WO2015022729A1 - Steel plate - Google Patents

Steel plate Download PDF

Info

Publication number
WO2015022729A1
WO2015022729A1 PCT/JP2013/071864 JP2013071864W WO2015022729A1 WO 2015022729 A1 WO2015022729 A1 WO 2015022729A1 JP 2013071864 W JP2013071864 W JP 2013071864W WO 2015022729 A1 WO2015022729 A1 WO 2015022729A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal grain
content
plate thickness
grain size
steel
Prior art date
Application number
PCT/JP2013/071864
Other languages
French (fr)
Japanese (ja)
Inventor
斎藤 直樹
勝己 榑林
康哲 ▲高▼橋
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to EP13883843.8A priority Critical patent/EP2860276B1/en
Priority to PCT/JP2013/071864 priority patent/WO2015022729A1/en
Priority to CN201380025901.XA priority patent/CN104520463B/en
Priority to KR1020147031774A priority patent/KR101542709B1/en
Priority to JP2013553679A priority patent/JP5510620B1/en
Publication of WO2015022729A1 publication Critical patent/WO2015022729A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling

Definitions

  • the present invention has a yield strength of 460 N / mm 2 to 580 N / mm 2 , a tensile strength that is suitable for application to welded structures such as buildings, construction machines, offshore structures, large cranes for ships, and civil engineering structures. is has a strength of 550N / mm 2 ⁇ 670N / mm 2, further comprising a uniform properties in the thickness direction, excellent weldability and base material toughness and HAZ toughness, than the plate thickness 80mm
  • the present invention relates to a suitable thick high strength steel sheet.
  • thick high-tensile steel sheets have been applied to welded structures such as buildings, construction machines, offshore structures, large-scale cranes for ships, and civil engineering structures as the size of the structures increases.
  • thick high-tensile steel plates are applied to large structures, the difference in strength and toughness in the plate thickness direction is highly advanced by predicting their deformation behavior and fracture behavior when constructing and designing complex welded structures. It is not preferable when building reasonable safety. Therefore, a thick high-tensile steel sheet having uniform characteristics in the sheet thickness direction is required. Thick high-tensile steel plates are often used in parts requiring high safety in large offshore structures and large cranes.
  • HAZ toughness high weld heat affected zone toughness
  • thick high-tensile steel sheets with a plate thickness of 80 mm or more are usually alloys such as C, Mn, Cr, Mo, and V that improve the hardenability for the purpose of imparting a predetermined strength to the center of the plate thickness.
  • Appropriate amounts of elements are added and manufactured by quenching and tempering. During quenching, it is well known that strength and toughness change depending on the depth in the thickness direction from the surface layer to the thickness center due to the difference in cooling rate in the thickness direction. Further, as the plate thickness increases, not only the difference in cooling rate during the quenching process, but also the difference in heating rate between the surface layer and the plate thickness center portion during heating during the quenching process increases.
  • the time for holding at a high temperature is longer than that in the center portion of the plate thickness, and the crystal grains tend to be coarser than in the center portion of the plate thickness. If there is a difference in crystal grains between the vicinity of the surface layer and the central portion of the plate thickness, there may be a difference in materials such as strength.
  • the position of 1/4 of the plate thickness along the plate thickness direction from the surface of the steel plate in other words, 1 / of the plate thickness from the surface of the steel plate to the center of the plate thickness in the plate thickness direction.
  • the characteristics of the position advanced by 4 (hereinafter referred to as 1/4 t portion) are defined.
  • the thickness of the plate is 1 ⁇ 2 of the plate thickness from the surface of the steel plate toward the center of the plate thickness. Even at the position (hereinafter referred to as 1 / 2t portion), stable and high characteristics are required.
  • a plate unique to thick high-tensile steel plates It is important to eliminate the non-uniformity in the thickness direction. It is clear that the weldability is determined by the alloy composition from many studies, and can be evaluated by an index such as a Pcm value. In many cases, good weldability that does not require preheating can be achieved by limiting the content of alloy elements having high hardenability such as Cr and Mo and setting the Pcm value to, for example, 0.25% or less.
  • Patent Document 1 and Patent Document 2 disclose inventions relating to a method for producing a high-tensile steel sheet containing 0.6% to 1.5% and 0.5% to 2.0% of Cu, respectively. These inventions are premised on the application of thermal processing control that performs controlled rolling during hot rolling and, as a rule, includes accelerated cooling after rolling. For this reason, the manufacturing methods disclosed in Patent Documents 1 and 2 are not suitable for manufacturing thick high-tensile steel sheets targeting 80 mm or more. In addition, when these manufacturing methods are used, the microstructure in the vicinity of the surface thickness part of the sheet thickness and the center part is greatly increased due to the effect of controlled rolling, etc. There is a concern.
  • Patent Document 3 discloses a method for producing a high-toughness high-strength steel (high-strength steel sheet) containing 0.5% to 4.0% Cu and having excellent elongation characteristics and a tensile strength of 686 MPa or more. ing.
  • the object of Patent Document 3 is a high strength steel having a tensile strength of 686 MPa or more that exceeds the assumption of the present invention, and has high hardenability in which addition of alloy elements such as Cr, Mo, and V is allowed. High strength steel. Therefore, the manufacturing method described in Patent Document 3 cannot be adopted as a means for solving the problem intended by the present invention because of concern about material uniformity in the thickness direction.
  • Patent Document 4 discloses a high-tensile steel sheet containing 0.8% to 1.5% Cu and having excellent weld toughness. Although this high-tensile steel plate is added with Cu and Ni, the assumption of the plate thickness is 77 mm as can be seen from the examples in Reference 4, and the intention is different from the present invention suitable for a plate thickness of 80 mm or more. . In Patent Document 4, it is specified that in the production of a high-strength steel sheet, rolling is performed while restricting the total amount of rolling at 900 ° C. or less, and direct water cooling is performed after rolling. Therefore, there is a great concern for the material uniformity in the thickness direction.
  • the N / Al ratio is defined to be in the range of 0.3 to 3.0, the Al content is 0.013% or less as disclosed in the examples.
  • deoxidation with normal Al cannot be performed, and there is a concern that the conventional general production method is slightly deviated, lacks in stability, and costs increase.
  • Patent Document 5 Patent Document 6 and Patent Document 7 all disclose a method for producing a steel for high heat input welding containing 0.2% to 2.0% Cu and excellent in low temperature toughness.
  • a feature of these steel sheets is that the S content is controlled to be 0.003% to 0.008%.
  • fine MnS is precipitated in the steel, and excellent HAZ toughness is obtained for high heat input welding.
  • the target plate thickness is a thin material of about 32 mm, which is greatly different from the intention of the present invention.
  • the addition of S promotes the generation of MnS inclusions that are highly likely to adversely affect toughness, particularly in thick high-tensile steel sheets. For this reason, the techniques disclosed in Patent Documents 5 to 7 are not excellent methods on the premise of producing thick high-tensile steel sheets.
  • Patent Document 8 discloses a high-strength thick steel plate excellent in CTOD characteristics and containing 0.70% to 1.75% Cu.
  • the strength level of these steel plates is 780 MPa class (tensile strength of 780 MPa or more), which is significantly different from the strength intended by the present invention.
  • these steel sheets contain 0.005% to 0.0015% of B, the increase in hardness in the vicinity of the plate thickness surface layer portion becomes extremely large. Therefore, it is estimated that the strength difference in the thickness direction is large in the steel sheet disclosed in Patent Document 8. Further, these steel sheets have an Al content of 0.01% or less, and cannot be deoxidized by ordinary Al. Therefore, it is not suitable for solving the problems of the present invention, such as a slight deviation from the conventional general manufacturing method and a high cost for stability.
  • Cu addition is a technique that has been applied to many inventions.
  • the present invention is, in the conventional invention could not be achieved, the yield strength 460N / mm 2 ⁇ 580N / mm 2, with a tensile strength of 550N / mm 2 ⁇ 670N / mm 2, for example, there a thick high tensile steel plate or 80mm
  • a thick high-tensile steel sheet having uniform characteristics in the thickness direction and excellent in weldability, base metal toughness and HAZ toughness is provided.
  • the inventors of the present invention repeated many experiments on a method for producing a thick high-tensile steel plate.
  • the Pcm value is controlled to be in the range of 0.25% or less and substantially contains Cr, Mo, V and B with high hardenability. It was found that it is important not to let them.
  • high weldability shows that a weld crack does not generate
  • the content of Cu and Ni is limited to a specific high concentration range, and then TMCP which has been the mainstream of conventional Cu-added steels. It has been found effective to apply a quenching and tempering treatment rather than a treatment (Thermo Mechanical Control Process).
  • FIG. 1 shows a cross-sectional hardness distribution in the thickness direction after quenching and tempering treatment in two types of steel plates having a thickness of 110 mm containing 1.15% Cu and 1.81% or 3.22% Ni.
  • FIG. 1 shows a cross-sectional hardness distribution in the thickness direction after quenching and tempering treatment in two types of steel plates having a thickness of 110 mm containing 1.15% Cu and 1.81% or 3.22% Ni.
  • FIG. 1 shows a cross-sectional hardness distribution in the thickness direction after quenching and tempering treatment in two types of steel plates having a thickness of 110 mm containing 1.15% Cu and 1.81% or 3.22% Ni.
  • FIG. 1 shows a cross-sectional hardness distribution in the thickness direction after quenching and tempering treatment in two types of steel plates having a thickness of 110 mm containing 1.15% Cu and 1.81% or 3.22% Ni.
  • FIG. 1 shows a cross-sectional hardness distribution in the thickness direction after quenching and tempering treatment in
  • the range of high hardness has spread, and the Vickers hardness at 1 / 8th of the plate thickness (hereinafter referred to as 1 / 8t part) and the Vickers hardness at 1 / 2t part along the plate thickness direction from the surface of the steel plate.
  • the difference ( ⁇ Hv) is 38.
  • the ⁇ Hv of the 3.22% Ni-containing steel is significantly higher than that of the 1.81% Ni steel.
  • the surface of the steel sheet does not mean a specific surface during rolling, but simply means one surface of the steel sheet.
  • FIG. 2 shows the results of experimental determination of the relationship between ⁇ Hv and the content of alloy elements.
  • FIG. 2 shows ⁇ Hv, which is the difference between the hardness at 1/8 t portion and the hardness at 1/2 t portion of a steel plate having a thickness of 100 mm with varying contents of Cu and Ni. .
  • the number in the circle in the figure is ⁇ Hv.
  • Such locally hard areas are extremely small areas with respect to the overall thickness of the thick high-tensile steel sheet, and are considered to have little effect on the strength of the steel. . Therefore, when measuring the hardness distribution of the cross section of a steel plate, it is desirable to exclude the data of the above-mentioned local hardening part.
  • the lower limit value of the A value is not particularly limited. However, from the viewpoint of securing HAZ toughness and strength, which will be described later, the lower limit is 1.2% and 0.7% for the Ni content and the Cu content, respectively. Therefore, the lower limit value of the A value is preferably 1.9%, which is the sum of the lower limit values of the Cu content and the Ni content.
  • the present inventors simulated a weld heat affected zone at ⁇ 40 ° C. in order to investigate the effects of Cu content and Ni content on HAZ toughness (vE (HAZ)), which is a major element of the present invention.
  • HAZ toughness HAZ toughness
  • An impact test was also conducted. The result is shown in FIG.
  • Charpy absorbed energy at ⁇ 40 ° C. is 42 J or more, the occurrence of brittle fracture can be prevented. Therefore, whether or not the Charpy absorbed energy at ⁇ 40 ° C. is 42 J or more was determined as a pass / fail criterion.
  • the numerical value in the circle in FIG. 3 is the Charpy absorbed energy at ⁇ 40 ° C. As can be seen from FIG.
  • the HAZ toughness is strongly influenced by the alloy composition (content of alloy components).
  • the toughness of the base material needs to be examined in consideration of the microstructure, specifically the crystal grain size, in addition to the alloy composition.
  • the tensile strength of 550N / mm 2 ⁇ 670N / mm 2 steel as contemplated by the present invention in general, the microstructure becomes ferrite and bainite mixed tissue. Therefore, it is not easy to evaluate the crystal grain size from observation of a microstructure using an optical microscope that has been conventionally performed.
  • an EBSD method electron beam backscatter diffraction pattern analysis method
  • a region surrounded by a grain boundary having an angle of 30 ° or more is defined as a crystal grain.
  • the circle equivalent grain size of the crystal grain was defined as the crystal grain size.
  • the frequency distribution of the measured crystal grain size was calculated, and the crystal grain size at which the cumulative frequency from the fine grain side was 70% was defined as the average crystal grain size.
  • An example of actual measurement is shown in FIG. FIG.
  • the crystal grain in each plate board thickness position of the surface layer part (namely, surface part or outermost layer), 1 / 8t part, 2 / 8t part (1 / 4t part), and 3 / 8t part of the steel plate after quenching and tempering
  • the diameter was obtained, and the cumulative frequency (%) with respect to the crystal grain size was obtained.
  • the crystal grain size corresponding to a cumulative frequency of 70% is the average crystal grain size.
  • the average crystal grain size at each plate thickness position varies depending on the sampling position in the plate thickness direction of the steel plate, and is generally 20 ⁇ m or more at the outermost layer and 1 / 8t portion. On the other hand, it was 15 ⁇ m or less in the 2 / 8t part and the 3 / 8t part.
  • FIG. 5 shows 0.08% C-0.15% Si-1.51% Mn-0.008% P-0.0010% S-1.15% Cu-1.23% Ni shown above.
  • the crystal grain size and test temperature change at 20 ° C intervals in a quenched and tempered steel with a plate thickness of 140 mm containing -0.012% Ti-0.012% Nb-0.035% Al-0.0039% N
  • the relationship with the toughness obtained by the Charpy test carried out is shown.
  • the fracture surface transition temperature (vTrs) obtained by the Charpy test was used as an index of toughness.
  • vTrs identifies the ductile fracture surface and the brittle fracture surface from the fracture surface characteristics of the test piece, measures the area ratio of the brittle fracture surface to the total fracture surface area, and determines the area ratio of the brittle fracture surface. Is the temperature at which the area ratio of the brittle fracture surface is 50%. vTrs indicates that the smaller the value, the better the toughness.
  • the sampling position of the Charpy test piece is the same position as the site where the crystal grain size was measured, and the sampling direction is a direction perpendicular to the rolling direction. In FIG.
  • the vertical axis represents vTrs (toughness), and the horizontal axis d ⁇ 1/2 represents the reciprocal of the square root of the average crystal grain size.
  • vTrs and d ⁇ 1/2 there is a substantially linear correlation between vTrs and d ⁇ 1/2 . This corresponds to a relationship conventionally called a Hall-Petch relationship.
  • the vTrs on the vertical axis is also affected by the component system, and it is known that the toughness improves particularly when the Ni content increases.
  • HAZ toughness is important as a steel material.
  • high toughness is required not only for HAZ toughness but also for the base material (portion not affected by welding heat).
  • brittle fracture is assumed to occur due to welding defects, etc., but most of these defects are not defects that exist on the surface that are easy to find, but are brittle fractures that occur inside the steel sheet. It has the greatest impact. This is because it is assumed that defects inside the steel sheet are likely to be the most severe stress state with respect to the crack growth, although the possibility that defects in the steel plate are found is low, and depending on the acting stress state.
  • the toughness of the base material in the vicinity of the defect must be high in order to prevent it from occurring. It is assumed that such a severe stress state is mainly in the region of 1 / 8t to 7 / 8t, which is the inner side of the steel sheet. Therefore, the toughness required for the base metal should be defined on the inner side closer to the center of the steel plate than the 1/8 t portion rather than the vicinity of the surface layer of the plate thickness.
  • the average crystal grain size is 35 ⁇ m or less, vTrs ⁇ ⁇ 10 ° C. can be satisfied.
  • Each point in FIG. 5 is taken from the plate thickness position indicated by the display in ().
  • the steel sheet surface layer portion does not significantly affect the destruction of the actual structure. Therefore, in the present invention, the average crystal grain at the position excluding the region from the outermost layer portion to 1/8 t portion. Define the diameter. Since the thick steel plate is held in the heat treatment furnace for a long time, the crystal grain size tends to be coarser on the steel plate surface layer side than on the plate thickness central portion.
  • the average crystal grain size at 1/8 t part of the plate thickness is 35 ⁇ m or less. Furthermore, by setting the average crystal grain size of the 3 / 8t part of the plate thickness to 35 ⁇ m or less, the average crystal grain size of both the 1 / 8t part and the 3 / 8t part of the plate thickness may be set to 35 ⁇ m or less. As described above, the finer the average crystal grain size, the better the toughness, but it is not easy to make it fine. Therefore, the lower limit value of the average crystal grain size may be 5 ⁇ m, 10 ⁇ m, or 15 ⁇ m. In order to improve the safety of steel structures, there is a concept that requires higher toughness for the base material in consideration of strain aging and the like.
  • the cooling rate at the time of quenching is higher in the vicinity of the surface layer of the steel plate than in the steel plate, there is a tendency that a sufficient quenching structure can be obtained, but the strength is increased. Therefore, the toughness in the vicinity of the surface layer is not necessarily high compared to the inside of the steel plate (for example, 1/4 t portion).
  • the inside of the plate thickness inside of 1 / 8t
  • the internal toughness is considered from 1 / 8t, it is considered sufficient for ensuring the safety of the structure, and the internal average crystal grain size is specified from 1 / 8t. It was decided.
  • the steel plate manufactured based on the above techniques exhibits excellent weldability, base metal toughness, and weld heat affected zone toughness while ensuring uniformity in the thickness direction. In particular, the effect is large in a steel plate having a plate thickness of 80 mm or more. However, in a steel sheet having a plate thickness exceeding 200 mm, the cooling rate at the central portion of the plate thickness is remarkably lowered, leading to the coarsening of the microstructure, so that there is a high possibility that the predetermined strength and toughness cannot be satisfied.
  • the thickness of the steel plate manufactured according to the present invention may be 200 mm or less. If necessary, the upper limit of the plate thickness may be 175 mm, 150 mm, or 125 mm. The lower limit of the plate thickness may be 90 mm or 100 mm.
  • the present invention is substantially free of these elements, for example, with respect to a thick high-tensile steel plate of 80 mm or more, which contains a large amount of alloy elements such as Cr and Mo, and the contents of Cu and Ni. This is based on the fact that the conditions under which steel having excellent weldability, base metal toughness and HAZ toughness can be manufactured are specified by appropriately controlling the thickness.
  • the steel sheet according to one embodiment of the present invention has a chemical composition of mass%, C: 0.03% to 0.12%, Si: 0.05% to 0.30%, Mn: 1 20% to 1.65%, Cu: 0.7% to 2.5%, Ni: 1.2% to 3.0%, Nb: 0.005% to 0.030%, Ti: 0.005 % To 0.030%, Al: 0.015% to 0.065%, N: 0.0020% to 0.0060%, Mo: 0% to 0.04%, Cr: 0% to 0.08% , V: 0% to 0.01%, B: 0% to 0.0005%, P: 0.010% or less, S: 0.002% or less, Ca: 0% to 0.0030%, Mg: 0 % To 0.0030%, REM: 0% to 0.0030%, balance: Fe and impurities; A value represented by the following formula (a) is 4.5% or less; Indicated Pcm value be 0.25%; yield strength 460N / mm 2 ⁇ 580N / mm
  • A Cu + Ni (a)
  • Pcm C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5 ⁇ B (b)
  • C, Si, Mn, Cu, Ni, Cr, Mo, V, and B are the contents of each element, and the unit is mass%.
  • the average crystal grain size in a 3 / 8t portion that is a position of 3/8 of the plate thickness along the plate thickness direction from the surface of the steel plate. It may be 35 ⁇ m or less.
  • the average crystal grain size in the 1 / 8t portion may be 25 ⁇ m or less.
  • the average crystal grain size in a 3 / 8t portion that is a position of 3/8 of the plate thickness along the plate thickness direction from the surface of the steel plate. It may be 25 ⁇ m or less.
  • the plate thickness of the steel plate may be 80 mm or more.
  • the present invention it is possible to provide a thick high-tensile steel plate that is excellent in the uniformity of the base material in the plate thickness direction and excellent in weldability, base material toughness, and HAZ toughness.
  • Ni content is 1.81% or 3.22%, all other components are It is the figure which showed the result of having measured the hardness distribution in the plate
  • the Cu content is 0.3% to 3.6%, and the Ni content is 0.57% to 3%.
  • the critical CTOD value ( ⁇ c) obtained in the CTOD test performed three times at a test temperature of ⁇ 10 ° C. using a full-thickness CTOD test piece located 3 mm from the fusion line (FL) with the material (FL + 3 mm) It is the figure which showed the relationship between the average value of Cr and the content of Cr.
  • C 0.03% to 0.12% C is an element that improves the strength of the base material.
  • the C content needs to be 0.03% or more.
  • the lower limit of the C content may be 0.04%, 0.05%, 0.06%, or 0.07%.
  • the upper limit of C content is 0.12%.
  • the upper limit of the C content may be 0.11%, 0.10%, 0.09%, or 0.08%.
  • Si 0.05% to 0.30% Si is an element effective for deoxidation and an element for improving strength. In order to acquire the effect, it is necessary to make Si content 0.05% or more. In order to improve the strength, the lower limit of the Si content may be 0.06%, 0.08%, 0.10%, or 0.13%. On the other hand, if the Si content exceeds 0.30%, the HAZ toughness decreases, so the upper limit of the Si content is set to 0.30%. In order to improve HAZ toughness, the upper limit of the Si content may be 0.25%, 0.22%, 0.20%, or 0.18%.
  • Mn 1.20% to 1.65%
  • Mn is an element effective for deoxidation and an element for improving strength. In order to acquire the effect, it is necessary to make Mn content 1.20% or more. In order to improve the strength, the lower limit of the Mn content may be 1.25%, 1.28%, 1.30%, 1.33%, 1.35%, or 1.37%. On the other hand, if the Mn content exceeds 1.65%, the material uniformity in the plate thickness direction is impaired due to the increase in hardenability, and segregation in the slab becomes prominent, thereby reducing the HAZ toughness. Therefore, the upper limit of the Mn content is 1.65%. In order to improve HAZ toughness, the upper limit of the Mn content may be 1.60%, 1.58%, 1.55%, 1.52%, 1.50%, or 1.47%.
  • Cu 0.7% to 2.5%
  • Cu is a main alloy element for the steel sheet according to the present embodiment, and is a few elements that improve the strength of the base material without impairing the weldability and the HAZ toughness.
  • the minimum of Cu content is made into 0.7%.
  • the lower limit of the Cu content is 0.75%, 0.8%, 0.85%, 0.9%, 0.95%, 1.0%, 1.05% or 1.1. % May be used.
  • the upper limit of the Cu content is set to 2.5%.
  • the upper limit of Cu content may be 2.3%, 2.1%, 1.9%, 1.7%, 1.6%, 1.5%, or 1.4%. .
  • Ni 1.2% to 3.0%
  • Ni is also a major alloying element for the steel sheet according to the present embodiment, and is an effective element for improving the base material strength and toughness and for improving the HAZ toughness.
  • the Ni content needs to be 1.2% or more as shown in FIG.
  • the lower limit of the Ni content is 1.25%, 1.3%, 1.35%, 1.4%, 1.45%, 1.5%, 1.55% or 1 It may be 6%.
  • the upper limit of Ni content is limited to 3.0%.
  • the upper limit of the Ni content is 2.8%, 2.6%, 2.4%, 2.2%, 2.0%, 1.9% or 1. It may be 8%.
  • Nb 0.005% to 0.030%
  • Nb is an element that improves the strength and is effective in making the base material crystal grains fine. In order to acquire the effect, it is necessary to make Nb content 0.005% or more.
  • the lower limit of the Nb content may be 0.007%, 0.010%, 0.012%, 0.013%, or 0.015% in order to improve the strength and refine the crystal grains.
  • the upper limit of the Nb content is 0.030%.
  • the upper limit of the Nb content may be 0.027%, 0.025%, 0.022%, or 0.020%.
  • Ti 0.005% to 0.030%
  • Ti is an element that forms a nitride and contributes to the refinement of crystal grains in the weld heat affected zone. In order to acquire the effect, it is necessary to make Ti content 0.005% or more. In order to improve HAZ toughness, the lower limit of the Ti content may be 0.007%, 0.010%, or 0.012%. On the other hand, if the Ti content exceeds 0.030%, the nitride is coarsened, and there is a concern that the HAZ toughness is reduced. Therefore, the upper limit of Ti content is 0.030%. In order to prevent reduction in HAZ toughness, the upper limit of Ti content may be 0.025%, 0.020%, or 0.018%.
  • Al 0.015% to 0.065% or less
  • Al is an element that is effective for deoxidation, and at the same time, forms nitrides and is effective for refining the base material and HAZ crystal grains.
  • the lower limit of the Al content may be set to 0.020%, 0.025%, 0.028%, 0.031%, or 0.035% for refining the base material and the HAZ crystal grains.
  • the upper limit of the Al content is 0.065%.
  • the upper limit of the Al content may be 0.060%, 0.055%, 0.052%, 0.050%, or 0.048%.
  • N 0.0020% to 0.0060%
  • N is an element that combines with elements such as Ti and Al to form nitrides. From the viewpoint of forming nitrides, the N content needs to be 0.0020% or more. In order to form nitride more reliably, the lower limit of the N content may be 0.0024% or 0.0028%. On the other hand, if the N content exceeds 0.0060%, the HAZ toughness decreases, so the upper limit of the N content is set to 0.0060%. In order to prevent a decrease in HAZ toughness, the upper limit of the N content may be 0.055%, 0.050%, or 0.045%.
  • Mo and V are elements that increase the hardenability and increase the difference in hardness between the surface layer portion and the thickness center portion in the thick high-tensile steel plate. Moreover, when Cr, Mo and V are contained, there is a concern that the HAZ toughness is lowered. Therefore, it is necessary to reduce these elements in the steel plate according to the present embodiment. As described above, in order to evaluate the HAZ toughness, a Charpy test is often used. Recently, a CTOD test for obtaining a CTOD value that can be reflected in a design considering more fracture mechanics is also performed.
  • the CTOD value is the crack opening displacement, and is the opening amount at the crack tip when a brittle fracture occurs from the fatigue crack tip.
  • a method for obtaining this CTOD value experimentally is the CTOD test.
  • the CTOD test is usually performed at a design temperature at which the structure is actually operated.
  • the CTOD value is affected by the microstructure of the steel plate at the tip of the fatigue crack, that is, hardness, crystal grain size, carbide state, presence of brittle structure, etc., so it is more sensitive to these metallurgical factors than the Charpy test. It is said that it is. In many cases, if the CTOD value is 0.1 mm or more, it is determined that the steel sheet has sufficient resistance to brittle fracture.
  • FIG. 6 is a diagram showing the results of conducting a CTOD test on actual welded joints of a plurality of steel plates with varying amounts of Mo and evaluating the influence of the amount of Mo.
  • 0.06% C-0.18% Si-1.35% Mn-1.05% Cu-1.25% Ni-0.013% Ti was used as a basic component system, and it contained Mo.
  • Steel whose amount was changed from no addition (content contained as impurities) to 0.12% was melted, and a steel plate having a thickness of 100 mm was manufactured by hot rolling. Thereafter, the steel plate was quenched at 900 ° C.
  • the vertical axis represents the average value of three critical CTOD values ⁇ c (may be described as ⁇ c-10 ° C.) at ⁇ 10 ° C.
  • the horizontal axis represents the Mo content.
  • Mo reduces the CTOD characteristics of the welded joint, and in particular, the CTOD characteristics at the FL + 3 mm position and the FL position.
  • ⁇ c ⁇ 0.1 mm is used as a criterion for acceptance, it is understood that the Mo content needs to be 0.04% or less.
  • the Mo content it is desirable that the content is small. However, it is not desirable to prevent the Mo content from being completely contained because the cost increases.
  • the upper limit of the Mo content is set to 0.04%. A more preferable upper limit of the content is 0.03%, 0.02% or 0.01%.
  • FIG. When the content of both Cr and V increases, ⁇ c falls below 0.1 mm at a certain content.
  • the upper limit values of the contents of both of which ⁇ c is not less than 0.1 mm are determined from FIGS. 7 and 8, the upper limit of the Cr content is 0.08% and the upper limit of the V content is 0.01%.
  • the upper limit of Cr content is 0.08% regardless of impurities or intentional inclusion.
  • the upper limit of the Cr content may be 0.06%, 0.05%, 0.04%, or 0.03%.
  • the upper limit of the V content is 0.01% regardless of impurities or intentional inclusion.
  • the upper limit of the V content may be 0.008%, 0.005%, 0.003%, or 0.001%.
  • Cr, Mo, and V may be mixed as impurities from scrap or the like during the production of molten steel, but the lower limit is not particularly limited, and the lower limit is 0%.
  • B is also an element effective for improving the hardenability by increasing the hardness after quenching treatment with a small amount of content like Cr, Mo and V.
  • the difference in the quenching hardness between the surface layer portion and the plate thickness center portion increases due to the inclusion of B. Therefore, B is not preferable from the viewpoint of uniformity in the thickness direction.
  • the upper limit of the B content is set to 0.0005%. Even when it is intentionally contained, the upper limit is 0.0005%.
  • the upper limit of the B content may be 0.0004%, 0.0003%, 0.0002%, or 0.0001% for further uniformity in the thickness direction.
  • the lower limit is not particularly limited, and the lower limit is 0%.
  • the upper limit of P is 0.010% or less, preferably 0.007%, 0.005% or less or 0.003%, and the upper limit of S is limited to 0.002% or less.
  • the upper limit of S may be limited to 0.001% or 0.0008%.
  • Ca has the effect of reducing the influence of MnS, which is harmful to toughness, by spheroidizing the sulfide of the steel sheet. In order to acquire this effect, you may contain 0.0001% or more. However, since the weldability is impaired when the Ca content is excessive, the Ca content is limited to 0.0050% or less. In order to improve weldability, the upper limit of the Ca content may be 0.0040%, 0.0035%, or 0.0030%. Ca may be mixed as an impurity from scrap, refractory, or the like during manufacturing of molten steel, but the lower limit is not particularly limited, and the lower limit is 0%.
  • Mg and REM are elements that improve the HAZ toughness by forming an oxide in the steel sheet. In order to acquire this effect, you may contain 0.0001% or more. However, if the contents of Mg and REM are excessive, coarse oxides are generated, leading to a decrease in toughness. Therefore, the Mg content and the REM content are limited to 0.0030% or less, respectively. If necessary, the upper limit of these contents may be 0.0025% or 0.0020%. Mg and REM may be mixed as impurities from scraps, refractories, etc. during the production of molten steel, but the lower limit is not particularly limited, and the lower limit is 0%.
  • REM is a general term for 17 elements in which Y and Sc are combined with 15 elements of lanthanoid, and one or more of these elements can be contained. Note that the content of REM means the total content of these elements.
  • the steel sheet according to the present embodiment contains the above components, with the balance being iron and impurities.
  • the steel plate according to the present embodiment in addition to the above components, for the purpose of further improving the strength, toughness, etc. of the steel material itself, or as impurities from auxiliary materials such as scrap, Sb, As, Sn, Pb, Zr, Zn, W, and Co may be contained.
  • the upper limit of the content is preferably as follows.
  • the upper limit of the Sb content may be 0.02%. In order to improve HAZ toughness, the upper limit of the Sb content may be 0.01%, 0.005%, or 0.002%. Since As and Sn impair the toughness of HAZ, the upper limit of the content of As and Sn may be 0.02%. As needed, it is good also considering the upper limit of content of As and Sn as 0.01%, 0.005%, or 0.002%. In order to improve strength and toughness, the contents of Pb, Zr, Zn, and W may be 0.1% or less, 0.01%, or 0.005% or less, respectively. There is no particular need to determine these lower limits, and it is 0%. Co may be contained as an impurity in Ni. Since Co impairs the HAZ toughness, the upper limit of the Co content may be 0.3%, 0.1%, or 0.05%. There is no particular need to determine the lower limit, and the lower limit is 0%.
  • a value ( Cu + Ni): 4.5% or less
  • ⁇ Hv is an index mainly showing the uniformity of strength
  • Cu + Ni that is, the total of Cu content and Ni content
  • ⁇ Hv which is the difference between the Vickers hardness and the Vickers hardness at the 1/2 t portion, exceeds 20, and the characteristics in the thickness direction are not uniform. From this result, in addition to the limitation of the range of each element described above, the upper limit of the A value is set to 4.5%.
  • the upper limit of the A value is set to 4.2%, 4.0%, 3.8%, 3.5%, 3.3% or 3 as necessary. It may be 0%.
  • the lower limit of the A value is not particularly limited, but 1.9% of the total of the lower limits of the Cu content and the Ni content is a substantial lower limit.
  • A Cu + Ni (1)
  • Cu and Ni in the above formula (1) are the contents of each element, and the unit is mass%.
  • the chemical composition is such that the Pcm value obtained by the following formula (2) is 0.25% or less.
  • the Pcm value is often applied as an index representing the weld cracking sensitivity similarly to the carbon equivalent (Ceq), and is calculated from the content of the alloy contained in the steel.
  • Formula (2) includes elements such as Cr, Mo, V, and B that are not substantially contained in the present invention. However, since these elements may be mixed as impurities from various alloy raw materials in the process of industrial production, the inclusion of alloy elements including such impurities is necessary when evaluating weldability. The amount needs to be evaluated.
  • each alloy element is not contained (not detected), the calculation may be performed with the term set to 0.
  • Pcm C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5 ⁇ B
  • C, Si, Mn, Cu, Ni, Cr, Mo, V, and B are the contents of each element, and the unit is mass%.
  • the upper limit of the Pcm value is set to 0.25%.
  • the lower limit of the Pcm value does not need to be specified, but the lower limit may be 0.15% or 0.18%.
  • the steel plate according to the present embodiment can be manufactured by the following manufacturing method.
  • a molten steel having a steel component (chemical composition) adjusted to the above-described range is made into a slab by continuous casting or an ingot-making method (casting step: S1).
  • the obtained slab is heated (heating step: S2).
  • the lower limit of the target heating temperature in the heating step is preferably 950 ° C. for the purpose of sufficiently reducing the thickness of the thick high-tensile steel plate to the center of the plate thickness.
  • the heating temperature exceeds 1250 ° C., the scale of the steel sheet cannot be peeled off and the steel sheet surface flaws may occur, so the upper limit is desirably set to 1250 ° C.
  • the heated slab is hot rolled to form a steel plate (hot rolling step: S3).
  • the steel sheet is cooled as it is to 350 ° C. or less (cooling process: S4).
  • cooling process: S4 In order to reheat beyond the Ac3 transformation point after the cooling step, accelerated cooling may be performed as necessary if there is a restriction on the cooling location. If the cooling stop temperature in the cooling process exceeds 350 ° C., it is not desirable because embrittlement may occur due to coarse precipitates such as aluminum nitride.
  • the Ac1 transformation point mentioned here refers to a temperature at which austenite starts to occur locally when the steel is heated from the ferrite phase at room temperature.
  • the two-phase state of ferrite and austenite becomes an austenite single phase.
  • the temperature at which this austenite single phase is obtained is called the Ac3 transformation point.
  • These transformation points can usually be obtained experimentally by utilizing the difference in thermal expansion coefficient between ferrite and austenite. That is, an expansion-temperature curve obtained by heating steel at a constant heating rate (for example, 2.5 ° C./min) can be measured and experimentally obtained from the change point of thermal expansion.
  • a quenching process in which the temperature is higher than the Ac3 transformation point and water-cooled and a tempering process in which the temperature is lower than the Ac1 transformation point and air-cooled are performed (quenching and tempering process: S5).
  • the heating temperature at the time of quenching is less than the Ac3 transformation point, a sufficient quenched structure cannot be obtained, so that the strength or toughness is lowered.
  • the heating temperature at the time of quenching is low from the viewpoint of preventing coarsening of crystal grains. For this reason, it is good also considering the upper limit of heating temperature as 930 degreeC, 910 degreeC, or 890 degreeC. Further, if the heating temperature at the time of tempering exceeds the Ac1 transformation point, the strength or toughness may be remarkably lowered.
  • the sheet thickness surface side becomes a flat fine-grained austenite structure by hot rolling, and the central side is hardly affected by rolling, and isotropic and slightly coarse-grained austenite structure generated by recrystallization.
  • the region from the surface layer affected by rolling to the vicinity of 1 / 8t part is a microstructure mainly composed of fine ferrite and bainite structures transformed from the processed austenite.
  • a coarse ferrite and bainite structure is formed on the inner side of the 2 / 8t portion.
  • the average crystal grain size of 3 / 8t part becomes 35 ⁇ m or more.
  • the crystal grains of the steel sheet (directly quenched steel) that has been directly quenched in this way are finer on the 1/8 t side than the surface layer than the center of the sheet thickness, and are completely opposite to the steel sheet according to the present embodiment. It has a microstructure. That is, in the directly quenched steel, even if the crystal grain size of the base material in the 1 / 8t part is defined, the crystal grain size inside the steel plate is coarser than the crystal grain size in the 1 / 8t part.
  • the toughness of the base material cannot be defined due to restrictions within the scope of the present invention.
  • the direct quenching + tempering method is not suitable as a means for securing material uniformity in the thickness direction and imparting excellent toughness in the thick high-tensile steel plate.
  • the temperature of the steel sheet is 550 ° C. or higher and the Ac1 transformation is performed for the purpose of uniformizing the crystal grain size in the thickness direction during quenching between the hot rolling process and the quenching and tempering process. It is preferable to further include a step (preliminary heat treatment step: S6) of performing a preheat treatment so that the holding time in this temperature range is 5 hours or more and 500 hours or less. By performing this preliminary heat treatment step, the difference in crystal grain size in the plate thickness direction as shown in FIG. 4 can be reduced.
  • this pre-heat treatment prevents the coarsening of crystal grains that occur when the heating time of the surface layer to 1/8 t part takes a long time in the heating process during the quenching treatment of thick high-tensile steel sheets as described above. Therefore, it is a process performed prior to quenching.
  • the metallurgical meaning of this pre-heat treatment is to cause Ti and Nb carbonitrides or aluminum nitride precipitates finely precipitated after hot rolling to act as pinning particles during quenching by Ostwald growth. The purpose is to coarsen to an appropriate size.
  • the toughness was further improved by reducing the average crystal grain size. Furthermore, the grain refinement effect by the pre-heat treatment described above is more effective for the crystal grains on the surface layer side, so the difference in toughness with the center of the plate thickness becomes smaller and the toughness in the plate thickness direction is also improved. It tends to be uniform. However, when the holding time in the pre-heat treatment is 500 hours or more, the coarsening of the precipitated particles proceeds remarkably during the pre-heat treatment, and the number density of the particles is reduced accordingly, so that the pinning effect is reduced. Therefore, it is desirable that the upper limit of the holding time be 500 hours. Note that when the preliminary heat treatment temperature exceeds the Ac1 transformation point, austenite transformation partially occurs in the steel sheet.
  • the heating temperature (holding temperature) at the time of the preliminary heat treatment be equal to or lower than the Ac1 transformation point.
  • the steel sheet is cooled to 350 ° C. or lower and then quenched.
  • the quenching process is a process of cooling the steel sheet heated to a temperature exceeding the Ac3 transformation point. From the viewpoint of preventing the coarsening of crystal grains, it is preferable that the heating temperature during quenching is low. For this reason, it is good also considering the upper limit of heating temperature as 930 degreeC, 910 degreeC, or 890 degreeC.
  • a tempering process is carried out following the quenching process.
  • the tempering process is an important process for the purpose of controlling the strength and toughness within a predetermined range.
  • the tempering process is performed at a temperature equal to or lower than the Ac1 transformation point for the purpose of ensuring the uniformity of the material in the thickness direction.
  • the temperature range is preferably 500 ° C. to 650 ° C., more preferably 550 ° C. to 610 ° C.
  • it is effective to perform tempering treatment at the above temperature. It is.
  • Steel strips obtained by melting steels A1 to A10 and B1 to B29 having the composition shown in Tables 1 and 2 were made into steel plates having a thickness of 80 to 200 mm according to the manufacturing conditions shown in Tables 3 and 4. It was.
  • the heating temperature was 950 ° C. to 1250 ° C., followed by hot rolling, followed by air cooling or water cooling. Thereafter, for test numbers 5, 10, 15 and 26, a preliminary heat treatment was performed before the quenching treatment. Quenching and tempering treatments were performed on the steel plates with test numbers 1 to 51 except for test number 18. Test No. 18 was water-cooled to 100 ° C. immediately after rolling, and only tempered without quenching. Thereafter, in order to evaluate the strength characteristics of the base material, a No. 14 tensile test piece specified in JIS Z 2201 was collected, and a tensile test specified in JIS Z 2241 was performed.
  • the yield strength 460N / mm 2 ⁇ 580N / mm 2 ⁇ 580N / mm 2 was judged to be acceptable.
  • the impact test piece was extract
  • the average value of the three absorbed energy at ⁇ 40 ° C. was described as vE-40 (base material), and 42 J or more was accepted.
  • the tensile test piece it extract
  • the impact test specimens were collected from three places of 1 / 8t part, 1 / 4t part, and 1 / 2t part. Tables 3 and 4 show 1 / 2t part (thickness center part) with the lowest toughness. Only the test results of) are listed.
  • the sampling direction was a direction perpendicular to the rolling direction.
  • a cylindrical test piece having a diameter of 3 mm ⁇ and a length of 10 mm was sampled by machining from a 1/4 t part of the plate thickness, and a thermocouple was attached to the end of the test piece. It was read from the change in the amount of thermal expansion in the longitudinal direction of the test piece when heated from room temperature to 950 ° C. at a heating rate of 2.5 ° C./min by high frequency induction heating.
  • the crystal orientation is an angle of 30 ° or more
  • a region surrounded by a grain boundary having a grain size was defined as a crystal grain, and the equivalent circle diameter of the crystal grain was defined as a crystal grain size.
  • the frequency distribution with respect to the crystal grain size of each sample was measured, and the crystal grain size at which the cumulative frequency calculated from the fine grain side was 70% was defined as the average crystal grain size.
  • the Vickers hardness distribution (load 98N) in the cross section in the thickness direction was measured, and the difference in hardness between the 1/8 t portion and the 1/2 t portion of the thickness was described as ⁇ Hv as an index of material uniformity. Moreover, the case where ⁇ Hv was 20 or less was regarded as acceptable.
  • the 1 / 8t part of the plate thickness is present in two locations in the steel sheet (that is, the position that becomes the 1 / 8t part and the 7 / 8t part when viewed from one surface). Or the larger of the difference in hardness between the 1 / 8t part and the 1 / 2t part.
  • a butt joint having a groove shape of K type with a heat input of 3.5 kJ / mm to 4.5 kJ / mm was prepared by submerged arc welding. From this butt joint, three impact test pieces based on JIS Z 3128 were taken with the notch position as a fusion line, and an impact test was conducted at a test temperature of ⁇ 40 ° C. The average value of the three test pieces is shown in Tables 3 and 4 as vE-40 (HAZ).
  • the test grain numbers 5, 10 and 15 in which the preliminary heat treatment within the scope of the present invention was performed the average crystal grain size was 1/8 t part and 3/8 t of the plate thickness as compared with the others.
  • the average grain size of all the parts is 25 ⁇ m or less.
  • the test numbers 5, 10 and 15 have better toughness of the base material than other steels.
  • test numbers 18 to 22 in Table 4 the components are within the scope of the present invention, but the production conditions are not desirable, and the base material characteristics and / or uniformity in the thickness direction satisfy the target values.
  • Test numbers 23 to 51 are steel plates manufactured using steel whose chemical composition deviates from the scope of the present invention. Test numbers 23 to 51 do not satisfy the target values for at least one of the base material strength and toughness, ⁇ Hv, crack stop temperature, vE-40 (HAZ) and ⁇ c-10 ° C., as shown in Table 4. As a result.
  • Test No. 18 was obtained by performing only a tempering process on a steel sheet that had been subjected to a water cooling process (direct quenching) immediately after rolling, and was manufactured without the quenching process.
  • the base metal toughness is as low as 29 J and ⁇ Hv is as high as 29.
  • Test number 19 is an example in which the tensile properties of the base material do not satisfy the target value as a result of the quenching temperature being a two-phase quenching process.
  • Test No. 20 is an example in which the tempering temperature is 705 ° C., the yield strength is low as a result of exceeding the Ac1 transformation point, and ⁇ Hv does not satisfy the target value.
  • the cooling stop temperature after rolling is as high as 395 ° C., and heating for quenching is started therefrom.
  • the cooling stop temperature is high, the coarsening of the precipitate occurs in the heating stage of the next quenching process, and the toughness of the base material is lowered.
  • the test number 22 is an example in which the quenching temperature is 950 ° C. and deviates from a desirable range.
  • the crystal grain size is coarse and the base material toughness is low.
  • Test Nos. 23, 25 and 27 are examples in which the contents of C, Si and Mn deviate from the scope of the present invention.
  • test number 24 is an example in which C is 0.14%, which is out of the range of the present invention, and the Pcm value is out of 0.27%.
  • the base metal toughness is low
  • ⁇ Hv is inferior to 32 in the thickness direction uniformity
  • the crack stop temperature is as high as 25 ° C.
  • the absorbed energy and ⁇ c of the weld are low.
  • test number 28 is 1.89% for Mn, 0.11% for Cr for test number 46, and 0.0006% for B for test number 49, both deviating from the scope of the present invention.
  • test numbers 28, 46, and 49 all have values of ⁇ Hv exceeding 20, and the yield strength and base material toughness do not satisfy the scope of the present invention.
  • test number 26 is 0.37% for Si
  • test number 29 is 0.012% for P
  • test number 30 is 0.004% for S
  • test number 40 is 0.038% for Nb
  • test number 42 is Ti is 0.036%
  • test number 44 is 0.077% Al
  • test number 45 is N 0.0075%
  • test number 47 is Mo 0.05%
  • test number 48 is V 0.012% Both deviate from the scope of the present invention.
  • the HAZ toughness decreases.
  • Test No. 32, 35 and 36 are examples in which Cu deviates from the range of the present invention and the Pcm value exceeds 0.25%. As a result, the crack stop temperature of all of these is 25 ° C., which does not satisfy the target, and the HAZ toughness is also low.
  • Ni is 1.05%, which deviates from the scope of the present invention, and vE-40 (HAZ) and ⁇ c-10 ° C. are low.
  • Test number 36 is an example where Ni deviates from the scope of the present invention, so Cu + Ni is 6.00%, which is outside the scope of the invention 4.5%. As a result, ⁇ Hv is 59. Not satisfied with the goal. Test No. 33 and Test No.
  • Test number 34 are examples in which Cu is contained within the scope of the present invention, but Ni deviates from the scope of the present invention. That is, in test number 33, Ni is 0.92%, which is out of the range of the present invention, and as a result, the toughness of the base material and the welded part does not satisfy the target.
  • Test number 34 is an example in which Ni is 3.15%, which is out of the range of the present invention.
  • Cu + Ni is 4.63%, which deviates from 4.5% of the present invention.
  • ⁇ Hv is as high as 45.
  • Test No. 39 is an example in which Nb deviates slightly, and the base material has low yield strength and tensile strength. Test No.
  • Test No. 41 is an example in which Ti is shifted to a low level of 0.003%, and vE-40 (HAZ) is low.
  • Test No. 43 is an example in which Al is shifted to a low level of 0.014%, the crystal grains of the base material are not sufficiently refined, and the toughness of the base material is low.
  • Test Nos. 50 and 51 are examples in which the individual component ranges are within the scope of the present invention, but the A value or the Pcm value is independently shifted.
  • Test number 50 is an example in which the A value is 4.60% and deviates from 4.5%, which is the scope of the present invention. In this case, ⁇ Hv is 31, which does not satisfy the scope of the present invention.
  • Test No. 51 has a Pcm value of 0.27%, which is outside the scope of the present invention. As a result, the crack stop temperature is as high as 25 ° C. and does not satisfy the target value.
  • the present invention it is possible to provide a thick high-tensile steel plate that is excellent in the uniformity of the base material in the thickness direction and excellent in the toughness, weldability and HAZ toughness of the base material.

Abstract

This steel plate has an A value of 4.5% or less; has a Pcm value of 0.25% or less; has a yield strength of 460 - 580 N/mm2 and a tensile strength of 550 - 670 N/mm2; has a difference between the hardness of a 1/8 t part positioned at 1/8 of the plate thickness along the direction of thickness from the surface and the hardness of a 1/2 t part positioned at 1/2 of that plate thickness along the direction of plate thickness from that surface of 20 or less by Vickers hardness; and an average crystal grain diameter of 35 µm or less at the 1/8 t part.

