F) is defined for the hardness H of α.

また、鋼板の表裏層に残留オーステナイト(γ)相を含ませる技術が特許文献2に提案されている。この技術は、C、Si、Mn、Alを含有し、さらに必要に応じて強化元素を含有し、鋼板の少なくとも板厚の1/8以上の表裏層に面積率で1.0〜20%の残留γを含むというものである。   Further, Patent Document 2 proposes a technique for including a retained austenite (γ) phase in the front and back layers of a steel plate. This technique contains C, Si, Mn, and Al, and further contains a strengthening element as necessary. The front and back layers of at least 1/8 or more of the plate thickness of the steel plate have an area ratio of 1.0 to 20%. It contains residual γ.

これらの他に、特許文献3には、鋼板金属組織中のフェライト(α)相の分率を板厚中央部で70%以上、板厚表層部で50%以上とし、均一伸びを増加させることにより、耐衝突性を向上させる技術が開示されている。   In addition to these, Patent Document 3 states that the ferrite (α) phase fraction in the steel sheet metal structure should be 70% or more at the plate thickness center portion and 50% or more at the plate thickness surface layer portion to increase uniform elongation. Thus, a technique for improving the collision resistance is disclosed.

さらに、特許文献4に、鋼板の全金属組織に占めるαの面積分率を90%以上、その平均α粒径を3〜12μm、最大α粒径を40μm以下、第2相の平均円相当径を0.8μm以下とし、均一伸びと破断応力の積を大きくすることにより、衝突吸収性を向上させる技術が提案されている。   Furthermore, in Patent Document 4, the area fraction of α in the total metal structure of the steel sheet is 90% or more, the average α particle size is 3 to 12 μm, the maximum α particle size is 40 μm or less, and the average equivalent circle diameter of the second phase. Has been proposed that improves the impact absorption by increasing the product of the uniform elongation and the breaking stress to be 0.8 μm or less.

上記の特許文献1と特許文献2では、伸びと強度の積(EL×(YP+TS)/2)を耐衝撃性を表す指標(衝撃吸収エネルギー)として、これを高める手段が開示されている。ところが、船舶同士が衝突した際の破口抑制という観点からは、上記指標よりも伸びの値そのものの方がより大きく影響することが大規模衝突シミュレーションによって明らかになりつつある。特許文献1の技術では、α粒径が5μm以下で、αの硬さはHv160〜190と高めであるため、伸び自体は必ずしも高くなく、衝突時の破口を抑制する効果はあまり期待できない。   Patent Document 1 and Patent Document 2 described above disclose means for increasing the product of elongation and strength (EL × (YP + TS) / 2) as an index (impact absorption energy) representing impact resistance. However, from the viewpoint of suppressing breakage when ships collide with each other, it is becoming clear through large-scale collision simulations that the elongation value itself has a greater influence than the above index. In the technique of Patent Document 1, since the α particle size is 5 μm or less and the hardness of α is as high as Hv 160 to 190, the elongation itself is not necessarily high, and the effect of suppressing the breakage at the time of collision cannot be expected so much.

また、特許文献2の技術では、組織に残留γを含むようにするため、合金元素が多目に添加されており、実施例として開示されている鋼は炭素当量(Ceq)が高いか、Siが高い鋼種となっている。そのため、溶接性や継手靭性を確保することが困難で、実船への適用は限定的と考えられる。   In addition, in the technique of Patent Document 2, alloy elements are added to make the structure contain residual γ, and steel disclosed as examples has a high carbon equivalent (Ceq) or Si. Is a high steel grade. Therefore, it is difficult to ensure weldability and joint toughness, and application to actual ships is considered to be limited.

一方、特許文献3の技術では、合金元素添加量を低目に抑え、2段階の冷却により特に板厚中心部のα相の分率、硬さ、粒径を制御することにより、均一伸びの向上を図っているが、造船用のような広幅長尺鋼板を製造する際には、材質ばらつきが生じてしまい、実用的な製造方法とはいい難い。   On the other hand, in the technique of Patent Document 3, the alloy element addition amount is kept low, and by controlling the α phase fraction, hardness, and particle size of the central portion of the plate thickness by two-stage cooling, uniform elongation is achieved. Although improvement is aimed at, when manufacturing the wide-width long steel plate for shipbuilding, the material dispersion | variation arises and it is hard to say that it is a practical manufacturing method.

特許文献4では、鋼材の化学成分と金属組織の情報は開示されているが、製造方法において実用上不確実な点が多い。すなわち、詳細な説明に記されている製造方法は、熱間圧延、冷却後に再加熱を推奨しているが、廉価かつ大量生産が必須の造船用鋼板において、再加熱のようなプロセスは生産コストと製造工期の観点から実用化が懸念される。   Patent Document 4 discloses information on chemical components and metal structures of steel materials, but there are many practically uncertain points in the manufacturing method. In other words, the manufacturing method described in the detailed description recommends reheating after hot rolling and cooling. However, in steel sheets for shipbuilding that are indispensable for low-priced and mass production, processes such as reheating are the production costs. And there is concern about practical application from the viewpoint of manufacturing construction period.

以上を鑑みると、高強度高延性厚板鋼板で、例えば、船舶が衝突したときに船舶側面部の破口を抑制等することができる強度と延性とを兼ね備えた高強度高延性厚板鋼板についての技術は、未だ確立されていないのが実情である。   In view of the above, with a high strength and high ductility thick steel plate, for example, about a high strength and high ductility thick steel plate that has both strength and ductility that can suppress the breakage of the side surface of the ship when the ship collides. This technology is not yet established.

特開平10−306340号公報Japanese Patent Laid-Open No. 10-306340 特開平11−246935号公報JP-A-11-246935 特開2003−089841号公報Japanese Patent Application Laid-Open No. 2003-089841 特開2007−162101号公報JP 2007-162101 A

本発明は、上記実情に鑑み、高強度高延性厚板鋼板、例えば衝突時の船舶側面部の破口を抑制等することができる強度と延性とを兼ね備えた高強度高延性厚板鋼板及びその製造方法を提供することを目的とする。   In view of the above circumstances, the present invention is a high-strength, high-ductility thick steel plate, for example, a high-strength, high-ductility thick steel plate that has both strength and ductility capable of suppressing the breakage of the side surface of a ship at the time of a collision and the like. An object is to provide a manufacturing method.

船舶が衝突したときに船舶側面部に破口が生じるメカニズムを考察する。例えば、船舶側壁部に他の船舶の舳先が衝突した場合には、船舶の舳先の全体が船舶側壁部の平らな鋼板にめり込んでくるので、船舶側壁部の鋼板は大きく曲げ変形を受け、奥に引き伸ばされて大きく引っ張られる。そして、鋼板が破壊されると、船舶側壁部の鋼板が破口することとなる。   Consider the mechanism by which a fracturing occurs in the side of the ship when the ship collides. For example, when the tip of another ship collides with the ship side wall, the entire tip of the ship sinks into the flat steel plate on the ship side wall. It is stretched and is pulled greatly. And when a steel plate is destroyed, the steel plate of a ship side wall part will break.

したがって、船舶が衝突したときに船舶側面部の鋼板に破口を生じさせないようにするためには、衝突時の初期段階で鋼板が大きく曲げられた時に、その曲げに耐えられること、そして、曲がっていない部分が大きく引き伸ばされ引張り変形を起こすこととなるが、その部分が伸びて破断しないことが必要である。   Therefore, in order to prevent the steel plate on the side of the ship from being broken when the ship collides, when the steel sheet is greatly bent in the initial stage of the collision, it must be able to withstand the bending and bend. The part that is not stretched is greatly stretched and causes tensile deformation, but it is necessary that the part does not stretch and break.

船舶が衝突したときに船舶側面部の破口を抑制するには鋼板の伸びを大きくすることが本質的に重要であるが、一般に鋼板の強度を向上させると鋼板の伸びが劣化するので、強度と伸びとを両立させた高強度高延性厚板鋼板が望まれている。   Increasing the elongation of the steel sheet is essential in order to suppress the fracturing at the side of the ship when the ship collides, but in general, increasing the strength of the steel sheet deteriorates the elongation of the steel sheet. And high-strength and highly ductile steel sheet that achieve both elongation and elongation are desired.

本発明者は、高強度高延性厚板鋼板、特に衝突時の船舶側面部の破口を抑制等することができる高強度高延性厚板鋼板を得るために、鋼板の成分組成およびミクロ組織に着目して研究を進めた結果、鋼板内での強度と伸びの変動を抑制しやすいフェライト+パーライト鋼で、ミクロ組織としてα相の存在状態による延性向上と第二相であるパーライトによる強度向上を図り、かつ板厚内のPの最大濃度、ならびに板厚方向の硬さを制御すること等によって強度と延性とを兼ね備えた高強度高延性厚板鋼板が得られることを見出して、本発明を完成した。   In order to obtain a high-strength, high-ductile thick steel plate, particularly a high-strength, high-ductile thick steel plate that can suppress the breakage of the ship side surface at the time of a collision, As a result of research focused on, ferrite + pearlite steel, which easily suppresses fluctuations in strength and elongation within the steel sheet, improved ductility due to the presence of α phase as a microstructure and strength improvement due to pearlite being the second phase. And found that a high-strength and highly ductile thick steel plate having both strength and ductility can be obtained by controlling the maximum concentration of P in the thickness and the hardness in the thickness direction. completed.

本発明の要旨は、次の通りである。   The gist of the present invention is as follows.

(1) 質量%で、
C :0.050〜0.200%、
Si:0.200〜1.000%、
Mn:0.50〜2.00%、
P :0.015%以下、
S :0.003%以下、
Ti:0.003〜0.020%、
Al:0.002〜0.050%、
N :0.0010〜0.0060%、
O :0.0005〜0.0060%、
Ca、Mg、REMの1種または2種以上を添加量の合計として0.0005〜0.0080%を含有し、
さらに、
Nb:0〜0.030%、
V :0〜0.050%、
Cu:0〜0.50%、
Ni:0〜1.00%、
Cr:0〜0.50%、
Mo:0〜0.500%、
B :0〜0.0030%
を含有し、かつ、
Ti/Nが0.5〜4.0であり、
残部がFe及び不可避的不純物からなる組成の鋼であって、
ミクロ組織が1/4厚部のフェライト相面積分率が80〜95%、1/4厚部のパーライト相面積分率が5〜20%で構成され、1/4厚部のフェライト相とパーライト相以外の組織はベイナイト相で、該ベイナイト相の面積分率が10%以下で構成される組織で、
1/4厚部のフェライト粒の平均アスペクト比が1.0〜1.5、
1/4厚部のフェライト粒の平均粒径が5〜20μm、
1/4厚部のフェライト相中の平均転位密度が7×1012/m2以下、
1mmピッチのビッカース硬さの試験で、鋼板の表面から1/4厚部まで、または3/4厚部から裏面までのビッカース硬さ平均値が、1/4厚部から3/4厚部までのビッカース硬さ平均値の80〜105%、
であることを特徴とする高強度高延性厚板鋼板。
(1) In mass%,
C: 0.050-0.200%
Si: 0.200 to 1.000%
Mn: 0.50 to 2.00%,
P: 0.015% or less,
S: 0.003% or less,
Ti: 0.003-0.020%,
Al: 0.002 to 0.050%,
N: 0.0010 to 0.0060%,
O: 0.0005 to 0.0060%,
One or more of Ca, Mg, and REM are added in a total amount of 0.0005 to 0.0080%,
further,
Nb: 0 to 0.030%,
V: 0 to 0.050%,
Cu: 0 to 0.50%,
Ni: 0 to 1.00%,
Cr: 0 to 0.50%,
Mo: 0 to 0.500%,
B: 0 to 0.0030%
Containing, and
Ti / N is 0.5-4.0,
The balance is a steel composed of Fe and inevitable impurities,
The microstructure is composed of a ferrite phase area fraction of 1/4 thick part with 80-95%, a pearlite phase area fraction of 1/4 thick part with 5-20%, and the 1/4 thick part ferrite phase and pearlite. phase other tissues in bainite phase, an organization that area fraction of the bainite phase Ru consists of 10% or less,
The average aspect ratio of the ferrite grain of 1/4 thickness part is 1.0 to 1.5,
The average particle diameter of the ferrite grain of 1/4 thickness part is 5 to 20 μm,
The average dislocation density in the ferrite phase of ¼ thick part is 7 × 10 12 / m 2 or less,
In a 1 mm pitch Vickers hardness test, the average value of Vickers hardness from the surface of the steel sheet to 1/4 thickness or from 3/4 thickness to the back is from 1/4 thickness to 3/4 thickness. 80-105% of the average Vickers hardness of
A high-strength and highly ductile steel plate characterized by

(2) 上記(1)に記載の高強度高延性厚板鋼板で、板厚の厚み方向の1/2厚±(板厚の)10%範囲で長さ5μm以上の介在物が10個/mm2以下、であることを特徴とする高強度高延性厚板鋼板。 (2) In the high-strength and highly ductile thick steel plate described in (1) above, there are 10 inclusions having a length of 5 μm or more within a range of ½ thickness ± (thickness) 10% in the thickness direction of the plate thickness / A high-strength, high-ductile steel plate characterized by being 2 mm2 or less.

