JPH04180521A - Production of high tensile thick steel plate having high yield strength and high toughness - Google Patents

Production of high tensile thick steel plate having high yield strength and high toughness

Info

Publication number
JPH04180521A
JPH04180521A JP30999190A JP30999190A JPH04180521A JP H04180521 A JPH04180521 A JP H04180521A JP 30999190 A JP30999190 A JP 30999190A JP 30999190 A JP30999190 A JP 30999190A JP H04180521 A JPH04180521 A JP H04180521A
Authority
JP
Japan
Prior art keywords
transformation point
steel plate
toughness
less
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30999190A
Other languages
Japanese (ja)
Inventor
Masato Shimizu
清水 眞人
Hisayoshi Jinno
神野 久喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP30999190A priority Critical patent/JPH04180521A/en
Publication of JPH04180521A publication Critical patent/JPH04180521A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To form fine bainite and to prevent the formation of coarser crystal grains by subjecting a slab specified in C, Si, Mn, S, Al, Nb, Ti, and N to hot rolling, accelerated cooling and tempering treatment under prescribed conditions. CONSTITUTION:The steel consisting of 0.04 to 0.18% C, 0.1 to 0.5% Si, 0.7 to 2% Mn, <=0.025% S, 0.01 to 0.08% Al, 0.005 to O.035% Nb, 0.005 to 0.03% Ti, 0.0015 to 0.008% N, and <=0.45% Ceq expressed by formula and the balance Fe is smelted. The slab of this steel is heated to >=Ac3 transformation point temp. and is hot-rolled to 50 to 120mm rolling completion thickness at >=30% cumulative draft at (Ac3 transformation point +50 deg.C) or below. The hot rolling is completed at (Ar3 transformation point +130 deg.C) to Ar3 transformation point temp. in the central part of the plate thickness. The steel plate is then subjected to the accelerated cooling down to 600 to 350 deg.C surface temp. at >=0.4 deg.C/sec cooling rate in the central part. The steel plate is thereafter heated to (Ac3 transformation point -10 deg.C) to 500 deg.C and is subjected to the tempering treatment.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、船舶、海洋構造物等に使用される降伏強度4
0kgf/mm2以上の高降伏強度高靭性厚肉高張力鋼
板の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is applicable to ships, marine structures, etc. with a yield strength of 4.
The present invention relates to a method for manufacturing a thick-walled high-tensile steel plate with high yield strength and high toughness of 0 kgf/mm2 or more.

(従来の技術) 近年、船舶、特にコンテナ船等においては積載量の増加
に伴い、建造に高強度厚肉高張力鋼板を使用して、軽量
化か図られるようになってきた。
(Prior Art) In recent years, as the loading capacity of ships, especially container ships, etc. has increased, high-strength, thick-walled, high-tensile steel plates have been used in their construction to reduce their weight.

しかし、高強度厚肉鋼材の製造は、高強度および靭性の
確保に加えて安価であることか要求されるため、その製
造方法には難しい点か多い。
However, manufacturing high-strength, thick-walled steel materials requires not only high strength and toughness but also low cost, so there are many difficult points in the manufacturing method.

従来、高強度厚肉鋼板の製造においては、一般に焼入れ
焼きもとし法か採用されてきた。例えは、特開昭60−
169517号公報記載の方法のように2回焼入れ等に
より所定の特性を確保する方法かある。また、特開昭5
9−80718号公報記載の方法のような加熱−圧延を
繰り返したのち、焼入れ焼きもとし処理を行う方法も提
案されている。
Conventionally, in the production of high-strength, thick-walled steel plates, only the quenching and tempering method has generally been adopted. For example, JP-A-60-
There is a method of ensuring predetermined characteristics by twice hardening, such as the method described in Japanese Patent No. 169517. Also, JP-A-5
A method has also been proposed in which heating and rolling are repeated, followed by quenching and tempering, as in the method described in Japanese Patent No. 9-80718.

(発明か解決しようとする課題) しかし、前記の特開昭60−169517号および特開
昭59−80718号公報て提案されている1回または
2回焼入れ焼きもとし処理方法および加熱−圧延を繰り
返したのち焼入れ焼きもとし処理を行う方法では、板厚
50mmを超える厚肉鋼板に所定の強度を付与すること
は困難であるとともに、熱処理費用か嵩み製造原価の上
昇は避けることかできないという問題かある。
(Problem to be solved by the invention) However, the one- or two-time quenching and tempering treatment methods and heating-rolling methods proposed in the above-mentioned JP-A-60-169517 and JP-A-59-80718 have been proposed. With the method of repeatedly quenching and tempering, it is difficult to impart the required strength to thick steel plates with a thickness of over 50 mm, and an increase in manufacturing costs due to heat treatment costs and bulk cannot be avoided. There's a problem.

本発明は、このような問題を解決するためになされたも
ので、化学成分を調整するとともに、鋼板の板厚中心部
の圧延完了温度と冷却速度を制例し、その後、熱処理を
行うことによる高降伏強度高靭性厚肉高張力鋼板の製造
方法を提供することを目的とする。
The present invention was made in order to solve such problems, and in addition to adjusting the chemical composition, the rolling completion temperature and cooling rate at the center of the thickness of the steel plate are limited, and then heat treatment is performed. The object of the present invention is to provide a method for manufacturing a thick-walled high-tensile steel plate with high yield strength and high toughness.