Description

鋼板steel sheet
 本発明は、建築物、建設機械、海洋構造物、船舶用大型クレーン、土木構造物などの溶接構造物への適用に好適な強度である降伏強度460N/mm~580N/mm、引張強さ550N/mm~670N/mmの強度を有し、さらに、板厚方向に均一な特性を有し、溶接性と母材靭性と溶接熱影響部靭性とに優れ、板厚80mm以上に好適な厚手高張力鋼板に関する。 The present invention has a yield strength of 460 N / mm 2 to 580 N / mm 2 , a tensile strength that is suitable for application to welded structures such as buildings, construction machines, offshore structures, large cranes for ships, and civil engineering structures. is has a strength of 550N / mm 2 ~ 670N / mm 2, further comprising a uniform properties in the thickness direction, excellent weldability and base material toughness and HAZ toughness, than the plate thickness 80mm The present invention relates to a suitable thick high strength steel sheet.
 近年、建築物、建設機械、海洋構造物、船舶用大型クレーン、土木構造物などの溶接構造物では、構造物の大型化に伴い厚手高張力鋼板の適用が進んでいる。
 厚手高張力鋼板を大型構造物に適用する場合、板厚方向における強度差及び靱性差は、複雑な溶接構造物を構築、設計する上で、それらの変形挙動や破壊挙動を予測して高度かつ合理的な安全性を構築する場合に好ましいものではない。そのため、板厚方向に均一な特性を有する厚手高張力鋼板が求められている。
 厚手高張力鋼板は、大型海洋構造物や大型クレーンなどにおいて、高度な安全性が要求される部位に使用される場合が多い。構造物の破壊で最も懸念されるのは、溶接欠陥などの溶接継手部から、脆性破壊が発生することである。したがって、溶接部においては欠陥の発生を防止するために優れた溶接性が求められるとともに、脆性破壊に対しては高い溶接熱影響部靭性(以下、HAZ靱性とする)を求められる場合が多い。
2. Description of the Related Art In recent years, thick high-tensile steel sheets have been applied to welded structures such as buildings, construction machines, offshore structures, large-scale cranes for ships, and civil engineering structures as the size of the structures increases.
When thick high-tensile steel plates are applied to large structures, the difference in strength and toughness in the plate thickness direction is highly advanced by predicting their deformation behavior and fracture behavior when constructing and designing complex welded structures. It is not preferable when building reasonable safety. Therefore, a thick high-tensile steel sheet having uniform characteristics in the sheet thickness direction is required.
Thick high-tensile steel plates are often used in parts requiring high safety in large offshore structures and large cranes. What is most concerned about the destruction of structures is the occurrence of brittle fracture from welded joints such as weld defects. Therefore, in the welded portion, excellent weldability is required to prevent the occurrence of defects, and high weld heat affected zone toughness (hereinafter referred to as HAZ toughness) is often required for brittle fracture.
 特に、板厚が80mm以上となる厚手高張力鋼板は、通常、板厚中心部まで所定の強度を付与することを目的として、焼入れ性を向上させるC、Mn、Cr、Mo、Vなどの合金元素が適量添加され、焼入れおよび焼戻し処理により製造される。焼入れ処理時においては、板厚方向における冷却速度の差に起因して、表層から板厚中心部にかけて、板厚方向深さに応じて強度や靭性が変化することが良く知られている。また、板厚が厚くなると、焼入れ処理時の冷却速度の差だけでなく、焼入れ処理の加熱時においても、表層と板厚中心部との加熱速度の差が大きくなる。鋼板の表層部では、板厚中心部に比べて高温で保持される時間が長くなり、板厚中心部に比べて結晶粒が粗大となりやすい。表層付近と板厚中心部とで結晶粒に差異が生じると、強度をはじめとする材質に差異が生じる場合がある。
 一般に、多くの鋼材規格では鋼板の表面から板厚方向に沿って板厚の1/4の位置、言い換えれば、鋼板の表面から板厚方向に板厚の中心部へ向かって板厚の1/4進んだ位置(以下、1/4t部)の特性が規定されている。しかしながら、海洋構造物などにおいて板厚が厚くなり、かつ、破壊に対して高度な安全性が要求されるようになると、鋼板の表面から板厚中心部方向へ向かって板厚の1/2の位置(以下、1/2t部)においても安定して高い特性が必要となる。
In particular, thick high-tensile steel sheets with a plate thickness of 80 mm or more are usually alloys such as C, Mn, Cr, Mo, and V that improve the hardenability for the purpose of imparting a predetermined strength to the center of the plate thickness. Appropriate amounts of elements are added and manufactured by quenching and tempering. During quenching, it is well known that strength and toughness change depending on the depth in the thickness direction from the surface layer to the thickness center due to the difference in cooling rate in the thickness direction. Further, as the plate thickness increases, not only the difference in cooling rate during the quenching process, but also the difference in heating rate between the surface layer and the plate thickness center portion during heating during the quenching process increases. In the surface layer portion of the steel plate, the time for holding at a high temperature is longer than that in the center portion of the plate thickness, and the crystal grains tend to be coarser than in the center portion of the plate thickness. If there is a difference in crystal grains between the vicinity of the surface layer and the central portion of the plate thickness, there may be a difference in materials such as strength.
In general, in many steel standards, the position of 1/4 of the plate thickness along the plate thickness direction from the surface of the steel plate, in other words, 1 / of the plate thickness from the surface of the steel plate to the center of the plate thickness in the plate thickness direction. The characteristics of the position advanced by 4 (hereinafter referred to as 1/4 t portion) are defined. However, when the plate thickness is increased in an offshore structure or the like and a high level of safety against destruction is required, the thickness of the plate is ½ of the plate thickness from the surface of the steel plate toward the center of the plate thickness. Even at the position (hereinafter referred to as 1 / 2t portion), stable and high characteristics are required.
 以上のような観点から、今後の大型構造物に適用される厚手高張力鋼板としては、溶接性に優れ、母材靱性及び溶接熱影響部靭性が高いだけでなく、厚手高張力鋼板特有の板厚方向の不均一性を排除したものであることが重要である。溶接性は、多くの研究から合金組成により決定されることが明らかとなっており、例えばPcm値などの指標で評価できる。多くの場合、Cr、Moなどの焼入れ性の高い合金元素の含有量を制限し、Pcm値を例えば0.25%以下とすることで、予熱が不要な良溶接性を達成できる。したがって、優れた溶接性を確保する上で、上述したように、焼入れ性を上昇させる元素を極力添加しないで強度を確保することが重要である。そのような先行技術のひとつとして、Cuを多く含む高張力鋼板の発明が従来から開示されている。 In view of the above, as a thick high-tensile steel plate to be applied to future large structures, not only has excellent weldability but also high base metal toughness and weld heat-affected zone toughness, a plate unique to thick high-tensile steel plates It is important to eliminate the non-uniformity in the thickness direction. It is clear that the weldability is determined by the alloy composition from many studies, and can be evaluated by an index such as a Pcm value. In many cases, good weldability that does not require preheating can be achieved by limiting the content of alloy elements having high hardenability such as Cr and Mo and setting the Pcm value to, for example, 0.25% or less. Therefore, in order to ensure excellent weldability, as described above, it is important to ensure strength without adding an element that increases hardenability as much as possible. As one of such prior arts, an invention of a high-tensile steel plate containing a large amount of Cu has been conventionally disclosed.
 例えば、特許文献1および特許文献2には、Cuをそれぞれ0.6%~1.5%および0.5%~2.0%含有する高張力鋼板の製造方法に関する発明が開示されている。これらの発明は、熱間圧延時に制御圧延を施し、原則として圧延後の加速冷却を伴う熱加工制御の適用を前提としたものである。そのため、特許文献1及び2に開示された製造方法は、80mm以上を対象とする厚手高張力鋼板の製造には適さない。さらに、これらの製造方法を用いた場合、制御圧延などの効果により板厚表層部近傍と中心部とのミクロ組織などが大きくことなることから、必然的に板厚方向の特性も大きく変化してしまう懸念がある。 For example, Patent Document 1 and Patent Document 2 disclose inventions relating to a method for producing a high-tensile steel sheet containing 0.6% to 1.5% and 0.5% to 2.0% of Cu, respectively. These inventions are premised on the application of thermal processing control that performs controlled rolling during hot rolling and, as a rule, includes accelerated cooling after rolling. For this reason, the manufacturing methods disclosed in Patent Documents 1 and 2 are not suitable for manufacturing thick high-tensile steel sheets targeting 80 mm or more. In addition, when these manufacturing methods are used, the microstructure in the vicinity of the surface thickness part of the sheet thickness and the center part is greatly increased due to the effect of controlled rolling, etc. There is a concern.
 特許文献3には、Cuを0.5%~4.0%含有する、伸び特性が優れてかつ引張強さが686MPa以上である高靱性高強度鋼(高張力鋼板)の製造法が開示されている。特許文献3で対象とされているのは、引張強さが本発明の想定を超える686MPa以上の高強度鋼であり、Cr、Mo、Vなどの合金元素の添加が許容された焼入れ性の高い高強度鋼である。そのため、特許文献3に記載の製造方法は、板厚方向の材質均一性への懸念から、本発明で意図している課題を解決するための手段としては採用できない。 Patent Document 3 discloses a method for producing a high-toughness high-strength steel (high-strength steel sheet) containing 0.5% to 4.0% Cu and having excellent elongation characteristics and a tensile strength of 686 MPa or more. ing. The object of Patent Document 3 is a high strength steel having a tensile strength of 686 MPa or more that exceeds the assumption of the present invention, and has high hardenability in which addition of alloy elements such as Cr, Mo, and V is allowed. High strength steel. Therefore, the manufacturing method described in Patent Document 3 cannot be adopted as a means for solving the problem intended by the present invention because of concern about material uniformity in the thickness direction.
 特許文献4には、Cuを0.8%~1.5%含有する、溶接部靭性に優れた高張力鋼板が開示されている。この高張力鋼板は、CuおよびNiが添加されているものの、板厚の想定が文献4の実施例から分かるように77mmであり、80mm以上の板厚に好適な本発明とはその意図が異なる。また、特許文献4では、高張力鋼板の製造において、900℃以下での総圧下量を規制しながら圧延し、圧延後に直接水冷処理を行なうことが明記されている。そのため、板厚方向の材質均一性にとって、大きな懸念がある。また、N/Al比が0.3~3.0の範囲と規定されているが、実施例に開示されているように、Alの含有量は0.013%以下である。その結果、通常のAlによる脱酸ができず、従来の一般的な製造方法からやや逸脱し、安定性に欠けたり、コストが高くなる懸念がある。 Patent Document 4 discloses a high-tensile steel sheet containing 0.8% to 1.5% Cu and having excellent weld toughness. Although this high-tensile steel plate is added with Cu and Ni, the assumption of the plate thickness is 77 mm as can be seen from the examples in Reference 4, and the intention is different from the present invention suitable for a plate thickness of 80 mm or more. . In Patent Document 4, it is specified that in the production of a high-strength steel sheet, rolling is performed while restricting the total amount of rolling at 900 ° C. or less, and direct water cooling is performed after rolling. Therefore, there is a great concern for the material uniformity in the thickness direction. Further, although the N / Al ratio is defined to be in the range of 0.3 to 3.0, the Al content is 0.013% or less as disclosed in the examples. As a result, deoxidation with normal Al cannot be performed, and there is a concern that the conventional general production method is slightly deviated, lacks in stability, and costs increase.
 特許文献5、特許文献6および特許文献7には、いずれもCuを0.2%~2.0%含有する低温靭性の優れた大入熱溶接用鋼の製造法について開示されている。これらの鋼板の特徴は、S含有量を0.003%~0.008%となるように制御することである。Sを添加し、S含有量を上記の範囲とすることで、鋼中に微細なMnSが析出し、大入熱溶接に対して優れたHAZ靭性が得られている。これらの技術は、大入熱溶接に対しては一定の効果があるものの、対象となる板厚は32mm程度の薄手材であって、本発明の意図とは大きく異なる。さらにSの添加は、特に厚手高張力鋼板において、靭性に悪影響を与える可能性が高いMnS介在物の生成を促進する。そのため、特許文献5~7に開示された技術は、厚手高張力鋼板の製造を前提とすると優れた方法ではない。 Patent Document 5, Patent Document 6 and Patent Document 7 all disclose a method for producing a steel for high heat input welding containing 0.2% to 2.0% Cu and excellent in low temperature toughness. A feature of these steel sheets is that the S content is controlled to be 0.003% to 0.008%. By adding S and keeping the S content in the above range, fine MnS is precipitated in the steel, and excellent HAZ toughness is obtained for high heat input welding. Although these techniques have a certain effect on high heat input welding, the target plate thickness is a thin material of about 32 mm, which is greatly different from the intention of the present invention. Furthermore, the addition of S promotes the generation of MnS inclusions that are highly likely to adversely affect toughness, particularly in thick high-tensile steel sheets. For this reason, the techniques disclosed in Patent Documents 5 to 7 are not excellent methods on the premise of producing thick high-tensile steel sheets.
 特許文献8には、Cuを0.70%~1.75%含有する、CTOD特性に優れた高強度厚鋼板が開示されている。しかしながら、これらの鋼板の強度レベルは780MPa級(引張強さ780MPa以上)であって、本発明が意図する強度とは著しく異なっている。さらに、これらの鋼板は、Bが0.005%~0.0015%含有されていることから、板厚表層部近傍の硬さの上昇が極めて大きくなる。そのため、特許文献8に開示された鋼板では、板厚方向における強度差が大きいと推定される。さらに、これらの鋼板は、Alの含有量が0.01%以下と極めて少なく、通常のAlによる脱酸ができない。そのため、従来の一般的な製造方法からやや逸脱し、安定性にかけるコストの高いものとなるなど、本発明の課題を解決するためには、適さないものである。 Patent Document 8 discloses a high-strength thick steel plate excellent in CTOD characteristics and containing 0.70% to 1.75% Cu. However, the strength level of these steel plates is 780 MPa class (tensile strength of 780 MPa or more), which is significantly different from the strength intended by the present invention. Further, since these steel sheets contain 0.005% to 0.0015% of B, the increase in hardness in the vicinity of the plate thickness surface layer portion becomes extremely large. Therefore, it is estimated that the strength difference in the thickness direction is large in the steel sheet disclosed in Patent Document 8. Further, these steel sheets have an Al content of 0.01% or less, and cannot be deoxidized by ordinary Al. Therefore, it is not suitable for solving the problems of the present invention, such as a slight deviation from the conventional general manufacturing method and a high cost for stability.
 上述の通り、Cu添加は従来から多くの発明に適用されてきた技術である。しかしながら、例えば80mmを超える厚手高張力鋼板に対して、Cr、Mo、Vなどの合金元素を実質的に含有させなくても板厚方向の材質均一性を確保できる従来技術はなかった。 As described above, Cu addition is a technique that has been applied to many inventions. However, for example, there is no prior art that can ensure material uniformity in the thickness direction of a thick high-tensile steel plate exceeding 80 mm without substantially containing an alloying element such as Cr, Mo, or V.
日本国特公平7-81164号公報Japanese Patent Publication No. 7-81164 日本国特開平5-179344号公報Japanese Laid-Open Patent Publication No. 5-179344 日本国特開平5-186820号公報Japanese Patent Laid-Open No. 5-186820 日本国特許第4432905号公報Japanese Patent No. 4432905 日本国特開平2-254118号公報Japanese Laid-Open Patent Publication No. 2-254118 日本国特開平2-250917号公報Japanese Unexamined Patent Publication No. 2-250917 日本国特開平3-264614号公報Japanese Unexamined Patent Publication No. 3-264614 日本国特開2001-335884号公報Japanese Laid-Open Patent Publication No. 2001-335884
 本発明は、従来の発明では達成できなかった、降伏強度460N/mm~580N/mm、引張強さ550N/mm~670N/mmを有する、例えば80mm以上の厚手高張力鋼板であって、板厚方向に均一な特性を有し、溶接性、母材靭性及びHAZ靭性に優れた厚手高張力鋼板を提供するものである。 The present invention is, in the conventional invention could not be achieved, the yield strength 460N / mm 2 ~ 580N / mm 2, with a tensile strength of 550N / mm 2 ~ 670N / mm 2, for example, there a thick high tensile steel plate or 80mm Thus, a thick high-tensile steel sheet having uniform characteristics in the thickness direction and excellent in weldability, base metal toughness and HAZ toughness is provided.
 本発明者らは、厚手高張力鋼板の製造法について多くの実験を重ねた。その結果、母材の高い溶接性とHAZ靭性とを確保するためには、Pcm値を0.25%以下の範囲に制御し、焼入れ性の高いCr、Mo、VおよびBを実質的に含有させないことが重要であることを見出した。なお、本発明において、高い溶接性とは、実際の溶接において0℃でも溶接割れが発生しないことを示す。この場合、溶接時に予熱が不要となる。
 さらに、応力除去焼鈍後の特性やHAZ靭性を確保するためには、高い濃度のCuと同時に高い濃度のNiを含有することが有効であることを知見した。さらに、板厚方向の材質均一性を有する厚手高張力鋼板とするためには、Cu、Niの含有量を特定の高い濃度範囲に制限した上で、従来のCu添加鋼の主流であったTMCP処理(Thermo Mechanical Control Process)ではなく、焼入れおよび焼戻し処理を適用することが有効であることを見出した。
The inventors of the present invention repeated many experiments on a method for producing a thick high-tensile steel plate. As a result, in order to ensure high weldability and HAZ toughness of the base material, the Pcm value is controlled to be in the range of 0.25% or less and substantially contains Cr, Mo, V and B with high hardenability. It was found that it is important not to let them. In addition, in this invention, high weldability shows that a weld crack does not generate | occur | produce in 0 degreeC in actual welding. In this case, preheating is unnecessary during welding.
Furthermore, it has been found that it is effective to contain a high concentration of Ni simultaneously with a high concentration of Cu in order to ensure the characteristics after stress relief annealing and the HAZ toughness. Furthermore, in order to obtain a thick high-tensile steel sheet having material uniformity in the sheet thickness direction, the content of Cu and Ni is limited to a specific high concentration range, and then TMCP which has been the mainstream of conventional Cu-added steels. It has been found effective to apply a quenching and tempering treatment rather than a treatment (Thermo Mechanical Control Process).
 図1は、Cuを1.15%含有し、Niを1.81%または3.22%含有する2種類の板厚110mmの鋼板における、焼入れおよび焼戻し処理後の板厚方向の断面硬さ分布を示した図である。一般に厚手高張力鋼板の板厚方向断面硬さは、内部から表層部近傍に向かって硬さが上昇する傾向を示し、その程度は、焼入れ性を向上させる合金元素の含有量が多いほど顕著となる。図1から分かるように、1.81%Ni含有鋼(Ni含有量が1.81%である鋼)に比べて、3.22%Ni含有鋼の場合、表層部から板厚内部に渡って硬さの高い範囲が広がっており、鋼板の表面から板厚方向に沿って板厚の1/8の位置(以下1/8t部)でのビッカース硬さと1/2t部でのビッカース硬さとの差(ΔHv)は、38となる。3.22%Ni含有鋼のΔHvは、1.81%Ni鋼より著しく高い値を示している。ここで、鋼板の表面というのは、圧延時の特定の表面を意味するものでなく、単に鋼板のある片方の表面を意味している。 FIG. 1 shows a cross-sectional hardness distribution in the thickness direction after quenching and tempering treatment in two types of steel plates having a thickness of 110 mm containing 1.15% Cu and 1.81% or 3.22% Ni. FIG. In general, the cross-sectional hardness in the thickness direction of thick high-tensile steel sheets tends to increase in hardness from the inside to the vicinity of the surface layer portion, and the degree is more conspicuous as the content of alloying elements that improve hardenability increases. Become. As can be seen from FIG. 1, in the case of 3.22% Ni-containing steel compared to 1.81% Ni-containing steel (steel having a Ni content of 1.81%), it extends from the surface layer portion to the inside of the plate thickness. The range of high hardness has spread, and the Vickers hardness at 1 / 8th of the plate thickness (hereinafter referred to as 1 / 8t part) and the Vickers hardness at 1 / 2t part along the plate thickness direction from the surface of the steel plate. The difference (ΔHv) is 38. The ΔHv of the 3.22% Ni-containing steel is significantly higher than that of the 1.81% Ni steel. Here, the surface of the steel sheet does not mean a specific surface during rolling, but simply means one surface of the steel sheet.
 上記のように、ΔHvは、合金元素の含有量に依存する。ΔHvと合金元素の含有量との関係を実験的に求めた結果を図2に示す。図2は、Cu及びNiの含有量を変化させた板厚100mmの鋼板において、鋼板の1/8t部での硬さと1/2t部での硬さとの差であるΔHvを示したものである。図中の円の中の数字が、ΔHvである。鋼板の板厚方向断面の硬さを測定する場合、板厚の中心部付近では、鋳片の状態に応じて、中心偏析に起因する局所的に硬さの高い領域が現れる場合がある。このような局所的に硬さの高い領域(局所的な硬化部)は、厚手高張力鋼板の板厚全体に対して極めて微小な領域なので、鋼の強度にはほとんど影響を及ぼさないと考えられる。そのため、鋼板の断面の硬さ分布を測定する場合、上述のような局所的な硬化部のデータは除外する方が望ましい。この図2から分かるように、Cu含有量及びNi含有量の合計であるA値(A=Cu+Ni)と、ΔHvとの間には相関があり、A値が4.5%を超えてしまうと、ΔHvが20を超えることが分かった。さらに、Cu含有量が1.5%以下の低い値であってもNi含有量が3.0%を超えてしまうとやはりΔHvが20を超えてしまうおそれがあることが分かった。一方、A値の下限値については、特に制約を設けるものではない。しかしながら、後に述べるHAZ靱性および強度の確保の観点からNi含有量およびCu含有量については、それぞれ1.2%および0.7%が下限となる。したがって、A値の下限値は、Cu含有量とNi含有量とのそれぞれの下限値の合計である1.9%とすることが好ましい。 As described above, ΔHv depends on the alloy element content. FIG. 2 shows the results of experimental determination of the relationship between ΔHv and the content of alloy elements. FIG. 2 shows ΔHv, which is the difference between the hardness at 1/8 t portion and the hardness at 1/2 t portion of a steel plate having a thickness of 100 mm with varying contents of Cu and Ni. . The number in the circle in the figure is ΔHv. When measuring the hardness of a cross section in the plate thickness direction of a steel plate, a region having a high hardness due to center segregation may appear near the center of the plate thickness depending on the state of the slab. Such locally hard areas (local hardened areas) are extremely small areas with respect to the overall thickness of the thick high-tensile steel sheet, and are considered to have little effect on the strength of the steel. . Therefore, when measuring the hardness distribution of the cross section of a steel plate, it is desirable to exclude the data of the above-mentioned local hardening part. As can be seen from FIG. 2, there is a correlation between the A value (A = Cu + Ni), which is the sum of the Cu content and the Ni content, and ΔHv, and the A value exceeds 4.5%. , ΔHv was found to exceed 20. Further, it was found that even if the Cu content is a low value of 1.5% or less, ΔHv may also exceed 20 if the Ni content exceeds 3.0%. On the other hand, the lower limit value of the A value is not particularly limited. However, from the viewpoint of securing HAZ toughness and strength, which will be described later, the lower limit is 1.2% and 0.7% for the Ni content and the Cu content, respectively. Therefore, the lower limit value of the A value is preferably 1.9%, which is the sum of the lower limit values of the Cu content and the Ni content.
 さらに、本発明者らは、本発明の大きな要素であるHAZ靭性(vE(HAZ))におよぼすCu含有量及びNi含有量の影響を調べるために、-40℃における溶接熱影響部を模擬した衝撃試験も行なった。その結果を図3に示す。通常の大型構造物において、-40℃におけるシャルピー吸収エネルギーが42J以上であれば、脆性破壊の発生を阻止できるとされている。そのため、-40℃でのシャルピー吸収エネルギーが42J以上か否かを合否の判定基準とした。図3における図中の円の中の数値が、-40℃でのシャルピー吸収エネルギーである。図3から分かるように、Ni含有量の増加により鋼材の靱性が大きく改善し、後述するような衝撃試験値で42J以上を確保するためには、1.2%以上のNi含有量が必要であることが分かった。しかしながら、Cu含有量が2.5%を超えると、Ni含有量が1.2%以上であっても靱性が低下することも判明した。 Furthermore, the present inventors simulated a weld heat affected zone at −40 ° C. in order to investigate the effects of Cu content and Ni content on HAZ toughness (vE (HAZ)), which is a major element of the present invention. An impact test was also conducted. The result is shown in FIG. In an ordinary large structure, if Charpy absorbed energy at −40 ° C. is 42 J or more, the occurrence of brittle fracture can be prevented. Therefore, whether or not the Charpy absorbed energy at −40 ° C. is 42 J or more was determined as a pass / fail criterion. The numerical value in the circle in FIG. 3 is the Charpy absorbed energy at −40 ° C. As can be seen from FIG. 3, toughness of the steel material is greatly improved by increasing the Ni content, and in order to secure 42 J or more with an impact test value as described later, a Ni content of 1.2% or more is necessary. I found out. However, it has also been found that if the Cu content exceeds 2.5%, the toughness decreases even if the Ni content is 1.2% or more.