(3) 上記(1)または(2)に記載の高強度高延性厚板鋼板で、板厚の厚み方向の1/2厚±(板厚の)10%範囲でPの最大濃度が0.02〜0.20%、であることを特徴とする高強度高延性厚板鋼板。   (3) In the high-strength and highly ductile thick steel plate described in (1) or (2) above, the maximum P concentration is 0.1 in the range of 1/2 thickness ± (thickness) in the thickness direction of the thickness. A high-strength and highly ductile steel plate characterized by being from 0.2 to 0.20%.

(4) 上記(1)から(3)の内の何れかに記載の高強度高延性厚板鋼板で、下記式(1)で示される冷却する際のフェライト変態開始温度Ar3が760〜820℃、であることを特徴とする高強度高延性厚板鋼板。
Ar3=910−310[C]+65[Si]−80[Mn]−20[Cu]
−55[Ni]−15[Cr]−80[Mo] ・・・ (1)
但し、元素記号は各元素の含有量(質量%)を表す。なお、含有されていない元素は0%とする。
(4) In the high strength and high ductility thick steel plate according to any one of the above (1) to (3), the ferrite transformation start temperature Ar 3 during cooling represented by the following formula (1) is 760 to 820. A high-strength, high-ductile, thick steel plate characterized by being at ° C.
Ar 3 = 910-310 [C] +65 [Si] -80 [Mn] -20 [Cu]
-55 [Ni] -15 [Cr] -80 [Mo] (1)
However, an element symbol represents content (mass%) of each element. In addition, the element which is not contained shall be 0%.

(5) 上記(1)から(4)の内の何れかに記載の高強度高延性厚板鋼板を製造する方法であって、鋼片を950〜1100℃の範囲で加熱し、累積圧下率が50〜75%の仕上圧延を、鋼片の表面温度がAr3−30℃以上、結晶粒の成長が始まる再結晶開始温度Trex℃以下で行い、仕上圧延された厚板鋼板を空冷により室温まで冷却することを特徴とする高強度高延性厚板鋼板の製造方法。
但し、
Ar3は下記式(1)、Trexは下記式(2)で表される。
(5) A method for producing the high-strength and highly ductile thick steel plate according to any one of (1) to (4) above, wherein the steel slab is heated in a range of 950 to 1100 ° C, and the cumulative reduction rate Is performed at a surface temperature of the steel slab of Ar 3 −30 ° C. or higher and a recrystallization start temperature T rex ° C. or lower at which crystal grain growth begins, and the finished rolled thick steel plate is air-cooled. A method for producing a high-strength, high-ductility, thick steel plate, characterized by cooling to room temperature.
However,
Ar 3 is represented by the following formula (1), and T rex is represented by the following formula (2).

Ar3=910−310[C]+65[Si]−80[Mn]−20[Cu]
−55[Ni]−15[Cr]−80[Mo] ・・・ (1)
但し、元素記号は各元素の含有量(質量%)を表す。なお、含有されていない元素は0%とする。
Ar 3 = 910-310 [C] +65 [Si] -80 [Mn] -20 [Cu]
-55 [Ni] -15 [Cr] -80 [Mo] (1)
However, an element symbol represents content (mass%) of each element. In addition, the element which is not contained shall be 0%.

rex=−91900[Nb*]2+9400[Nb*]+770 ・・・ (2)
但し、[Nb*]は、下記式(3)により求めるものとする。
Sol.Nb=(10(-6770/(T+273)+2.26))/(C+12/14×N)・・(3)
なお、式(3)のTは鋼片の加熱温度で、単位は摂氏温度(℃)とし、
[Nb]≧[Sol.Nb]の場合は、[Nb*]=[Sol.Nb]
[Nb]<[Sol.Nb]の場合は、[Nb*]=[Nb]
とする。ここで、[Nb]は、Nb含有量(質量%)を、[Sol.Nb]は式(3)で求めたSol.Nb(固溶Nb)(質量%)を表す。
T rex = −91900 [Nb *] 2 +9400 [Nb *] + 770 (2)
However, [Nb *] is obtained by the following equation (3).
Sol. Nb = (10 (-6770 / (T + 273) +2.26) ) / (C + 12/14 × N) (3)
In the formula (3), T is the heating temperature of the steel slab, the unit is Celsius temperature (° C.),
[Nb] ≧ [Sol. Nb], [Nb *] = [Sol. Nb]
[Nb] <[Sol. In the case of Nb], [Nb *] = [Nb]
And Here, [Nb] represents the Nb content (mass%) by [Sol. Nb] represents Sol.Nb (solid solution Nb) (mass%) obtained by the formula (3).

(6) 上記(5)に記載の高強度高延性厚板鋼板の製造方法であって、仕上圧延された厚板鋼板を、鋼板の表面温度がAr3−150℃以上、Ar3−50℃以下の温度まで、冷却速度1℃/秒超、20℃/秒以下の水冷を行い、該水冷後、冷却速度1℃/秒以下の空冷をすることを特徴とする、高強度高延性厚板鋼板の製造方法。 (6) The method for producing a high-strength, high-ductility, thick steel plate according to (5) above, wherein the surface temperature of the steel plate that has been finish-rolled is Ar 3 −150 ° C. or higher, Ar 3 −50 ° C. A high-strength and highly ductile thick plate characterized by performing water cooling at a cooling rate of more than 1 ° C./second to 20 ° C./second to the following temperature, followed by air cooling at a cooling rate of 1 ° C./second or less. A method of manufacturing a steel sheet.

(7) 上記(5)または(6)に記載の高強度高延性厚板鋼板の製造方法であって、溶鋼を製造するにあたり、真空脱ガス装置により溶鋼の溶存酸素量を40ppm以下に調整し、ついで、AlをAlの最終含有量が0.002〜0.050%となるように添加して、溶鋼の溶存酸素量を10ppm以下に調整した後、Ca、Mg、REMの1種または2種以上を、Ca、Mg、REMの1種または2種以上の合計の最終含有量が0.0005〜0.0080%となるように添加することを特徴とする、高強度高延性厚板鋼板の製造方法。   (7) In the method for producing a high-strength, high-ductile, thick steel plate according to (5) or (6) above, when producing molten steel, the amount of dissolved oxygen in the molten steel is adjusted to 40 ppm or less by a vacuum degassing device. Then, Al is added so that the final content of Al is 0.002 to 0.050%, and the dissolved oxygen content of the molten steel is adjusted to 10 ppm or less, and then one or two of Ca, Mg, and REM A high-strength, high-ductility, thick steel sheet characterized by adding at least one seed so that the total final content of one or more of Ca, Mg, and REM is 0.0005 to 0.0080% Manufacturing method.

(8) 上記(5)から(7)の内の何れかに記載の高強度高延性厚板鋼板の製造方法であって、溶鋼を連続鋳造する際に、鋳片の凝固末期である鋳片の中心固相率が0.2〜0.7の範囲において、鋳造ロールの間隙を、鋳造進行方向1mにつき0.2mm〜3.0mmに狭めて圧下しながら鋳造することを特徴とする、高強度高延性厚板鋼板の製造方法。   (8) A method for producing a high-strength, high-ductility, thick steel plate according to any one of (5) to (7) above, wherein the slab is the final stage of solidification of the slab when continuously casting molten steel In the range of the central solid phase ratio of 0.2 to 0.7, the gap between the casting rolls is narrowed to 0.2 mm to 3.0 mm per 1 m of the casting traveling direction, and casting is performed while being reduced. A method for producing a high strength and ductile steel plate.

本発明の高強度高延性厚鋼板を船舶に使用することにより、万一船舶同士の衝突事故が起こった場合でも、船舶の鋼板が破断して破口することを防止することができるので、タンカー等の船舶事故時における油の流出による海洋汚染、又は衝突損傷部からの浸水量を低減できる等の環境保護及び安全性の点から顕著な効果を奏する。   By using the high-strength and high-ductile steel plate of the present invention for a ship, even if a collision accident between ships occurs, it is possible to prevent the ship's steel sheet from breaking and breaking, so a tanker From the viewpoint of environmental protection and safety, it is possible to reduce marine pollution due to oil spills in the event of a ship accident or the like, or to reduce the amount of inundation from a collision damaged part.

以下本発明について詳細に説明する。   The present invention will be described in detail below.

船舶が衝突したときに船舶側面部の破口を抑制するためには船舶側面部の鋼板の伸びを大きくすることが本質的に重要である。伸びは均一伸びと局部伸びに分けることができるが、これらの支配因子は異なっており、通常両立することは困難である。すなわち、均一伸びはα自体の延性向上に加えて、第二相の硬さ増加により高めることができ、一般に複合組織とする方が有利である。一方、局部伸びは硬さ分布の均一化、第二相や介在物等の微細分散等、均一組織とする方が有利である。構造物が衝突した際の破壊を防止するという観点からは、どちらかの伸びを重点的に向上させるというよりも、両者をバランスよく向上させることが望ましい。なお、伸びの値は試験片形状によっても大きく異なることがわかっており、標準的なJISの1B号引張試験片を用いた場合、均一伸び14〜24%局部伸び9〜16%で、均一伸びと局部伸びの合計である全伸び(T.EL)(以下単に伸びとも称す)23〜40%を本発明における目標値としたが、板厚が薄くなると伸びは低下する。   In order to suppress the breakage of the ship side surface when the ship collides, it is essential to increase the elongation of the steel plate on the ship side surface. Elongation can be divided into uniform elongation and local elongation, but these dominating factors are different and are usually difficult to achieve. That is, the uniform elongation can be increased by increasing the hardness of the second phase in addition to improving the ductility of α itself, and it is generally more advantageous to use a composite structure. On the other hand, it is advantageous that the local elongation has a uniform structure such as uniform hardness distribution and fine dispersion of the second phase and inclusions. From the standpoint of preventing destruction when a structure collides, it is desirable to improve both in a balanced manner rather than intensively improving either elongation. It is known that the elongation value varies greatly depending on the shape of the test piece. When a standard JIS No. 1B tensile test piece is used, the uniform elongation is 14 to 24% and the local elongation is 9 to 16%. The total elongation (T.EL) (hereinafter also simply referred to as elongation) 23 to 40%, which is the sum of the local elongations, was set as a target value in the present invention, but the elongation decreases as the plate thickness decreases.

具体的には、鋼板板厚が5mm以上10mm以下では、伸びが23%以上を、鋼板板厚が10mm超15mm以下では、伸びが24%以上を、鋼板板厚が15mm超20mm以下では、伸びが25%以上を、鋼板板厚が20mm超30mm以下では、伸びが26%以上を、鋼板板厚が30mm超50mm以下では、伸びが27%以上を、伸びの下限の目標値とすることが好ましい。   Specifically, when the steel plate thickness is 5 mm or more and 10 mm or less, the elongation is 23% or more, when the steel plate thickness is 10 mm or more and 15 mm or less, the elongation is 24% or more, and when the steel plate thickness is 15 mm or more and 20 mm or less, the elongation is increased. When the steel plate thickness is more than 20 mm and 30 mm or less, the elongation is 26% or more, and when the steel plate thickness is more than 30 mm and 50 mm or less, the elongation is 27% or more. preferable.

なお、海上技術安全研究所の解析により、鋼板の延びが一般鋼(16%)に比べて約1.5倍の23%となることで、船舶の側面から衝突された際に穴が開くまでの衝撃吸収エネルギーが約3倍となり、従来の鋼材に比べて船体に穴が開きにくくなる特徴をもつことが知られているので、本発明では伸びの下限の目標値を23%とした。また、その他の特性としては、降伏応力(YP)が355〜500MPa、引張強度(TS)が490〜620MPaで、鋼板板厚(t)が5〜50mmを目標値とした。   According to the analysis by the National Maritime Research Institute, the steel sheet stretches to 23%, which is about 1.5 times that of general steel (16%), until a hole is opened when it is hit from the side of the ship. It is known that the impact absorption energy of the steel is about 3 times that of the conventional steel material, and it is known that it has a feature that the hole is not easily opened in the hull. Therefore, in the present invention, the target value of the lower limit of elongation is set to 23%. As other characteristics, the yield stress (YP) was 355 to 500 MPa, the tensile strength (TS) was 490 to 620 MPa, and the steel plate thickness (t) was 5 to 50 mm.