(課題を解決するための手段9 そこで、本発明者らは上記の問題点を解決するために、
降伏強度および引張強さか高く、靭性か優れた板厚50
mm超え120mm以下の厚肉高張力鋼の製造方法につ
いて鋭意研究を重ねた結果、鋼に微量のNbを添加し、
圧延時の未再結晶域を拡大させ、圧延中において、再結
晶域下部から未再結晶域の累積圧下率を30%以上とし
て、制i11圧延を行い、結晶粒を細粒化させて圧延を
完了し、直ちに、加速冷却を行い微細なオーステナイト
結晶粒から微細ベイナイト+微細フェライトの組織を生
成させ、制御圧延および加速冷却によるそれぞれの強度
上昇および靭性向上効果を厚肉鋼板に付与することを見
出して、本発明に至ったものである。
(Means for Solving the Problems 9) Therefore, in order to solve the above problems, the present inventors
Plate thickness 50 with high yield strength and tensile strength, and excellent toughness
As a result of intensive research on the manufacturing method of thick-walled high-strength steel with a thickness exceeding 120 mm, we added a small amount of Nb to the steel.
The non-recrystallized area during rolling is expanded, and during rolling, the cumulative reduction rate from the lower part of the recrystallized area to the non-recrystallized area is 30% or more, and control i11 rolling is performed to refine the crystal grains and continue rolling. Upon completion of the process, accelerated cooling was immediately performed to generate a fine bainite + fine ferrite structure from fine austenite grains, and it was discovered that controlled rolling and accelerated cooling can impart the strength and toughness improvement effects of controlled rolling and accelerated cooling to thick steel plates. This led to the present invention.

第1発明は、C:0.04〜0.18%、Si :0.
10〜0.50%、Mn:0.70〜2.0%、S:0
.025%以下、Al :0.010〜o、 oso%
、Nb:0.005〜0.035%、Ti :0.00
5〜0、030%、N:0.0015〜0.0080%
を含有し、かつ、下記式で規定されるCeqか0145
%以下で、残部Feおよび不可避不純物から成る鋼片を
、Ac3変態点以上の温度に加熱し、(Ac3変懸点+
50℃)以下の累積圧下率を30%以上として、圧延完
了厚さか50mm超え120mm以下の熱間圧延を行い
、かつ、この鋼板の板厚中心部の温度が(Ar3変態点
+130℃)〜Ar3変態点の範囲内で圧延を完了し、
直ちに、鋼板の板厚中心部の冷却速度か0.4℃/se
c以上て表面温度か600〜350℃の温度範囲まで加
速冷却を行い、しかる後、(Ac +変態点−10℃)
〜500℃の温度範囲に加熱して、焼きもとし処理を行
う高降伏強度高靭性厚肉高張力鋼板の製造方法であるC
eq(%戸C+Mn/6+(Cr+Mo十V)15+(
Cu+Ni)/15第5発明は、Cu:0.80%以下
、Ni : 1.50%以下、Cr:0.70%以下、
Mo:0.50%以下、V:0.080%以下、Ca:
0.0O05〜0.0030%の内から選んだ1種また
は2種以上を含有する請求項(1)の高降伏強度高靭性
厚肉高張力鋼板の製造方法である。
The first invention contains C: 0.04 to 0.18%, Si: 0.
10-0.50%, Mn: 0.70-2.0%, S: 0
.. 025% or less, Al: 0.010~o, oso%
, Nb: 0.005-0.035%, Ti: 0.00
5~0.030%, N:0.0015~0.0080%
Ceq or 0145 containing and defined by the following formula
% or less, a steel piece consisting of the balance Fe and unavoidable impurities is heated to a temperature higher than the Ac3 transformation point, (Ac3 transformation point +
50℃) or less, hot rolling is carried out to a completed rolling thickness of more than 50mm and less than 120mm, and the temperature at the center of the thickness of this steel plate is (Ar3 transformation point + 130℃) ~ Ar3 Complete rolling within the transformation point,
Immediately, the cooling rate at the center of the thickness of the steel plate was 0.4℃/se.
Accelerated cooling is carried out to a temperature range of 600 to 350 °C above the surface temperature, and then (Ac + transformation point -10 °C)
C, which is a method for producing a high yield strength, high toughness, thick wall, high tensile strength steel plate, which is heated to a temperature range of ~500°C and subjected to tempering treatment.
eq(%C+Mn/6+(Cr+Mo10V)15+(
Cu+Ni)/15 The fifth invention is Cu: 0.80% or less, Ni: 1.50% or less, Cr: 0.70% or less,
Mo: 0.50% or less, V: 0.080% or less, Ca:
The method for producing a high-yield strength, high-toughness, thick-walled, high-tensile steel plate according to claim (1), which contains one or more selected from 0.0005 to 0.0030%.

(作用) 以下、本発明について詳述する。(effect) The present invention will be explained in detail below.

まず、本発明における化学成分の限定理由について説明
する。
First, the reasons for limiting the chemical components in the present invention will be explained.

Cは、鋼の強度を確保するために必要かつ有用な元素で
あり、このためには0.049ti以上の添加か必要で
ある。しかし、添加量か0.18%を超えると鋼の靭性
か著しく劣化し、溶接性も劣化する。したかって、Cの
添加量は0.04〜0.18%の範囲とする。
C is a necessary and useful element for ensuring the strength of steel, and for this purpose it is necessary to add 0.049ti or more. However, if the added amount exceeds 0.18%, the toughness of the steel will deteriorate significantly and the weldability will also deteriorate. Therefore, the amount of C added is in the range of 0.04 to 0.18%.

Siは、鋼の脱酸と強化に有用な元素であり、少なくと
も0,10%以上の添加か必要であるか、0.50%を
超えて添加すると靭性か劣化する。このため、Slの添
加量は0.10〜0.50%の範囲とする。
Si is an element useful for deoxidizing and strengthening steel, and it is necessary to add at least 0.10% or more, and if it is added in an amount exceeding 0.50%, the toughness deteriorates. Therefore, the amount of Sl added is in the range of 0.10 to 0.50%.

Mnは、鋼の強度と靭性の確保とともに、溶接熱影響部
(HAZ)の軟化防止のために必要な元素であり、この
ためには0.70%以上の添加か必要である。しかし、
添加量か2.0%を超えると溶接性およびHAZの靭性
か低下する。したかつて、Mnの添加量は0.70〜2
.0%の範囲とする。
Mn is an element necessary to ensure the strength and toughness of steel and to prevent softening of the weld heat affected zone (HAZ), and for this purpose, it is necessary to add 0.70% or more. but,
If the amount added exceeds 2.0%, the weldability and toughness of the HAZ will decrease. Previously, the amount of Mn added was 0.70 to 2
.. The range is 0%.

Sは、A系介在物を形成し、母材およびHAZの靭性を
劣化させるので好ましい元素ではない。
S is not a preferable element because it forms A-based inclusions and deteriorates the toughness of the base material and HAZ.

このためSの上限は0.0:’59つとする。Therefore, the upper limit of S is set to 0.0:'59.

AIは、鋼の脱戯および結晶粒の微細化に必要な元素で
あり、このためには、0.010%以上の添加か必要で
ある。しかし、過多の添加はAl酸化物系非金属介在物
を生成し靭性を劣化させるため、その添加量の上限を0
.080%とする。したかって、AIの添加量は0゜0
10〜0.080%の範囲とする。
AI is an element necessary for removing steel and refining crystal grains, and for this purpose, it is necessary to add 0.010% or more. However, excessive addition produces Al oxide-based nonmetallic inclusions and deteriorates toughness, so the upper limit of the amount added is set to 0.
.. 080%. Therefore, the amount of AI added is 0゜0
The range is 10 to 0.080%.

Nbは、本発明の製造工程において、加熱時のオーステ
ナイト粒の粗大化防止、圧延時の細粒化、焼きもとし処
理時の析出強化に加えて、特に、未再結晶域の拡大効果
は厚肉材の製造に欠くことのてきない重要な元素てあり
、これらの効果を有効に発揮させるためには、0.00
5%以上の添加か必要である。しかし、0.035%を
超える添加はHAZの靭性を損なうので、その上限を0
.035%とする。したかって、Nbの添加量は0.0
05〜0.035%の範囲とする。
In the manufacturing process of the present invention, Nb not only prevents coarsening of austenite grains during heating, refines grains during rolling, and strengthens precipitation during tempering treatment, but also has the effect of expanding non-recrystallized regions in thickness. There are important elements that are indispensable for the production of meat materials, and in order to effectively demonstrate these effects, 0.00
It is necessary to add 5% or more. However, since adding more than 0.035% impairs the toughness of the HAZ, the upper limit should be set at 0.
.. 035%. Therefore, the amount of Nb added is 0.0
The range is 0.05% to 0.035%.

Tiは、強い窒化物形成元素であり、微量の添加て、T
iNの微細析出による結晶粒の微細化およびHAZの靭
性向上に効果かある。この効果を得るには、0.005
%以上の添加か必要であるつス多量に添すロするとHA
 Zの靭性を劣化させるため、上限を0.0309つと
する。したかって、T1の添加量は0、005〜0.0
30%の範囲とする。
Ti is a strong nitride-forming element.
The fine precipitation of iN is effective in making crystal grains finer and improving the toughness of the HAZ. To get this effect, 0.005
It is necessary to add more than % of HA.
In order to deteriorate the toughness of Z, the upper limit is set to 0.0309. Therefore, the amount of T1 added is 0,005 to 0.0
The range is 30%.

Nは、T1と反応してTiNを形成し、HAZの靭性向
上に有効な元素である。このためには、0.0015%
以上の添加か必要である。しかし、o、 ooso%を
超えて添加すると鋼片製造中に割れか発生することかあ
る。したかって、Nの添加量は0.0015〜o、 o
oso%の範囲とする。
N is an element that reacts with T1 to form TiN and is effective in improving the toughness of the HAZ. For this, 0.0015%
It is necessary to add more than that. However, if it is added in excess of o or ooso%, cracks may occur during the production of steel billets. Therefore, the amount of N added is 0.0015~o, o
The range is oso%.

以上の各成分のほか、本発明においては、必要に応じて
以下に示す元素Cu、 Ni、 Cr、 Mo、■、C
aの内から選んだ1種または2種以上を添加することか
できる。
In addition to the above-mentioned components, in the present invention, the following elements Cu, Ni, Cr, Mo,
One or more selected from a can be added.

Cuは、固溶強化および析出強化に有効な元素であるか
、過多に添加すると熱間加工性を劣化させるのて、Cu
の添加量は0.80%以下とする。
Cu is an effective element for solid solution strengthening and precipitation strengthening, or Cu is an element that deteriorates hot workability when added in excess.
The amount of addition shall be 0.80% or less.

Niは、靭性の向上効果が著しく、板厚か厚くなるにし
たかって焼入れ性向上への寄与とともに、板厚中心部の
靭性向上への寄与か大きい元素であるか、多量に添加す
るときは経済性の点て好ましにない。したかって、Ni
の添加量は1.50℃以下とする。
Ni has a remarkable effect of improving toughness, and as the plate thickness increases, it contributes to improving hardenability, and it also contributes to improving toughness in the center of the plate thickness. I don't like it sexually. I want to, Ni
The amount of addition shall be 1.50°C or less.

Crは、焼入れ性を高める元素で、厚肉材の強度向上に
有効であるか、過多に添加すると溶接性の劣化を招く。
Cr is an element that improves hardenability and is effective in improving the strength of thick-walled materials, or if added in excess, it causes deterioration of weldability.

したかって、Crの添加量は0.70%以下とする。Therefore, the amount of Cr added should be 0.70% or less.

Moは、焼入れ性を増し、焼きもとし軟化抵抗を高める
のて、強度上昇効果か著しい元素であるか、本発明の鋼
種に対しては、経済性の点て0.50%を超える添加は
好ましくない。したかって、Moの添加量は0.50%
以下とする。
Mo is an element that increases hardenability and resistance to hardening and softening, and has a significant strength-increasing effect.For the steel type of the present invention, addition of more than 0.50% is not recommended from an economic point of view. Undesirable. Therefore, the amount of Mo added is 0.50%
The following shall apply.

■は、析出効果による強度上昇に有効な元素であるか、
過多に添加すると溶接性および靭性を劣化させる。した
がって、■の添加量は0.080%以下とする。
Is ■ an element effective in increasing strength due to precipitation effect?
Adding too much will deteriorate weldability and toughness. Therefore, the amount of addition of (2) should be 0.080% or less.

Caは、MnSを球状化させ衝撃吸収エネルギを向上さ
せるとともに、間接的に水素による鋼材の欠陥を軽減す
る。本発明のような厚肉材については、かかる効果か著
しく、この効果を発揮させるためには、0.0005〜
0.0030”っの添1][+か必要である。
Ca makes MnS spheroidal, improves shock absorption energy, and indirectly reduces defects in steel materials caused by hydrogen. For thick-walled materials such as those of the present invention, this effect is remarkable, and in order to exhibit this effect, it is necessary to
Attachment 1 of 0.0030" [+ or more is required.

したかって、Caの添加量は0.0005〜0.003
09vの範囲とする。
Therefore, the amount of Ca added is 0.0005 to 0.003
09v range.

Ceq  (炭素当量)は、鋼の溶接性を評価するため
の尺度であり、Ceqの増加か溶接性を劣化させるので
、Ceqはできるたけ低いことが望ましい。
Ceq (carbon equivalent) is a measure for evaluating the weldability of steel, and since an increase in Ceq will deteriorate weldability, it is desirable that Ceq be as low as possible.

したかって、高降伏強度を確保し、かつ、溶接性を損な
わない範囲を勘案して、Ceqは0.45%以下とする
Therefore, in consideration of ensuring high yield strength and not impairing weldability, Ceq is set to 0.45% or less.

つぎに、熱間圧延条件の限定理由について述へる。Next, the reasons for limiting the hot rolling conditions will be described.

本発明は、常法で溶製した鋼片をAc3変態点以上の温
度に加熱する。鋼片の加熱温度は、鋼片を均一にオース
テナイト化するとともに、オーステナイト粒の粗大化防
止、圧延時の細粒化、特に未再結晶域の拡大効果に欠く
ことのてきないNbの固溶を十分に行うために必要な温
度であり、Ac2変態点未満ては、オーステナイト化前
の残存した凝固時の粗大結晶粒を圧延て細粒化すること
かできず、所定の強度、靭性を確保することかできない
。このため、鋼片のりD熱温度はAcJ変帖屯以上に限
定する。
In the present invention, a steel slab melted by a conventional method is heated to a temperature equal to or higher than the Ac3 transformation point. The heating temperature of the steel billet is determined to uniformly austenite the steel billet, prevent coarsening of the austenite grains, make the grains finer during rolling, and especially promote the solid solution of Nb, which is essential for the effect of expanding the non-recrystallized region. This is the temperature required to fully perform the transformation, and below the Ac2 transformation point, the coarse crystal grains remaining during solidification before austenitization cannot be rolled and refined, ensuring the specified strength and toughness. I can't do anything. For this reason, the heat temperature of the steel billet paste D is limited to a temperature equal to or higher than AcJ.

累IE下条件を(AcJ変態カ+50℃)以下で309
6以上とした理由は以下の通りである。
309 under cumulative IE conditions below (AcJ transformation power +50℃)
The reason for setting it to 6 or more is as follows.

(Ac、変態点+50℃)を超える温度て圧下を加えて
も再結晶によってオーステナイト粒(γ粒)の著しい粗
大化は阻止することかできず、圧延による高強度および
高靭性か得られない。また、累積圧下率30%以上はγ
粒の微細化を行うために必要な圧下率であり、圧下率3
0%未満の場合には、γ粒の微細化か不足し、所定の強
度および靭性を確保することができない。したかって、
累積圧下率は、(Ac3変態点+50℃)以下の温度で
30%以上加えることか必要である。
Even if rolling is applied at a temperature exceeding (Ac, transformation point +50°C), significant coarsening of austenite grains (γ grains) due to recrystallization cannot be prevented, and high strength and toughness cannot be obtained by rolling. In addition, if the cumulative reduction rate is 30% or more, γ
This is the rolling reduction rate required to refine grains, and the rolling reduction rate is 3.
If it is less than 0%, the γ grains will not be refined enough, making it impossible to secure the desired strength and toughness. I wanted to,
The cumulative reduction rate needs to be 30% or more at a temperature below (Ac3 transformation point + 50°C).