 上記したように、HAZ靱性は、合金組成(合金成分の含有量)に強く影響される。一方、母材の靱性については、合金組成に加え、ミクロ組織、具体的には結晶粒径を考慮した検討が必要となる。特に80mmを超える厚手高張力鋼板の板厚位置ごとに、結晶粒径がどのようになるかを検討する必要がある。本発明で想定されるような引張強さが550N/mm~670N/mmの鋼では、一般的に、ミクロ組織が、フェライトおよびベイナイトの混在した組織になる。そのため、従来実施されている光学顕微鏡を用いたミクロ組織観察から結晶粒径を評価することは容易ではない。そこで、本発明では、結晶方位解析に多く用いられるEBSD法(電子ビーム後方散乱回折パターン解析法)を用い、その結晶方位差が30°以上の角度を持つ粒界によって囲まれる領域を結晶粒と定義し、その結晶粒の円相当粒径を結晶粒径と定義した。そして、測定された結晶粒径の頻度分布を算出し、細粒側からの累積頻度が70%となる結晶粒径を平均結晶粒径と定義した。実際に測定された例を図4に示す。図4は、0.08%C-0.15%Si-1.51%Mn-0.008%P-0.0010%S-1.15%Cu-1.23%Ni-0.012%Ti-0.012%Nb-0.035%Al-0.0039%Nを成分として有する鋼の、結晶粒径に対する累積頻度(%)を示したものである。累積頻度を求めるにあたり、まず、上記成分に溶製された鋼を、板厚が140mmになるように熱間圧延を実施し、熱間圧延後に焼入れ焼戻しを行った。そして、焼入れ焼戻し後の鋼板における鋼板の表層部(つまり表面部または最表層)、1/8t部、2/8t部(1/4t部)および3/8t部の各板厚位置での結晶粒径を求め、結晶粒径に対する累積頻度(%)を得た。累積頻度が70%に相当する結晶粒径が平均結晶粒径である。図4から分かるように、この実験結果では各板厚位置における平均結晶粒径は、鋼板の板厚方向の採取位置により変化し、概ね、最表層および1/8t部において、20μm以上であるのに対し、2/8t部および3/8t部では15μm以下であった。 As described above, the HAZ toughness is strongly influenced by the alloy composition (content of alloy components). On the other hand, the toughness of the base material needs to be examined in consideration of the microstructure, specifically the crystal grain size, in addition to the alloy composition. In particular, it is necessary to examine what the crystal grain size will be for each plate thickness position of a thick high-tensile steel plate exceeding 80 mm. The tensile strength of 550N / mm 2 ~ 670N / mm 2 steel as contemplated by the present invention, in general, the microstructure becomes ferrite and bainite mixed tissue. Therefore, it is not easy to evaluate the crystal grain size from observation of a microstructure using an optical microscope that has been conventionally performed. Therefore, in the present invention, an EBSD method (electron beam backscatter diffraction pattern analysis method) often used for crystal orientation analysis is used, and a region surrounded by a grain boundary having an angle of 30 ° or more is defined as a crystal grain. The circle equivalent grain size of the crystal grain was defined as the crystal grain size. The frequency distribution of the measured crystal grain size was calculated, and the crystal grain size at which the cumulative frequency from the fine grain side was 70% was defined as the average crystal grain size. An example of actual measurement is shown in FIG. FIG. 4 shows 0.08% C-0.15% Si-1.51% Mn-0.008% P-0.0010% S-1.15% Cu-1.23% Ni-0.012% The cumulative frequency (%) with respect to the crystal grain size of steel having Ti-0.012% Nb-0.035% Al-0.0039% N as a component is shown. In obtaining the cumulative frequency, first, the steel melted in the above components was hot-rolled so that the plate thickness was 140 mm, and quenched and tempered after hot rolling. And the crystal grain in each plate | board thickness position of the surface layer part (namely, surface part or outermost layer), 1 / 8t part, 2 / 8t part (1 / 4t part), and 3 / 8t part of the steel plate after quenching and tempering The diameter was obtained, and the cumulative frequency (%) with respect to the crystal grain size was obtained. The crystal grain size corresponding to a cumulative frequency of 70% is the average crystal grain size. As can be seen from FIG. 4, in this experimental result, the average crystal grain size at each plate thickness position varies depending on the sampling position in the plate thickness direction of the steel plate, and is generally 20 μm or more at the outermost layer and 1 / 8t portion. On the other hand, it was 15 μm or less in the 2 / 8t part and the 3 / 8t part.
 さらに、本発明者らは、上記のように定義した結晶粒に対して靭性がどのように変化するかについて調べた。図5には、先に示した0.08%C-0.15%Si-1.51%Mn-0.008%P-0.0010%S-1.15%Cu-1.23%Ni-0.012%Ti-0.012%Nb-0.035%Al-0.0039%Nを成分とした板厚140mmの焼入れ焼戻し鋼における、結晶粒径と、試験温度を20℃間隔で変化させながら実施したシャルピー試験で得られた靭性との関係を示す。靭性の指標としては、シャルピー試験で得られた破面遷移温度(vTrs)を用いた。ここで、vTrsとは、試験片の破断面の特徴から延性破面と脆性破面とを識別し、全破面の面積に対する脆性破面の面積率を測定し、その脆性破面の面積率と試験温度との関係を求めた際の、脆性破面の面積率が50%を示す温度である。vTrsは、その値が小さいほど靭性がよいことを示す。なお、シャルピー試験片の採取位置は、結晶粒径を測定した部位と同じ位置であり、採取方向は圧延方向に対して直角方向である。
 図5において、縦軸がvTrs(靭性)、横軸のd-1/2が平均結晶粒径の平方根の逆数である。この図においては、横軸のd-1/2×100の値が大きいほど結晶粒径が細かいことを表している。
 図5から明らかなように、vTrsとd-1/2とにはほぼ直線の相関関係が認められる。これは、従来からホール・ペッチの関係と呼ばれる関係に相当する。なお、縦軸のvTrsは、成分系にも影響され、特にNi含有量が増加すると靱性が向上することが知られている。図5はNi含有量が1.23%の場合であり、このNi量はHAZ靭性の向上を図るために必要なNi量の下限値である1.2%に近い。そのため、この図5を用いると靭性に与える影響が最も大きい合金成分であるNiの含有量が本発明範囲の下限値に近い場合に、どの程度の結晶粒径が必要なのかを予測することが可能となる。以下、詳細に説明する。
Furthermore, the present inventors investigated how toughness changes with respect to the crystal grain defined above. FIG. 5 shows 0.08% C-0.15% Si-1.51% Mn-0.008% P-0.0010% S-1.15% Cu-1.23% Ni shown above. The crystal grain size and test temperature change at 20 ° C intervals in a quenched and tempered steel with a plate thickness of 140 mm containing -0.012% Ti-0.012% Nb-0.035% Al-0.0039% N The relationship with the toughness obtained by the Charpy test carried out is shown. The fracture surface transition temperature (vTrs) obtained by the Charpy test was used as an index of toughness. Here, vTrs identifies the ductile fracture surface and the brittle fracture surface from the fracture surface characteristics of the test piece, measures the area ratio of the brittle fracture surface to the total fracture surface area, and determines the area ratio of the brittle fracture surface. Is the temperature at which the area ratio of the brittle fracture surface is 50%. vTrs indicates that the smaller the value, the better the toughness. In addition, the sampling position of the Charpy test piece is the same position as the site where the crystal grain size was measured, and the sampling direction is a direction perpendicular to the rolling direction.
In FIG. 5, the vertical axis represents vTrs (toughness), and the horizontal axis d −1/2 represents the reciprocal of the square root of the average crystal grain size. In this figure, the larger the value of d −1/2 × 100 on the horizontal axis, the finer the crystal grain size.
As is apparent from FIG. 5, there is a substantially linear correlation between vTrs and d −1/2 . This corresponds to a relationship conventionally called a Hall-Petch relationship. The vTrs on the vertical axis is also affected by the component system, and it is known that the toughness improves particularly when the Ni content increases. FIG. 5 shows a case where the Ni content is 1.23%, and this Ni amount is close to 1.2%, which is the lower limit of the Ni amount necessary for improving the HAZ toughness. Therefore, when this FIG. 5 is used, when the content of Ni, which is the alloy component having the greatest influence on toughness, is close to the lower limit of the range of the present invention, it is possible to predict how much crystal grain size is necessary. It becomes possible. Details will be described below.
 通常の大型構造物における破壊は溶接継手部から発生するため、鋼材としてはHAZ靭性が重要である。しかしながら、より構造物の安全性を高めるためには、HAZ靭性だけでなく母材(溶接熱影響を受けていない部分)においても高い靭性が必要とされる。一般に、脆性破壊は溶接欠陥などから発生する場合が想定されるが、それらの欠陥の多くは、発見が容易な表面に存在する欠陥ではなく、鋼板内部に存在する欠陥である場合に脆性破壊に最も大きく影響する。これは、鋼板内部の欠陥が、発見される可能性が低くなると同時に、作用応力状態にもよるが、き裂の進展に対して最も厳しい応力状態になり得ると想定されるからである。
 溶接部の欠陥からの破壊を想定した場合、万が一、脆性き裂が発生したとしても、母材でそれを阻止するためには、欠陥近傍の母材の靭性が高くなければならない。このような厳しい応力状態となるのは、主に鋼板の内部側である1/8t部~7/8t部の領域であると想定される。それゆえ、母材に対して必要な靭性は、板厚の表層近傍よりもむしろ1/8t部より鋼板の中心に近い内部側で規定されるべきである。
 以上の理由から、一般に要求される-40℃におけるシャルピーの吸収エネルギー(vE-40)として要求される42J以上のエネルギー値は、鋼板表面から1/8t部より鋼板の内側において必要とされる。そこで、本発明においては、1/8t部より内部側の結晶粒径を規定する。
 さて、従来の鋼板で得られた遷移曲線から考えると、-40℃での吸収エネルギー42Jを満足するためにはvTrsが-10℃以下であることが必要である。
図5から、vTrsが-10℃(図中の破線)に相当する平均結晶粒径は、35μmである。従って、平均結晶粒径が35μm以下であれば、vTrs≦-10℃を満足できることがわかった。図5中の各点は、( )内の表示で示された板厚位置から採取されたものである。先に述べたように、鋼板表層部は実際の構造物の破壊にあまり影響しないと考えられるので、本発明では、最表層部から1/8t部までの領域を除いた位置での平均結晶粒径を規定する。厚手鋼板は長時間にわたって熱処理炉内で保持されるため、鋼板表層部側の方が板厚中心部に比べて結晶粒径が粗大になる傾向がある。そのため、特に板厚の1/8t部の平均結晶粒径を35μm以下とすることが重要である。さらに、板厚の3/8t部の平均結晶粒径を35μm以下とすることで、板厚の1/8t部及び3/8t部の両方の平均結晶粒径を35μm以下としても差し支えない。
 なお、上記のように平均結晶粒径は細粒であるほど靱性が向上するが、細粒にすることは容易でない。そのため、平均結晶粒径の下限値を5μm、10μm又は15μmとしてもよい。
 鋼構造物の安全性を向上させるために、歪時効などを考慮し、母材に対してより高い靭性を必要とする考え方がある。特に歪時効の場合、発明者らの検討によれば、5%程度の歪を冷間で付与し、その後、250℃(2時間保持)で時効処理を実施した場合、シャルピー遷移温度が、-15℃程度上昇することが判明している。そこで、歪時効を考慮してさらに高い靭性が要求される場合は、vTrsは、さらに15℃低い、-25℃以下であることが望ましい。このためには、同じく図5より、板厚の1/8t部の平均結晶粒径を25μm以下とすればよいことが判った。すなわち、前記と同様な理由により、板厚の3/8t部の平均結晶粒径も25μm以下としてもよい。
 なお、鋼板の表層付近は鋼板内部より焼入れ時の冷却速度が高くなるため、十分な焼入れ組織が得られやすい半面、強度が高くなる傾向がある。そのため、表層付近の靭性は鋼板内部(例えば、1/4t部)と比べ、必ずしも高いとは言えない。しかしながら、先に述べた様に、構造物としての脆性破壊に対する安全性を考えた場合、極端な曲げ変形が生じない条件下では、溶接欠陥などの潜在的なき裂の発見が容易であり、かつ、拘束力が低い表層近傍より板厚内部(1/8tより内部)の方がより脆性き裂の発生に対してはより厳しくなる傾向にある。このため、本発明においては、1/8tより内部の靭性を考慮すれば、構造物の安全性の確保に対して、十分であると考え、1/8tより内部の平均結晶粒径を規定することとした。
 以上のような技術に基づいて製造された鋼板は、その板厚方向の均一性を確保しながら、優れた溶接性、母材靱性および溶接熱影響部靭性を示す。特に、板厚が80mm以上の鋼板においてその効果は大きい。しかしながら、板厚が200mmを超える鋼板では、板厚中心部の冷却速度が著しく低下し、ミクロ組織の粗大化を招くことにより、所定の強度および靱性を満足できなくなる可能性が高い。したがって、本発明により製造する鋼板の板厚は200mm以下としてもよい。必要に応じて、板厚の上限を175mm、150mm又は125mmとしてもよい。板厚の下限を90mm又は100mmとしてもよい。
Since fracture in a normal large structure occurs from a welded joint, HAZ toughness is important as a steel material. However, in order to further improve the safety of the structure, high toughness is required not only for HAZ toughness but also for the base material (portion not affected by welding heat). In general, brittle fracture is assumed to occur due to welding defects, etc., but most of these defects are not defects that exist on the surface that are easy to find, but are brittle fractures that occur inside the steel sheet. It has the greatest impact. This is because it is assumed that defects inside the steel sheet are likely to be the most severe stress state with respect to the crack growth, although the possibility that defects in the steel plate are found is low, and depending on the acting stress state.
Assuming a fracture from a defect in the welded part, even if a brittle crack occurs, the toughness of the base material in the vicinity of the defect must be high in order to prevent it from occurring. It is assumed that such a severe stress state is mainly in the region of 1 / 8t to 7 / 8t, which is the inner side of the steel sheet. Therefore, the toughness required for the base metal should be defined on the inner side closer to the center of the steel plate than the 1/8 t portion rather than the vicinity of the surface layer of the plate thickness.
For the above reasons, an energy value of 42 J or more required as the Charpy absorbed energy (vE-40) at −40 ° C., which is generally required, is required on the inner side of the steel plate from 1/8 t part from the steel plate surface. Therefore, in the present invention, the crystal grain size on the inner side from the 1/8 t part is defined.
Considering the transition curve obtained with a conventional steel plate, it is necessary that vTrs be −10 ° C. or lower in order to satisfy the absorbed energy 42J at −40 ° C.
From FIG. 5, the average crystal grain size corresponding to vTrs of −10 ° C. (broken line in the figure) is 35 μm. Therefore, it was found that if the average crystal grain size is 35 μm or less, vTrs ≦ −10 ° C. can be satisfied. Each point in FIG. 5 is taken from the plate thickness position indicated by the display in (). As described above, it is considered that the steel sheet surface layer portion does not significantly affect the destruction of the actual structure. Therefore, in the present invention, the average crystal grain at the position excluding the region from the outermost layer portion to 1/8 t portion. Define the diameter. Since the thick steel plate is held in the heat treatment furnace for a long time, the crystal grain size tends to be coarser on the steel plate surface layer side than on the plate thickness central portion. Therefore, it is particularly important that the average crystal grain size at 1/8 t part of the plate thickness is 35 μm or less. Furthermore, by setting the average crystal grain size of the 3 / 8t part of the plate thickness to 35 μm or less, the average crystal grain size of both the 1 / 8t part and the 3 / 8t part of the plate thickness may be set to 35 μm or less.
As described above, the finer the average crystal grain size, the better the toughness, but it is not easy to make it fine. Therefore, the lower limit value of the average crystal grain size may be 5 μm, 10 μm, or 15 μm.
In order to improve the safety of steel structures, there is a concept that requires higher toughness for the base material in consideration of strain aging and the like. In particular, in the case of strain aging, according to the study by the inventors, when a strain of about 5% is applied cold, and then aging treatment is performed at 250 ° C. (held for 2 hours), the Charpy transition temperature is − It has been found that the temperature rises by about 15 ° C. Therefore, when higher toughness is required in consideration of strain aging, vTrs is desirably 15 ° C. lower and −25 ° C. or lower. For this purpose, it was found from FIG. 5 that the average crystal grain size at 1/8 t part of the plate thickness should be 25 μm or less. That is, for the same reason as described above, the average crystal grain size of the 3 / 8t portion of the plate thickness may be 25 μm or less.
In addition, since the cooling rate at the time of quenching is higher in the vicinity of the surface layer of the steel plate than in the steel plate, there is a tendency that a sufficient quenching structure can be obtained, but the strength is increased. Therefore, the toughness in the vicinity of the surface layer is not necessarily high compared to the inside of the steel plate (for example, 1/4 t portion). However, as mentioned above, when considering the safety against brittle fracture as a structure, it is easy to find a potential crack such as a weld defect under conditions where extreme bending deformation does not occur, and The inside of the plate thickness (inside of 1 / 8t) tends to be more severe with respect to the occurrence of brittle cracks than in the vicinity of the surface layer where the binding force is low. For this reason, in the present invention, if the internal toughness is considered from 1 / 8t, it is considered sufficient for ensuring the safety of the structure, and the internal average crystal grain size is specified from 1 / 8t. It was decided.
The steel plate manufactured based on the above techniques exhibits excellent weldability, base metal toughness, and weld heat affected zone toughness while ensuring uniformity in the thickness direction. In particular, the effect is large in a steel plate having a plate thickness of 80 mm or more. However, in a steel sheet having a plate thickness exceeding 200 mm, the cooling rate at the central portion of the plate thickness is remarkably lowered, leading to the coarsening of the microstructure, so that there is a high possibility that the predetermined strength and toughness cannot be satisfied. Therefore, the thickness of the steel plate manufactured according to the present invention may be 200 mm or less. If necessary, the upper limit of the plate thickness may be 175 mm, 150 mm, or 125 mm. The lower limit of the plate thickness may be 90 mm or 100 mm.
 このように、本発明は、従来Cr、Moなどの合金元素が多く含有されていた例えば80mm以上の厚手高張力鋼板に対し、実質的にこれらの元素を含有せず、CuおよびNiの含有量を適切に制御することで板厚方向に均一でかつ、溶接性および母材靭性とHAZ靱性が優れた鋼を製造できる条件を特定したことを基本として構成されたものである。 As described above, the present invention is substantially free of these elements, for example, with respect to a thick high-tensile steel plate of 80 mm or more, which contains a large amount of alloy elements such as Cr and Mo, and the contents of Cu and Ni. This is based on the fact that the conditions under which steel having excellent weldability, base metal toughness and HAZ toughness can be manufactured are specified by appropriately controlling the thickness.
 (1)すなわち、本発明の一態様に係る鋼板は、化学組成が、質量%で、C:0.03%~0.12%、Si:0.05%~0.30%、Mn:1.20%~1.65%、Cu:0.7%~2.5%、Ni:1.2%~3.0%、Nb:0.005%~0.030%、Ti:0.005%~0.030%、Al:0.015%~0.065%、N:0.0020%~0.0060%、Mo:0%~0.04%、Cr:0%~0.08%、V:0%~0.01%、B:0%~0.0005%、P:0.010%以下、S:0.002%以下、Ca:0%~0.0030%、Mg:0%~0.0030%、REM:0%~0.0030%、残部:Fe及び不純物であり;下記(a)式で示されるA値が4.5%以下であり;下記(b)式で示されるPcm値が0.25%以下であり;降伏強度が460N/mm~580N/mm、かつ、引張強さが550N/mm~670N/mmであり;表面から板厚方向に沿って板厚の1/8の位置である1/8t部の硬さと、前記表面から前記板厚方向に沿って前記板厚の1/2の位置である1/2t部の硬さとの差が、ビッカース硬度で20以下であり;電子ビーム後方散乱回析パターン解析法を用いた結晶方位解析を行い、結晶方位差が30°以上の粒界で囲まれる領域を結晶粒と定義し、前記結晶粒の円相当粒径を結晶粒径と定義し、前記結晶粒径の頻度分布を算出した場合の累積頻度が細粒側から70%となる前記結晶粒径を、平均結晶粒径と定義したとき、前記1/8t部における前記平均結晶粒径が35μm以下である。
 A=Cu+Ni…(a)
 Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5×B…(b)
ここで、C、Si、Mn、Cu、Ni、Cr、Mo、V及びBは、各元素の含有量で、その単位は質量%である。
(1) That is, the steel sheet according to one embodiment of the present invention has a chemical composition of mass%, C: 0.03% to 0.12%, Si: 0.05% to 0.30%, Mn: 1 20% to 1.65%, Cu: 0.7% to 2.5%, Ni: 1.2% to 3.0%, Nb: 0.005% to 0.030%, Ti: 0.005 % To 0.030%, Al: 0.015% to 0.065%, N: 0.0020% to 0.0060%, Mo: 0% to 0.04%, Cr: 0% to 0.08% , V: 0% to 0.01%, B: 0% to 0.0005%, P: 0.010% or less, S: 0.002% or less, Ca: 0% to 0.0030%, Mg: 0 % To 0.0030%, REM: 0% to 0.0030%, balance: Fe and impurities; A value represented by the following formula (a) is 4.5% or less; Indicated Pcm value be 0.25%; yield strength 460N / mm 2 ~ 580N / mm 2, and a tensile strength be 550N / mm 2 ~ 670N / mm 2; from the surface along the thickness direction The difference between the hardness of the 1 / 8t portion, which is 1/8 of the plate thickness, and the hardness of the 1 / 2t portion, which is 1/2 the plate thickness along the plate thickness direction from the surface, A crystal orientation analysis using an electron beam backscatter diffraction pattern analysis method and defining a region surrounded by a grain boundary having a crystal orientation difference of 30 ° or more as a crystal grain; When the crystal grain size is defined as the crystal grain size and the crystal grain size at which the cumulative frequency when calculating the frequency distribution of the crystal grain size is 70% from the fine grain side is defined as the average crystal grain size The average crystal grain size in the 1 / 8t part is 35 μm or less.
A = Cu + Ni (a)
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5 × B (b)
Here, C, Si, Mn, Cu, Ni, Cr, Mo, V, and B are the contents of each element, and the unit is mass%.
 (2)上記(1)に記載の鋼板では、さらに、前記鋼板の前記表面から前記板厚方向に沿って前記板厚の3/8の位置である3/8t部における前記平均結晶粒径が35μm以下であってもよい。 (2) In the steel plate according to (1), the average crystal grain size in a 3 / 8t portion that is a position of 3/8 of the plate thickness along the plate thickness direction from the surface of the steel plate. It may be 35 μm or less.
 (3)上記(1)に記載の鋼板では、さらに、前記1/8t部における前記平均結晶粒径が25μm以下であってもよい。 (3) In the steel plate described in (1) above, the average crystal grain size in the 1 / 8t portion may be 25 μm or less.
 (4)上記(3)に記載の鋼板では、さらに、前記鋼板の前記表面から前記板厚方向に沿って前記板厚の3/8の位置である3/8t部における前記平均結晶粒径が25μm以下であってもよい。 (4) In the steel plate according to (3) above, the average crystal grain size in a 3 / 8t portion that is a position of 3/8 of the plate thickness along the plate thickness direction from the surface of the steel plate. It may be 25 μm or less.
 (5)上記(1)~(4)のいずれか一項に記載の鋼板では、前記鋼板の前記板厚が、80mm以上であってもよい。 (5) In the steel plate according to any one of (1) to (4), the plate thickness of the steel plate may be 80 mm or more.
 本発明によれば、板厚方向の母材材質の均一性に優れ、溶接性、母材靭性、およびHAZ靭性に優れた厚手高張力鋼板の提供が可能となる。 According to the present invention, it is possible to provide a thick high-tensile steel plate that is excellent in the uniformity of the base material in the plate thickness direction and excellent in weldability, base material toughness, and HAZ toughness.