本発明者らは、このような目標値を達成できる高強度高延性厚板鋼板として、鋼板内での強度と伸びの変動を抑制しやすいフェライト+パーライト鋼を前提として、フェライト(αと称することがある)相の延性向上と第二相であるパーライトによる強度向上を図るという指針のもと、鋼板の化学成分、製造条件の影響について詳細な調査を行い、以下のことを知見した。   As a high-strength and highly ductile thick steel plate that can achieve such a target value, the present inventors presuppose that ferrite (pearlite steel) is easy to suppress fluctuations in strength and elongation within the steel plate. Based on the guideline of improving the ductility of the phase and improving the strength by pearlite, which is the second phase, we conducted a detailed investigation on the influence of the chemical composition and manufacturing conditions of the steel sheet and found the following.

α相の延性を向上させるためには、αの清浄度をできる限り高める必要がある。ただし、鋼板の強度は担保する必要があることから、パーライトを形成するCと、置換型固溶元素であるSi、Mn等は一定量添加せざるを得ない。α中で析出物を形成するNb、Ti等の元素は必要最小限の添加にとどめ、侵入型で固溶して降伏応力を顕著に上昇させるNや、不純物元素であるP、S等を極力低減することが効果的であること。また、Ca、Mg、REM(La,Ce等の希土類元素)の単独または複合添加によりこれらを含有する硫化物を形成させ、粗大な介在物(延伸MnS等)の生成を抑制することが伸び向上に有効であること。α中の転位密度が高くなると、塑性変形により容易に増殖してαを硬化させ、伸びを低下させる原因となるため、転位密度を低減しておくこと。Pは板厚中心部に偏析して、脆化域を形成して割れを生じさせると共に局部伸びを劣化させるのでPの最大濃度を低下させることが必要であることを知見した。   In order to improve the ductility of the α phase, it is necessary to increase the cleanliness of α as much as possible. However, since it is necessary to secure the strength of the steel plate, a certain amount of C forming pearlite and substitutional solid solution elements such as Si and Mn must be added. The elements such as Nb and Ti that form precipitates in α are limited to the minimum necessary amount, and N and impurity elements such as P and S, which increase the yield stress remarkably by interstitial solid solution, are minimized. It is effective to reduce. In addition, by adding sulfides containing Ca, Mg, or REM (rare earth elements such as La and Ce) alone or in combination to suppress the formation of coarse inclusions (stretched MnS, etc.), elongation is improved. Be effective. If the dislocation density in α is increased, it is easily proliferated by plastic deformation, causing α to harden and lower the elongation. Therefore, the dislocation density should be reduced. It has been found that P segregates in the central portion of the plate thickness, forms an embrittlement region and causes cracking, and degrades local elongation, so that it is necessary to reduce the maximum concentration of P.

また、第二相であるパーライトを分散させることで強度向上が図れるが、船舶が衝突したときに船舶側面部の破口を抑制するためには、鋼板板厚方向の組織を均一化し、鋼板板厚方向の硬さの分布を均一化することに効果があること等を知見した。   Moreover, the strength can be improved by dispersing the pearlite, which is the second phase, but in order to suppress the breakage of the side surface of the ship when the ship collides, the structure in the thickness direction of the steel sheet is made uniform. It has been found that there is an effect in making the hardness distribution in the thickness direction uniform.

本発明では、これらの知見に基づいて、高強度高延性厚板鋼板の鋼成分およびミクロ組織を決定した。   In the present invention, based on these findings, the steel components and the microstructure of the high-strength and high-ductile steel plate were determined.

まず、本発明鋼板の鋼成分の限定理由を説明する。なお、成分についての「%」はすべて質量%を意味する。   First, the reasons for limiting the steel components of the steel sheet of the present invention will be described. In addition, "%" about a component means the mass% altogether.

(C:0.050〜0.200%)
Cは、パーライトを形成して強度を高めるのに不可欠な元素であるため0.050%以上添加する。一方、C量が増えると溶接性や継手靭性確保が困難となるため0.200%を上限とする。なお、C量は0.100%以上、0.160%以下が好ましい。
(C: 0.050-0.200%)
C is an element indispensable for forming pearlite and increasing the strength, so 0.050% or more is added. On the other hand, if the amount of C increases, it becomes difficult to secure weldability and joint toughness, so 0.200% is made the upper limit. The C content is preferably 0.100% or more and 0.160% or less.

(Si:0.200〜1.000%)
Siは、安価な脱酸元素であり、固溶強化に効くとともに、変態点を上昇させてα中の転位密度低減に寄与するため0.200%以上添加する。一方、Si量が1.000%を超えると溶接性と継手靭性を劣化させるため上限を1.000%とする。Si量は、0.300%以上、0.500%以下が好ましい。
(Si: 0.200 to 1.000%)
Si is an inexpensive deoxidizing element, and is effective for solid solution strengthening, and also increases the transformation point and contributes to the reduction of dislocation density in α, so 0.200% or more is added. On the other hand, if the amount of Si exceeds 1.000%, the weldability and joint toughness are deteriorated, so the upper limit is made 1.000%. The amount of Si is preferably 0.300% or more and 0.500% or less.

(Mn:0.50〜2.00%)
Mnは、母材の強度及び靭性を向上させる元素として有効であるため0.50%以上添加する。一方、Mnを過剰に添加すると、継手靭性、溶接割れ性を劣化させるため2.00%を上限とする。Mn量は、0.80%以上、1.60%以下が好ましく、更に好ましくは、0.90%以上、1.50%以下である。
(Mn: 0.50 to 2.00%)
Since Mn is effective as an element for improving the strength and toughness of the base material, 0.50% or more is added. On the other hand, if Mn is added excessively, joint toughness and weld cracking properties are deteriorated, so the upper limit is made 2.00%. The amount of Mn is preferably 0.80% or more and 1.60% or less, and more preferably 0.90% or more and 1.50% or less.

(P:0.015%以下、S:0.003%以下)
P、Sは、不可避不純物であり、伸びや靭性を確保するためにはP及びSの含有量は少ないほど望ましいので、Pは0.015%、Sは0.003%を上限とする。
(P: 0.015% or less, S: 0.003% or less)
P and S are inevitable impurities, and in order to ensure elongation and toughness, the lower the content of P and S, the better. Therefore, P is 0.015%, and S is 0.003%.

(Ti:0.003〜0.020%)
Tiは、微量の添加により母材と溶接部の組織微細化を通じて靭性向上に寄与するため、0.003%以上添加する。一方、過剰に添加すると溶接部を硬化させ著しく靭性を劣化させるため、0.020%を上限とする。Ti量は、0.006〜0.013%が好ましい。
(Ti: 0.003-0.020%)
Since Ti contributes to the improvement of toughness through refinement of the structure of the base material and the welded portion by adding a small amount, Ti is added in an amount of 0.003% or more. On the other hand, if added in excess, the weld is hardened and the toughness is remarkably deteriorated, so 0.020% is made the upper limit. The amount of Ti is preferably 0.006 to 0.013%.

(Al:0.002〜0.050%)
Alは、重要な脱酸元素であるため0.002%以上添加する。一方、Alを過剰に添加すると鋼片の表面品位を損ない、靭性に有害な介在物を形成するため0.050%を上限とする。Al量は、好ましくは0.002〜0.040%であり、更に好ましくは、0.010〜0.040%である。
(Al: 0.002 to 0.050%)
Since Al is an important deoxidizing element, 0.002% or more is added. On the other hand, if Al is added excessively, the surface quality of the steel slab is impaired, and inclusions harmful to toughness are formed, so 0.050% is made the upper limit. The amount of Al is preferably 0.002 to 0.040%, and more preferably 0.010 to 0.040%.

(N:0.0010〜0.0060%)
Nは、Alと共に窒化物を形成し継手靭性を向上させるため、含有量の下限を0.0010%以上、好ましくは0.002%以上とする。一方、Nの含有量が過剰であると、固溶Nによる脆化や伸びの低下が生じるため、上限を0.0060%以下とする。N量の好ましい上限は、0.0050%以下であり、更に好ましくは、0.0040%以下である。
(N: 0.0010 to 0.0060%)
N forms a nitride with Al and improves joint toughness, so the lower limit of the content is 0.0010% or more, preferably 0.002% or more. On the other hand, if the content of N is excessive, embrittlement and a decrease in elongation occur due to solute N, so the upper limit is made 0.0060% or less. The upper limit with preferable N amount is 0.0050% or less, More preferably, it is 0.0040% or less.

(Ca、Mg、REMの1種または2種以上を添加量の合計として0.0005〜0.0080%)
Ca、Mg、REMは、いずれも硫化物を形成することで粗大な介在物(延伸MnS等)の生成を抑制する重要な元素である。これらの元素は同等の効果を有するため、個々の添加量は問わないが、添加量の合計としては0.0005〜0.0080%とする必要がある。添加量の合計が0.0005%未満であると伸び向上の効果が安定して得られない。一方、0.0080%を超えて過剰添加しても効果は飽和し、粗大な酸・硫化物を形成して靭性や伸びを劣化させる。したがって、添加量の合計は、0.0005〜0.0080%としたが、好ましくは0.0010〜0.0060%、更に好ましくは0.0015〜0.0040%である。
(One or two or more of Ca, Mg, and REM are added in a total amount of 0.0005 to 0.0080%)
Ca, Mg, and REM are all important elements that suppress the formation of coarse inclusions (such as stretched MnS) by forming sulfides. Since these elements have the same effect, the individual addition amount is not limited, but the total addition amount needs to be 0.0005 to 0.0080%. If the total amount added is less than 0.0005%, the effect of improving elongation cannot be obtained stably. On the other hand, even if it exceeds 0.0080% and it adds excessively, an effect will be saturated and a coarse acid and sulfide will be formed and toughness and elongation will be degraded. Therefore, the total addition amount is set to 0.0005 to 0.0080%, preferably 0.0010 to 0.0060%, and more preferably 0.0015 to 0.0040%.

(O:0.0005〜0.0060%)
Oは、Mg、Ca、REMとともに酸化物を形成する。0.0060%を超えると酸化物が粗大化して伸びや靭性が低下するので、0.0060%以下とする。一方、Oは少ないほど良いが、Oを減らすには、例えば、RH真空脱ガス装置での還流作業が長時間となり現実的ではないので、0.0005%以上とする。
(O: 0.0005 to 0.0060%)
O forms an oxide together with Mg, Ca, and REM. If it exceeds 0.0060%, the oxide becomes coarse and elongation and toughness decrease, so the content is made 0.0060% or less. On the other hand, the smaller the amount of O, the better. However, in order to reduce O, for example, the recirculation work in the RH vacuum degassing apparatus takes a long time and is not practical.

(Ti/Nが0.5〜4.0)
Ti/Nを0.5〜4.0とするのは、TiをNで固定して伸びの劣化の原因となるTiCの生成を抑制するためで、少ない方がよいが、0.5未満となるとN量が多くなり固溶Nが生じ伸びを劣化させる原因となり、さらにスラブの表面疵の発生の原因ともなる。一方、4.0を超えるとTiCが生成して伸びを劣化させる。したがって、Ti/Nは0.5〜4.0とした。
(Ti / N is 0.5 to 4.0)
The reason why Ti / N is set to 0.5 to 4.0 is to fix Ti with N and suppress the generation of TiC that causes deterioration of elongation. Then, the amount of N is increased, so that solid solution N is generated and the elongation is deteriorated, and further, the surface flaws of the slab are generated. On the other hand, if it exceeds 4.0, TiC is generated and the elongation is deteriorated. Therefore, Ti / N is set to 0.5 to 4.0.

更に、強度確保のために、選択元素として、Nb:0〜0.030%、V:0〜0.050%、Cu:0〜0.50%、Ni:0〜1.00%、Cr:0〜0.50%、Mo:0〜0.50%、B:0〜0.0030%の群の内の1種又は2種以上を添加してもよい。   Furthermore, in order to ensure strength, Nb: 0 to 0.030%, V: 0 to 0.050%, Cu: 0 to 0.50%, Ni: 0 to 1.00%, Cr: You may add 1 type (s) or 2 or more types in the group of 0-0.50%, Mo: 0-0.50%, B: 0-0.030%.

Nbは、微量の添加により組織微細化に寄与し、母材強度確保に有効な元素であるため、0.030%以下を添加する。0.030%超のNbを添加すると、溶接部を硬化させて著しく靭性を劣化させるため、0.030%を上限とする。Nb添加の効果を得るためには0.003%以上を添加するのが好ましいが、それ未満であっても本発明の効果を阻害しない。   Nb contributes to the refinement of the structure by adding a small amount and is an element effective for securing the strength of the base material, so 0.030% or less is added. Addition of more than 0.030% Nb hardens the weld and significantly deteriorates toughness, so 0.030% is made the upper limit. In order to obtain the effect of Nb addition, it is preferable to add 0.003% or more, but even if it is less than that, the effect of the present invention is not inhibited.