圧延完了厚さを50mm超え120mm以下と限定した
理由は、厚さか50mm以下の場合には、本発明法を適
用しなくても多用されている従来の製造法で高降伏強度
鋼の製造か可能であり、一方、 120mmを超える板
厚においては、中心部まで圧下かおよびにくいために、
γ粒の微細化か十分にてきないこと、また、冷却時にお
いて、中心部は所定の冷却速度の確保か困難であること
から、変BjVのフェライト結晶粒か粗大化することと
なり所定の強度および靭性を得ることかできないからで
ある。
The reason for limiting the completed rolling thickness to more than 50 mm and less than 120 mm is that if the thickness is less than 50 mm, high yield strength steel can be manufactured using the commonly used conventional manufacturing method without applying the method of the present invention. On the other hand, when the plate thickness exceeds 120 mm, it is difficult to reduce the thickness to the center.
Because the γ grains cannot be sufficiently refined, and because it is difficult to maintain the specified cooling rate in the center during cooling, the ferrite crystal grains of the modified BjV become coarser and cannot achieve the specified strength and strength. This is because the only thing that can be achieved is toughness.

圧延完了温度を板厚の中心部で(Ar3変態点+130
℃)〜Ars変態点の範囲に限定した理由は、圧延完了
温度か(Ar3変態点++30℃)を超える場合には、
γ粒の微細化か不足し、所定の強度および靭性を得るこ
とかできず、一方、圧延完了温度かAr3変態点未満の
場合には、所定の強度は得ることはできても、変態後に
圧延された伸長したフェライト粒の混在によって、シャ
ルビ衝撃吸収エネルギか著しく低下するからである。
The rolling completion temperature is set at the center of the plate thickness (Ar3 transformation point +130
The reason why it is limited to the range of ℃) to Ars transformation point is that if the rolling completion temperature exceeds (Ar3 transformation point ++30℃),
The required strength and toughness cannot be obtained due to insufficient refinement of the γ grains. On the other hand, if the rolling completion temperature is lower than the Ar3 transformation point, the required strength may be obtained, but the rolling This is because the presence of elongated ferrite grains significantly reduces the Charby impact absorption energy.

つぎに、加速冷却条件の限定理由について説明する。Next, the reason for limiting the accelerated cooling conditions will be explained.

本発明において重要な点は、上記の限定温度域での制圓
圧延とそれに引き続く加速冷却によって、微細なヘイナ
イト士フェライト組織を得ることであり、これによって
、高降伏強度ならびに高靭性を得ることにある。
The important point in the present invention is to obtain a fine heinitic ferrite structure through controlled rolling in the above-mentioned limited temperature range and subsequent accelerated cooling, thereby achieving high yield strength and high toughness. be.

圧延後、直ちに加速冷却を行う理由は、微細化されたγ
粒をrE延直後に冷却することによって、より微細なヘ
イナイト士フェライト組織を得ることかできるのであり
、時間の経過は冷却後の結晶粒か太き(なるので好まし
くないからである。さらに、圧延直後の鋼板表面温度か
、中心部より低い復熱しない状態で加速冷却を行うこと
によって、鋼板表面の焼入れ硬さを低くすることかでき
、鋼板の表層部と中心部との強度差を小さくすることか
できる。また、板厚中心部の冷却速度か0.4”C/s
ec未満ては微細なヘイナイト士フェライト組織か得ら
れず、板厚中心部の強度および靭性を確保することかで
きない。したかって、板厚中心部の冷却速度は0.4℃
/see以上とする。
The reason for performing accelerated cooling immediately after rolling is that the finer γ
By cooling the grains immediately after rE rolling, it is possible to obtain a finer heinite ferrite structure. By performing accelerated cooling in a state where the surface temperature of the steel plate immediately after cooling is lower than the center, the quenching hardness of the steel plate surface can be lowered, and the difference in strength between the surface layer and the center of the steel plate can be reduced. Also, the cooling rate at the center of the plate thickness is 0.4"C/s.
If the steel sheet is less than ec, a fine heinite-ferrite structure cannot be obtained, and strength and toughness at the center of the plate thickness cannot be ensured. Therefore, the cooling rate at the center of the plate thickness is 0.4℃
/see or more.

加速冷却は、鋼板表面温度か600℃を超える温度域で
停止すると、冷却不足となり強度を確保できず、一方、
350℃未満の温度域で停止すると、冷却後の焼きもと
し処理においても、表層部と中心部との強度差は小さく
ならず、板厚方向に均一性を欠くことになる。したかっ
て、冷却停止温度は、600〜350℃の範囲に限定す
る。
If accelerated cooling is stopped when the steel plate surface temperature exceeds 600℃, there will be insufficient cooling and strength cannot be secured.
If the sheet is stopped in a temperature range of less than 350° C., the difference in strength between the surface layer and the center portion will not be reduced even in the tempering treatment after cooling, resulting in a lack of uniformity in the thickness direction. Therefore, the cooling stop temperature is limited to a range of 600 to 350°C.

このように加速冷却された鋼板は、所定の強度および靭
性を具備させるとともに、板厚方向に対しても均一性を
付与するために焼きもとし処理を実施する。焼きもとし
温度は(Ac、変態点=lO℃)以上の温度では強度か
低下して所定の強度を確保することかできず、一方、5
00℃未満の温度では焼きもどしの効果か不十分て強度
か高くなるとともに靭性の劣化か著しい。したかって、
焼きもとし温度は(Ac +変態点−1O℃)〜500
℃の範囲に限定する。
The steel plate that has been acceleratedly cooled in this manner is subjected to a tempering treatment in order to provide a predetermined strength and toughness as well as uniformity in the thickness direction. If the baking temperature is higher than (Ac, transformation point = lO ℃), the strength will decrease and it will not be possible to secure the specified strength.
At temperatures below 00°C, the effect of tempering is insufficient, the strength increases, and the toughness deteriorates significantly. I wanted to,
The baking temperature is (Ac + transformation point - 1O℃) ~ 500
Limited to ℃ range.

本発明法によれは、焼きもとし処理を行うことによって
、最も好ましい強度および靭性を得ることができるか、
板厚と冷却条件を組み合わせることによって、加速冷却
まま材においても十分な特性を得ることかできる場合も
ある。また、焼きもどし処理後、直ちに水冷等によって
強制的に鋼板を冷却することによって焼きもとし脆化を
防止し、靭性を向上させることかできる。
According to the method of the present invention, it is possible to obtain the most preferable strength and toughness by performing tempering treatment,
By combining plate thickness and cooling conditions, it may be possible to obtain sufficient properties even in as-cooled materials. Further, by forcibly cooling the steel plate by water cooling or the like immediately after the tempering treatment, tempering embrittlement can be prevented and toughness can be improved.

なお、Ac3変態点、Ac、変態点、Ars変態点の温
度は次式で定められる。
Note that the temperatures of Ac3 transformation point, Ac transformation point, and Ars transformation point are determined by the following equations.

Ac5(’C+□908−223.7C+43’a、5
P+30.55i +37.9V−34,4八In−2
3,0Ni Ac、じC’)・723+22.03i−14,0NI
n−14,4Ni+23.3CrAr3じC)=910
−3 l0C−80kIn−20Cu−15cr−55
Ni−8ONl。
Ac5('C+□908-223.7C+43'a, 5
P+30.55i +37.9V-34,48In-2
3,0Ni Ac, JC')・723+22.03i-14,0NI
n-14,4Ni+23.3CrAr3dC)=910
-3 l0C-80kIn-20Cu-15cr-55
Ni-8ONl.

たたし、各合金元素は含有量(96)で表す。However, each alloying element is expressed by the content (96).

(実施例) 以下に、本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

供試鋼板は第1表に示す化学成分を含有する低炭素低合
金鋼を常法により溶製、鋳造し、得られた鋼片を第2表
に示す製造条件にしたかって、厚さ55〜108 m(
1)の鋼板に仕上げたものである。
The test steel plates were made by melting and casting low-carbon, low-alloy steel containing the chemical components shown in Table 1 using a conventional method, and manufacturing the obtained steel pieces under the manufacturing conditions shown in Table 2. 108 m (
1) Finished with steel plate.

これらの鋼板から試験片を採取し、引張試験およびツヤ
ルビ衝撃試験を行った。その結果を第2表に併記する。
Test pieces were taken from these steel plates and subjected to a tensile test and a glossy impact test. The results are also listed in Table 2.

第1表に化学成分を、第2表に変態点、製造条件および
機械的性質をそれぞれ示す。
Table 1 shows the chemical components, and Table 2 shows the transformation points, manufacturing conditions, and mechanical properties.

(以下余白) 第2表のNo、 !、3.5.7.9,11.13.1
5.17は本発明法で、No、 2.4.6. s、1
0.12.14.16.18は比較法である。以下、N
o、順に実施例について説明する。
(Left below) No. in Table 2! , 3.5.7.9, 11.13.1
5.17 is the method of the present invention, No. 2.4.6. s, 1
0.12.14.16.18 is a comparative method. Below, N
o. Examples will be explained in order.

No、 1.2は鋼種Aで、本発明法のNo、 lに対
して、比較法のNo、 2は、加速冷却の冷却速度か遅
いため、引張特性およびシャルビ衝撃特性か劣っている
No. 1.2 is steel type A, and compared to No. 1 of the present invention method, No. 2 of the comparative method is inferior in tensile properties and Charvy impact properties because the cooling rate of accelerated cooling is slow.

No、 3.4は鋼種Bて、本発明法のN013に対し
て、比較法のNo、 4は、加熱温度か低いため、引張
特性およびシャルビ衝撃特性か劣っている。
No. 3.4 is steel type B, and compared to No. 13 of the present invention method, No. 4 of the comparative method is inferior in tensile properties and Charvy impact properties due to the lower heating temperature.

No、 5.6は鋼種Cて、本発明法のNo、 5に対
して、比較法のNo、 6は、圧延完了温度か低く、ま
た、加速冷却の冷却速度か遅いため、シャルビ衝撃特性
か劣っている。
No. 5.6 is steel type C, and compared to No. 5 of the present invention method, No. 6 of the comparative method has a low rolling completion temperature and a slow cooling rate of accelerated cooling, so it has poor Charby impact properties. Inferior.

No、 7.8は鋼種りて、本発明法のN007に対し
て、比較法のN018は、加速冷却の停止温度が低いた
め、シャルビ衝撃特性か劣っている。
No. 7.8 is a steel type, and as compared to No. 007 of the present invention method, No. 7.8 of the comparative method has a lower stopping temperature of accelerated cooling, so it has inferior Charvy impact properties.

No、 9.10は鋼種Eて、本発明法のNO19に対
してψ紡出の〜n In H里壇匣下率か少なく−また
、加速冷却の停止温度か低いため、引張特性およびンヤ
ルピ衝繋特性か劣っている。
No. 9.10 is steel type E, and compared to No. 19 of the method of the present invention, the ~n In H rate of ψ spinning is lower - and the stop temperature of accelerated cooling is lower, so the tensile properties and Nyaruphi impact are lower. The connection characteristics are poor.

No、11 、12は鋼種Fて、本発明法のNo、11
に対して、比較法のNo、 12は、圧延完了温度およ
び加速冷却の停止温度か低いため、シャルビ衝撃特性か
劣っている。
Nos. 11 and 12 are steel type F, and No. 11 of the present invention method.
On the other hand, comparative method No. 12 has low rolling completion temperature and accelerated cooling stop temperature, and is therefore inferior in Charvy impact properties.

No、 13 / 14は鋼種Gて、本発明法のNo、
13に対して、比較法のNo、14は、圧延完了温度か
高く、また、加速冷却の停止温度も高いため、引張特性
およびシャルビ衝撃特性か劣っている。
No. 13/14 is steel type G, No. of the method of the present invention,
In contrast to No. 13, Comparative Method No. 14 has a high rolling completion temperature and a high accelerated cooling stop temperature, so it is inferior in tensile properties and Charvy impact properties.

No、15.16は鋼種Hて、本発明法のNo、15に
対して、比較法のNo、16は、累積圧下率か少ないた
め引張特性か劣り、また、焼きもとし温度か低いためシ
ャルビ衝撃特性か劣っている。
No. 15.16 is a steel type H. Compared to No. 15 made using the present invention method, No. 16 made using the comparative method has poor tensile properties due to a small cumulative reduction ratio, and is inferior in tensile properties due to a low baking temperature. Poor impact properties.

No、17.18は鋼種Iて、本発明法のNo、17に
対して、比較法のNo、 18は、累積圧下率か少なく
、また、圧延完了温度も高く、さらに焼きもとし処理後
に水冷されていないため、引張特性およびシャルビ衝撃
特性か劣っている。
No. 17.18 is steel type I, and compared to No. 17 of the present invention method, No. 18 of the comparative method has a lower cumulative reduction rate, a higher rolling completion temperature, and water cooling after tempering treatment. The tensile properties and Charby impact properties are poor.

(発明の効果) 以上、説明したように本発明に1系わる高降伏強度高靭
性厚肉高張力鋼板の製造方法は、微量のNbを添加して
制御圧延を行い、その後、直ちに加速冷却を行うことに
より、微細なベイナイトを生成させるとともに、結晶粒
の粗大化を防止し、さらに、微細なフェライトを生成さ
せる二とによって、高降伏強度高靭性厚肉高張力鋼板を
提供するものである。
(Effects of the Invention) As explained above, the method for manufacturing a high-yield strength, high-toughness, thick-walled, high-strength steel plate according to the present invention includes adding a small amount of Nb and performing controlled rolling, followed by immediately accelerated cooling. By doing this, fine bainite is generated, coarsening of crystal grains is prevented, and fine ferrite is generated, thereby providing a thick-walled, high-tensile steel plate with high yield strength and high toughness.

したかって、本発明は降伏強度か40kgf/mm2以
上で高靭性の厚肉高張力鋼板を容易に製造できるという
優れた効果を有するものである。
Therefore, the present invention has the excellent effect of easily manufacturing a thick-walled, high-strength steel plate with a yield strength of 40 kgf/mm2 or more and high toughness.

Claims (1)

【特許請求の範囲】[Claims] (1)C:0.04〜0.18%、Si:0.10〜0
.50%、Mn:0.70〜2.0%、S:0.025
%以下、Al:0.010〜0.080%、Nb:0.
005〜0.035%、Ti:0.005〜0.030
%、N:0.0015〜0.0080%を含有し、かつ
、下記式で規定されるCeqが0.45%以下で、残部
Feおよび不可避不純物から成る鋼片を、Ac_3変態
点以上の温度に加熱し、(Ac_3変態点+50℃)以
下の累積圧下率を30%以上として、圧延完了厚さが5
0mm超え120mm以下の熱間圧延を行い、かつ、こ
の鋼板の板厚中心部の温度が(Ar_3変態点+130
℃)〜Ar_3変態点の範囲内で圧延を完了し、直ちに
、鋼板の板厚中心部の冷却速度が0.4℃/sec以上
で表面温度が600〜350℃の温度範囲まで加速冷却
を行い、しかる後、(Ac_1変態点−10℃)〜50
0℃の温度範囲に加熱して、焼きもどし処理を行うこと
を特徴とする高降伏強度高靭性厚肉高張力鋼板の製造方
法。 Ceq(%)=C+Mn/6+(Cr+Mo+V)/5
+(Cu+Ni)/15(2)Cu:0.80%以下、
Ni:1.50%以下、Cr:0.70%以下、Mo:
0.50%以下、V:0.080%以下、Ca:0.0
005〜0.0030%の内から選んだ1種または2種
以上を含有することを特徴とする請求項(1)の高降伏
強度高靭性厚肉高張力鋼板の製造方法。
(1) C: 0.04-0.18%, Si: 0.10-0
.. 50%, Mn: 0.70-2.0%, S: 0.025
% or less, Al: 0.010-0.080%, Nb: 0.
005-0.035%, Ti: 0.005-0.030
%, N: 0.0015 to 0.0080%, Ceq defined by the following formula is 0.45% or less, and the balance consists of Fe and unavoidable impurities at a temperature above the Ac_3 transformation point. The cumulative rolling reduction rate below (Ac_3 transformation point +50°C) is 30% or more, and the completed rolling thickness is 5.
The steel plate is hot rolled to a thickness of more than 0 mm and less than 120 mm, and the temperature at the center of the thickness of this steel plate is (Ar_3 transformation point + 130
After rolling is completed within the range of transformation point (°C) to Ar_3, the steel plate is immediately accelerated cooled to a temperature range of 600 to 350°C with a cooling rate of 0.4°C/sec or more at the center of the thickness of the steel plate. , after that, (Ac_1 transformation point -10℃) ~ 50
A method for producing a high-yield strength, high-toughness, thick-walled, high-tensile steel plate, which comprises heating to a temperature range of 0°C and performing a tempering treatment. Ceq (%)=C+Mn/6+(Cr+Mo+V)/5
+(Cu+Ni)/15(2)Cu: 0.80% or less,
Ni: 1.50% or less, Cr: 0.70% or less, Mo:
0.50% or less, V: 0.080% or less, Ca: 0.0
2. The method for producing a high-yield strength, high-toughness, thick-walled, high-tensile steel plate according to claim 1, characterized in that the method contains one or more selected from 0.005 to 0.0030%.
JP30999190A 1990-11-14 1990-11-14 Production of high tensile thick steel plate having high yield strength and high toughness Pending JPH04180521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30999190A JPH04180521A (en) 1990-11-14 1990-11-14 Production of high tensile thick steel plate having high yield strength and high toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30999190A JPH04180521A (en) 1990-11-14 1990-11-14 Production of high tensile thick steel plate having high yield strength and high toughness

Publications (1)

Publication Number Publication Date
JPH04180521A true JPH04180521A (en) 1992-06-26

Family

ID=17999825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30999190A Pending JPH04180521A (en) 1990-11-14 1990-11-14 Production of high tensile thick steel plate having high yield strength and high toughness

Country Status (1)

Country Link
JP (1) JPH04180521A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228020A (en) * 2008-03-19 2009-10-08 Kobe Steel Ltd High-strength thick steel plate having excellent strain aging property, and method for producing the same
JP5510620B1 (en) * 2013-08-13 2014-06-04 新日鐵住金株式会社 steel sheet
JP2018503744A (en) * 2014-12-24 2018-02-08 ポスコPosco High strength steel material excellent in brittle crack propagation resistance and manufacturing method thereof
JP2018504520A (en) * 2014-12-24 2018-02-15 ポスコPosco High strength steel material excellent in brittle crack propagation resistance and manufacturing method thereof
JP2018504524A (en) * 2014-12-24 2018-02-15 ポスコPosco Structural heavy steel with excellent brittle crack propagation resistance and method for producing the same
JP2018504523A (en) * 2014-12-24 2018-02-15 ポスコPosco High strength steel material excellent in brittle crack propagation resistance and manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228020A (en) * 2008-03-19 2009-10-08 Kobe Steel Ltd High-strength thick steel plate having excellent strain aging property, and method for producing the same
JP5510620B1 (en) * 2013-08-13 2014-06-04 新日鐵住金株式会社 steel sheet
WO2015022729A1 (en) * 2013-08-13 2015-02-19 新日鐵住金株式会社 Steel plate
CN104520463A (en) * 2013-08-13 2015-04-15 新日铁住金株式会社 Steel plate
JP2018503744A (en) * 2014-12-24 2018-02-08 ポスコPosco High strength steel material excellent in brittle crack propagation resistance and manufacturing method thereof
JP2018504520A (en) * 2014-12-24 2018-02-15 ポスコPosco High strength steel material excellent in brittle crack propagation resistance and manufacturing method thereof
JP2018504524A (en) * 2014-12-24 2018-02-15 ポスコPosco Structural heavy steel with excellent brittle crack propagation resistance and method for producing the same
JP2018504523A (en) * 2014-12-24 2018-02-15 ポスコPosco High strength steel material excellent in brittle crack propagation resistance and manufacturing method thereof
US10822671B2 (en) 2014-12-24 2020-11-03 Posco High-strength steel having superior brittle crack arrestability, and production method therefor
US10883159B2 (en) 2014-12-24 2021-01-05 Posco High-strength steel having superior brittle crack arrestability, and production method therefor

Similar Documents

Publication Publication Date Title
CN100516270C (en) Thick steel plate with high strength and low welding crack sensitivity and its production process
US6238493B1 (en) Method of making a weathering grade plate and product thereform
JPS6155572B2 (en)
JPH04268016A (en) Production of high tensile strength steel sheet for door guide bar having excellent crushing characteristic
JPS605647B2 (en) Method for manufacturing boron-containing non-thermal high tensile strength steel with excellent low-temperature toughness and weldability
JPH07278656A (en) Production of low yield ratio high tensile strength steel
JPS6160891B2 (en)
JP3873540B2 (en) Manufacturing method of high productivity and high strength rolled H-section steel
JPS6141968B2 (en)
JPH04180521A (en) Production of high tensile thick steel plate having high yield strength and high toughness
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JPH05195058A (en) Production of thick steel plate having high toughness and high tensile strength
JPH0693332A (en) Production of high tensile strength and high toughness fine bainitic steel
JPH0225968B2 (en)
JPS63145745A (en) Hot rolled high tensile steel plate and its production
JPS6167717A (en) Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone
JPH04276018A (en) Manufacture of door guard bar excellent in collapse resistant property
JP3229107B2 (en) Manufacturing method of low yield ratio high strength steel sheet with excellent uniform elongation
JPS63183123A (en) Production of high tensile steel having excellent low-temperature toughness after linear and spotty reheating
JPS6286122A (en) Production of structural steel having high strength and high weldability
JPS601927B2 (en) Manufacturing method for non-temperature high tensile strength steel with excellent low-temperature toughness
JPH0247525B2 (en)
JPH0920921A (en) Production of high toughness steel plate by means of separation
JPH0688129A (en) Production of high strength steel pipe as welded low in residual stress
JPH0366383B2 (en)