0.12%C-0.08%Si-1.45%Mn-1.15%Cuを基本の成分系として、Ni含有量が1.81%または3.22%、その他の成分はすべて本実施形態の範囲内である板厚110mmの2種類の鋼板について焼入れおよび焼戻し後の鋼板の板厚方向断面での硬さ分布を測定した結果を示した図である。Based on 0.12% C-0.08% Si-1.45% Mn-1.15% Cu, Ni content is 1.81% or 3.22%, all other components are It is the figure which showed the result of having measured the hardness distribution in the plate | board thickness direction cross section of the steel plate after hardening and tempering about two types of steel plates with a thickness of 110 mm which are in the range of embodiment. 0.13%C-0.12%Si-1.55%Mnを基本の成分系として、さらに、Cu含有量が0.3%~3.6%、Ni含有量が0.57%~3.5%、その他成分系が本実施形態の範囲内である、熱間圧延後に焼入れおよび焼戻し処理した板厚100mmの鋼板について、表層から12.5mm(1/8t部)の硬さと、1/2t部の硬さとの差(Hv:98N)を求め、CuおよびNi量の影響を示した図である。Using 0.13% C-0.12% Si-1.55% Mn as the basic component system, the Cu content is 0.3% to 3.6%, and the Ni content is 0.57% to 3%. About a steel plate having a thickness of 100 mm that has been hardened and tempered after hot rolling, and has a hardness of 12.5 mm (1/8 t part) from the surface layer, It is the figure which calculated | required the difference (Hv: 98N) with the hardness of 2t part, and showed the influence of Cu and Ni amount. 0.13%C-0.12%Si-1.55%Mn-0.012%Ti-0.013%Nbを基本成分系として、Cu含有量が0.3%~3.6%、Ni含有量が0.57%~3.5%、その他成分が本実施形態の範囲内である、板厚100mmの焼入れおよび焼戻し処理鋼の1/2t部について、溶接時に受ける入熱(3.5kJ/mm)に相当する溶接熱サイクルを与え、その後、-40℃での衝撃試験を実施したときのシャルピー吸収エネルギー(J)と、CuおよびNi含有量との関係を示す図である。0.13% C-0.12% Si-1.55% Mn-0.012% Ti-0.013% Nb as a basic component system, Cu content is 0.3% to 3.6%, Ni Heat input (3.5 kJ) received at the time of welding with respect to a 1/2 t part of a quenched and tempered steel having a thickness of 100 mm and a content of 0.57% to 3.5% and other components within the range of the present embodiment. FIG. 6 is a graph showing the relationship between Charpy absorbed energy (J) and Cu and Ni contents when an impact test at −40 ° C. is performed after applying a welding heat cycle corresponding to / mm). 0.08%C-0.15%Si-1.51%Mn-0.008%P-0.0010%S-1.15%Cu-1.23%Ni-0.012%Ti-0.012%Nb-0.035%Al-0.0039%Nの成分を有する板厚140mmの鋼板の、焼入れ焼戻し後における板厚最表層部、1/8t部~3/8t部の各板厚位置における結晶粒径と累積頻度(%)との関係を示した図である。0.08% C-0.15% Si-1.51% Mn-0.008% P-0.0010% S-1.15% Cu-1.23% Ni-0.012% Ti-0. Thickness surface layer portion after quenching and tempering of a steel plate having a thickness of 140 mm having a component of 012% Nb-0.035% Al-0.0039% N, each thickness position of 1/8 t part to 3/8 t part It is the figure which showed the relationship between the crystal grain diameter and cumulative frequency (%). 0.08%C-0.15%Si-1.51%Mn-0.008%P-0.0010%S-1.15%Cu-1.23%Ni-0.012%Ti-0.012%Nb-0.035%Al-0.0039%Nの成分を有する板厚140mmの鋼板の、焼入れおよび焼戻し処理後における、板厚最表層部(6mm下を試験片の中心とする)及び1/8t部~3/8t部の各板厚位置から圧延方向に直角に採取した試験片を用いた試験から得られたvTrsと、各板厚位置での平均結晶粒径の平方根の逆数との関係(ホール・ペッチの関係)を示した図である。0.08% C-0.15% Si-1.51% Mn-0.008% P-0.0010% S-1.15% Cu-1.23% Ni-0.012% Ti-0. The outermost layer portion of the plate thickness (6 mm below is the center of the test piece) after quenching and tempering of a steel plate having a thickness of 140 mm having a component of 012% Nb-0.035% Al-0.0039% N and VTrs obtained from a test using test pieces taken at right angles to the rolling direction from each plate thickness position of 1 / 8t to 3 / 8t, and the reciprocal of the square root of the average grain size at each plate thickness position. It is the figure which showed the relationship (relationship of a hall petch). 0.06%C-0.18%Si-1.35%Mn-1.05%Cu-1.35%Ni-0.013%Ti-0.015%Nbを基本成分系とし、Mo含有量を0.12%まで変化させた板厚100mmの鋼板において、入熱25kJ/mmで多層溶接を実施した後、溶接線に対して直角方向に全厚のCTOD試験片を採取し、ノッチ位置として、溶接金属と母材との融合線(FL)及びFLから3mmの位置(FL+3mm)において試験温度-10℃で3本ずつCTOD試験を実施したときの、限界CTOD値(δc)の平均値と、Mo含有量との関係を示した図である。Mo content is 0.06% C-0.18% Si-1.35% Mn-1.05% Cu-1.35% Ni-0.013% Ti-0.015% Nb After performing multilayer welding at a heat input of 25 kJ / mm on a steel plate with a thickness of 100 mm with the thickness changed to 0.12%, a full-thick CTOD test piece was taken in the direction perpendicular to the weld line and used as the notch position. The average value of the critical CTOD value (δc) when the CTOD test was performed three times at a test temperature of −10 ° C. at a fusion line (FL) between the weld metal and the base metal (FL) and a position 3 mm from the FL (FL + 3 mm). It is the figure which showed the relationship with Mo content. 0.05%~0.06%C-0.15%~0.18%Si-1.30%~1.35%Mn-1.05%~1.10%Cu-1.30%~1.35%Ni-0.012%~0.013%Ti-0.012%~0.015%Nbを基本成分系とし、Cr含有量が0.05%~0.14%である成分を有し、900℃の焼入れおよび580℃の焼戻しを実施した後に入熱25kJ/mmで多層溶接された板厚100mmの鋼板において、採取方向が溶接線に対して直角方向でノッチ位置が溶接金属と母材との融合線(FL)から3mmの位置(FL+3mm)である全厚のCTOD試験片を用いて、試験温度-10℃で3本ずつ実施したCTOD試験で得られた限界CTOD値(δc)の平均値と、Crの含有量との関係を示した図である。0.05% to 0.06% C-0.15% to 0.18% Si-1.30% to 1.35% Mn-1.05% to 1.10% Cu-1.30% to 1 .35% Ni-0.012% -0.013% Ti-0.012% -0.015% Nb as the basic component system, with Cr content of 0.05% -0.14% In a steel plate having a thickness of 100 mm, which has been subjected to quenching at 900 ° C. and tempering at 580 ° C. and multilayer welding with a heat input of 25 kJ / mm, the sampling direction is perpendicular to the weld line and the notch position is the weld metal and the mother metal. The critical CTOD value (δc) obtained in the CTOD test performed three times at a test temperature of −10 ° C. using a full-thickness CTOD test piece located 3 mm from the fusion line (FL) with the material (FL + 3 mm) It is the figure which showed the relationship between the average value of Cr and the content of Cr. 0.05%~0.06%C-0.15%~0.18%Si-1.30%~1.35%Mn-1.05%~1.10%Cu-1.30%~1.35%Ni-0.012%~0.013%Ti-0.012%~0.015%Nbを基本成分系とし、V含有量が0.005%~0.05%である成分を有し、900℃の焼入れおよび580℃の焼戻しを実施した後に入熱25kJ/mmで多層溶接された板厚100mmの鋼板において、採取方向が溶接線に対して直角方向でノッチ位置が溶接金属と母材との融合線(FL)から3mmの位置(FL+3mm)である全厚のCTOD試験片を用いて、試験温度-10℃で3本ずつ実施したCTOD試験で得られた限界CTOD値(δc)の平均値と、Vの含有量との関係を示した図である。0.05% to 0.06% C-0.15% to 0.18% Si-1.30% to 1.35% Mn-1.05% to 1.10% Cu-1.30% to 1 .35% Ni-0.012% -0.013% Ti-0.012% -0.015% Nb as the basic component system, with V content of 0.005% -0.05% In a steel plate having a thickness of 100 mm, which has been subjected to quenching at 900 ° C. and tempering at 580 ° C. and multilayer welding with a heat input of 25 kJ / mm, the sampling direction is perpendicular to the weld line and the notch position is the weld metal and the mother metal. The critical CTOD value (δc) obtained in the CTOD test performed three times at a test temperature of −10 ° C. using a full-thickness CTOD test piece located 3 mm from the fusion line (FL) with the material (FL + 3 mm) It is the figure which showed the relationship between the average value of V and the content of V. 0.08%C-0.15%Si-1.51%Mn-0.008%P-0.0010%S-1.15%Cu-1.23%Ni-0.012%Ti-0.012%Nb-0.035%Al-0.0039%Nである成分を有し、圧延、保持温度が450℃および550℃で、保持時間を変化させた予備熱処理、920℃で120分保持した後に水冷する焼入れ処理、および590℃で100分保持した後に空冷する焼戻し処理が行われた板厚140mmの鋼板において、予備熱処理の保持温度と1/8t部の平均結晶粒径との関係を示した図である。0.08% C-0.15% Si-1.51% Mn-0.008% P-0.0010% S-1.15% Cu-1.23% Ni-0.012% Ti-0. It has a component of 012% Nb-0.035% Al-0.0039% N. Rolling, holding temperatures of 450 ° C. and 550 ° C., preliminary heat treatment with changing holding time, holding at 920 ° C. for 120 minutes The relationship between the holding temperature of the preliminary heat treatment and the average crystal grain size of 1/8 t part is shown in a steel plate having a thickness of 140 mm that has been subjected to quenching treatment that is subsequently water-cooled and tempering treatment that is held at 590 ° C. for 100 minutes and then air-cooled It is a figure.
 以下、本発明の一実施形態に係る鋼板(本実施形態に係る鋼板)について詳細に説明する。
 まず、本実施形態に係る鋼板の化学組成の限定理由を述べる。
Hereinafter, the steel plate (steel plate concerning this embodiment) concerning one embodiment of the present invention is explained in detail.
First, the reasons for limiting the chemical composition of the steel sheet according to this embodiment will be described.
 C:0.03%~0.12%
 Cは、母材の強度を向上させる元素である。その効果を得るためには、C含有量を、0.03%以上とする必要がある。強度の向上のため、C含有量の下限を0.04%、0.05%、0.06%又は0.07%としてもよい。一方、C含有量が0.12%を超えると焼入れ性の増加により板厚方向の材質均一性が損なわれる。また、溶接部の硬さが上昇すると同時にHAZ靭性が低下する。そのため、C含有量の上限を0.12%とする。HAZ靭性の改善のため、C含有量の上限を0.11%、0.10%、0.09%又は0.08%としてもよい。
C: 0.03% to 0.12%
C is an element that improves the strength of the base material. In order to obtain the effect, the C content needs to be 0.03% or more. In order to improve the strength, the lower limit of the C content may be 0.04%, 0.05%, 0.06%, or 0.07%. On the other hand, if the C content exceeds 0.12%, the material uniformity in the thickness direction is impaired due to the increase in hardenability. Also, the HAZ toughness decreases at the same time as the hardness of the weld increases. Therefore, the upper limit of C content is 0.12%. In order to improve the HAZ toughness, the upper limit of the C content may be 0.11%, 0.10%, 0.09%, or 0.08%.
 Si:0.05%~0.30%
 Siは、脱酸に有効な元素であるとともに、強度を向上させる元素である。その効果を得るためには、Si含有量を0.05%以上とする必要がある。強度の向上のため、Si含有量の下限を0.06%、0.08%、0.10%又は0.13%としてもよい。一方、Si含有量が0.30%を超えると、HAZ靭性が低下するので、Si含有量の上限を0.30%とする。HAZ靭性の向上のため、Si含有量の上限を0.25%、0.22%、0.20%又は0.18%としてもよい。
Si: 0.05% to 0.30%
Si is an element effective for deoxidation and an element for improving strength. In order to acquire the effect, it is necessary to make Si content 0.05% or more. In order to improve the strength, the lower limit of the Si content may be 0.06%, 0.08%, 0.10%, or 0.13%. On the other hand, if the Si content exceeds 0.30%, the HAZ toughness decreases, so the upper limit of the Si content is set to 0.30%. In order to improve HAZ toughness, the upper limit of the Si content may be 0.25%, 0.22%, 0.20%, or 0.18%.
 Mn:1.20%~1.65%
 Mnは、脱酸に有効な元素であるとともに、強度を向上させる元素である。その効果を得るためには、Mn含有量を1.20%以上とする必要がある。強度の向上のため、Mn含有量の下限を1.25%、1.28%、1.30%、1.33%、1.35%又は1.37%としてもよい。一方、Mn含有量が1.65%を超えると、焼入れ性の増加により板厚方向の材質均一性が損なわれるとともに、鋳片での偏析が顕著になってHAZ靭性を低下させる。そのため、Mn含有量の上限を1.65%とする。HAZ靭性の向上のため、Mn含有量の上限を1.60%、1.58%、1.55%、1.52%、1.50%又は1.47%としてもよい。
Mn: 1.20% to 1.65%
Mn is an element effective for deoxidation and an element for improving strength. In order to acquire the effect, it is necessary to make Mn content 1.20% or more. In order to improve the strength, the lower limit of the Mn content may be 1.25%, 1.28%, 1.30%, 1.33%, 1.35%, or 1.37%. On the other hand, if the Mn content exceeds 1.65%, the material uniformity in the plate thickness direction is impaired due to the increase in hardenability, and segregation in the slab becomes prominent, thereby reducing the HAZ toughness. Therefore, the upper limit of the Mn content is 1.65%. In order to improve HAZ toughness, the upper limit of the Mn content may be 1.60%, 1.58%, 1.55%, 1.52%, 1.50%, or 1.47%.
 Cu:0.7%~2.5%
 Cuは、本実施形態に係る鋼板にとって主要な合金元素であり、溶接性およびHAZ靭性を損なわずに母材の強度を向上させる数少ない元素である。Cu含有量を0.7%以上とすることで強度の上昇に著しい効果がある。このため、Cu含有量の下限は0.7%とする。強度の向上のため、Cu含有量の下限を0.75%、0.8%、0.85%、0.9%、0.95%、1.0%、1.05%又は1.1%としてもよい。一方、Cu含有量が2.5%を超えた場合、焼入れ性の上昇を招き、図3に示されたようにHAZ靭性が低下することが懸念される。そのため、Cu含有量の上限を2.5%とする。HAZ靭性の向上のため、Cu含有量の上限を2.3%、2.1%、1.9%、1.7%、1.6%、1.5%又は1.4%としてもよい。
Cu: 0.7% to 2.5%
Cu is a main alloy element for the steel sheet according to the present embodiment, and is a few elements that improve the strength of the base material without impairing the weldability and the HAZ toughness. By making Cu content 0.7% or more, there is a remarkable effect in increasing the strength. For this reason, the minimum of Cu content is made into 0.7%. In order to improve the strength, the lower limit of the Cu content is 0.75%, 0.8%, 0.85%, 0.9%, 0.95%, 1.0%, 1.05% or 1.1. % May be used. On the other hand, when the Cu content exceeds 2.5%, the hardenability is increased, and there is a concern that the HAZ toughness is lowered as shown in FIG. Therefore, the upper limit of the Cu content is set to 2.5%. In order to improve HAZ toughness, the upper limit of Cu content may be 2.3%, 2.1%, 1.9%, 1.7%, 1.6%, 1.5%, or 1.4%. .
 Ni:1.2%~3.0%
 Niも、本実施形態に係る鋼板にとって主要な合金元素であり、母材強度および靭性の改善、ならびにHAZ靭性改善に有効な元素である。Ni含有量は、HAZ靭性の観点から、図3に示されたように、1.2%以上が必要である。上記の特性の改善のため、Ni含有量の下限を1.25%、1.3%、1.35%、1.4%、1.45%、1.5%、1.55%又は1.6%としてもよい。一方、Ni含有量が3.0%を超えると、図2に示されたように、板厚方向の材質差を生じる。そのため、Ni含有量の上限を3.0%に制限する。板厚方向の材質差をより小さくするため、Ni含有量の上限を2.8%、2.6%、2.4%、2.2%、2.0%、1.9%又は1.8%としてもよい。
Ni: 1.2% to 3.0%
Ni is also a major alloying element for the steel sheet according to the present embodiment, and is an effective element for improving the base material strength and toughness and for improving the HAZ toughness. From the viewpoint of HAZ toughness, the Ni content needs to be 1.2% or more as shown in FIG. In order to improve the above characteristics, the lower limit of the Ni content is 1.25%, 1.3%, 1.35%, 1.4%, 1.45%, 1.5%, 1.55% or 1 It may be 6%. On the other hand, when the Ni content exceeds 3.0%, as shown in FIG. 2, a material difference in the plate thickness direction occurs. Therefore, the upper limit of Ni content is limited to 3.0%. In order to further reduce the material difference in the plate thickness direction, the upper limit of the Ni content is 2.8%, 2.6%, 2.4%, 2.2%, 2.0%, 1.9% or 1. It may be 8%.
 Nb:0.005%~0.030%
 Nbは、強度を向上させるとともに、母材結晶粒の細粒化に有効な元素である。その効果を得るためには、Nb含有量を0.005%以上とする必要がある。強度向上と結晶粒の微細化とのため、Nb含有量の下限を0.007%、0.010%、0.012%、0.013%又は0.015%としてもよい。一方、Nb含有量が、0.030%を超えるとHAZ靭性が低下するので、Nb含有量の上限を0.030%とする。HAZ靭性の向上のため、Nb含有量の上限を0.027%、0.025%、0.022%又は0.020%としてもよい。
Nb: 0.005% to 0.030%
Nb is an element that improves the strength and is effective in making the base material crystal grains fine. In order to acquire the effect, it is necessary to make Nb content 0.005% or more. The lower limit of the Nb content may be 0.007%, 0.010%, 0.012%, 0.013%, or 0.015% in order to improve the strength and refine the crystal grains. On the other hand, if the Nb content exceeds 0.030%, the HAZ toughness decreases, so the upper limit of the Nb content is 0.030%. In order to improve the HAZ toughness, the upper limit of the Nb content may be 0.027%, 0.025%, 0.022%, or 0.020%.
 Ti:0.005%~0.030%
 Tiは窒化物を形成し溶接熱影響部における結晶粒の細粒化に寄与する元素である。その効果を得るためには、Ti含有量を0.005%以上とする必要がある。HAZ靭性の向上のため、Ti含有量の下限を0.007%、0.010%、又は0.012%としてもよい。一方、Ti含有量が0.030%を超えると、窒化物が粗大化してしまいかえってHAZ靭性の低下を招くことが懸念される。そのため、Ti含有量の上限を0.030%とする。HAZ靭性の低下防止のため、Ti含有量の上限を0.025%、0.020%、又は0.018%としてもよい。
Ti: 0.005% to 0.030%
Ti is an element that forms a nitride and contributes to the refinement of crystal grains in the weld heat affected zone. In order to acquire the effect, it is necessary to make Ti content 0.005% or more. In order to improve HAZ toughness, the lower limit of the Ti content may be 0.007%, 0.010%, or 0.012%. On the other hand, if the Ti content exceeds 0.030%, the nitride is coarsened, and there is a concern that the HAZ toughness is reduced. Therefore, the upper limit of Ti content is 0.030%. In order to prevent reduction in HAZ toughness, the upper limit of Ti content may be 0.025%, 0.020%, or 0.018%.
 Al:0.015%~0.065%以下
 Alは脱酸に有効であると同時に、窒化物を形成し母材およびHAZ結晶粒の細粒化に有効な元素である。その効果を得るためには、Al含有量を0.015%以上とする必要がある。母材およびHAZ結晶粒の細粒化のため、Al含有量の下限を0.020%、0.025%、0.028%、0.031%又は0.035%としてもよい。一方、Al含有量が0.065%を超えると粗大な窒化物が形成され靱性が低下する傾向がある。そのため、Al含有量の上限を0.065%とする。靭性低下防止のため、Alの含有量の上限を0.060%、0.055%、0.052%、0.050%又は0.048%としてもよい。
Al: 0.015% to 0.065% or less Al is an element that is effective for deoxidation, and at the same time, forms nitrides and is effective for refining the base material and HAZ crystal grains. In order to acquire the effect, it is necessary to make Al content 0.015% or more. The lower limit of the Al content may be set to 0.020%, 0.025%, 0.028%, 0.031%, or 0.035% for refining the base material and the HAZ crystal grains. On the other hand, when the Al content exceeds 0.065%, coarse nitrides are formed and the toughness tends to be lowered. Therefore, the upper limit of the Al content is 0.065%. In order to prevent a decrease in toughness, the upper limit of the Al content may be 0.060%, 0.055%, 0.052%, 0.050%, or 0.048%.
 N:0.0020%~0.0060%
 NはTi、Al等の元素と結合し、窒化物を形成する元素である。窒化物の形成の観点からはN含有量を0.0020%以上とすることが必要である。より確実に窒化物を形成させるため、Nの含有量の下限を0.0024%又は0.0028%としてもよい。一方、N含有量が0.0060%を越えると、HAZ靭性が低下するので、N含有量の上限を0.0060%とする。HAZ靭性の低下防止のため、Nの含有量の上限を0.055%、0.050%又は0.045%としてもよい。
N: 0.0020% to 0.0060%
N is an element that combines with elements such as Ti and Al to form nitrides. From the viewpoint of forming nitrides, the N content needs to be 0.0020% or more. In order to form nitride more reliably, the lower limit of the N content may be 0.0024% or 0.0028%. On the other hand, if the N content exceeds 0.0060%, the HAZ toughness decreases, so the upper limit of the N content is set to 0.0060%. In order to prevent a decrease in HAZ toughness, the upper limit of the N content may be 0.055%, 0.050%, or 0.045%.
 Cr:0%~0.08%
 Mo:0%~0.04%
 V:0%~0.01%
 Cr、MoおよびVは、焼入れ性を増加させ、厚手高張力鋼板においては、表層部と板厚中心部との硬さの差を大きくする元素である。またCr、Mo及びVを含有すると、HAZ靭性が低下することが懸念される。そのため、本実施形態に係る鋼板においてはこれらの元素を低減する必要がある。
 前述したように、HAZ靱性の評価は、多くの場合シャルピー試験が用いられるが、最近はより破壊力学を考慮した設計に反映できるCTOD値を求めるCTOD試験も実施される。CTOD値とはき裂開口変位のことであり、疲労き裂先端からの脆性破壊が発生した時のき裂先端の開口量である。このCTOD値を実験的に求める方法がCTOD試験である。CTOD試験は、通常、構造物が実際に運用される設計温度で実施される。CTOD値は、疲労き裂先端の鋼板のミクロ組織、すなわち、硬さや結晶粒径、炭化物の状態、脆化組織の有無などに影響されるので、シャルピー試験よりこれらの冶金学的な要因に敏感であるといわれている。なお、多くの場合、CTOD値が0.1mm以上であれば、その鋼板は、脆性破壊に対する十分な抵抗性を有すると判断される。
Cr: 0% to 0.08%
Mo: 0% to 0.04%
V: 0% to 0.01%
Cr, Mo and V are elements that increase the hardenability and increase the difference in hardness between the surface layer portion and the thickness center portion in the thick high-tensile steel plate. Moreover, when Cr, Mo and V are contained, there is a concern that the HAZ toughness is lowered. Therefore, it is necessary to reduce these elements in the steel plate according to the present embodiment.
As described above, in order to evaluate the HAZ toughness, a Charpy test is often used. Recently, a CTOD test for obtaining a CTOD value that can be reflected in a design considering more fracture mechanics is also performed. The CTOD value is the crack opening displacement, and is the opening amount at the crack tip when a brittle fracture occurs from the fatigue crack tip. A method for obtaining this CTOD value experimentally is the CTOD test. The CTOD test is usually performed at a design temperature at which the structure is actually operated. The CTOD value is affected by the microstructure of the steel plate at the tip of the fatigue crack, that is, hardness, crystal grain size, carbide state, presence of brittle structure, etc., so it is more sensitive to these metallurgical factors than the Charpy test. It is said that it is. In many cases, if the CTOD value is 0.1 mm or more, it is determined that the steel sheet has sufficient resistance to brittle fracture.
 本発明者らは、特に焼入れ性の高い元素であるCr、Mo、Vの含有量が、CTOD値へ及ぼす影響を検証した。図6は、Mo量を変化させた複数の鋼板の実溶接継手部に対しCTOD試験を実施し、Mo量の影響を評価した結果を示す図である。この試験に際しては、まず0.06%C-0.18%Si-1.35%Mn-1.05%Cu-1.25%Ni-0.013%Tiを基本成分系とし、それにMo含有量を無添加(不純物として含まれる含有量)から0.12%まで変化させた鋼を溶製し、熱間圧延により板厚100mmの鋼板を製造した。その後、鋼板に対し、900℃の焼入れおよび580℃の焼戻しを実施したのち、入熱25kJ/mmで多層溶接を実施した。溶接された鋼板から、溶接線に対して直角方向に全厚のCTOD試験片を採取した。CTOD試験のノッチ位置は、溶接金属と母材との融合線(FL)およびFLから3mmの位置(FL+3mm)とした。そして、採取した試験片に対して試験温度-10℃で3本ずつCTOD試験を実施した。
 図6は、縦軸が-10℃での限界CTOD値δc(δc-10℃と記載する場合がある)の3本の平均値であり、横軸がMo含有量である。図6から、Moは、溶接継手のCTOD特性、その中でもFL+3mmの位置及びFL位置でのCTOD特性を低下させることが分かる。また、δc≧0.1mmを合格の目安とすると、Mo含有量を0.04%以下にする必要があることが分かる。
 Mo含有量については、少ない方が望ましいが、完全に含有しないようにすることはコストの上昇を招くため望ましくない。また、不純物として又は意図的に含有される場合を考慮し、Moの含有量の上限を0.04%とする。より好ましい含有量の上限は0.03%、0.02%又は0.01%である。
The present inventors verified the influence of the contents of Cr, Mo, V, which are elements with particularly high hardenability, on the CTOD value. FIG. 6 is a diagram showing the results of conducting a CTOD test on actual welded joints of a plurality of steel plates with varying amounts of Mo and evaluating the influence of the amount of Mo. In this test, first, 0.06% C-0.18% Si-1.35% Mn-1.05% Cu-1.25% Ni-0.013% Ti was used as a basic component system, and it contained Mo. Steel whose amount was changed from no addition (content contained as impurities) to 0.12% was melted, and a steel plate having a thickness of 100 mm was manufactured by hot rolling. Thereafter, the steel plate was quenched at 900 ° C. and tempered at 580 ° C., and then subjected to multilayer welding at a heat input of 25 kJ / mm. From the welded steel plate, a full thickness CTOD specimen was taken in a direction perpendicular to the weld line. The notch position of the CTOD test was a fusion line (FL) between the weld metal and the base metal and a position 3 mm from the FL (FL + 3 mm). Then, three CTOD tests were performed on the collected specimens at a test temperature of -10 ° C.
In FIG. 6, the vertical axis represents the average value of three critical CTOD values δc (may be described as δc-10 ° C.) at −10 ° C., and the horizontal axis represents the Mo content. It can be seen from FIG. 6 that Mo reduces the CTOD characteristics of the welded joint, and in particular, the CTOD characteristics at the FL + 3 mm position and the FL position. In addition, when δc ≧ 0.1 mm is used as a criterion for acceptance, it is understood that the Mo content needs to be 0.04% or less.
As for the Mo content, it is desirable that the content is small. However, it is not desirable to prevent the Mo content from being completely contained because the cost increases. Further, considering the case where it is contained as an impurity or intentionally, the upper limit of the Mo content is set to 0.04%. A more preferable upper limit of the content is 0.03%, 0.02% or 0.01%.
 同様に、Cr含有量およびV含有量のHAZ靱性への影響を調査した。その結果を図7、図8に示す。この両図は、図6と同様に溶接継手を作成した上で、FL+3mmの位置にノッチを入れて試験温度-10℃でCTOD試験を実施し、得られたδcとCrおよびVの含有量との関係を示した図である。Cr、Vともに含有量が増加していくと、ある含有量でδcが0.1mmを下回る結果となっている。δcが0.1mmを下回らない両者の含有量の上限値を図7、図8から求めると、Cr含有量の上限は0.08%、V含有量の上限は0.01%となる。そのため、不純物として又は意図的な含有によらず、Cr含有量の上限は0.08%とする。HAZ靭性の向上のため、Crの含有量の上限を0.06%、0.05%、0.04%又は0.03%としてもよい。また、V含有量の上限は、不純物として又は意図的な含有によらず、0.01%とする。HAZ靭性の向上のため、Vの含有量の上限を0.008%、0.005%、0.003%又は0.001%としてもよい。
 なお、Cr、Mo、Vは溶鋼製造時にスクラップ等から不純物として混入する場合があるが、その下限を特に制限する必要はなく、その下限は0%である。
Similarly, the effect of Cr content and V content on HAZ toughness was investigated. The results are shown in FIGS. In both figures, a welded joint was prepared in the same manner as in FIG. 6 and a CTOD test was conducted at a test temperature of −10 ° C. with a notch at a position of FL + 3 mm. The obtained δc, Cr and V contents were obtained. FIG. When the content of both Cr and V increases, δc falls below 0.1 mm at a certain content. When the upper limit values of the contents of both of which δc is not less than 0.1 mm are determined from FIGS. 7 and 8, the upper limit of the Cr content is 0.08% and the upper limit of the V content is 0.01%. Therefore, the upper limit of Cr content is 0.08% regardless of impurities or intentional inclusion. In order to improve HAZ toughness, the upper limit of the Cr content may be 0.06%, 0.05%, 0.04%, or 0.03%. Further, the upper limit of the V content is 0.01% regardless of impurities or intentional inclusion. In order to improve the HAZ toughness, the upper limit of the V content may be 0.008%, 0.005%, 0.003%, or 0.001%.
In addition, Cr, Mo, and V may be mixed as impurities from scrap or the like during the production of molten steel, but the lower limit is not particularly limited, and the lower limit is 0%.