Vは、析出強化により強度上昇に寄与するため0.050%以下を添加する。0.050%超のVを添加すると、継手靭性を損なうことがあるため、0.050%を上限とする。V添加の効果を得るためには0.010%以上を添加することが好ましいが、それ未満であっても本発明の効果を阻害しない。   V contributes to an increase in strength by precipitation strengthening, so 0.050% or less is added. Addition of more than 0.050% V may impair joint toughness, so 0.050% is made the upper limit. In order to obtain the effect of V addition, it is preferable to add 0.010% or more, but even if it is less than that, the effect of the present invention is not inhibited.

Cu、Cr、Moは、何れも焼入れ性を向上させ、高強度化に有効であるが、過剰に添加すると、継手の硬さが上昇して靭性が低下することがあるため、Cuは0.50%以下、Crは0.50%以下、Moは0.50%以下添加することが好ましい。その効果を得るためには、Cuは0.05%以上、Crは0.05%以上、Moは0.01%以上を添加することが好ましいが、それ未満であっても本発明の効果を阻害しない。   Cu, Cr, and Mo all improve the hardenability and are effective for increasing the strength. However, if added excessively, the hardness of the joint may increase and the toughness may decrease. It is preferable to add 50% or less, Cr 0.50% or less, and Mo 0.50% or less. In order to obtain the effect, it is preferable to add 0.05% or more of Cu, 0.05% or more of Cr, and 0.01% or more of Mo. Does not interfere.

Niは、強度確保と靭性向上に有効であるが1.00%を超えて添加するとコストが上昇するため、上限を1.00%とする。Ni添加の効果を得るためには0.05%以上を添加することが好ましいが、それ未満であっても本発明の効果を阻害しない。   Ni is effective in securing strength and improving toughness, but if added over 1.00%, the cost increases, so the upper limit is made 1.00%. In order to obtain the effect of adding Ni, it is preferable to add 0.05% or more, but even if less than that, the effect of the present invention is not inhibited.

Bは、微量添加により焼き入れ性を高め母材強度向上に寄与するので、0.003%以下添加する。0.003%を超えて添加すると伸びと継手靭性を劣化させる。B添加の効果を得るためには0.0003%以上を添加することが好ましいが、それ未満であっても本発明の効果を阻害しない。これらの選択元素の下限は0%であってもよい。
なお、以上に述べた成分の残部はFeおよび不可避不純物である。
B is added in an amount of 0.003% or less because it can improve the hardenability and improve the strength of the base material by adding a small amount. If added over 0.003%, the elongation and joint toughness deteriorate. In order to obtain the effect of addition of B, it is preferable to add 0.0003% or more, but even if it is less than that, the effect of the present invention is not inhibited. The lower limit of these selective elements may be 0%.
The balance of the components described above is Fe and inevitable impurities.

次に、本発明鋼板のミクロ組織等の限定理由について説明する。   Next, the reasons for limiting the microstructure of the steel sheet of the present invention will be described.

(1/4厚部のフェライト相面積分率が80〜95%、1/4厚部のパーライト相面積分率が5〜20%)
フェライト(α)相面積分率が高くなるほど均一伸び特性が向上し、α相占積率が80%以上となると、急激に伸び特性が改善される。組織は板厚方向で多少変化するが、十分な伸びを確保するために1/4厚部のフェライト相面積分率が80%以上必要である。一方、95%を超えると強度を確保できないので、1/4厚部のフェライト相面積分率を80〜95%とした。この板厚1/4厚部は、冷却時において、板厚中央部に比べて相対的に冷却速度が速くなり、硬質相が生成しやすく、均一伸びが劣化しやすい領域である。板厚全体を考慮した場合、板厚中央部との特性差を考慮する必要があるので、1/4厚部のフェライト相面積分率を80〜95%に限定したが、85〜90%が好ましい。
(The ferrite phase area fraction of 1/4 thick part is 80 to 95%, the pearlite phase area fraction of 1/4 thick part is 5 to 20%)
As the ferrite (α) phase area fraction increases, the uniform elongation property improves, and when the α phase space factor is 80% or more, the elongation property is drastically improved. Although the structure changes somewhat in the plate thickness direction, the ferrite phase area fraction of the 1/4 thick portion needs to be 80% or more in order to ensure sufficient elongation. On the other hand, if it exceeds 95%, the strength cannot be secured, so the ferrite phase area fraction of the 1/4 thick part was set to 80 to 95%. This plate thickness ¼ thickness portion is a region where the cooling rate is relatively faster than that of the plate thickness center portion during cooling, a hard phase is easily generated, and uniform elongation is likely to deteriorate. When considering the entire plate thickness, it is necessary to consider the characteristic difference from the central portion of the plate thickness, so the ferrite phase area fraction of the 1/4 thick portion was limited to 80-95%, but 85-90% preferable.

また、強度特性である降伏点YP、引張強度TSは、伸び特性ELとは相反する性質であって、両者を同時に向上させることは一般に困難とされていて、フェライト相面積分率を増加させることによって伸び特性が改善されるが、伸びが向上すれば引張強さが低下するので、フェライト相面積分率の増加だけでは強度特性の確保に限度がある。   Moreover, the yield point YP and the tensile strength TS, which are strength properties, are incompatible with the elongation properties EL, and it is generally considered difficult to improve both at the same time, and increase the ferrite phase area fraction. The elongation characteristics are improved by the above, but if the elongation is improved, the tensile strength is lowered. Therefore, there is a limit to securing the strength characteristics only by increasing the ferrite phase area fraction.

そこで、本発明では、伸び特性を確保しつつ、強度特性である降伏点YP、引張強度TSを確保するために1/4厚部のパーライト(P)相面積分率を5%以上とした。しかし、20%を超えると伸びを確保できなくなるので、上限を20%とした。好ましくは、10〜15%である。   Therefore, in the present invention, the pearlite (P) phase area fraction of the ¼ thick part is set to 5% or more in order to ensure the yield point YP and the tensile strength TS, which are the strength characteristics, while ensuring the elongation characteristics. However, if it exceeds 20%, the elongation cannot be secured, so the upper limit was made 20%. Preferably, it is 10 to 15%.

なお、1/4厚部のフェライト相面積分率およびパーライト相面積分率の合計は、90%以上とするのが好ましく、10%未満のベイナイトが存在していても本発明の効果を阻害するものではない。また、フェライト相面積分率およびパーライト相面積分率は、光学顕微鏡により500倍の倍率でミクロ組織を撮影し、画像解析により各相の面積分率を求めたものである。   Note that the total of the ferrite phase area fraction and the pearlite phase area fraction of the 1/4 thick part is preferably 90% or more, and even if less than 10% bainite is present, the effect of the present invention is hindered. It is not a thing. Further, the ferrite phase area fraction and the pearlite phase area fraction are obtained by photographing the microstructure at a magnification of 500 times with an optical microscope and obtaining the area fraction of each phase by image analysis.

(1/4厚部のフェライト粒の平均アスペクト比が1.0〜1.5)
1/4厚部のフェライト粒の平均アスペクト比は小さいほど好ましく、1.5を超えると転位密度が高く伸びが劣化するので、上限を1.5とした。また、下限はフェライト粒が球状となる1.0とした。
(The average aspect ratio of the 1/4 thick ferrite grains is 1.0 to 1.5)
The average aspect ratio of the 1/4 thick part ferrite grains is preferably as small as possible, and when it exceeds 1.5, the dislocation density is high and the elongation deteriorates, so the upper limit was set to 1.5. Moreover, the lower limit was set to 1.0 at which the ferrite grains became spherical.

(1/4厚部のフェライト粒の平均粒径が5〜20μm)
1/4厚部のフェライト粒の平均粒径が20μmを超えると強度を確保できなくなるので、上限を20μmとした。また、フェライト粒は細粒であるほど好ましいが5μm未満は工業上実現が難しいので、下限を5μmとした。
(The average grain size of the 1/4 thick ferrite grains is 5 to 20 μm)
Since the strength cannot be secured when the average grain size of the 1/4 thick ferrite grains exceeds 20 μm, the upper limit is set to 20 μm. Also, the finer the ferrite grains, the better. However, since it is difficult to realize industrially when the grain size is less than 5 μm, the lower limit is set to 5 μm.

(1/4厚部のフェライト相中の平均転位密度が7×1012/m2以下)
伸びを確保するためにはフェライト(α)相中の平均転位密度を7×1012/m2以下とする必要がある。転位密度が7×1012/m2超であると、鋼板の塑性変形により転位が顕著に増殖してフェライト(α)が硬くなり、十分な全伸び(T.EL%)が得られない。転位密度は低ければ低いほどよいが、通常1×1012/m2を下回ることはほとんどない。平均転位密度の好ましい上限は6×1012/m2である。
(The average dislocation density in the ferrite phase of ¼ thick part is 7 × 10 12 / m 2 or less)
In order to ensure elongation, the average dislocation density in the ferrite (α) phase needs to be 7 × 10 12 / m 2 or less. When the dislocation density exceeds 7 × 10 12 / m 2 , the dislocations proliferate remarkably due to plastic deformation of the steel sheet, the ferrite (α) becomes hard, and sufficient total elongation (T.EL%) cannot be obtained. The lower the dislocation density, the better. However, it is rarely less than 1 × 10 12 / m 2 . A preferable upper limit of the average dislocation density is 6 × 10 12 / m 2 .

(1mmピッチのビッカース硬さの試験で、鋼板の表面から1/4厚部まで、または3/4厚部から裏面までのビッカース硬さ平均値が、1/4厚部から3/4厚部までのビッカース硬さ平均値の80〜105%)
厚鋼板の冷却時において、板厚表裏層部は板厚中央部に比べて相対的に冷却速度が速くなり、硬質化しやすく、表層部近傍の硬さが大きすぎると伸びを劣化させる。板厚全体の伸び特性を考慮した場合、板厚表裏層部の硬質化の影響はある程度は許容できるが、板厚表裏層部と板厚中央部との硬度差が大きくなると影響を無視できなくなってくる。そのため、1mmピッチのビッカース硬さの試験で、板厚表裏層部(鋼板の表面から1/4厚部まで、または3/4厚部から裏面まで)のビッカース硬(Hv)さ平均値を、板厚中心部(板厚の1/4厚部から3/4厚部まで)のビッカース硬さ(Hv)平均値の80〜105%とすることが必要である。伸びを確保するためには、板厚表裏層部の硬さを抑えた方がよく、板厚中心部のビッカース硬さ平均値の80%が工業的に可能な下限である。また、105%を超えると伸びの確保が困難となる。したがって、(板厚表裏層部のビッカース硬さ平均値)/(板厚中心部のビッカース硬さ平均値)を80〜105%とした。
(In the 1 mm pitch Vickers hardness test, the average value of Vickers hardness from the surface of the steel sheet to 1/4 thickness or from 3/4 thickness to the back is 1/4 to 3/4 thick. Up to 80 to 105% of the average Vickers hardness)
When cooling a thick steel plate, the front and back layer portions of the plate thickness have a relatively faster cooling rate than the central portion of the plate thickness and are easily hardened. If the hardness in the vicinity of the surface layer portion is too large, the elongation is deteriorated. Considering the elongation characteristics of the entire plate thickness, the effect of the hardening of the plate thickness front and back layers can be tolerated to some extent, but if the hardness difference between the plate thickness front and back layers and the plate thickness center is large, the effect cannot be ignored. Come. Therefore, in the Vickers hardness test of 1 mm pitch, the Vickers hardness (Hv) average value of the plate thickness front and back layer parts (from the steel sheet surface to 1/4 thickness part, or from 3/4 thickness part to the back surface), It is necessary to set it to 80 to 105% of the average value of the Vickers hardness (Hv) at the center portion of the plate thickness (from 1/4 to 3/4 thickness). In order to ensure the elongation, it is better to suppress the hardness of the front and back layer portions of the plate thickness, and 80% of the average value of the Vickers hardness at the center portion of the plate thickness is an industrially lower limit. On the other hand, if it exceeds 105%, it is difficult to ensure elongation. Therefore, (average thickness of Vickers hardness at the front and back layer portions) / (average Vickers hardness value at the center of the thickness) was set to 80 to 105%.