 BもまたCr、Mo、Vと同様に微量の含有量で焼入れ処理後の硬さを上昇させ、焼入れ性の向上に有効な元素である。しかし、厚手高張力鋼板の場合、Bの含有により表層部と板厚中心部との焼入れ硬さの差が拡大してしまう。従って、板厚方向の均一性の観点から、Bの含有は好ましくない。しかしながらこれらを完全に含有しないとすることは技術的に困難である。従って、不純物として含有される場合を考慮し、B含有量の上限を0.0005%とする。なお、意図的に含有させた場合でも上限は、0.0005%である。板厚方向の一層の均一性のため、Bの含有量の上限を0.0004%、0.0003%、0.0002%又は0.0001%としてもよい。Bは溶鋼製造時にスクラップ等から不純物として混入する場合があるが、その下限を特に制限する必要はなく、その下限は0%である。 B is also an element effective for improving the hardenability by increasing the hardness after quenching treatment with a small amount of content like Cr, Mo and V. However, in the case of a thick high-tensile steel plate, the difference in the quenching hardness between the surface layer portion and the plate thickness center portion increases due to the inclusion of B. Therefore, B is not preferable from the viewpoint of uniformity in the thickness direction. However, it is technically difficult not to completely contain them. Therefore, considering the case where it is contained as an impurity, the upper limit of the B content is set to 0.0005%. Even when it is intentionally contained, the upper limit is 0.0005%. The upper limit of the B content may be 0.0004%, 0.0003%, 0.0002%, or 0.0001% for further uniformity in the thickness direction. Although B may be mixed as an impurity from scraps or the like during the production of molten steel, the lower limit is not particularly limited, and the lower limit is 0%.
 PおよびSは、鋼中に含まれる不純物元素であり、母材靭性及びHAZ靭性を低下させるため、その含有量は少ないほど好ましい。本発明においては、Pの上限は、0.010%以下、好ましくは0.007%、0.005%以下又は0.003%、およびSの上限は0.002%以下に制限する。Sの上限を0.001%又は0.0008%に制限してもよい。P量およびS量の下限を特に制限する必要はなく、その下限は0%である。 P and S are impurity elements contained in the steel and lower the base metal toughness and HAZ toughness. Therefore, the smaller the content, the better. In the present invention, the upper limit of P is 0.010% or less, preferably 0.007%, 0.005% or less or 0.003%, and the upper limit of S is limited to 0.002% or less. The upper limit of S may be limited to 0.001% or 0.0008%. There is no need to particularly limit the lower limit of the P amount and the S amount, and the lower limit is 0%.
 Caは、鋼板の硫化物を球状化して、靱性にとって有害なMnSの影響を軽減する効果がある。この効果を得るため、0.0001%以上含有しても良い。しかしCa含有量が過剰となると溶接性が損われるため、Ca含有量を0.0050%以下に制限する。溶接性の改善のため、Caの含有量の上限を0.0040%、0.0035%又は0.0030%としてもよい。Caは溶鋼製造時にスクラップや、耐火物等から不純物として混入する場合があるが、その下限を特に制限する必要はなく、その下限は0%である。 Ca has the effect of reducing the influence of MnS, which is harmful to toughness, by spheroidizing the sulfide of the steel sheet. In order to acquire this effect, you may contain 0.0001% or more. However, since the weldability is impaired when the Ca content is excessive, the Ca content is limited to 0.0050% or less. In order to improve weldability, the upper limit of the Ca content may be 0.0040%, 0.0035%, or 0.0030%. Ca may be mixed as an impurity from scrap, refractory, or the like during manufacturing of molten steel, but the lower limit is not particularly limited, and the lower limit is 0%.
 MgおよびREMは、鋼板中で酸化物を形成して、HAZ靭性を向上させる元素である。この効果を得るため、0.0001%以上含有してもよい。しかしMg、REMの含有量が過剰であると、粗大な酸化物が生成し、靭性の低下を招く。そのため、Mg含有量、REM含有量は、それぞれ0.0030%以下に制限する。必要に応じて、これらの含有量の上限を0.0025%又は0.0020%としてもよい。Mg、REMは溶鋼製造時にスクラップや、耐火物等から不純物として混入する場合があるが、その下限を特に制限する必要はなく、その下限は0%である。
 ここで、REMとは、ランタノイドの15元素にYおよびScを合わせた17元素の総称であり、これらの元素のうちの1種または2種以上を含有させることができる。なお、REMの含有量はこれらの元素の合計含有量を意味する。
Mg and REM are elements that improve the HAZ toughness by forming an oxide in the steel sheet. In order to acquire this effect, you may contain 0.0001% or more. However, if the contents of Mg and REM are excessive, coarse oxides are generated, leading to a decrease in toughness. Therefore, the Mg content and the REM content are limited to 0.0030% or less, respectively. If necessary, the upper limit of these contents may be 0.0025% or 0.0020%. Mg and REM may be mixed as impurities from scraps, refractories, etc. during the production of molten steel, but the lower limit is not particularly limited, and the lower limit is 0%.
Here, REM is a general term for 17 elements in which Y and Sc are combined with 15 elements of lanthanoid, and one or more of these elements can be contained. Note that the content of REM means the total content of these elements.
 なお、下限の規定がない合金元素(例えば、Mo、Cr、V、B、P、S、Ca、Mg、REM)が意図的に添加されたとしても、または不純物として混入されたとしても、その含有量が請求範囲内にあれば、その鋼板は本発明の請求範囲内と解釈する。
 本実施形態に係る鋼板は、上記成分を含有し、残部が鉄および不純物である。しかしながら、本実施形態に係る鋼板には、上記成分の他に、鋼材自体の強度、靭性等を一段と改善する目的で、あるいはスクラップ等の副原料からの不純物として、さらに、Sb、As、Sn、Pb,Zr、Zn、W、Coを含有してもよい。しかしながら、その含有量の上限は、以下の通りとすることが望ましい。
 SbはHAZの靭性を損なうため、Sb含有量の上限を0.02%としてもよい。HAZ靭性を向上させるため、Sb含有量の上限を、0.01%、0.005%又は0.002%としてもよい。
 AsおよびSnはHAZの靭性を損なうため、AsおよびSnの含有量の上限を0.02%としてもよい。必要に応じて、AsおよびSnの含有量の上限を、0.01%、0.005%又は0.002%としてもよい。
 また、強度及び靭性の向上のため、Pb、Zr、Zn及びWの含有量を、それぞれ0.1%以下、0.01%又は0.005%以下としてもよい。これらの下限を特に決める必要はなく、0%である。
 Coは、Niの中に不純物として含まれる場合がある。CoはHAZ靭性を損なうため、Co含有量の上限を0.3%、0.1%又は0.05%としてもよい。その下限を特に決める必要はなく、その下限は0%である。
Even if an alloy element (for example, Mo, Cr, V, B, P, S, Ca, Mg, REM) with no lower limit is intentionally added or mixed as an impurity, If the content is within the claims, the steel sheet is interpreted as being within the claims of the present invention.
The steel sheet according to the present embodiment contains the above components, with the balance being iron and impurities. However, in the steel plate according to the present embodiment, in addition to the above components, for the purpose of further improving the strength, toughness, etc. of the steel material itself, or as impurities from auxiliary materials such as scrap, Sb, As, Sn, Pb, Zr, Zn, W, and Co may be contained. However, the upper limit of the content is preferably as follows.
Since Sb impairs the toughness of HAZ, the upper limit of the Sb content may be 0.02%. In order to improve HAZ toughness, the upper limit of the Sb content may be 0.01%, 0.005%, or 0.002%.
Since As and Sn impair the toughness of HAZ, the upper limit of the content of As and Sn may be 0.02%. As needed, it is good also considering the upper limit of content of As and Sn as 0.01%, 0.005%, or 0.002%.
In order to improve strength and toughness, the contents of Pb, Zr, Zn, and W may be 0.1% or less, 0.01%, or 0.005% or less, respectively. There is no particular need to determine these lower limits, and it is 0%.
Co may be contained as an impurity in Ni. Since Co impairs the HAZ toughness, the upper limit of the Co content may be 0.3%, 0.1%, or 0.05%. There is no particular need to determine the lower limit, and the lower limit is 0%.
 A値(=Cu+Ni):4.5%以下
 本実施形態では母材の板厚方向について、主として強度の均一性を示す指標であるΔHvを制御する必要がある。図2から分かるように、Cu+Ni、すなわち、Cu含有量とNi含有量との合計であり、下記式(1)で表されるA値が、4.5%を超えると1/8t部でのビッカース硬さと1/2t部でのビッカース硬さとの差であるΔHvが20を超え、板厚方向における特性が不均一となる。この結果から、上記の個々の元素の範囲の限定に加えて、A値の上限を4.5%とする。板厚方向の硬さの差をより低減するため、必要に応じて、A値の上限を4.2%、4.0%、3.8%、3.5%、3.3%又は3.0%としてもよい。A値の下限は特に限定する必要がないが、Cu含有量及びNi含有量のそれぞれの下限の合計の1.9%が実質的な下限となる。
 A=Cu+Ni…(1)
 ここで、上記式(1)中のCuおよびNiは各元素の含有量で、その単位は質量%である。
A value (= Cu + Ni): 4.5% or less In the present embodiment, it is necessary to control ΔHv, which is an index mainly showing the uniformity of strength, in the thickness direction of the base material. As can be seen from FIG. 2, Cu + Ni, that is, the total of Cu content and Ni content, and when the A value represented by the following formula (1) exceeds 4.5%, ΔHv, which is the difference between the Vickers hardness and the Vickers hardness at the 1/2 t portion, exceeds 20, and the characteristics in the thickness direction are not uniform. From this result, in addition to the limitation of the range of each element described above, the upper limit of the A value is set to 4.5%. In order to further reduce the difference in hardness in the thickness direction, the upper limit of the A value is set to 4.2%, 4.0%, 3.8%, 3.5%, 3.3% or 3 as necessary. It may be 0%. The lower limit of the A value is not particularly limited, but 1.9% of the total of the lower limits of the Cu content and the Ni content is a substantial lower limit.
A = Cu + Ni (1)
Here, Cu and Ni in the above formula (1) are the contents of each element, and the unit is mass%.
 さらに、本実施形態に係る鋼板では溶接性を確保するため、個々の元素の範囲の限定に加えて、下記の式(2)で求められるPcm値が0.25%以下となるように化学組成を限定する。Pcm値は炭素当量(Ceq)と同様に溶接割れ感受性を表す指標として多く適用されており、鋼に含まれる合金の含有量から計算される。式(2)には本発明において実質的に含有しないCr、Mo、V、Bなどの元素も含まれている。しかしながら、これらの元素は、工業的に製造される過程で各種合金原料から不純物として混入してしまう可能性があるため、溶接性を評価する場合にはこのような不純物も含めた合金元素の含有量を評価する必要がある。なお、各合金元素が含有されない(検出されない)場合には、その項を0として計算すればよい。
 Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5×B…(2)
 ここで、C、Si、Mn、Cu、Ni、Cr、Mo、V及びBは各元素の含有量で、その単位は質量%である。
 本実施形態に係る鋼板においては、Pcm値が0.25%を超えると0℃で溶接した時の低温割れが発生しやすくなることから、Pcm値の上限を0.25%としている。Pcm値の下限を特に規定する必要はないが、その下限を0.15%又は0.18%としてもよい。
Furthermore, in order to ensure weldability in the steel sheet according to the present embodiment, in addition to limiting the range of individual elements, the chemical composition is such that the Pcm value obtained by the following formula (2) is 0.25% or less. Limit. The Pcm value is often applied as an index representing the weld cracking sensitivity similarly to the carbon equivalent (Ceq), and is calculated from the content of the alloy contained in the steel. Formula (2) includes elements such as Cr, Mo, V, and B that are not substantially contained in the present invention. However, since these elements may be mixed as impurities from various alloy raw materials in the process of industrial production, the inclusion of alloy elements including such impurities is necessary when evaluating weldability. The amount needs to be evaluated. If each alloy element is not contained (not detected), the calculation may be performed with the term set to 0.
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5 × B (2)
Here, C, Si, Mn, Cu, Ni, Cr, Mo, V, and B are the contents of each element, and the unit is mass%.
In the steel sheet according to the present embodiment, when the Pcm value exceeds 0.25%, low temperature cracking is likely to occur when welding at 0 ° C., so the upper limit of the Pcm value is set to 0.25%. The lower limit of the Pcm value does not need to be specified, but the lower limit may be 0.15% or 0.18%.
 次に本実施形態に係る鋼板は、以下の製造方法によって製造することができる。
 まず、上述した範囲に調整した鋼成分(化学組成)を有する溶鋼を、連続鋳造または造塊分塊法によってスラブとする(鋳造工程:S1)。その後、得られたスラブを加熱する(加熱工程:S2)。なお、加熱工程において目標とする加熱温度は、厚手高張力鋼板を圧延する際に板厚中心部まで十分に圧下の効果を得る目的で、その下限を950℃とすることが望ましい。一方で、加熱温度が1250℃を超えると、鋼板のスケールが剥離できず、鋼板表面疵が発生してしまう場合があるので、その上限を1250℃とすることが望ましい。
Next, the steel plate according to the present embodiment can be manufactured by the following manufacturing method.
First, a molten steel having a steel component (chemical composition) adjusted to the above-described range is made into a slab by continuous casting or an ingot-making method (casting step: S1). Thereafter, the obtained slab is heated (heating step: S2). The lower limit of the target heating temperature in the heating step is preferably 950 ° C. for the purpose of sufficiently reducing the thickness of the thick high-tensile steel plate to the center of the plate thickness. On the other hand, if the heating temperature exceeds 1250 ° C., the scale of the steel sheet cannot be peeled off and the steel sheet surface flaws may occur, so the upper limit is desirably set to 1250 ° C.
 加熱工程後、加熱されたスラブを熱間圧延して鋼板とする(熱間圧延工程:S3)。熱間圧延工程後、鋼板をそのまま350℃以下まで冷却する(冷却工程:S4)。冷却工程後にAc3変態点以上に再加熱するため、冷却場所等の制約があれば、必要に応じて、加速冷却を行ってもよい。なお、冷却工程における冷却停止温度が350℃を超えると、窒化アルミなど粗大な析出物などによる脆化が生じる恐れがあるので、望ましくない。
 なお、ここで言うAc1変態点とは、鋼を室温のフェライト相から昇温した場合、オーステナイトが局部的に生じ始める温度を言う。また、さらに昇温した場合には、フェライトとオーステナイトとの二相状態からオーステナイト単相になる。このオーステナイト単相になる時の温度をAc3変態点と言う。これら変態点は、通常、フェライトとオーステナイトとの熱膨張率の差を利用して実験的に求めることができる。すなわち、鋼を一定の加熱速度(例えば2.5℃/minなど)で加熱して得られる膨張-温度曲線を測定し、熱膨張の変化点から実験的に求めることができる。
 冷却工程後、Ac3変態点以上に加熱し水冷する焼入れ処理、およびAc1変態点以下の温度に加熱し空冷する焼戻し処理を行なう(焼入れ焼戻し工程:S5)。
 焼入れ時の加熱温度がAc3変態点未満であると、十分な焼入れ組織が得られないため、強度又は靭性が低下する。一方で、結晶粒の粗大化を防止する点から、焼入れ時の加熱温度は低い方が好ましい。このため、加熱温度の上限を930℃、910℃又は890℃としてもよい。また、焼戻し時の加熱温度がAc1変態点超であると、強度又は靭性が著しく低下する場合がある。
 近年、本実施形態のように圧延後に冷却された鋼板を再加熱し焼入れ処理および焼戻し処理をする方法ではなく、圧延後に直接冷却を施し、それを焼き戻す方法(直接焼入れ+焼戻し処理)が、高張力鋼板の製造においても適用される例がある。しかし、この方法は、本実施形態に係る鋼板には適さない。その理由は、以下のとおりである。
 圧延後に直接焼入れ処理をされた鋼板の結晶粒径は、加熱および圧延温度に依存する。結晶粒径の細粒化を図るために、低温加熱を実施したり、低温で圧延を実施したりすると、冷却されやすい鋼板表面側において圧延温度が低くなる。その結果、圧延直後には、板厚表面側が熱間圧延により扁平な細粒なオーステナイト組織となり、中心部側が圧延の影響を受けにくい、再結晶によって生成した等方的でやや粗粒なオーステナイト組織となる場合が多い。これらのオーステナイト組織を有する鋼板に直接焼入れを実施すると、圧延の影響を受ける表層から1/8t部付近までの領域は、加工されたオーステナイトから変態した細粒フェライトおよびベイナイト組織を主体するするミクロ組織となり、逆に2/8t部より内側では、粗粒なフェライトおよびベイナイト組織となる。この結果、3/8t部の平均結晶粒径が35μm以上となる。
 すなわち、このように直接焼入れ処理が行われた鋼板(直接焼入れ鋼)の結晶粒は、表層から1/8t側が板厚中心部側より細粒となり、本実施形態に係る鋼板とは全く逆のミクロ組織の構成となる。すなわち、直接焼入れ鋼において、1/8t部における母材の結晶粒径を規定したとしても、それより鋼板内部での結晶粒径が1/8t部での結晶粒径よりも粗大であるので、本発明範囲における制約で母材の靭性を規定することはできない。さらに、表層側の結晶粒が細粒であることから、板厚方向の硬さ分布においても表層側が硬化する傾向が高く、ΔHv≦20を満足できない。
 以上のように、厚手高張力鋼板において、板厚方向の材質均一性を確保し、かつ優れた靱性を付与する手段としては、直接焼入れ+焼戻し法は適さない。板厚方向の材質均一性を確保し、1/8t部の平均結晶粒径を35μm以下とするためには、一旦冷却後に焼入れ処理および焼戻し処理を行う必要がある。
After the heating step, the heated slab is hot rolled to form a steel plate (hot rolling step: S3). After the hot rolling process, the steel sheet is cooled as it is to 350 ° C. or less (cooling process: S4). In order to reheat beyond the Ac3 transformation point after the cooling step, accelerated cooling may be performed as necessary if there is a restriction on the cooling location. If the cooling stop temperature in the cooling process exceeds 350 ° C., it is not desirable because embrittlement may occur due to coarse precipitates such as aluminum nitride.
The Ac1 transformation point mentioned here refers to a temperature at which austenite starts to occur locally when the steel is heated from the ferrite phase at room temperature. Further, when the temperature is further increased, the two-phase state of ferrite and austenite becomes an austenite single phase. The temperature at which this austenite single phase is obtained is called the Ac3 transformation point. These transformation points can usually be obtained experimentally by utilizing the difference in thermal expansion coefficient between ferrite and austenite. That is, an expansion-temperature curve obtained by heating steel at a constant heating rate (for example, 2.5 ° C./min) can be measured and experimentally obtained from the change point of thermal expansion.
After the cooling process, a quenching process in which the temperature is higher than the Ac3 transformation point and water-cooled and a tempering process in which the temperature is lower than the Ac1 transformation point and air-cooled are performed (quenching and tempering process: S5).
When the heating temperature at the time of quenching is less than the Ac3 transformation point, a sufficient quenched structure cannot be obtained, so that the strength or toughness is lowered. On the other hand, it is preferable that the heating temperature at the time of quenching is low from the viewpoint of preventing coarsening of crystal grains. For this reason, it is good also considering the upper limit of heating temperature as 930 degreeC, 910 degreeC, or 890 degreeC. Further, if the heating temperature at the time of tempering exceeds the Ac1 transformation point, the strength or toughness may be remarkably lowered.
In recent years, not the method of reheating and quenching and tempering a steel plate cooled after rolling as in this embodiment, but directly cooling after rolling and tempering it (direct quenching + tempering treatment) There is an example applied also in manufacture of a high-tensile steel plate. However, this method is not suitable for the steel plate according to this embodiment. The reason is as follows.
The crystal grain size of the steel sheet that has been directly quenched after rolling depends on the heating and rolling temperature. When low-temperature heating is performed or rolling is performed at a low temperature in order to reduce the crystal grain size, the rolling temperature is lowered on the steel sheet surface side that is easily cooled. As a result, immediately after rolling, the sheet thickness surface side becomes a flat fine-grained austenite structure by hot rolling, and the central side is hardly affected by rolling, and isotropic and slightly coarse-grained austenite structure generated by recrystallization. In many cases. When the steel sheet having these austenite structures is directly quenched, the region from the surface layer affected by rolling to the vicinity of 1 / 8t part is a microstructure mainly composed of fine ferrite and bainite structures transformed from the processed austenite. On the contrary, on the inner side of the 2 / 8t portion, a coarse ferrite and bainite structure is formed. As a result, the average crystal grain size of 3 / 8t part becomes 35 μm or more.
That is, the crystal grains of the steel sheet (directly quenched steel) that has been directly quenched in this way are finer on the 1/8 t side than the surface layer than the center of the sheet thickness, and are completely opposite to the steel sheet according to the present embodiment. It has a microstructure. That is, in the directly quenched steel, even if the crystal grain size of the base material in the 1 / 8t part is defined, the crystal grain size inside the steel plate is coarser than the crystal grain size in the 1 / 8t part. The toughness of the base material cannot be defined due to restrictions within the scope of the present invention. Furthermore, since the crystal grains on the surface layer side are fine, the surface layer side tends to be hardened even in the hardness distribution in the thickness direction, and ΔHv ≦ 20 cannot be satisfied.
As described above, the direct quenching + tempering method is not suitable as a means for securing material uniformity in the thickness direction and imparting excellent toughness in the thick high-tensile steel plate. In order to ensure material uniformity in the plate thickness direction and to make the average crystal grain size of 1 / 8t part 35 μm or less, it is necessary to perform quenching and tempering after cooling once.
 さらに、本実施形態においては、熱間圧延工程後と焼入れ焼戻し工程との間に、焼入れ時の板厚方向の結晶粒径の均一化を図る目的で、鋼板の温度が550℃以上、Ac1変態点以下でかつ、この温度域での保持時間が5時間以上、500時間以内となるような予備熱処理を実施する工程(予備熱処理工程:S6)をさらに有することが好ましい。この予備熱処理工程を行うことで、図4に示されたような板厚方向の結晶粒径の差異を小さくすることができる。すなわち、この予備熱処理とは、先に述べたような厚手高張力鋼板の焼入れ処理時の加熱工程において、表層~1/8t部の加熱時間が長時間にわたる場合に生じる結晶粒の粗大化を防止するために、焼入れに先立って行う処理である。この予備熱処理の冶金学的な意味は、熱間圧延後に微細に析出しているTiおよびNbの炭窒化物または窒化アルミニウム析出物を、オストワルド成長により、焼入れ時にピン止め粒子として作用するように、適度な大きさに粗大化させることにある。図9は、0.08%C-0.15%Si-1.51%Mn-0.008%P-0.0010%S-1.15%Cu-1.23%Ni-0.012%Ti-0.012%Nb-0.035%Al-0.0039%Nの成分を有する鋼を140mmに圧延後、450℃および550℃の各温度で保持時間を変えて予備熱処理を実施し、その後、920℃で120分保持された後に水冷する焼入れ処理および590℃で100分保持し空冷する焼戻し処理を行なった鋼板の、1/8t部の平均結晶粒径の変化を示す図である。
 図9から分かるように、予備熱処理の温度が450℃の場合は、保持時間が長時間となると徐々に平均結晶粒径が小さくなる傾向があるものの、平均結晶粒径を25μm以下とするには、100時間以上と非常に長い保持時間が必要である。一方、予備熱処理の温度が550℃の場合は、保持時間が5時間以上で、平均結晶粒径が25μm以下となり、明らかな細粒化が認められた。以上のことから、粗大化しやすい板厚の1/8t部近傍の平均結晶粒径の微細化を図るためには、予備熱処理として、550℃以上で5時間以上の保持を行なうことが望ましいことが分かった。平均結晶粒径が細粒化されることで、より靭性が向上した。さらに、上述の予備熱処理による結晶粒微細化効果は、表層側の結晶粒に対しての方がより効果がより大きいので、板厚中央部との靭性の差異が小さくなり板厚方向も靭性が均一化する傾向にある。しかしながら、予備熱処理における保持時間が500時間以上となると、予備熱処理中に析出粒子の粗大化が著しく進行するとともに、それに伴い粒子の個数密度が減少することによってピン止め効果はかえって小さくなる。したがって、その保持時間の上限を500時間とすることが望ましい。なお、予備熱処理温度がAc1変態点を越えると鋼板内でオーステナイト変態が部分的に生じる。この場合、フェライトとオーステナイトとで析出物の成長速度が異なることから、鋼板内で均一な析出物の成長が期待できない。そのため、予備熱処理の際の加熱温度(保持温度)は、Ac1変態点以下とすることが好ましい。
Furthermore, in the present embodiment, the temperature of the steel sheet is 550 ° C. or higher and the Ac1 transformation is performed for the purpose of uniformizing the crystal grain size in the thickness direction during quenching between the hot rolling process and the quenching and tempering process. It is preferable to further include a step (preliminary heat treatment step: S6) of performing a preheat treatment so that the holding time in this temperature range is 5 hours or more and 500 hours or less. By performing this preliminary heat treatment step, the difference in crystal grain size in the plate thickness direction as shown in FIG. 4 can be reduced. In other words, this pre-heat treatment prevents the coarsening of crystal grains that occur when the heating time of the surface layer to 1/8 t part takes a long time in the heating process during the quenching treatment of thick high-tensile steel sheets as described above. Therefore, it is a process performed prior to quenching. The metallurgical meaning of this pre-heat treatment is to cause Ti and Nb carbonitrides or aluminum nitride precipitates finely precipitated after hot rolling to act as pinning particles during quenching by Ostwald growth. The purpose is to coarsen to an appropriate size. FIG. 9 shows 0.08% C-0.15% Si-1.51% Mn-0.008% P-0.0010% S-1.15% Cu-1.23% Ni-0.012% After rolling steel having a component of Ti-0.012% Nb-0.035% Al-0.0039% N to 140 mm, preliminary heat treatment was performed at different temperatures of 450 ° C. and 550 ° C. Then, it is a figure which shows the change of the average crystal grain diameter of 1 / 8t part of the steel plate which performed the quenching process which water-cools after hold | maintaining at 920 degreeC for 120 minutes, and the tempering process hold | maintained at 590 degreeC for 100 minutes and air-cooling.
As can be seen from FIG. 9, when the temperature of the preliminary heat treatment is 450 ° C., the average crystal grain size tends to gradually decrease as the holding time becomes long, but to make the average crystal grain size 25 μm or less. , A very long holding time of 100 hours or more is required. On the other hand, when the temperature of the preliminary heat treatment was 550 ° C., the retention time was 5 hours or more, the average crystal grain size was 25 μm or less, and clear grain refinement was observed. In view of the above, in order to refine the average crystal grain size in the vicinity of 1 / 8t part of the plate thickness that is likely to be coarsened, it is desirable to hold at 550 ° C. or higher for 5 hours or longer as a preliminary heat treatment. I understood. The toughness was further improved by reducing the average crystal grain size. Furthermore, the grain refinement effect by the pre-heat treatment described above is more effective for the crystal grains on the surface layer side, so the difference in toughness with the center of the plate thickness becomes smaller and the toughness in the plate thickness direction is also improved. It tends to be uniform. However, when the holding time in the pre-heat treatment is 500 hours or more, the coarsening of the precipitated particles proceeds remarkably during the pre-heat treatment, and the number density of the particles is reduced accordingly, so that the pinning effect is reduced. Therefore, it is desirable that the upper limit of the holding time be 500 hours. Note that when the preliminary heat treatment temperature exceeds the Ac1 transformation point, austenite transformation partially occurs in the steel sheet. In this case, since the growth rate of precipitates is different between ferrite and austenite, uniform precipitate growth cannot be expected in the steel sheet. Therefore, it is preferable that the heating temperature (holding temperature) at the time of the preliminary heat treatment be equal to or lower than the Ac1 transformation point.
 予備熱処理工程後、鋼板を350℃以下まで冷却した後、焼入れ処理が実施される。焼入れ処理は、Ac3変態点を越える温度に加熱された鋼板に水冷を行う処理である。結晶粒の粗大化を防止する点から、焼入れ時の加熱温度が低い方が好ましい。このため、加熱温度の上限を930℃、910℃又は890℃としてもよい。 After the preliminary heat treatment step, the steel sheet is cooled to 350 ° C. or lower and then quenched. The quenching process is a process of cooling the steel sheet heated to a temperature exceeding the Ac3 transformation point. From the viewpoint of preventing the coarsening of crystal grains, it is preferable that the heating temperature during quenching is low. For this reason, it is good also considering the upper limit of heating temperature as 930 degreeC, 910 degreeC, or 890 degreeC.
 焼入れ処理に引き続き、焼戻し処理が実施される。焼戻し処理は、強度および靭性を所定の範囲に制御する目的で重要な処理である。本実施形態においては、焼戻し処理は、板厚方向の材質の均一性を確保することを目的として、Ac1変態点以下の温度で実施される。その温度範囲は、好ましくは500℃~650℃の範囲であり、より好ましくは550℃~610℃である。板厚方向の硬さ分布において表面からの板厚の1/8t部と1/2t部とでのビッカース硬さの差ΔHvを20以下とするには、上記温度で焼戻し処理を行うことが有効である。 A tempering process is carried out following the quenching process. The tempering process is an important process for the purpose of controlling the strength and toughness within a predetermined range. In the present embodiment, the tempering process is performed at a temperature equal to or lower than the Ac1 transformation point for the purpose of ensuring the uniformity of the material in the thickness direction. The temperature range is preferably 500 ° C. to 650 ° C., more preferably 550 ° C. to 610 ° C. In order to make the difference ΔHv between Vickers hardness between 1 / 8t part and 1 / 2t part of the plate thickness from the surface in the hardness distribution in the plate thickness direction, it is effective to perform tempering treatment at the above temperature. It is.
 表1、表2に示す成分組成を有するA1~A10およびB1~B29の鋼を溶製して得られた鋼片を、表3、表4に示す製造条件により、板厚80~200mmの鋼板とした。 Steel strips obtained by melting steels A1 to A10 and B1 to B29 having the composition shown in Tables 1 and 2 were made into steel plates having a thickness of 80 to 200 mm according to the manufacturing conditions shown in Tables 3 and 4. It was.
 製造にあたっては、加熱温度は、950℃~1250℃、その後、熱間圧延を実施した後、空冷もしくは水冷した。その後、試験番号5、10、15および26については、焼入れ処理の前に予備熱処理を実施した。試験番号1~51の鋼板について、試験番号18以外は、焼入れおよび焼戻し処理を実施した。なお、試験番号18は、圧延後直ちに100℃まで水冷を実施し、焼入れを行わずに、焼戻しのみを実施した。その後、母材の強度特性を評価するために、JIS Z 2201に規定の14号引張試験片を採取して、JIS Z 2241に規定の引張試験を行った。そして、その試験の結果、降伏強度460N/mm~580N/mm、かつ、引張強さ550N/mm~670N/mmを合格と判定した。さらに、JIS Z 2242に準拠して衝撃試験片を採取し、試験を実施した。母材靱性の評価として実施した衝撃試験については、-40℃での3本の吸収エネルギーの平均値をvE-40(母材)として記載し、42J以上を合格とした。なお、引張試験片については、通常の鋼材規格でも規定されることが多い板厚の1/4t部から採取した。衝撃試験片は1/8t部、1/4t部、1/2t部の3か所から採取したが、表3、表4には、最も靭性が低くなった1/2t部(板厚中心部)の試験結果のみ記載した。採取方向は、いずれも圧延方向に対して直角方向とした。Ac1およびAc3変態点については、板厚の1/4t部から、直径が3mmφ、長さが10mmの円柱型試験片を機械加工により採取し、熱電対を試験片の端部に装着した後、高周波誘導加熱により2.5℃/minの加熱速度で、室温から950℃まで加熱された時の試験片の長手方向の熱膨張量の変化から読み取った。 In the production, the heating temperature was 950 ° C. to 1250 ° C., followed by hot rolling, followed by air cooling or water cooling. Thereafter, for test numbers 5, 10, 15 and 26, a preliminary heat treatment was performed before the quenching treatment. Quenching and tempering treatments were performed on the steel plates with test numbers 1 to 51 except for test number 18. Test No. 18 was water-cooled to 100 ° C. immediately after rolling, and only tempered without quenching. Thereafter, in order to evaluate the strength characteristics of the base material, a No. 14 tensile test piece specified in JIS Z 2201 was collected, and a tensile test specified in JIS Z 2241 was performed. As a result of the test, the yield strength 460N / mm 2 ~ 580N / mm 2, and a tensile strength of 550N / mm 2 ~ 670N / mm 2 was judged to be acceptable. Furthermore, the impact test piece was extract | collected based on JISZ2242, and the test was implemented. In the impact test conducted as an evaluation of the base metal toughness, the average value of the three absorbed energy at −40 ° C. was described as vE-40 (base material), and 42 J or more was accepted. In addition, about the tensile test piece, it extract | collected from the 1 / 4t part of the board thickness which is often prescribed | regulated also by the normal steel material specification. The impact test specimens were collected from three places of 1 / 8t part, 1 / 4t part, and 1 / 2t part. Tables 3 and 4 show 1 / 2t part (thickness center part) with the lowest toughness. Only the test results of) are listed. The sampling direction was a direction perpendicular to the rolling direction. For the Ac1 and Ac3 transformation points, a cylindrical test piece having a diameter of 3 mmφ and a length of 10 mm was sampled by machining from a 1/4 t part of the plate thickness, and a thermocouple was attached to the end of the test piece. It was read from the change in the amount of thermal expansion in the longitudinal direction of the test piece when heated from room temperature to 950 ° C. at a heating rate of 2.5 ° C./min by high frequency induction heating.
 また、板厚の1/8t部および3/8t部から圧延方向に対して直角方向にミクロ組織試験片を採取し、鏡面研磨した後、EBSD法を用い、その結晶方位が30°以上の角度を持つ粒界によって囲まれる領域を結晶粒と定義し、その結晶粒の円相当径を結晶粒径と定義した。そして、各試料の結晶粒径に対する頻度分布を測定し、細粒側から計算された累積頻度が70%となる結晶粒径を平均結晶粒径と定義した。 In addition, after taking a microstructure test piece in the direction perpendicular to the rolling direction from 1 / 8t part and 3 / 8t part of the plate thickness, mirror polishing, and using EBSD method, the crystal orientation is an angle of 30 ° or more A region surrounded by a grain boundary having a grain size was defined as a crystal grain, and the equivalent circle diameter of the crystal grain was defined as a crystal grain size. Then, the frequency distribution with respect to the crystal grain size of each sample was measured, and the crystal grain size at which the cumulative frequency calculated from the fine grain side was 70% was defined as the average crystal grain size.
 さらに、板厚方向断面のビッカース硬さ分布(荷重98N)を測定し、板厚の1/8t部と1/2t部との硬さの差を材質均一性の指標としてΔHvで記載した。また、ΔHvが20以下である場合を合格とした。ここで、板厚の1/8t部とは、鋼板中において2箇所存在する(すなわち、一方の表面からみた場合には、1/8t部と7/8t部となる位置)が、ΔHvはいずれか1/8t部と1/2t部との硬さの差のうち大きい方である。 Further, the Vickers hardness distribution (load 98N) in the cross section in the thickness direction was measured, and the difference in hardness between the 1/8 t portion and the 1/2 t portion of the thickness was described as ΔHv as an index of material uniformity. Moreover, the case where ΔHv was 20 or less was regarded as acceptable. Here, the 1 / 8t part of the plate thickness is present in two locations in the steel sheet (that is, the position that becomes the 1 / 8t part and the 7 / 8t part when viewed from one surface). Or the larger of the difference in hardness between the 1 / 8t part and the 1 / 2t part.
 溶接性の評価として、JIS Z 3158に規定のy型溶接割れ試験での評価を行った。溶接はCO溶接で入熱1.5kJ/mmで実施し、供試鋼板として板厚中心部を中心に50mm厚となるように、表裏面を切削加工された鋼板を用いた。試験の結果、ルート割れ率が0%となる試験温度を求め、0℃であれば合格とした。 As an evaluation of weldability, an evaluation was performed in a y-type weld crack test specified in JIS Z 3158. Welding was performed by CO 2 welding at a heat input of 1.5 kJ / mm, and a steel plate whose front and back surfaces were cut so as to have a thickness of 50 mm centered on the central portion of the plate thickness was used as a test steel plate. As a result of the test, a test temperature at which the root cracking rate was 0% was obtained, and if it was 0 ° C., it was regarded as acceptable.
 一方、HAZ靭性の評価を目的として、潜弧溶接により入熱3.5kJ/mm~4.5kJ/mmの開先形状がK型の突合せ継手を作成した。そして、この突合せ継手から、切欠き位置をフュージョンラインとしてJIS Z 3128に準拠した衝撃試験片を3本採取し、試験温度-40℃で衝撃試験を行った。3本の試験片の平均値をvE-40(HAZ)として、表3、表4に記載した。
 また、同じ突合せ継手から、ノッチ位置をCGHAZ(Coarse grain HAZ)とよばれるフージョンラインとして、BS7448に準拠した全厚CTOD試験片(B×Bタイプ)を採取し、試験温度-10℃で、API(American Petroleum Institue)規格RP 2Z及びBS(British Standards)規格7448に準拠したCTOD試験をそれぞれ3本行った。これらの最低値をδc-10℃として表3、表4に記載した。なお、衝撃試験においては42J以上を、CTOD試験(δc)では0.1mm以上を合格として評価した。
 なお、衝撃試験の結果とCTOD試験の結果とには、大まかな相関があるとされているが、一方が良好であってももう一方が低い場合もある。そのため、破壊に対して要求が厳しい構造物では、HAZ靭性として両者を満足する必要がある。
On the other hand, for the purpose of evaluating the HAZ toughness, a butt joint having a groove shape of K type with a heat input of 3.5 kJ / mm to 4.5 kJ / mm was prepared by submerged arc welding. From this butt joint, three impact test pieces based on JIS Z 3128 were taken with the notch position as a fusion line, and an impact test was conducted at a test temperature of −40 ° C. The average value of the three test pieces is shown in Tables 3 and 4 as vE-40 (HAZ).
Also, from the same butt joint, a full-thickness CTOD test piece (B × B type) conforming to BS7448 was taken as a fusion line called CGHAZ (Coarse grain HAZ) at the notch position, and API was tested at a test temperature of −10 ° C. Three CTOD tests based on (American Petroleum Institute) standard RP 2Z and BS (British Standards) standard 7448 were performed. These minimum values are shown in Tables 3 and 4 as δc−10 ° C. In the impact test, 42 J or more was evaluated as acceptable, and in the CTOD test (δc), 0.1 mm or more was evaluated as acceptable.
It should be noted that the impact test result and the CTOD test result have a rough correlation, but one may be good but the other may be low. Therefore, it is necessary to satisfy both of the HAZ toughness in a structure that is severely demanded for fracture.
 なお、表1、表2中で下線を付した鋼成分、A値(Cu+Ni)およびPcm値は、その値が本発明外であることを示し、表3、表4中で下線を付した数値は、特性が不十分であることを示している。また、表1、表2中の残部はFe及び不純物である。 The steel components underlined in Table 1 and Table 2, the A value (Cu + Ni) and the Pcm value indicate that the values are outside of the present invention, and numerical values underlined in Tables 3 and 4 Indicates that the characteristics are insufficient. The balance in Tables 1 and 2 is Fe and impurities.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表3の試験番号1~17においては、鋼成分および製造条件がすべて本発明範囲内である。これらの鋼はいずれも母材の引張特性および靭性(衝撃特性)、さらに板厚方向の均一性の指標であるΔHvにおいて、いずれも目標値を満足している。さらに、溶接性も、すべて0℃で割れ発生が認められず、HAZ靭性も、吸収エネルギー(vE-40)およびCTOD値(δc-10℃)のいずれもが目標値を満足している。 In Test Nos. 1 to 17 in Table 3, all steel components and production conditions are within the scope of the present invention. All of these steels satisfy the target values in terms of tensile properties and toughness (impact properties) of the base metal and ΔHv, which is an index of uniformity in the thickness direction. Further, no cracks were observed in all weldability at 0 ° C., and in HAZ toughness, both the absorbed energy (vE-40) and the CTOD value (δc−10 ° C.) satisfied the target values.
 なお、その中でも、本発明範囲の予備熱処理が実施された試験番号5、10および15について、平均結晶粒径を見ると、その他のものに比べて、板厚の1/8t部および3/8t部もの平均結晶粒径がいずれも25μm以下となっている。また、その結果、試験番号5、10および15は他の鋼に比べて母材の靭性が良好である。 Of these, the test grain numbers 5, 10 and 15 in which the preliminary heat treatment within the scope of the present invention was performed, the average crystal grain size was 1/8 t part and 3/8 t of the plate thickness as compared with the others. The average grain size of all the parts is 25 μm or less. As a result, the test numbers 5, 10 and 15 have better toughness of the base material than other steels.
 これに対し、表4中の試験番号18~22は、成分が本発明範囲内であるが、製造条件が望ましいものではなく、母材特性及び/または板厚方向の均一性が目標値を満たしていない。また、試験番号23~51は、化学組成が本発明の範囲を逸脱している鋼を用いて製造した鋼板である。試験番号23~51は、表4に示されたように、母材の強度および靱性、ΔHv、割れ停止温度、vE-40(HAZ)およびδc-10℃の少なくとも1つについて目標値を満足しない結果となった。 On the other hand, in test numbers 18 to 22 in Table 4, the components are within the scope of the present invention, but the production conditions are not desirable, and the base material characteristics and / or uniformity in the thickness direction satisfy the target values. Not. Test numbers 23 to 51 are steel plates manufactured using steel whose chemical composition deviates from the scope of the present invention. Test numbers 23 to 51 do not satisfy the target values for at least one of the base material strength and toughness, ΔHv, crack stop temperature, vE-40 (HAZ) and δc-10 ° C., as shown in Table 4. As a result.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 試験番号18は、圧延後ただちに水冷処理(直接焼入れ)された鋼板に対し、焼戻し処理のみを行なったものであり、焼入れ処理が省略されて製造されている。この鋼板においては、母材靱性が29Jと低いうえにΔHvが29と高い。試験番号19は、焼入れ温度が二相域焼入れ処理となった結果、母材の引張特性が目標値を満足していない例である。試験番号20は、焼戻し温度が705℃であり、Ac1変態点を越えた結果、降伏強度が低く、ΔHvも目標値を満足していない例である。試験番号21は、圧延後の冷却停止温度が、395℃と高く、そこから焼入れのための加熱を開始した例である。この例では、冷却停止温度が高温のため、次工程である焼入れ工程の加熱段階で析出物の粗大化が生じ、母材の靭性が低くなった。
 さらに、試験番号22は、焼入れ温度が950℃と望ましい範囲を逸脱して実施された例である。試験番号22は、結晶粒径が粗大であり、母材靭性が低くなっている。
 試験番号23、25および27は、それぞれC、SiおよびMnの含有量が本発明範囲を低めにはずれた例である。これらは母材の引張強さが目標値を満足しておらず、さらに試験番号23、25では降伏強度も低い。
 逆に、試験番号24は、Cが0.14%と本発明範囲を高めにはずれかつ、Pcm値も0.27%とはずれた例である。その結果、母材靱性が低く、ΔHvが32と板厚方向の均一性に劣り、割れ停止温度も25℃と高く、溶接部の吸収エネルギーもδcも低い。同様に、試験番号28は、Mnが1.89%、試験番号46はCrが0.11%および試験番号49はBが0.0006%といずれも本発明範囲を高めに逸脱している。これらの元素はすべて母材の焼入れ性を上昇させる元素なので、試験番号28、46、49は、いずれもΔHvが20を超える値であり、降伏強度および母材靱性が本発明範囲を満足しないものもある。
 一方、試験番号26はSiが0.37%、試験番号29はPが0.012%、試験番号30はSが0.004%、試験番号40はNbが0.038%、試験番号42はTiが0.036%、試験番号44はAlが0.077%、試験番号45はNが0.0075%、試験番号47はMoが0.05%、試験番号48はVが0.012%、といずれも本発明範囲を高めに逸脱している。これらの元素が、本発明範囲を超えて含有されると、HAZ靭性が低下する。従って、vE-40(HAZ)もしくはδc-10℃の値いずれかまたは両者が目標値を満足していない。
 次に、本発明鋼にとって、主要な元素であるCu、Niの効果について述べる。試験番号31、試験番号37および試験番号38は、Cuがいずれも本発明範囲を低めにはずれている。そのため、試験番号31では、引張強さが低く、試験番号37、38では、引張強度及び降伏強度が低い。さらに、試験番号37は、Niが3.29%と本発明範囲を高めにはずれていることから、ΔHvも55と高く、試験番号38は、逆にNiが1.11と低めにはずれており、溶接部の靭性がいずれも低い。
 さらに、試験番号32、35および36は、Cuが本発明範囲を高めにはずれ、さらにPcm値も0.25%を超えた例である。その結果、これらのすべてで割れ停止温度が25℃となっており目標を満足しておらず、HAZ靱性も低い。その中でも試験番号35は、Niも1.05%と本発明範囲を低めに逸脱しており、vE-40(HAZ)およびδc-10℃が低い。また、試験番号36は、逆にNiが本発明範囲を高めにはずれた例であるので、Cu+Niが6.00%と発明範囲である4.5%を外れており、その結果ΔHvが59と目標を満足していない。
 試験番号33および試験番号34は、Cuが本発明範囲内で含有されたものであるがNiが本発明範囲を逸脱した例である。すなわち、試験番号33は、Niが0.92%と本発明範囲を低めにはずれており、その結果、母材及び溶接部の靭性が目標を満足していない。一方、試験番号34は、逆にNiが3.15%と本発明範囲を高めにはずれた例で、同時にCu+Niも4.63%と本発明範囲である4.5%を逸脱しているので、ΔHvが45と高くなっている。
 試験番号39は、Nbが低めにはずれた例であり、母材の降伏強度および引張強さが低い。試験番号41はTiが0.003%と低めにはずれた例でありvE-40(HAZ)が低い。試験番号43は、Alが0.014%と低めにはずれた例であり、母材の結晶粒の細粒化が不十分であり、母材の靭性が低い。試験番号50および51は、個々の成分範囲については本発明範囲であるが、A値またはPcm値がそれぞれ単独ではずれた例である。試験番号50は、A値が4.60%と本発明範囲である4.5%を逸脱した例であるこの場合、ΔHvが31となり本発明範囲を満足しない。試験番号51はPcm値が0.27%と本発明範囲を逸脱しており、その結果、割れ停止温度が25℃と高く目標値を満足してない。
Test No. 18 was obtained by performing only a tempering process on a steel sheet that had been subjected to a water cooling process (direct quenching) immediately after rolling, and was manufactured without the quenching process. In this steel plate, the base metal toughness is as low as 29 J and ΔHv is as high as 29. Test number 19 is an example in which the tensile properties of the base material do not satisfy the target value as a result of the quenching temperature being a two-phase quenching process. Test No. 20 is an example in which the tempering temperature is 705 ° C., the yield strength is low as a result of exceeding the Ac1 transformation point, and ΔHv does not satisfy the target value. Test No. 21 is an example in which the cooling stop temperature after rolling is as high as 395 ° C., and heating for quenching is started therefrom. In this example, since the cooling stop temperature is high, the coarsening of the precipitate occurs in the heating stage of the next quenching process, and the toughness of the base material is lowered.
Furthermore, the test number 22 is an example in which the quenching temperature is 950 ° C. and deviates from a desirable range. In Test No. 22, the crystal grain size is coarse and the base material toughness is low.
Test Nos. 23, 25 and 27 are examples in which the contents of C, Si and Mn deviate from the scope of the present invention. In these materials, the tensile strength of the base material does not satisfy the target value, and the test numbers 23 and 25 have low yield strength.
On the contrary, the test number 24 is an example in which C is 0.14%, which is out of the range of the present invention, and the Pcm value is out of 0.27%. As a result, the base metal toughness is low, ΔHv is inferior to 32 in the thickness direction uniformity, the crack stop temperature is as high as 25 ° C., and the absorbed energy and δc of the weld are low. Similarly, test number 28 is 1.89% for Mn, 0.11% for Cr for test number 46, and 0.0006% for B for test number 49, both deviating from the scope of the present invention. Since these elements are all elements that increase the hardenability of the base material, the test numbers 28, 46, and 49 all have values of ΔHv exceeding 20, and the yield strength and base material toughness do not satisfy the scope of the present invention. There is also.
On the other hand, test number 26 is 0.37% for Si, test number 29 is 0.012% for P, test number 30 is 0.004% for S, test number 40 is 0.038% for Nb, and test number 42 is Ti is 0.036%, test number 44 is 0.077% Al, test number 45 is N 0.0075%, test number 47 is Mo 0.05%, test number 48 is V 0.012% Both deviate from the scope of the present invention. When these elements are contained beyond the scope of the present invention, the HAZ toughness decreases. Therefore, either vE-40 (HAZ) or δc-10 ° C or both do not satisfy the target value.
Next, effects of Cu and Ni, which are main elements for the steel of the present invention, will be described. As for test number 31, test number 37, and test number 38, Cu has shifted | deviated from the range of this invention low. Therefore, in the test number 31, the tensile strength is low, and in the test numbers 37 and 38, the tensile strength and the yield strength are low. Furthermore, in test No. 37, Ni is 3.29%, which is out of the range of the present invention, so ΔHv is also high as 55, and in test No. 38, Ni is off as low as 1.11. The toughness of the welds is low.
Furthermore, Test Nos. 32, 35 and 36 are examples in which Cu deviates from the range of the present invention and the Pcm value exceeds 0.25%. As a result, the crack stop temperature of all of these is 25 ° C., which does not satisfy the target, and the HAZ toughness is also low. Among them, in Test No. 35, Ni is 1.05%, which deviates from the scope of the present invention, and vE-40 (HAZ) and δc-10 ° C. are low. Test number 36, on the other hand, is an example where Ni deviates from the scope of the present invention, so Cu + Ni is 6.00%, which is outside the scope of the invention 4.5%. As a result, ΔHv is 59. Not satisfied with the goal.
Test No. 33 and Test No. 34 are examples in which Cu is contained within the scope of the present invention, but Ni deviates from the scope of the present invention. That is, in test number 33, Ni is 0.92%, which is out of the range of the present invention, and as a result, the toughness of the base material and the welded part does not satisfy the target. Test number 34, on the other hand, is an example in which Ni is 3.15%, which is out of the range of the present invention. At the same time, Cu + Ni is 4.63%, which deviates from 4.5% of the present invention. , ΔHv is as high as 45.
Test No. 39 is an example in which Nb deviates slightly, and the base material has low yield strength and tensile strength. Test No. 41 is an example in which Ti is shifted to a low level of 0.003%, and vE-40 (HAZ) is low. Test No. 43 is an example in which Al is shifted to a low level of 0.014%, the crystal grains of the base material are not sufficiently refined, and the toughness of the base material is low. Test Nos. 50 and 51 are examples in which the individual component ranges are within the scope of the present invention, but the A value or the Pcm value is independently shifted. Test number 50 is an example in which the A value is 4.60% and deviates from 4.5%, which is the scope of the present invention. In this case, ΔHv is 31, which does not satisfy the scope of the present invention. Test No. 51 has a Pcm value of 0.27%, which is outside the scope of the present invention. As a result, the crack stop temperature is as high as 25 ° C. and does not satisfy the target value.
 本発明によれば、板厚方向の母材材質の均一性に優れ、母材の靭性、溶接性およびHAZ靭性に優れた厚手高張力鋼板の提供が可能となる。 According to the present invention, it is possible to provide a thick high-tensile steel plate that is excellent in the uniformity of the base material in the thickness direction and excellent in the toughness, weldability and HAZ toughness of the base material.