(板厚の厚み方向の1/2厚±(板厚の)10%範囲で長さ5μm以上の介在物が10個/mm2以下、)
長さ5μm以上の粗大な介在物{MnS、アルミナ(酸化アルミニュウムAl23)等の硫化物や酸化物}は延性破壊(ボイド)の起点となり、局部伸びを劣化させることがあるので、板厚の厚み方向の1/2厚±(板厚の)10%範囲で最大長5μm以上の介在物が少ない方が好ましく、特に限定するものではないが局部伸びの劣化の観点から、その存在形態を特に10個/mm2以下とすることが好ましい。なお、介在物の測定はSEMによる粒子解析による。
(1/2 thickness in the thickness direction of the plate thickness ± (plate thickness) 10% range, 10 μm / mm 2 or less inclusions with a length of 5 μm or more)
Coarse inclusions {MnS, sulfides or oxides such as alumina (aluminum oxide Al 2 O 3 ), etc., having a length of 5 μm or more become the starting point of ductile fracture (voids) and may deteriorate local elongation. It is preferred that there be less inclusions with a maximum length of 5 μm or more in the range of ½ thickness ± (thickness) of 10% in the thickness direction, and although it is not particularly limited, its presence form from the viewpoint of deterioration of local elongation Is preferably 10 pieces / mm 2 or less. Inclusions are measured by particle analysis using SEM.

(板厚の厚み方向の1/2厚±(板厚の)10%範囲のPの最大濃度が0.02〜0.20%)
Pは連続鋳造時に中心偏析して板厚中心部に脆化域を形成し、割れを生じさせて局部伸びを劣化させるので、Pの最大濃度は小さい方が好ましい。Pの最大濃度の上限は特に特定するものではないが、伸びを確保するためには、板厚中心部(板厚の厚み方向の1/2厚±(板厚の)10%範囲を意味する)のPの最大濃度は0.20%以下とすることが好ましい。また、Pの最大濃度を0.02%未満とすることは現実的に困難であるので、0.02%を下限とし、0.02〜0.20%を好ましい範囲とした。
Pの最大濃度は、中心偏析を生じやすい板厚中心部の±(板厚の)10%の範囲、例えば板厚10mmであれば、板厚の中心部20%(±10%)角、すなわち2mm(±1mm)角について、EPMA(Electron Probe MicroAnalyser:電子プローブ微小分析器)により、加速電圧:15kV、ビーム径:20μm、照射時間:20ms、測定ピッチ:20μmで、上記2mm角の測定範囲を測定したときのPの濃度の最大値である。
(1/2 thickness in the thickness direction of the plate thickness ± (maximum concentration of P in the plate thickness) 10% range is 0.02 to 0.20%)
P is segregated at the center during continuous casting and forms an embrittlement region at the center of the plate thickness, causing cracks and deteriorating local elongation. Therefore, it is preferable that the maximum concentration of P is small. The upper limit of the maximum concentration of P is not particularly specified, but in order to ensure the elongation, it means the thickness center portion (1/2 thickness in the thickness direction of the thickness ± (thickness) 10% range). The maximum concentration of P is preferably 0.20% or less. Moreover, since it is practically difficult to make the maximum concentration of P less than 0.02%, 0.02% is set as the lower limit, and 0.02 to 0.20% is set as a preferable range.
The maximum concentration of P is within the range of ± (plate thickness) 10% of the center portion of the plate thickness where the center segregation is likely to occur. For example, if the plate thickness is 10 mm, the center portion of the plate thickness is 20% (± 10%). With respect to a 2 mm (± 1 mm) angle, an EPMA (Electron Probe MicroAnalyzer: Electron Probe Microanalyzer) is used to measure the measurement range of the above 2 mm angle at an acceleration voltage of 15 kV, a beam diameter of 20 μm, an irradiation time of 20 ms, and a measurement pitch of 20 μm. It is the maximum value of P concentration when measured.

(冷却する際のフェライト変態開始温度Ar3が760〜820℃)、
鋼を冷却する際のフェライト変態開始温度Ar3は、鋼組成としてのAr3が大きいほど高温でフェライト変態するため、フェライト粒内の転位密度が低下し、伸びが向上する。したがって、鋼のAr3が大きい方が好ましいが、820℃を超えて大きすぎるとフェライトが粗大化し強度が低下するので、上限を820℃とすることが好ましい。一方、Ar3が小さすぎるとベイナイトを形成し伸びが劣化するので、760℃を下限とすることが好ましい。
なお、冷却する際のフェライト変態開始温度Ar3は、公知の下記式(1)で示される。
(Ferrite transformation start temperature Ar 3 when cooling is 760 to 820 ° C.)
The ferrite transformation start temperature Ar 3 when cooling the steel is such that the higher the Ar 3 as the steel composition, the higher the temperature, the more the ferrite transformation is performed, so that the dislocation density in the ferrite grains decreases and the elongation improves. Therefore, it is preferable that the Ar 3 of the steel is large, but if it exceeds 820 ° C. and is too large, the ferrite becomes coarse and the strength decreases, so the upper limit is preferably made 820 ° C. On the other hand, if Ar 3 is too small, bainite is formed and elongation deteriorates, so it is preferable to set 760 ° C. as the lower limit.
Incidentally, the ferrite transformation start temperature Ar 3 at the time of cooling is represented by the known formula (1).

Ar3=910−310[C]+65[Si]−80[Mn]−20[Cu]
−55[Ni]−15[Cr]−80[Mo] ・・・ (1)
但し、元素記号は各元素の含有量(質量%)を表す。なお、含有されていない元素は0%とする。
Ar 3 = 910-310 [C] +65 [Si] -80 [Mn] -20 [Cu]
-55 [Ni] -15 [Cr] -80 [Mo] (1)
However, an element symbol represents content (mass%) of each element. In addition, the element which is not contained shall be 0%.

続いて、本発明における製造条件の限定理由を説明する。   Next, the reasons for limiting the manufacturing conditions in the present invention will be described.

まず、鋳造前処理として、溶鋼から炭素を除く1次精錬を行った後、溶鋼の成分調整をするにあたり、真空脱ガス処理により溶鋼の溶存酸素量を65ppm以下、好ましくは40ppm以下に調整する。溶鋼の溶存酸素量を特に40ppm以下に調整するには、例えば、RH真空脱ガス装置の真空度が1〜5torrで、溶鋼を1〜3分還流して調整する。
溶鋼の溶存酸素量を40ppm以下となった後、溶鋼にAlをAlの最終含有量が0.002〜0.050%となるように添加する。溶鋼中の溶存酸素量が40ppmを超えて多い場合には、脱酸材としてAlを添加し、RH真空脱ガス装置で還流作業を行っても、溶鋼中の最終溶存酸素量を16ppm以下、特に10ppm以下に調整することができないからである。また、溶存酸素量は少ないほどよく、溶鋼の溶存酸素量の下限については設定する必要はない。
First, as a pre-casting treatment, after performing primary refining that removes carbon from molten steel, when adjusting the components of the molten steel, the dissolved oxygen content of the molten steel is adjusted to 65 ppm or less, preferably 40 ppm or less by vacuum degassing treatment. In order to adjust the dissolved oxygen content of the molten steel to 40 ppm or less, for example, the degree of vacuum of the RH vacuum degassing apparatus is 1 to 5 torr, and the molten steel is adjusted to reflux for 1 to 3 minutes.
After the dissolved oxygen content of the molten steel becomes 40 ppm or less, Al is added to the molten steel so that the final content of Al is 0.002 to 0.050%. When the amount of dissolved oxygen in the molten steel exceeds 40 ppm, even if Al is added as a deoxidizing material and the reflux operation is performed with an RH vacuum degassing apparatus, the final dissolved oxygen amount in the molten steel is 16 ppm or less. This is because it cannot be adjusted to 10 ppm or less. Also, the smaller the amount of dissolved oxygen, the better, and there is no need to set the lower limit of the amount of dissolved oxygen in the molten steel.

ついで、溶鋼の溶存酸素量を10ppm以下に調整した後、Ca、Mg、REMの1種または2種以上をCa、Mg、REMの1種または2種以上の合計の最終含有量が0.0005〜0.0080%となるように添加して優先的に硫化物化して、MnS生成を抑制する。
溶存酸素量が10ppmを超えて多いと、Ca、Mg、REMを添加した場合に酸化物化してしまい硫化物制御が十分にできないことがある。溶鋼の溶存酸素量を10ppm以下に調整するには、例えば、RH真空脱ガス装置の真空度が1〜5torrで、溶鋼を10〜60分還流して、溶鋼の溶存酸素量を10ppm以下に調整する。真空度が1〜5torrで、溶鋼を10〜60分還流しなければ、溶存酸素量を10ppm以下とすることができない。また、溶存酸素量は少ないほどよく、溶鋼の溶存酸素量の下限については設定する必要はない。
Next, after adjusting the dissolved oxygen content of the molten steel to 10 ppm or less, the total final content of one or more of Ca, Mg, and REM is one or more of Ca, Mg, and REM is 0.0005. It is added so as to be ˜0.0080% and is preferentially sulfided to suppress MnS formation.
If the amount of dissolved oxygen exceeds 10 ppm, it may be oxidized when Ca, Mg, or REM is added, and sulfide control may not be sufficient. In order to adjust the dissolved oxygen amount of the molten steel to 10 ppm or less, for example, the degree of vacuum of the RH vacuum degassing apparatus is 1 to 5 torr, the molten steel is refluxed for 10 to 60 minutes, and the dissolved oxygen amount of the molten steel is adjusted to 10 ppm or less. To do. If the degree of vacuum is 1 to 5 torr and the molten steel is not refluxed for 10 to 60 minutes, the amount of dissolved oxygen cannot be reduced to 10 ppm or less. Also, the smaller the amount of dissolved oxygen, the better, and there is no need to set the lower limit of the amount of dissolved oxygen in the molten steel.

成分調整した溶鋼を連続鋳造して鋳片を製造する際に、鋳片の凝固末期である鋳片の中心固相率が0.2〜0.7%の範囲において、鋳造ロールの間隙を、鋳造進行方向1mにつき0.2mm〜3.0mm、好ましくは鋳造進行方向1mにつき0.5〜2.0mm、さらに好ましくは鋳造進行方向1mにつき0.7〜1.5mmに狭めて軽圧下しながら鋳造し、P等の濃化溶鋼を上流側に排出させる。それにより、有害な中心偏析を低減することが可能となる。ここでいう中心固相率とは、鋳片厚み方向の中心部で、かつ、鋳片幅方向の溶融部分の固相率と定義でき、伝熱、凝固計算によって求めることができること等が知られている。なお、軽圧下をすることが好ましいが、P含有量が低い成分の場合には軽圧下をしなくてもよい。   When producing the slab by continuously casting the molten steel whose components are adjusted, in the range where the central solid phase ratio of the slab which is the final stage of solidification of the slab is 0.2 to 0.7%, the gap between the casting rolls, While narrowing down to 0.2 to 3.0 mm per 1 m in the casting direction, preferably 0.5 to 2.0 mm per 1 m in the casting direction, more preferably 0.7 to 1.5 mm per 1 m in the casting direction, Casting and discharging the concentrated molten steel such as P to the upstream side. Thereby, harmful center segregation can be reduced. It is known that the central solid fraction here can be defined as the solid fraction of the melted portion in the center of the slab thickness direction and in the width direction of the slab, and can be determined by heat transfer and solidification calculations. ing. In addition, although it is preferable to lightly reduce, in the case of a component with low P content, it is not necessary to lightly reduce.

ついで、鋳造した鋳片(鋼片)を熱間圧延する。   Next, the cast slab (steel slab) is hot-rolled.

熱間圧延では、鋳造した鋼片を950〜1100℃、好ましくは1000〜1050℃の範囲で低温加熱する。加熱温度を1100℃以下にして加熱するとオーステナイト(γと称することがある)粒を微細化し、フェライトを細粒化するともにγ→α変態温度を高めて転位密度を低減することができるので、1100℃を上限とした。また、950℃未満ではγ化が不十分で靭性が劣化するので950℃を下限とした。加熱した鋼片を粗圧延した後、累積圧下率が50〜75%の仕上圧延を行う。累積圧下率が50%を超えるとγ中のα核生成サイトが増え、αを細粒化するとともにγ→α変態温度を高めることができるが、75%を超えると生産性が劣化するので、累積圧下率を50〜75%としたが、好ましくは55〜65%である。   In hot rolling, the cast steel slab is heated at a low temperature in the range of 950 to 1100 ° C, preferably 1000 to 1050 ° C. When heated at a heating temperature of 1100 ° C. or lower, austenite (sometimes referred to as γ) grains can be refined, ferrite can be refined, and the γ → α transformation temperature can be increased to reduce the dislocation density. The upper limit was set to ° C. Further, if it is less than 950 ° C., γ conversion is insufficient and toughness deteriorates, so 950 ° C. was set as the lower limit. After roughly rolling the heated steel slab, finish rolling with a cumulative reduction ratio of 50 to 75% is performed. If the cumulative rolling reduction exceeds 50%, α nucleation sites in γ increase, and α can be refined and the γ → α transformation temperature can be increased. However, if it exceeds 75%, productivity deteriorates. The cumulative rolling reduction is 50 to 75%, preferably 55 to 65%.

仕上圧延は、αを細粒化するために重要な工程であり、鋼片の表面温度が公知の次式(1)で示す冷却する際のフェライト変態開始温度Ar3−30℃以上、次式(2)で示す結晶粒の成長が始まる再結晶開始温度Trex℃以下で行う。温度がAr3−30℃未満では2相域圧延となり、延伸したフェライトを形成し、伸びが劣化する。また、Trex超では未再結晶域圧延とならず、フェライトが粗大化して伸びを劣化させる。 Finish rolling is an important step for making α fine, and the surface temperature of the steel slab is the ferrite transformation start temperature Ar 3 -30 ° C. or higher when cooling as shown by the following formula (1). The recrystallization is started at a recrystallization start temperature T rex ° C. or less at which the crystal grain growth shown in (2) starts. If the temperature is lower than Ar 3 -30 ° C., it becomes two-phase rolling, and stretched ferrite is formed and the elongation deteriorates. On the other hand, if it exceeds T rex, it does not result in non-recrystallized zone rolling, and ferrite becomes coarse and deteriorates elongation.

rexは通常の厚板圧延のパス間時間(10〜15秒間程度)で概ね再結晶を完了させるために必要な温度(再結晶限界温度)のことで、Nb添加量を用いて下記の式(2)で表すことができる。
Ar3=910−310[C]+65[Si]−80[Mn]−20[Cu]
−55[Ni]−15[Cr]−80[Mo] ・・・ (1)
但し、元素記号は各元素の含有量(質量%)を表す。なお、含有されていない元素は0%とする。
T rex is a temperature (recrystallization limit temperature) required to complete recrystallization in the time between passes of normal plate rolling (about 10 to 15 seconds). (2).
Ar 3 = 910-310 [C] +65 [Si] -80 [Mn] -20 [Cu]
-55 [Ni] -15 [Cr] -80 [Mo] (1)
However, an element symbol represents content (mass%) of each element. In addition, the element which is not contained shall be 0%.

rex=−91900[Nb*]2+9400[Nb*]+770 ・・・ (2)
ここで、[Nb*]は、下記式(3)により求めるものとする。
T rex = −91900 [Nb *] 2 +9400 [Nb *] + 770 (2)
Here, [Nb *] is obtained by the following equation (3).

Sol.Nb=10(-6770/(T+273)+2.26))/(C+12/14×N)・・ (3)
なお、(3)式のTは鋼片の加熱温度で、単位は摂氏温度(℃)とし、
[Nb]≧[Sol.Nb]の場合は、[Nb*]=[Sol.Nb]、
[Nb]<[Sol.Nb]の場合は、[Nb*]=[Nb]、
とする。ここで、[Nb]は、Nb含有量(質量%)を、[Sol.Nb]は式(3)で求めたSol.Nb(固溶Nb)(質量%)を表す。
また、Trexの式(2)は実験式で、低温加熱することで、固溶していないNbもあるので固溶Nb量(Sol.Nb量)を、固溶Nbと再結晶温度の関係から求めた式である。
Sol. Nb = 10 (-6770 / (T + 273) +2.26)) / (C + 12/14 × N) (3)
In addition, T in the formula (3) is the heating temperature of the steel slab, the unit is the Celsius temperature (° C.),
[Nb] ≧ [Sol. Nb], [Nb *] = [Sol. Nb],
[Nb] <[Sol. Nb], [Nb *] = [Nb],
And Here, [Nb] represents the Nb content (mass%) by [Sol. Nb] is Sol. Nb (solid solution Nb) (mass%) is represented.
Also, T rex formula (2) is an empirical formula, and some Nb is not dissolved by heating at a low temperature, so the amount of solid solution Nb (sol.Nb amount) is the relationship between the solid solution Nb and the recrystallization temperature. This is the formula obtained from

仕上圧延後の冷却工程としては、仕上圧延された厚鋼板を冷却速度1℃/秒以下の空冷、または鋼板の表面温度がAr3−150℃以上、Ar3−50℃以下の温度まで冷却速度1℃/秒超、20℃/秒以下の水冷した後空冷する。なお、空冷終了温度は、室温である。 As a cooling step after finish rolling, air-cooling of the finish-rolled thick steel plate at a cooling rate of 1 ° C./second or less, or a cooling rate to a surface temperature of the steel plate of Ar 3 −150 ° C. or higher and Ar 3 −50 ° C. or lower. Air-cooled after water-cooling at a temperature of more than 1 ° C / second and not more than 20 ° C / second. The air cooling end temperature is room temperature.

冷却速度1℃/秒以下の空冷は冷却速度が小さいためフェライト変態温度が高温化するのでフェライト粒内の転位密度が低下し、伸びを向上させることができる。空冷の冷却速度の下限は特に限定する必要がない。   Air cooling at a cooling rate of 1 ° C./second or less increases the ferrite transformation temperature because the cooling rate is low, so that the dislocation density in the ferrite grains is lowered and the elongation can be improved. There is no need to specifically limit the lower limit of the cooling rate of air cooling.

圧延完了後は空冷でもよいが、強度を高めるためには鋼板の表面温度がAr3−150℃以上、Ar3−50℃以下の温度まで冷却速度1℃/秒超、20℃/秒以下の水冷後に空冷しても良い。冷却停止温度がAr3−150℃未満では変態温度が低温化し、フェライト粒内の転位密度上昇やベイナイト形成が起こり、伸びが劣化する。一方、Ar3−50℃超では効果が得られない。水冷の冷却速度が20℃/秒を超えると変態温度が低温化し伸びが劣化するので水冷の冷却速度の上限は20℃/秒とした。水冷は、空冷の冷却速度以上であれば効果があるので、水冷の冷却速度の下限は1℃/秒超とした。 After completion of rolling, air cooling may be performed, but in order to increase the strength, the surface temperature of the steel sheet is reduced to a temperature of Ar 3 −150 ° C. or higher and Ar 3 −50 ° C. or lower with a cooling rate of 1 ° C./second or more and 20 ° C./second or less. Air cooling may be performed after water cooling. If the cooling stop temperature is less than Ar 3 -150 ° C., the transformation temperature becomes low, dislocation density rises in the ferrite grains and bainite formation occurs, and the elongation deteriorates. On the other hand, if Ar 3 exceeds -50 ° C., the effect cannot be obtained. If the cooling rate of water cooling exceeds 20 ° C./second, the transformation temperature becomes low and elongation deteriorates, so the upper limit of the cooling rate of water cooling was set to 20 ° C./second. Since water cooling is effective as long as it is equal to or higher than the cooling rate of air cooling, the lower limit of the cooling rate of water cooling is set to exceed 1 ° C./second.

以下本発明の実施例を表1〜3を参照して説明する。   Examples of the present invention will be described below with reference to Tables 1 to 3.

表1の化学成分を有する鋼片を用いて、表2の製造条件により板厚6〜40mmの鋼板を試作した。なお、表2のCa、Mg、REM前溶存酸素量は、Ca、Mg、REMの1種または2種以上を添加する前を意味する。冷却条件の欄の冷却速度(℃/s)は、実測された表面温度から、公知の差分法による熱伝導解析により求めた1/2厚部での冷却速度である。表2の冷却パターン欄で記載の「空冷」は、水冷(加速冷却)を行わずに空冷を行った例であり、そして、「一部水冷」は圧延後、一部水冷を行った後に空冷を行った例である。   A steel plate having a thickness of 6 to 40 mm was made on a trial basis using the steel pieces having chemical components shown in Table 1 under the manufacturing conditions shown in Table 2. In addition, the amount of dissolved oxygen before Ca, Mg, and REM in Table 2 means before adding one or more of Ca, Mg, and REM. The cooling rate (° C./s) in the column of cooling conditions is a cooling rate at a ½ thickness portion obtained from a measured surface temperature by a heat conduction analysis by a known differential method. “Air cooling” described in the cooling pattern column of Table 2 is an example in which air cooling is performed without performing water cooling (accelerated cooling), and “partial water cooling” is air cooling after performing partial water cooling after rolling. This is an example.

表3に示す製造した各鋼板の組織的特徴を、以下の要領で測定した。   The structural characteristics of each manufactured steel sheet shown in Table 3 were measured as follows.

まず、鋼板のミクロ組織は、鋼板の幅方向垂直断面が観察できるようにサンプルを採取し、光学顕微鏡により表面から1mm、板厚1/4、板厚中心部の金属組織を500倍の倍率で撮影した。次に画像解析ソフトを用いて適切な条件で二値化処理を施した後、αと第二相(パーライト主体であるが一部ベイナイトを含む)の総面積を求め、撮影部の全面積で除することにより各相の分率(面積分率%)を求めた。   First, as for the microstructure of the steel sheet, a sample was taken so that a vertical cross section in the width direction of the steel sheet could be observed, and the optical structure was 1 mm from the surface, the thickness 1/4, and the metal structure at the center of the thickness at a magnification of 500 times. I took a picture. Next, after binarization processing was performed under appropriate conditions using image analysis software, the total area of α and the second phase (mainly pearlite but partly including bainite) was obtained, and the total area of the imaging unit By dividing, the fraction of each phase (area fraction%) was determined.

鋼板(板厚t)の表面から1/4厚部まで(表面〜t/4)、または3/4厚部から裏面まで(裏面〜3t/4)、そして、1/4厚部から3/4厚部まで(t/4〜3t/4厚部の中心部)のそれぞれのビッカース硬さ平均値は、1mmピッチのビッカース硬さの試験を、荷重98Nの条件で1〜20点測定し、平均値を求めた。   From the surface of the steel plate (plate thickness t) to 1/4 thickness (front to t / 4), or from 3/4 thickness to back (back to 3t / 4), and from 1/4 thickness to 3 / Each Vickers hardness average value of up to 4 thickness parts (central part of t / 4-3t / 4 thickness part) is 1-20 pitch Vickers hardness test, measured 1-20 points under the condition of load 98N, The average value was obtained.

α相中の平均転位密度は、上記板厚各位置から薄膜試料を採取し、透過型電子顕微鏡(TEM)を用いて倍率を40000倍として明視野の観察撮影を行い、得られたTEM像から任意の直線(長さ:L)と転位線との交切点の数(N)を測定し、膜厚:tの値を用いて、以下の式(4)により平均転位密度(ρ)を算出した。   The average dislocation density in the α phase was obtained by taking a thin film sample from each position of the plate thickness, performing bright-field observation photography using a transmission electron microscope (TEM) at a magnification of 40,000, and obtaining from the obtained TEM image. The number of intersections (N) between an arbitrary straight line (length: L) and a dislocation line is measured, and the average dislocation density (ρ) is calculated by the following equation (4) using the value of film thickness: t. Calculated.

ρ=2N/Lt ・・・ (4)     ρ = 2N / Lt (4)

表3に組織的特徴と機械的性質{降伏応力(YP)、引張強度(TS)、全伸び(T.EL)}を測定した結果を示す。   Table 3 shows the measurement results of the structural characteristics and mechanical properties {yield stress (YP), tensile strength (TS), total elongation (T.EL)}.

機械的性質は、板厚中心部から圧延方向と直角の方向に採取したJIS Z 2241(2011)の1B号引張試験片を用いて引張強度(TS)評価した。降伏応力(YP)はJIS Z2241(2011)の永久伸び0.2%時の永久伸び法の耐力を意味し、全伸び(T.EL)は、JIS Z2241(2011)の破断時全伸びAtのことを意味し、試験片は、JIS1B号を用いた。   The mechanical properties were evaluated for tensile strength (TS) using a JIS Z 2241 (2011) No. 1B tensile specimen taken in the direction perpendicular to the rolling direction from the center of the plate thickness. Yield stress (YP) means the yield strength of the permanent elongation method when the permanent elongation of JIS Z2241 (2011) is 0.2%, and the total elongation (T.EL) is the total elongation At of the rupture of JIS Z2241 (2011). This means that JIS1B was used as the test piece.