Claims (5)

  1.  化学組成が、質量%で、
    C:0.03%~0.12%、
    Si:0.05%~0.30%、
    Mn:1.20%~1.65%、
    Cu:0.7%~2.5%、
    Ni:1.2%~3.0%、
    Nb:0.005%~0.030%、
    Ti:0.005%~0.030%、
    Al:0.015%~0.065%、
    N:0.0020%~0.0060%、
    Mo:0%~0.04%、
    Cr:0%~0.08%、
    V:0%~0.01%、
    B:0%~0.0005%、
    P:0.010%以下、
    S:0.002%以下、
    Ca:0%~0.0030%、
    Mg:0%~0.0030%、
    REM:0%~0.0030%、
    残部:Fe及び不純物であり;
     下記(1)式で示されるA値が4.5%以下であり;
     下記(2)式で示されるPcm値が0.25%以下であり;
     降伏強度が460N/mm~580N/mm、かつ、引張強さが550N/mm~670N/mmであり;
     表面から板厚方向に沿って板厚の1/8の位置である1/8t部の硬さと、前記表面から前記板厚方向に沿って前記板厚の1/2の位置である1/2t部の硬さとの差が、ビッカース硬度で20以下であり;
     電子ビーム後方散乱回析パターン解析法を用いた結晶方位解析を行い、結晶方位差が30°以上の粒界で囲まれる領域を結晶粒と定義し、前記結晶粒の円相当粒径を結晶粒径と定義し、前記結晶粒径の頻度分布を算出した場合の累積頻度が細粒側から70%となる前記結晶粒径を、平均結晶粒径と定義したとき、前記1/8t部における前記平均結晶粒径が35μm以下である;
    ことを特徴とする鋼板。
     A=Cu+Ni…(1)
     Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5×B…(2)
    ここで、C、Si、Mn、Cu、Ni、Cr、Mo、V及びBは、各元素の含有量で、その単位は質量%である。
    Chemical composition is mass%,
    C: 0.03% to 0.12%,
    Si: 0.05% to 0.30%,
    Mn: 1.20% to 1.65%
    Cu: 0.7% to 2.5%,
    Ni: 1.2% to 3.0%,
    Nb: 0.005% to 0.030%,
    Ti: 0.005% to 0.030%,
    Al: 0.015% to 0.065%,
    N: 0.0020% to 0.0060%,
    Mo: 0% to 0.04%,
    Cr: 0% to 0.08%,
    V: 0% to 0.01%
    B: 0% to 0.0005%
    P: 0.010% or less,
    S: 0.002% or less,
    Ca: 0% to 0.0030%,
    Mg: 0% to 0.0030%,
    REM: 0% to 0.0030%,
    Balance: Fe and impurities;
    A value shown by following formula (1) is 4.5% or less;
    The Pcm value represented by the following formula (2) is 0.25% or less;
    Yield strength 460N / mm 2 ~ 580N / mm 2, and a tensile strength be 550N / mm 2 ~ 670N / mm 2;
    The hardness of the 1 / 8t portion that is 1/8 of the plate thickness along the plate thickness direction from the surface, and 1 / 2t that is the position of 1/2 of the plate thickness along the plate thickness direction from the surface The difference from the hardness of the part is 20 or less in terms of Vickers hardness;
    Crystal orientation analysis using an electron beam backscattering diffraction pattern analysis method is performed, a region surrounded by a grain boundary having a crystal orientation difference of 30 ° or more is defined as a crystal grain, and a circle equivalent grain size of the crystal grain is defined as a crystal grain. When the crystal grain size at which the cumulative frequency when calculating the frequency distribution of the crystal grain size is 70% from the fine grain side is defined as the average crystal grain size, An average crystal grain size of 35 μm or less;
    A steel sheet characterized by that.
    A = Cu + Ni (1)
    Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5 × B (2)
    Here, C, Si, Mn, Cu, Ni, Cr, Mo, V, and B are the contents of each element, and the unit is mass%.
  2.  さらに、前記鋼板の前記表面から前記板厚方向に沿って前記板厚の3/8の位置である3/8t部における前記平均結晶粒径が35μm以下であることを特徴とする請求項1に記載の鋼板。 Further, the average crystal grain size in a 3 / 8t portion which is a position of 3/8 of the plate thickness along the plate thickness direction from the surface of the steel plate is 35 μm or less. The described steel sheet.
  3.  さらに、前記1/8t部における前記平均結晶粒径が25μm以下であることを特徴とする請求項1に記載の鋼板。 Furthermore, the said average crystal grain diameter in the said 1 / 8t part is 25 micrometers or less, The steel plate of Claim 1 characterized by the above-mentioned.
  4.  さらに、前記鋼板の前記表面から前記板厚方向に沿って前記板厚の3/8の位置である3/8t部における前記平均結晶粒径が25μm以下であることを特徴とする請求項3に記載の鋼板。 Further, the average crystal grain size in a 3 / 8t portion which is a position of 3/8 of the plate thickness along the plate thickness direction from the surface of the steel plate is 25 μm or less. The described steel sheet.
  5.  前記鋼板の前記板厚が、80mm以上であることを特徴とする請求項1~4のいずれか1項に記載の鋼板。 The steel sheet according to any one of claims 1 to 4, wherein the thickness of the steel sheet is 80 mm or more.
PCT/JP2013/071864 2013-08-13 2013-08-13 Steel plate WO2015022729A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13883843.8A EP2860276B1 (en) 2013-08-13 2013-08-13 Steel plate
PCT/JP2013/071864 WO2015022729A1 (en) 2013-08-13 2013-08-13 Steel plate
CN201380025901.XA CN104520463B (en) 2013-08-13 2013-08-13 Steel plate
KR1020147031774A KR101542709B1 (en) 2013-08-13 2013-08-13 Steel plate
JP2013553679A JP5510620B1 (en) 2013-08-13 2013-08-13 steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/071864 WO2015022729A1 (en) 2013-08-13 2013-08-13 Steel plate