本発明例のNo.1〜20は化学成分、ミクロ組織、製造条件が本発明の範囲内であるため、いずれも全伸び(T.EL)23〜40%、降伏強度(YP)355〜500MPa、引張強度(TS)490〜620MPaを確保できた。なお、No.16は溶存酸素量が過剰で、連続鋳造時の軽圧下量が0.2mmを下回っていたことで、中心部のPの最大濃度が高かく、また、フェライト変態開始温度Ar3が820℃を超える825℃と高い成分の鋼を用いた場合の、請求項1の要件を満たす例である。No.17は連続鋳造時に軽圧下量を行わず、フェライト変態開始温度Ar3が822℃と高い成分の鋼を用いた場合の、請求項1および2の要件を満たす例である。No.18は溶存酸素量が過剰で、フェライト変態開始温度Ar3が826℃と高い成分の鋼を用いた場合の、請求項1および3の要件を満たす例である。No.19は真空度、還流時間が不足し、連続鋳造時の軽圧下量が0.2mmを下回っていたことで、中心部のPの最大濃度が高かい場合の、請求項1および4を満たす例である。これらの例はいずれも本発明のミクロ組織、機械的性質を確保できた。 No. of the example of the present invention. Nos. 1 to 20 have chemical components, microstructures, and production conditions within the scope of the present invention, so that all have a total elongation (T.EL) of 23 to 40%, a yield strength (YP) of 355 to 500 MPa, and a tensile strength (TS). 490 to 620 MPa could be secured. In addition, No. No. 16 has an excessive amount of dissolved oxygen, and the amount of light reduction during continuous casting was less than 0.2 mm. Therefore, the maximum concentration of P in the center is high, and the ferrite transformation start temperature Ar 3 is 820 ° C. This is an example that satisfies the requirement of claim 1 when using a steel with a high component exceeding 825 ° C. No. 17 is an example that satisfies the requirements of claims 1 and 2 in the case of using steel having a high component of ferrite transformation start temperature Ar 3 of 822 ° C. without performing light reduction during continuous casting. No. No. 18 is an example that satisfies the requirements of claims 1 and 3 in the case where a steel having a high dissolved oxygen content and a ferrite transformation start temperature Ar 3 as high as 826 ° C. is used. No. 19 is an example satisfying claims 1 and 4 in which the maximum concentration of P in the central portion is high because the degree of vacuum and the reflux time are insufficient, and the light reduction amount during continuous casting is less than 0.2 mm. It is. All of these examples could secure the microstructure and mechanical properties of the present invention.

一方、比較例のNo.21〜36は化学成分、ミクロ組織(フェライト相等)、製造条件のいずれかが本発明の範囲を逸脱していたために、本発明が目的とする機械的性質、特に十分な全伸び(T.EL)が得られなかった。   On the other hand, no. Nos. 21 to 36 were out of the scope of the present invention because any one of chemical components, microstructures (ferrite phase, etc.) and production conditions deviated from the scope of the present invention. ) Was not obtained.

すなわち、No.21、22は加熱温度が高過ぎたため、仕上圧延でγを細粒化できずフェライト相が本発明の要件を満たしておらず、全伸び(T.EL)が低かった。No.23は仕上圧延の累積圧下率が不足し、フェライト相が本発明の要件を満たしておらず、パーライト分率も低く本発明の要件を満たしていないため、降伏強度(YP)、引張強度(TS)、全伸び(T.EL)が低かった。No.24、25は、仕上圧延の開始、終了温度が高すぎたため、フェライト相が本発明の要件を満たしておらず全伸び(T.EL)が低かった。No.26は、水冷による冷却停止温度が低すぎてフェライト相が本発明の要件を満たしておらず、表裏面平均Hv/中心部平均Hv×100%の値が高く、全伸び(T.EL)が低かった。   That is, no. Since the heating temperature of Nos. 21 and 22 was too high, γ could not be refined by finish rolling, the ferrite phase did not satisfy the requirements of the present invention, and the total elongation (T.EL) was low. No. In No. 23, the cumulative rolling reduction of finish rolling is insufficient, the ferrite phase does not satisfy the requirements of the present invention, and the pearlite fraction is low and does not satisfy the requirements of the present invention. Therefore, yield strength (YP), tensile strength (TS ), The total elongation (T.EL) was low. No. In 24 and 25, the start and finish temperatures of finish rolling were too high, so the ferrite phase did not satisfy the requirements of the present invention and the total elongation (T.EL) was low. No. No. 26, the cooling stop temperature due to water cooling is too low, and the ferrite phase does not satisfy the requirements of the present invention, and the value of front / back surface average Hv / center average Hv × 100% is high, and the total elongation (T.EL) is high. It was low.

No.27〜28は、一部水冷時の冷却速度が速すぎて、フェライト相が本発明の要件を満たしておらず、表裏面平均Hv/中心部平均Hv×100%の値が高く、全伸び(T.EL)が低かった。
No.29は、仕上圧延の開始、終了温度が本発明範囲外であり、フェライト相が本発明の要件を満たしておらず、全伸び(T.EL)が低かった。
No.30は、Si量が不足していたため、引張強度(TS)、全伸び(T.EL)が低かった。
No.31は、S量が過剰であったため、SEMによる粒子解析による1/2厚±(板厚の)10%範囲(中心部)での最大長5μm以上の延伸した介在物が多く存在し、全伸び(T.EL)が低下していた。No.32は、P量が過剰であったため、1/2厚±(板厚の)10%範囲(中心部)でのPの最大濃度が高く、全伸び(T.EL)が低かった。No.33はNb量が過剰であったため、全伸び(T.EL)が低下していた。
No. 27-28, the cooling rate during water cooling is partly too high, the ferrite phase does not satisfy the requirements of the present invention, the front / back surface average Hv / center average Hv × 100% is high, and the total elongation ( T.EL) was low.
No. In No. 29, the start and finish temperatures of finish rolling were outside the range of the present invention, the ferrite phase did not satisfy the requirements of the present invention, and the total elongation (T.EL) was low.
No. No. 30 had a low tensile strength (TS) and total elongation (T.EL) because the amount of Si was insufficient.
No. No. 31, since the amount of S was excessive, there were many stretched inclusions having a maximum length of 5 μm or more in the range of 1/2 thickness ± (plate thickness) 10% (center portion) by particle analysis by SEM, Elongation (T.EL) was decreasing. No. No. 32 had an excessive amount of P, so the maximum concentration of P was high and the total elongation (T.EL) was low in the range of 1/2 thickness ± (thickness) 10% (center). No. No. 33 had an excessive amount of Nb, resulting in a decrease in total elongation (T.EL).

No.34は、Ca+Mg+REMの量が不足していたために最大長5μm以上の延伸した介在物が多く存在し、伸び(T.EL)が低かった。No.35は、Ti/Nの値が高くTiCが生成し、1/2厚±(板厚の)10%範囲(中心部)での最大長5μm以上の粗大な介在物が多く存在することとなって全伸び(T.EL)が低かった。
No.36は、Si、P、S、Nbの含有量およびTi/Nの値が本発明外であったので、本発明で規定するフェライト相が得られず、全伸び(T.EL)が低かった。
No. No. 34 had a large amount of stretched inclusions having a maximum length of 5 μm or more because the amount of Ca + Mg + REM was insufficient, and the elongation (T.EL) was low. No. No. 35 has a high Ti / N value and TiC is generated, and there are many coarse inclusions having a maximum length of 5 μm or more in the range of 1/2 thickness ± (thickness) of 10% (center portion). The total elongation (T.EL) was low.
No. In No. 36, the content of Si, P, S, and Nb and the value of Ti / N were outside the scope of the present invention, so the ferrite phase defined in the present invention was not obtained, and the total elongation (T.EL) was low. .

Figure 0006007968
Figure 0006007968

Figure 0006007968
Figure 0006007968

Figure 0006007968
Figure 0006007968

Claims (8)

質量%で、
C :0.050〜0.200%、
Si:0.200〜1.000%、
Mn:0.50〜2.00%、
P :0.015%以下、
S :0.003%以下、
Ti:0.003〜0.020%、
Al:0.002〜0.050%、
N :0.0010〜0.0060%、
O :0.0005〜0.0060%、
Ca、Mg、REMの1種または2種以上を添加量の合計として0.0005〜0.0080%
を含有し、さらに、
Nb:0〜0.030%、
V :0〜0.050%、
Cu:0〜0.50%、
Ni:0〜1.00%、
Cr:0〜0.50%、
Mo:0〜0.500%、
B :0〜0.0030%
を含有し、かつ、
Ti/Nが0.5〜4.0であり、
残部がFe及び不可避的不純物からなる組成の鋼であって、
ミクロ組織が1/4厚部のフェライト相面積分率が80〜95%、1/4厚部のパーライト相面積分率が5〜20%で構成され、1/4厚部のフェライト相とパーライト相以外の組織はベイナイト相で、該ベイナイト相の面積分率が10%以下で構成される組織で、
1/4厚部のフェライト粒の平均アスペクト比が1.0〜1.5、
1/4厚部のフェライト粒の平均粒径が5〜20μm、
1/4厚部のフェライト相中の平均転位密度が7×1012/m2以下、
1mmピッチのビッカース硬さの試験で、鋼板の表面から1/4厚部まで、または3/4厚部から裏面までのビッカース硬さ平均値が、1/4厚部から3/4厚部までのビッカース硬さ平均値の80〜105%、
であることを特徴とする高強度高延性厚板鋼板。
% By mass
C: 0.050-0.200%
Si: 0.200 to 1.000%
Mn: 0.50 to 2.00%,
P: 0.015% or less,
S: 0.003% or less,
Ti: 0.003-0.020%,
Al: 0.002 to 0.050%,
N: 0.0010 to 0.0060%,
O: 0.0005 to 0.0060%,
One or two or more of Ca, Mg, and REM as a total addition amount of 0.0005 to 0.0080%
In addition,
Nb: 0 to 0.030%,
V: 0 to 0.050%,
Cu: 0 to 0.50%,
Ni: 0 to 1.00%,
Cr: 0 to 0.50%,
Mo: 0 to 0.500%,
B: 0 to 0.0030%
Containing, and
Ti / N is 0.5-4.0,
The balance is a steel composed of Fe and inevitable impurities,
The microstructure is composed of a ferrite phase area fraction of 1/4 thick part with 80-95%, a pearlite phase area fraction of 1/4 thick part with 5-20%, and the 1/4 thick part ferrite phase and pearlite. phase other tissues in bainite phase, an organization that area fraction of the bainite phase Ru consists of 10% or less,
The average aspect ratio of the ferrite grain of 1/4 thickness part is 1.0 to 1.5,
The average particle diameter of the ferrite grain of 1/4 thickness part is 5 to 20 μm,
The average dislocation density in the ferrite phase of ¼ thick part is 7 × 10 12 / m 2 or less,
In a 1 mm pitch Vickers hardness test, the average value of Vickers hardness from the surface of the steel sheet to 1/4 thickness or from 3/4 thickness to the back is from 1/4 thickness to 3/4 thickness. 80-105% of the average Vickers hardness of
A high-strength and highly ductile steel plate characterized by
請求項1に記載の高強度高延性厚板鋼板で、板厚の厚み方向の1/2厚±(板厚の)10%範囲で長さ5μm以上の介在物が10個/mm2以下、であることを特徴とする高強度高延性厚板鋼板。 The high-strength and highly ductile thick steel plate according to claim 1, wherein the number of inclusions having a length of not less than 10 μm / mm 2 within a range of ½ thickness ± (thickness) of 10% in the thickness direction of the plate thickness is 5 μm or more, A high-strength and highly ductile steel plate characterized by 請求項1または請求項2に記載の高強度高延性厚板鋼板で、板厚の厚み方向の1/2厚±(板厚の)10%範囲でPの最大濃度が0.02〜0.20%、であることを特徴とする高強度高延性厚板鋼板。   3. The high strength and high ductility thick steel plate according to claim 1 or 2, wherein the maximum concentration of P is 0.02 to 0.00 in the range of 1/2 thickness ± (thickness) 10% in the thickness direction of the thickness. A high-strength, high-ductile, thick steel plate characterized by being 20%. 請求項1から請求項3の内の何れかに記載の高強度高延性厚板鋼板で、下記式(1)で示される冷却する際のフェライト変態開始温度Ar3が760〜820℃、であることを特徴とする高強度高延性厚板鋼板。
Ar3=910−310[C]+65[Si]−80[Mn]−20[Cu]
−55[Ni]−15[Cr]−80[Mo] ・・・ (1)
但し、元素記号は各元素の含有量(質量%)を表す。なお、含有されていない元素は0%とする。
In the high strength and high ductility thick steel sheet according to any one of claims 1 to claim 3, a ferrite transformation start temperature Ar 3 is seven hundred sixty to eight hundred twenty ° C., at the time of cooling is represented by the following formula (1) A high-strength, highly ductile steel plate characterized by
Ar 3 = 910-310 [C] +65 [Si] -80 [Mn] -20 [Cu]
-55 [Ni] -15 [Cr] -80 [Mo] (1)
However, an element symbol represents content (mass%) of each element. In addition, the element which is not contained shall be 0%.
請求項1から請求項4の内の何れかに記載の高強度高延性厚板鋼板を製造する方法であって、鋼片を950〜1100℃の範囲で加熱し、累積圧下率が50〜75%の仕上圧延を、鋼片の表面温度がAr3−30℃以上、結晶粒の成長が始まる再結晶開始温度Trex℃以下で行い、仕上圧延された厚板鋼板を空冷により室温まで冷却する、ことを特徴とする高強度高延性厚板鋼板の製造方法。
但し、
Ar3は下記式(1)、
rexは下記式(2)で表される。
Ar3=910−310[C]+65[Si]−80[Mn]−20[Cu]
−55[Ni]−15[Cr]−80[Mo] ・・・ (1)
但し、元素記号は各元素の含有量(質量%)を表す。なお、含有されていない元素は0%とする。
rex=−91900[Nb*]2+9400[Nb*]+770 ・・・ (2)
但し、[Nb*]は、下記式(3)により求めるものとする。
Sol.Nb=(10 (-6770/(T+273)+2.26))/(C+12/14×N)・・(3)
なお、(3)式のTは鋼片の加熱温度で、単位は摂氏温度(℃)とし、
[Nb]≧[Sol.Nb]の場合は、
[Nb*]=[Sol.Nb]
[Nb]<[Sol.Nb]の場合は、
[Nb*]=[Nb]
とする。ここで、[Nb]は、Nb含有量(質量%)を、[Sol.Nb]は式(3)で求めたSol.Nb(固溶Nb)(質量%)を表す。
It is a method of manufacturing the high strength and high ductility thick steel plate according to any one of claims 1 to 4, wherein the steel slab is heated in the range of 950 to 1100 ° C, and the cumulative reduction ratio is 50 to 75. % Finish rolling is performed at a steel slab surface temperature of Ar 3 −30 ° C. or higher and a recrystallization start temperature T rex ° C or lower at which crystal grain growth starts, and the finished rolled steel plate is cooled to room temperature by air cooling. The manufacturing method of the high intensity | strength highly ductile thick steel plate characterized by the above-mentioned.
However,
Ar 3 represents the following formula (1),
T rex is represented by the following formula (2).
Ar 3 = 910-310 [C] +65 [Si] -80 [Mn] -20 [Cu]
-55 [Ni] -15 [Cr] -80 [Mo] (1)
However, an element symbol represents content (mass%) of each element. In addition, the element which is not contained shall be 0%.
T rex = −91900 [Nb *] 2 +9400 [Nb *] + 770 (2)
However, [Nb *] is obtained by the following equation (3).
Sol. Nb = (10 (-6770 / (T + 273) +2.26) ) / (C + 12/14 × N) (3)
In addition, T in the formula (3) is the heating temperature of the steel slab, the unit is the Celsius temperature (° C.),
[Nb] ≧ [Sol. Nb]
[Nb *] = [Sol. Nb]
[Nb] <[Sol. Nb]
[Nb *] = [Nb]
And Here, [Nb] represents the Nb content (mass%) by [Sol. Nb] is Sol. Nb (solid solution Nb) (mass%) is represented.
請求項5に記載の高強度高延性厚板鋼板の製造方法であって、仕上圧延された厚板鋼板を、鋼板の表面温度がAr3−150℃以上、Ar3−50℃以下の温度まで、冷却速度1℃/秒超、20℃/秒以下の水冷を行い、該水冷後、冷却速度1℃/秒以下の空冷をする、ことを特徴とする高強度高延性厚板鋼板の製造方法。 A method of producing a high strength and high ductility thick steel sheet according to claim 5, the finish rolled thick steel plate, the surface temperature of the steel sheet Ar 3 -150 ° C. or more, up to Ar 3 -50 ° C. temperature below A method for producing a high-strength, high-ductility, thick steel sheet, characterized in that water cooling is performed at a cooling rate of more than 1 ° C / second and not more than 20 ° C / second, and then air cooling is performed at a cooling rate of 1 ° C / second or less . 請求項5または請求項6に記載の高強度高延性厚板鋼板の製造方法であって、溶鋼を製造するにあたり、真空脱ガス装置により溶鋼の溶存酸素量を40ppm以下に調整し、ついで、AlをAlの最終含有量が0.002〜0.050%となるように添加して、溶鋼の溶存酸素量を10ppm以下に調整した後、Ca、Mg、REMの1種または2種以上を、Ca、Mg、REMの1種または2種以上の合計の最終含有量が0.0005〜0.0080%となるように添加する、ことを特徴とする高強度高延性厚板鋼板の製造方法。   It is a manufacturing method of the high intensity | strength highly ductile thick steel plate of Claim 5 or Claim 6, Comprising: When manufacturing molten steel, the amount of dissolved oxygen of molten steel is adjusted to 40 ppm or less with a vacuum degassing apparatus, Then, Al Is added so that the final content of Al is 0.002 to 0.050%, and the dissolved oxygen content of the molten steel is adjusted to 10 ppm or less, then one or more of Ca, Mg, and REM are added, A method for producing a high-strength and high-ductility thick steel plate, characterized in that the total content of one or more of Ca, Mg, and REM is added to 0.0005 to 0.0080%. 請求項5から請求項7の内の何れかに記載の高強度高延性厚板鋼板の製造方法であって、溶鋼を連続鋳造する際に、鋳片の凝固末期である鋳片の中心固相率が0.2〜0.7の範囲において、鋳造ロールの間隙を、鋳造進行方向1mにつき0.2mm〜3.0mmに狭めて圧下しながら鋳造する、ことを特徴とする高強度高延性厚板鋼板の製造方法。   A method for producing a high-strength, high-ductile, thick steel plate according to any one of claims 5 to 7, wherein when the molten steel is continuously cast, the central solid phase of the slab, which is the final stage of solidification of the slab High strength and high ductility thickness, characterized by narrowing the gap between the casting rolls to 0.2 mm to 3.0 mm per 1 m in the casting traveling direction and casting while reducing the ratio in the range of 0.2 to 0.7 Manufacturing method of sheet steel.
JP2014265161A 2014-12-26 2014-12-26 High-strength and highly ductile steel plate and its manufacturing method Active JP6007968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014265161A JP6007968B2 (en) 2014-12-26 2014-12-26 High-strength and highly ductile steel plate and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014265161A JP6007968B2 (en) 2014-12-26 2014-12-26 High-strength and highly ductile steel plate and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2016125077A JP2016125077A (en) 2016-07-11
JP6007968B2 true JP6007968B2 (en) 2016-10-19

Family

ID=56357610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014265161A Active JP6007968B2 (en) 2014-12-26 2014-12-26 High-strength and highly ductile steel plate and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6007968B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021125623A1 (en) 2019-12-16 2021-06-24 주식회사 포스코 High-strength steel having superior ductility, and manufacturing method therefor
KR20210129236A (en) * 2019-03-14 2021-10-27 닛폰세이테츠 가부시키가이샤 Steel plate and manufacturing method thereof

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6819353B2 (en) * 2017-02-23 2021-01-27 日本製鉄株式会社 Manufacturing method of carbon steel slabs and carbon steel shards
JP6791008B2 (en) * 2017-05-19 2020-11-25 日本製鉄株式会社 Manufacturing method of carbon steel slabs and carbon steel shards
KR101999027B1 (en) * 2017-12-26 2019-07-10 주식회사 포스코 Steel for pressure vessel having excellent resistance to hydrogen induced cracking and method of manufacturing the same
JP6418361B1 (en) 2018-03-16 2018-11-07 新日鐵住金株式会社 Steel plate for holding coal and ore carrier
JP7031477B2 (en) * 2018-05-08 2022-03-08 日本製鉄株式会社 Hot-rolled steel sheet, square steel pipe, and its manufacturing method
JP7262288B2 (en) * 2018-08-30 2023-04-21 株式会社神戸製鋼所 High-strength low-yield-ratio thick steel plate with excellent toughness of base metal and weld heat-affected zone and small acoustic anisotropy, and its manufacturing method
KR102255828B1 (en) * 2019-12-16 2021-05-25 주식회사 포스코 Structural steel material and manufacturing method for the same
KR102236853B1 (en) * 2019-12-18 2021-04-06 주식회사 포스코 Steel material having excellent strength and ductility and manufacturing method for the same
CN115989327A (en) * 2020-09-14 2023-04-18 杰富意钢铁株式会社 Thick steel plate and method for producing same
JP7350705B2 (en) * 2020-10-05 2023-09-26 株式会社神戸製鋼所 Low-strength thick steel plate with excellent elongation properties and corrosion resistance
KR102498134B1 (en) * 2020-12-15 2023-02-08 주식회사 포스코 Ultra-thick steel plate having excellent low-temperature impact toughness and method for manufacturing thereof
CN114182172B (en) * 2021-11-26 2022-06-28 湖南华菱湘潭钢铁有限公司 Production method of super-thick steel plate with strength greater than 550MPa
KR20230089767A (en) * 2021-12-14 2023-06-21 주식회사 포스코 Steel plate having high strength and excellent impact toughness, and method for manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4735192B2 (en) * 2005-10-28 2011-07-27 Jfeスチール株式会社 High toughness steel with excellent fatigue crack propagation characteristics
JP5147276B2 (en) * 2007-03-30 2013-02-20 株式会社神戸製鋼所 High-tensile steel plate with excellent brittle cracking suppression / stop properties and low temperature toughness of weld heat affected zone
JP5953952B2 (en) * 2011-11-30 2016-07-20 Jfeスチール株式会社 Steel material excellent in impact resistance and method for producing the same
JP5994819B2 (en) * 2014-05-30 2016-09-21 新日鐵住金株式会社 Steel plate with excellent impact resistance and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210129236A (en) * 2019-03-14 2021-10-27 닛폰세이테츠 가부시키가이샤 Steel plate and manufacturing method thereof
WO2021125623A1 (en) 2019-12-16 2021-06-24 주식회사 포스코 High-strength steel having superior ductility, and manufacturing method therefor

Also Published As

Publication number Publication date
JP2016125077A (en) 2016-07-11

Similar Documents

Publication Publication Date Title
JP6007968B2 (en) High-strength and highly ductile steel plate and its manufacturing method
JP4309946B2 (en) Thick high-strength steel sheet excellent in brittle crack propagation stopping characteristics and method for producing the same
JP5162382B2 (en) Low yield ratio high toughness steel plate
US7914629B2 (en) High strength thick steel plate superior in crack arrestability
JP7201068B2 (en) Steel plate and its manufacturing method
JP5574059B2 (en) High-strength H-section steel with excellent low-temperature toughness and method for producing the same
JP5348386B2 (en) Thick high-strength steel sheet with excellent low yield ratio and brittle crack resistance and its manufacturing method
JP5477578B2 (en) Thick high-strength steel sheet excellent in brittle crack propagation stopping characteristics and method for producing the same
JP6693185B2 (en) Method for manufacturing low temperature nickel steel sheet
JP6418361B1 (en) Steel plate for holding coal and ore carrier
JP2010090476A (en) High strength hot rolled steel sheet having excellent hole expansibility and method for producing the same
JP2014109056A (en) High strength steel sheet excellent in extension flange property and bendability, method for smelting molten steel for the steel sheet
JP5994819B2 (en) Steel plate with excellent impact resistance and method for producing the same
JP2018009243A (en) Steel sheet excellent in brittle crack arrest property and manufacturing method therefor
JP6217234B2 (en) Thick steel plate and manufacturing method thereof
JP2017150067A (en) Steel sheet excellent in brittleness crack propagation arrest property and manufacturing method therefor
JP5432548B2 (en) Thick steel plate with excellent brittle crack propagation stop properties
JP5158271B2 (en) High-strength steel sheet with excellent stretch flangeability and bending workability and method for producing the molten steel
JP6981546B2 (en) Thick steel plate and its manufacturing method
JP2017066516A (en) Ferrite-martensite two-phase stainless steel and manufacturing method therefor
JP6693186B2 (en) Method for producing low-temperature nickel-containing steel sheet excellent in tensile strength and toughness
JP2018076573A (en) Steel plate excellent brittle crack propagation stopping characteristics and manufacturing method therefor
JP2009215600A (en) High strength cold rolled steel sheet excellent in yield stress, elongation and stretch-flange formability
JP2006241508A (en) HT490MPa CLASS REFRACTORY STEEL FOR WELDED STRUCTURE HAVING EXCELLENT GALVANIZING CRACK RESISTANCE IN WELD ZONE AND ITS PRODUCTION METHOD
JP7396512B2 (en) Thick steel plate and method for manufacturing thick steel plate

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160829

R151 Written notification of patent or utility model registration

Ref document number: 6007968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350