Publications (1)

Publication Number Publication Date
WO2015022729A1 true WO2015022729A1 (en) 2015-02-19

Family

ID=51031120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071864 WO2015022729A1 (en) 2013-08-13 2013-08-13 Steel plate

Country Status (5)

Country Link
EP (1) EP2860276B1 (en)
JP (1) JP5510620B1 (en)
KR (1) KR101542709B1 (en)
CN (1) CN104520463B (en)
WO (1) WO2015022729A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109937266B (en) * 2017-06-21 2020-07-03 日本制铁株式会社 Steel plate
EP3686303B1 (en) * 2017-09-19 2021-12-29 Nippon Steel Corporation Steel pipe and steel plate
CN110616300B (en) * 2018-06-19 2021-02-19 宝山钢铁股份有限公司 Low-temperature steel with excellent CTOD (carbon to steel) characteristics and manufacturing method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02250917A (en) 1989-03-24 1990-10-08 Nippon Steel Corp Production of steel for large heat input welding excellent in toughness at low temperature
JPH02254118A (en) 1989-03-25 1990-10-12 Nippon Steel Corp Production of steel for highly heated welding having excellent low temperature toughness
JPH0344417A (en) * 1989-07-11 1991-02-26 Nippon Steel Corp Production of thick steel plate for welded structure having excellent internal quality
JPH03264614A (en) 1990-03-14 1991-11-25 Nippon Steel Corp Manufacture of steel for high heat input welding having superior toughness at low temperature
JPH04180521A (en) * 1990-11-14 1992-06-26 Kobe Steel Ltd Production of high tensile thick steel plate having high yield strength and high toughness
JPH05179344A (en) 1992-01-08 1993-07-20 Kawasaki Steel Corp Production of high tensile steel having excellent low-temperature toughness of multilayer weld zone
JPH05186820A (en) 1992-01-09 1993-07-27 Nippon Steel Corp Production of steel having high toughness and high strength and excellent in elongation characteristic
JPH0781164B2 (en) 1986-04-30 1995-08-30 日本鋼管株式会社 Method for manufacturing high-strength and high-toughness steel sheet
JP2001335884A (en) 2000-05-26 2001-12-04 Sumitomo Metal Ind Ltd High strength thick steel plate excellent in ctod(crack tip opening displacement) characteristic, and its manufacturing method
JP2004360074A (en) * 2004-08-06 2004-12-24 Sumitomo Metal Ind Ltd Steel having superhigh heat input welding characteristic
JP4432905B2 (en) 2003-11-27 2010-03-17 住友金属工業株式会社 High-strength steel and offshore structures with excellent weld toughness
JP2013177649A (en) * 2012-02-28 2013-09-09 Nippon Steel & Sumitomo Metal Corp Thick steel plate with low yield ratio and method for producing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4309946B2 (en) * 2007-03-05 2009-08-05 新日本製鐵株式会社 Thick high-strength steel sheet excellent in brittle crack propagation stopping characteristics and method for producing the same
JP5741379B2 (en) * 2011-10-28 2015-07-01 新日鐵住金株式会社 High tensile steel plate with excellent toughness and method for producing the same
CN102899556B (en) * 2012-11-02 2014-05-28 湖南华菱湘潭钢铁有限公司 Production method for low-alloy medium-thick steel plate
WO2014188966A1 (en) * 2013-05-21 2014-11-27 新日鐵住金株式会社 Hot-rolled steel sheet and method for manufacturing same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0781164B2 (en) 1986-04-30 1995-08-30 日本鋼管株式会社 Method for manufacturing high-strength and high-toughness steel sheet
JPH02250917A (en) 1989-03-24 1990-10-08 Nippon Steel Corp Production of steel for large heat input welding excellent in toughness at low temperature
JPH02254118A (en) 1989-03-25 1990-10-12 Nippon Steel Corp Production of steel for highly heated welding having excellent low temperature toughness
JPH0344417A (en) * 1989-07-11 1991-02-26 Nippon Steel Corp Production of thick steel plate for welded structure having excellent internal quality
JPH03264614A (en) 1990-03-14 1991-11-25 Nippon Steel Corp Manufacture of steel for high heat input welding having superior toughness at low temperature
JPH04180521A (en) * 1990-11-14 1992-06-26 Kobe Steel Ltd Production of high tensile thick steel plate having high yield strength and high toughness
JPH05179344A (en) 1992-01-08 1993-07-20 Kawasaki Steel Corp Production of high tensile steel having excellent low-temperature toughness of multilayer weld zone
JPH05186820A (en) 1992-01-09 1993-07-27 Nippon Steel Corp Production of steel having high toughness and high strength and excellent in elongation characteristic
JP2001335884A (en) 2000-05-26 2001-12-04 Sumitomo Metal Ind Ltd High strength thick steel plate excellent in ctod(crack tip opening displacement) characteristic, and its manufacturing method
JP4432905B2 (en) 2003-11-27 2010-03-17 住友金属工業株式会社 High-strength steel and offshore structures with excellent weld toughness
JP2004360074A (en) * 2004-08-06 2004-12-24 Sumitomo Metal Ind Ltd Steel having superhigh heat input welding characteristic
JP2013177649A (en) * 2012-02-28 2013-09-09 Nippon Steel & Sumitomo Metal Corp Thick steel plate with low yield ratio and method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2860276A4 *

Also Published As

Publication number Publication date
EP2860276B1 (en) 2018-05-02
KR101542709B1 (en) 2015-08-12
EP2860276A4 (en) 2015-12-30
JP5510620B1 (en) 2014-06-04
KR20150029615A (en) 2015-03-18
CN104520463B (en) 2016-03-30
JPWO2015022729A1 (en) 2017-03-02
EP2860276A1 (en) 2015-04-15
CN104520463A (en) 2015-04-15

Similar Documents

Publication Publication Date Title
CN111094609B (en) Steel pipe and steel plate
EP3042976B1 (en) Steel sheet for thick-walled high-strength line pipe having exceptional corrosion resistance, crush resistance properties, and low-temperature ductility, and line pipe
JP5655356B2 (en) Wear-resistant steel plate with excellent low-temperature temper embrittlement cracking
JP4735191B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
JP5804229B1 (en) Abrasion-resistant steel plate and method for producing the same
JP7155702B2 (en) Thick steel plate for sour linepipe and its manufacturing method
WO2014103629A1 (en) STEEL SHEET HAVING YIELD STRENGTH OF 670-870 N/mm2 AND TENSILE STRENGTH OF 780-940 N/mm2
JP6409598B2 (en) High-strength ultra-thick H-shaped steel with excellent toughness and method for producing the same
WO2009123076A1 (en) Refractory steel material with welded joint excellent in unsusceptibility to reheat embrittlement and toughness and process for producing the same
JP2005290554A (en) Steel plate excellent in machinability, toughness and weldability, and method for production thereof
WO2014175122A1 (en) H-shaped steel and method for producing same
JP7211530B2 (en) WEAR RESISTANT STEEL AND METHOD FOR MANUFACTURING WEAR RESISTANT STEEL
JP2016079443A (en) High strength extra thick h-shaped steel excellent in toughness and production method therefor
WO2021020220A1 (en) High-strength steel sheet for sour resistant line pipe, manufacturing method thereof, and high-strength steel pipe made using high-strength steel sheet for sour resistant line pipe
JP2011202210A (en) Refractory steel having excellent reheat embrittlement resistance and low temperature toughness and method for producing the same
JP2011214053A (en) Low-yield-ratio thick steel plate for building structure superior in toughness at ultrahigh-heat-input weld zone, and method for manufacturing the same
JP5510620B1 (en) steel sheet
WO2021144953A1 (en) Steel sheet and steel pipe
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP6277679B2 (en) High-tensile steel plate with excellent gas cut cracking resistance and high heat input weld toughness
JP5796369B2 (en) Tempered low-yield-thickness steel plate with excellent sour resistance and manufacturing method thereof
JP6673320B2 (en) Thick steel plate and method for manufacturing thick steel plate
JP2007119890A (en) Method for producing high toughness and high tension steel sheet
JP5796368B2 (en) Tempered low-yield-thickness steel plate with excellent sour resistance and manufacturing method thereof
JP5494090B2 (en) Refractory steel material excellent in reheat embrittlement resistance and low temperature toughness and method for producing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380025901.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2013553679

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013883843

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE