JPH02250917A - Production of steel for large heat input welding excellent in toughness at low temperature - Google Patents

Production of steel for large heat input welding excellent in toughness at low temperature

Info

Publication number
JPH02250917A
JPH02250917A JP7332089A JP7332089A JPH02250917A JP H02250917 A JPH02250917 A JP H02250917A JP 7332089 A JP7332089 A JP 7332089A JP 7332089 A JP7332089 A JP 7332089A JP H02250917 A JPH02250917 A JP H02250917A
Authority
JP
Japan
Prior art keywords
steel
toughness
heat input
affected zone
input welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7332089A
Other languages
Japanese (ja)
Other versions
JPH0768577B2 (en
Inventor
Naoki Saito
直樹 斉藤
Ryota Yamaba
山場 良太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1073320A priority Critical patent/JPH0768577B2/en
Publication of JPH02250917A publication Critical patent/JPH02250917A/en
Publication of JPH0768577B2 publication Critical patent/JPH0768577B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce a steel for large heat input welding having high hardness and excellent in toughness in a weld heat-affected zone when used in a cold district, etc., by subjecting a continuously cast slab with a specific composition to cooling under specific conditions and then to reheating and hot rolling. CONSTITUTION:As a steel for large heat input welding for use in marine structure having high strength and excellent in toughness in a weld heat-affected zone when used in a cold district, such as the polar regions, a steel which has a composition (containing, by wt.%: 0.02 to 0.3 C, <0.3 Si, 0.50 to 2.50 Mn, 0.2 to 4.5 Ni, 0.003 to 0.015 Nb, 0.2 to 2.0 Cu, <0.01 N, Ti in an amount in the range where the weight ratio of Ti to N is regulated to 2.0 to 4.0, 0.005 to 0.1 Al, and 0.003-0.008 S or further containing, as elements for improving the strength of the steel, one or >=2 kinds among 0.1 to 1.0 Cr, 0.01 to 0.2 V, and 0.1 to 1.0 Mo) is continuously cast. The resulting continuously cast slab is cooled through a temp. region from 1000 to 600 deg.C at <=5.0 deg.C/min average cooling rate and then reheated up to <=1150 deg.C to undergo hot rolling, by which the steel stock for a cold district can be produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、低温靭性の優れた大入熱溶接用鋼の製造法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing a steel for high heat input welding that has excellent low-temperature toughness.

(従来の技術) 近年のエネルギー需要の増大から、海洋における石油、
天然ガス等の開発が精力的に行なわれており、特に、よ
り豊富な石油資源を求めて、最近では、北海、北極海等
の寒冷地で巨大な海洋構造物が建設されている。
(Conventional technology) Due to the recent increase in energy demand, oil in the ocean,
2. Description of the Related Art The development of natural gas and other resources is being actively carried out, and in particular, in search of richer oil resources, huge offshore structures have recently been constructed in cold regions such as the North Sea and the Arctic Ocean.

このような海洋構造物は、−30℃以下の低温にさらさ
れるとともに、波浪の影響等による複雑な負荷応力条件
のもとて操業されるため、それに使用される鋼材に対し
ては、優れた脆性破壊特性が要求される。
Such offshore structures are exposed to low temperatures of -30°C or lower and are operated under complex loading and stress conditions due to the effects of waves, etc., so the steel materials used in them must be Brittle fracture properties are required.

特に、母材よりも靭性が低下する溶接熱影響部の靭性は
、構造物の安全性に直接影響してくるため、衝撃試験等
により評価され、例えば、−60℃で3.5kgf−m
以上の衝撃値が要求される場合がある。
In particular, the toughness of the weld heat affected zone, which is lower in toughness than the base metal, directly affects the safety of the structure, so it is evaluated by impact tests, etc.
In some cases, a higher impact value is required.

また、構造物の巨大化は、建設コストの増加をもたらす
ため、使用鋼材の高張力鋼化、例えば、降伏点が36k
g/d以上の鋼材を用いることによる上部構造物の軽量
化や大入熱溶接法の採用による溶接コストの削減等が図
られている。
In addition, as structures become larger, construction costs increase, so it is necessary to use high-strength steel, such as steel with a yield point of 36k.
Efforts are being made to reduce the weight of superstructures by using steel materials with a rating of g/d or higher, and to reduce welding costs by adopting high heat input welding methods.

このような鋼材を製造する方法として、例えば、特開昭
68−103021号公報で述べているように、成分元
素を限定した制御圧延、加速冷却法による製造が公知で
ある。このような従来技術は、通常の溶接入熱(50k
J/cm以下)では、確かに溶接熱影響部の靭性が優れ
た鋼材を提供するものであるが、大入熱溶接においては
、その効果は期待できない。
As a method for manufacturing such steel materials, for example, as described in Japanese Patent Laid-Open No. 68-103021, controlled rolling with limited constituent elements and accelerated cooling are known. Such conventional technology uses normal welding heat input (50k
J/cm or less) does provide a steel material with excellent toughness in the weld heat affected zone, but this effect cannot be expected in high heat input welding.

溶接熱影響部の靭性を改善する技術としては、例えば、
特開昭80−245788号公報および特開昭60−1
52828号公報に記載されているごとく、酸化物をフ
ェライト変態核として粒内フィライトを生成させること
により、溶接熱影響部の靭性を向上せしめる技術などが
提案されている。
Examples of techniques to improve the toughness of the weld heat affected zone include:
JP-A No. 80-245788 and JP-A No. 60-1
As described in Japanese Patent No. 52828, a technique has been proposed in which the toughness of a weld heat affected zone is improved by generating intragranular phyllite using oxides as ferrite transformation nuclei.

しかしながら、これらの鋼では、鋳造工程で酸化物を均
一分散させるのが難かしく、安定した溶接熱影響部の靭
性を確保できない欠点があった。
However, these steels have the drawback that it is difficult to uniformly disperse oxides during the casting process, and stable toughness of the weld heat affected zone cannot be ensured.

(発明が解決しようとする課8) 本発明の目的は、上記した寒冷地、極地で使用される高
強度で優れた溶接熱影響部の靭性を有する海洋構造物用
鋼材の製造方法を提供するものである。
(Issue 8 to be Solved by the Invention) An object of the present invention is to provide a method for manufacturing a steel material for marine structures having high strength and excellent weld heat-affected zone toughness, which is used in the above-mentioned cold regions and polar regions. It is something.

(課題を解決するための手段) 本発明は、以上の問題点を解決するためになされたもの
であって、その要旨は、(1)ffi量%として、C:
 0.02〜0.(%、S 1:0.3%以下、Mn:
D、50〜2.50%、S :0.003〜o、oos
%、AJ :0.005〜0.1%、Nb:0.003
〜0.015%、Cu:o、2〜2.0%、Nl:0.
2〜4.5%、N : 0.01%以下および重量%で
、TiとN比(TI /N)が2.0〜4.0であるT
Iを含有し、(2)更に、V:0.2%以下、Mo:1
.0%以下、Cr:1.0%以下からなる強度改善元素
群のうち1種または2種以上を含有し、残部がFeおよ
び不可避的不純物から成る鋼を連続鋳造機により鋳造し
、その後の冷却速度が、1000”c〜eoo ’cま
での範囲で平均冷却速度が5.0℃/mln以下である
ような冷却を施した後、圧延前に1150”C以下に加
熱することを特徴とする大入熱溶接性の優れた低温用鋼
の製造法に関するものである。
(Means for Solving the Problems) The present invention has been made to solve the above problems, and its gist is as follows: (1) As ffi amount %, C:
0.02~0. (%, S 1: 0.3% or less, Mn:
D, 50-2.50%, S: 0.003-o, oos
%, AJ: 0.005-0.1%, Nb: 0.003
~0.015%, Cu:o, 2-2.0%, Nl:0.
2 to 4.5%, N: 0.01% or less and T with a Ti to N ratio (TI/N) of 2.0 to 4.0.
(2) furthermore, V: 0.2% or less, Mo: 1
.. Steel containing one or more of the strength-improving element group consisting of 0% or less and 1.0% or less of Cr, with the balance consisting of Fe and unavoidable impurities is cast using a continuous casting machine, and then cooled. It is characterized by performing cooling such that the average cooling rate is 5.0°C/ml or less within the range of 1000"c to eoo'c, and then heating to 1150"C or less before rolling. This invention relates to a method for producing low-temperature steel with high heat input weldability.

(作  用) 本発明者らは多くの実験事実に基づき、■溶接時の冷却
過程で生成する粒内フ丹ライトは、酸化物だけでなく、
TLNとMnSの複合析出物(以下、TlN−Mn5析
出物と呼ぶ)からでも生成し、溶接熱影響部の靭性を向
上させる、■このT i N −M n S複合析出物
は、連続鋳造後の冷却速度を制御することで、析出させ
ることができることを知見した。
(Function) Based on many experimental facts, the present inventors have found that: ■ Intragranular fluorites generated during the cooling process during welding are not only oxides;
This TiN-MnS composite precipitate is generated even from composite precipitates of TLN and MnS (hereinafter referred to as TlN-Mn5 precipitates) and improves the toughness of the weld heat-affected zone. It was discovered that it is possible to precipitate by controlling the cooling rate of .

以下、上記の知見に基づき、本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail based on the above findings.

第1図は、TlN−Mn5の析出物個数と入熱100k
J/cm相当の溶接熱サイクルを付加した後の靭性変化
である。
Figure 1 shows the number of precipitates and heat input of TlN-Mn5 at 100k.
This is the change in toughness after applying a welding thermal cycle equivalent to J/cm.

この時の試料の化学成分は以下の通りである。The chemical components of the sample at this time were as follows.

第1表 この図から、T i N −M n S析出物が増加す
るに伴い溶接熱サイクル後の靭性が向上することが分か
る。
Table 1 From this figure, it can be seen that the toughness after the welding thermal cycle improves as the TiN-MnS precipitates increase.

さらに、第2図には、同じ供試材を用いて実験した時の
凝固後の1000〜600℃の範囲での平均冷却速度と
TiN−Mn5複合析出物個数の関係を示すが、平均冷
却速度が5.0℃/S以下にすることで析出物の個数を
著しく増加させることが出来ることが分かる。
Furthermore, Fig. 2 shows the relationship between the average cooling rate and the number of TiN-Mn5 composite precipitates in the range of 1000 to 600°C after solidification when the same test material was used for the experiment. It can be seen that the number of precipitates can be significantly increased by reducing the temperature to 5.0° C./S or less.

以上の実験事実から、凝固後の冷却速度を制御すること
による、粒内フェライトの変態核となるTiN−MnS
複合析出物を増加させ、溶接熱影響部の靭性を向上させ
ることが出来る。ことが明らかになった。
From the above experimental facts, it is clear that by controlling the cooling rate after solidification, TiN-MnS, which becomes the transformation nucleus of intragranular ferrite, can be
It is possible to increase the number of composite precipitates and improve the toughness of the weld heat affected zone. It became clear.

なお、このようにして析出したTiN−MnS複合析出
物は1300℃以上の温度で加熱されると容易に溶解し
てしまうため、その後の熱間圧延前のスラブ加熱温度は
低い方が好ましく、望ましくは1150℃以下に加熱さ
れるべきである。
In addition, since the TiN-MnS composite precipitate precipitated in this way easily dissolves when heated at a temperature of 1300 ° C. or higher, it is preferable that the slab heating temperature before subsequent hot rolling is low. should be heated to below 1150°C.

次に、本発明における成分の限定理由について述べる。Next, the reasons for limiting the components in the present invention will be described.

Cは、強度を確保するために必要な元素であり、強度確
保のために、0.02%以上の添加が必要であるが、多
量の添加は溶接熱影響部の靭性の低下を招くためその上
限を0.3%とする。
C is an element necessary to ensure strength, and in order to ensure strength, it is necessary to add 0.02% or more, but adding a large amount leads to a decrease in the toughness of the weld heat affected zone, so it is The upper limit is set to 0.3%.

Slは多量に添加すると溶接熱影響部の靭性を阻害する
ため、その上限を0.3%とする。
Since adding a large amount of Sl inhibits the toughness of the weld heat affected zone, the upper limit is set at 0.3%.

Mnは強度確保のために0.5%以上添加する必要があ
るが、多量に添加すると靭性の低下をきたすため、その
上限を2.5%とする。
Mn needs to be added in an amount of 0.5% or more to ensure strength, but since adding a large amount causes a decrease in toughness, the upper limit is set at 2.5%.

Niは靭性、焼入れ性に有効な元素であると同時にCu
添加の際に問題となる熱間割れの軽減にも効果があり、
0.2%未満の添加ではその効果が認められず、また多
量の添加はNiが高価であるため、4.5%以下と限定
する。
Ni is an effective element for toughness and hardenability, and at the same time Cu
It is also effective in reducing hot cracking, which is a problem when added.
If less than 0.2% is added, the effect is not recognized, and if added in a large amount, Ni is expensive, so the content is limited to 4.5% or less.

NはTiと化合して析出物を形成する重要な元素である
が、鋼中でフリーに存在すると溶接熱影響部の靭性低下
を招くため、その上限をo、oto%とする。
N is an important element that combines with Ti to form precipitates, but if it exists freely in steel, it causes a decrease in the toughness of the weld heat affected zone, so its upper limit is set to o, oto%.

TIは本発明鋼にとって必須の元素であり、Nと化合し
てTiNを析出し、MnSの析出核として働く。したが
って、最適なTiNを得るために、TlとNの量を制御
する必要がある。すなわち、TiとNの重量比で2.0
未満になるとN過剰になり、溶接熱影響部の靭性の低下
を招き、4.0を超えるTI /Nでは、逆にTi過剰
になりTiCが析出し、母材靭性が低下する。
TI is an essential element for the steel of the present invention, combines with N to precipitate TiN, and acts as a precipitation nucleus for MnS. Therefore, in order to obtain optimal TiN, it is necessary to control the amounts of Tl and N. In other words, the weight ratio of Ti and N is 2.0.
If it is less than 4.0, there will be an excess of N, leading to a decrease in the toughness of the weld heat-affected zone, and if the TI/N exceeds 4.0, there will be an excess of Ti, causing TiC to precipitate, resulting in a decrease in the toughness of the base metal.

Nbは母材の強度、靭性を確保するために必要な元素で
あり、0.003%未満の添加では再結晶抑制効果がな
くなり、母材の靭性が低下し、逆に0.015%を超え
る添加では溶接熱影響部の靭性低下を招くため上記の範
囲に限定する。
Nb is an element necessary to ensure the strength and toughness of the base metal, and if it is added less than 0.003%, the effect of suppressing recrystallization is lost and the toughness of the base metal decreases, and on the contrary, if it exceeds 0.015% Since addition causes a decrease in the toughness of the weld heat affected zone, it is limited to the above range.

Cuは強度の上昇に有効な元素であり、0.2%未満で
はその効果がなく、2.0%を超える添加では熱間加工
の際に割れを発生しかつ溶接性を阻害するため、0.2
〜2.0%の範囲に限定する。
Cu is an element that is effective in increasing strength, but if it is less than 0.2%, it has no effect, and if it exceeds 2.0%, it will cause cracks during hot working and inhibit weldability. .2
-2.0%.

SはMnSの析出に重要な元素であって、第3図に示す
ように、0.008%未満の添加ではその析出が不十分
になると共に、0.008%を超えて添加すると、Mn
Sが多量に析出し、かえって靭性を阻害するために、0
.008〜0.008%の範囲に限定す仝。この場合、
0.008〜0.005%の範囲でさらに好ましい効果
が得られる。
S is an important element for the precipitation of MnS, and as shown in Figure 3, if it is added less than 0.008%, the precipitation will be insufficient, and if it is added more than 0.008%, it will cause MnS precipitation.
Since a large amount of S precipitates and actually impairs toughness,
.. It is limited to the range of 0.008% to 0.008%. in this case,
More preferable effects can be obtained within the range of 0.008 to 0.005%.

第3図の鋼のベース成分は0.05C−0,11S 1
−1.57Mn−0,005P −0,30Cu −0
,3ONi −0,01ONb −0,008TI −
0,003ONである。
The base composition of the steel in Figure 3 is 0.05C-0.11S 1
-1.57Mn-0,005P -0,30Cu -0
,3ONi −0,01ONb −0,008TI −
It is 0,003 ON.

AJは脱酸のために必要な元素であって、0.005%
以上の添加が必要であるが、多量に添加すると靭性が著
しく低下するため、0.1%を上限とする。
AJ is an element necessary for deoxidation, and is 0.005%
Although it is necessary to add more than 0.1%, the upper limit is set at 0.1% since adding a large amount significantly reduces the toughness.

本発明では、上記の基本成分系の他に、Cr。In the present invention, in addition to the above basic component system, Cr.

V、Moを1種または2種以上添加する。これらの成分
は鋼の強度を向上させるという均等的作用を持つもので
、所望の効果を確保するためには、それぞれ含有下限量
をCr:0.1%、V : 0.01%、Mo:0.1
%とする必要がある。しかし、それぞれCr:1.0%
、V :0.2%、Mo:1.0%を超えて含有させる
と溶接性、母材靭性を低下させるようになるため、上記
の通り限定する。
One or more types of V and Mo are added. These components have a uniform effect of improving the strength of steel, and in order to ensure the desired effect, the lower limits of content should be set to 0.1% for Cr, 0.01% for V, and 0.01% for Mo: 0.1
It needs to be %. However, Cr: 1.0%
, V: 0.2%, Mo: 1.0%, the weldability and base metal toughness will be reduced, so the limits are set as above.

以上述べた成分を有する鋼を電気炉、転炉で溶製し、連
続鋳造機で鋳造した後、凝固後の冷却速度が1000−
800℃の温度範囲で5.0”C,’+In以下である
ような冷却を行う。
After melting steel having the above-mentioned components in an electric furnace or converter and casting it in a continuous casting machine, the cooling rate after solidification is 1000-
Cooling is performed such that the temperature is below 5.0"C,'+In in a temperature range of 800°C.

溶接熱影響部の靭性を向上させるためには、T i N
 −M n S複合析出物の個数密度を確保する必要が
ある社、そのためにはMnSの析出核となるTiN析出
物を微細分散させる必要がある。
In order to improve the toughness of the weld heat affected zone, T i N
- For companies that need to ensure the number density of MnS composite precipitates, it is necessary to finely disperse TiN precipitates that serve as precipitation nuclei of MnS.

すなわち、従来知見から、凝固時(1500〜1200
℃)の冷却速度が速いほどTiN析出物が微細の分散を
することが知られており、造塊分塊法よりも凝固時の冷
却速度が速い連続鋳造法を採用する。
That is, from conventional knowledge, during solidification (1500 to 1200
It is known that the faster the cooling rate (°C) is, the finer the TiN precipitates are dispersed, so the continuous casting method, which has a faster cooling rate during solidification than the agglomeration blooming method, is used.

このようにして析出したTiN析出物上に1000℃以
下の温度範囲でMnSが析出するが、溶接熱影響部の靭
性改善に効果のあるTiN−MnS複合析出物の生成に
は制約条件があり、冷却速度が5.0℃/mlnを超え
ると適切なTiN−MnS複合析出物の生成が不十分で
あり、溶接時の冷却途中に変態して生成する粒内フェラ
イトの析出核として作用せず、溶接熱影響部の靭性向上
は期待できない。
MnS precipitates on the TiN precipitates thus precipitated in a temperature range of 1000°C or less, but there are constraints on the generation of TiN-MnS composite precipitates that are effective in improving the toughness of the weld heat-affected zone. If the cooling rate exceeds 5.0°C/mln, the formation of appropriate TiN-MnS composite precipitates is insufficient, and they do not act as precipitation nuclei for intragranular ferrite that is transformed and generated during cooling during welding. Improvement in the toughness of the weld heat affected zone cannot be expected.

なお、冷却速度は遅いほど良いが、その上限は連続鋳造
機の性能によって制約される。
Note that the slower the cooling rate, the better, but its upper limit is limited by the performance of the continuous casting machine.

その後、熱間圧延のために再加熱を施すが、その時の温
度は、母材の強度、靭性を確保するためと前述した熱処
理によりTiN−MnS複合析出物の形態を変化させな
いために、1150℃以下にする必要がある。
After that, reheating is performed for hot rolling, and the temperature at that time is 1150°C in order to ensure the strength and toughness of the base material and to not change the form of the TiN-MnS composite precipitate due to the heat treatment mentioned above. It is necessary to do the following.

なお、加熱後の圧延については、母材の強度、靭性の向
上を計るために、制御圧延を施したり、制御圧延後、水
冷しても何等T i N −Mn S複合析出物に変化
を与えることがないため、現在公知である製造方法を適
宜選択して採用できる。
Regarding rolling after heating, in order to improve the strength and toughness of the base material, controlled rolling is performed, and even if water cooling is performed after controlled rolling, no change will occur in the TiN-MnS composite precipitate. Therefore, currently known manufacturing methods can be appropriately selected and employed.

(実 施 例) 供試材の化学成分を第2表に示す。(Example) The chemical components of the test materials are shown in Table 2.

ここで、鋼A〜鋼Gは本発明に該当する成分系であり、
鋼Hは本発明から逸脱している鋼である。
Here, Steel A to Steel G are component systems that fall under the present invention,
Steel H is a steel that deviates from the invention.

また、第3表には供試材の製造条件および母材の強度靭
性、溶接部の靭性値を合わせて示している。
Table 3 also shows the manufacturing conditions of the test materials, the strength and toughness of the base metal, and the toughness of the welded part.

これらの鋼板は転炉で溶製された後、連続鋳造機で、厚
み240關、幅1800amに鋳造された。その後、再
加熱および熱間圧延され、32龍の鋼板とし試験に供さ
れた。
These steel plates were melted in a converter and then cast in a continuous casting machine to a thickness of 240 mm and a width of 1800 mm. Thereafter, it was reheated and hot rolled to form a 32 Dragon steel plate and subjected to testing.

なお、溶接熱影響部の靭性は、片面1層の潜弧溶接(入
熱:200kJ/c+n)後、シャルピー衝撃試験によ
り評価した。
The toughness of the weld heat-affected zone was evaluated by Charpy impact test after single-sided, single-layer latent arc welding (heat input: 200 kJ/c+n).

第3表から、本発明により製造された鋼板(板番1.3
. 5.6.7.8.10)は、母材、溶接熱影響部共
に優れた靭性を示していることが分かる。
From Table 3, the steel plate manufactured according to the present invention (plate number 1.3
.. 5.6.7.8.10) shows excellent toughness in both the base metal and the weld heat affected zone.

これに対して、板番2および4は鋳造時の1000〜8
00℃の平均冷却速度が大きく、溶接熱影響部の靭性が
低下している。板番9は圧延前のスラブ加熱温度が本発
明から逸脱しており、母材の靭性が低下している。板番
11は、成分範囲が本発明から逸脱しているものである
が、この場合、製造条件が本発明の範囲内でも溶接熱影
響部の靭性の低下は免れない。
On the other hand, plate numbers 2 and 4 are 1000 to 8 when cast.
The average cooling rate at 00°C is high, and the toughness of the weld heat affected zone is reduced. In plate No. 9, the slab heating temperature before rolling deviates from the present invention, and the toughness of the base material is reduced. Plate No. 11 has a component range that deviates from the present invention, but in this case, even if the manufacturing conditions are within the range of the present invention, the toughness of the weld heat affected zone is inevitably reduced.

(本発明の効果) 以上述べたように、本発明によれば、大入熱溶接によっ
ても溶接熱影響部の低温靭性が安定して高水準の鋼材が
得られるため、産業上極めて有用なものである。
(Effects of the present invention) As described above, according to the present invention, a steel material of high quality with stable low-temperature toughness of the weld heat-affected zone can be obtained even by high heat input welding, which is extremely useful industrially. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はTLN−MnS複合析出物と溶接熱サイクル後
の靭性変化を示す図表、第2図は凝固時の1000〜6
00℃の温度範囲における平均冷却速度とTiN−Mn
5複合析出物の個数と関係を示す図表、第3図は入熱2
00kJ/amにおける片面1層潜弧溶接を行った時の
溶接熱影響部の靭性と(S)量の関係を示した図表であ
る。 代 理 人  弁理士  茶野木 立 夫第1図 第2図 畢j!J7#却遮度 (”CAM清) (S)x  fO’ (wt九)
Figure 1 is a chart showing the TLN-MnS composite precipitate and the change in toughness after welding thermal cycles, and Figure 2 is a graph showing the toughness of the TLN-MnS composite precipitate after the welding thermal cycle.
Average cooling rate and TiN-Mn in the temperature range of 00°C
5 Diagram showing the number and relationship of composite precipitates, Figure 3 shows heat input 2
2 is a chart showing the relationship between the toughness of the weld heat affected zone and the amount of (S) when single-sided, single-layer latent arc welding is performed at 00 kJ/am. Agent Patent Attorney Tatsuo Chanoki Figure 1, Figure 2! J7# Rejection degree ("CAM clear") (S) x fO' (wt9)

Claims (1)

【特許請求の範囲】 1、重量%として、 C:0.02〜0.3% Si:0.3%以下 Mn:0.50〜2.50% Ni:0.2〜4.5% Nb:0.003〜0.015% Cu:0.2〜2.0% N:0.01%以下 重量%で、TiとN比(Ti/N)が2.0〜4.0に
なるようなTi、 Al:0.005〜0.1% S:0.003〜0.008% 残部がFeおよび不可避的不純物より成る鋼を連続鋳造
し、その後の冷却速度が、1000℃〜600℃までの
範囲で平均冷却速度が5.0℃/min以下であるよう
な冷却を施した後、圧延前に1150℃以下に加熱する
ことを特徴とする低温靭性の優れた大入熱溶接用鋼の製
造方法。 2、重量%として Cr:0.1〜1.0% V:0.01〜0.2% Mo:0.1〜1.0% からなる強度改善元素群のうちの1種または2種以上を
更に含有し、残部がFeおよび不可避的不純物から成る
鋼である請求項1記載の低温靭性の優れた大入熱溶接用
鋼の製造方法。
[Claims] 1. As weight%, C: 0.02-0.3% Si: 0.3% or less Mn: 0.50-2.50% Ni: 0.2-4.5% Nb : 0.003 to 0.015% Cu: 0.2 to 2.0% N: 0.01% or less by weight, so that the Ti to N ratio (Ti/N) is 2.0 to 4.0. A steel containing Ti, Al: 0.005-0.1%, S: 0.003-0.008% and the balance consisting of Fe and unavoidable impurities is continuously cast, and the subsequent cooling rate is set to 1000°C to 600°C. A steel for high heat input welding with excellent low-temperature toughness characterized by being cooled at an average cooling rate of 5.0°C/min or less in the range of Production method. 2. One or more of the strength improving element group consisting of Cr: 0.1-1.0% V: 0.01-0.2% Mo: 0.1-1.0% as weight% 2. The method for producing a high heat input welding steel having excellent low-temperature toughness according to claim 1, wherein the steel further contains Fe and inevitable impurities.
JP1073320A 1989-03-24 1989-03-24 Method for producing high heat input welding steel with excellent low temperature toughness Expired - Lifetime JPH0768577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1073320A JPH0768577B2 (en) 1989-03-24 1989-03-24 Method for producing high heat input welding steel with excellent low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1073320A JPH0768577B2 (en) 1989-03-24 1989-03-24 Method for producing high heat input welding steel with excellent low temperature toughness

Publications (2)

Publication Number Publication Date
JPH02250917A true JPH02250917A (en) 1990-10-08
JPH0768577B2 JPH0768577B2 (en) 1995-07-26

Family

ID=13514762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1073320A Expired - Lifetime JPH0768577B2 (en) 1989-03-24 1989-03-24 Method for producing high heat input welding steel with excellent low temperature toughness

Country Status (1)

Country Link
JP (1) JPH0768577B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014201877A1 (en) 2013-06-19 2014-12-24 宝山钢铁股份有限公司 Zinc-induced-crack resistant steel plate and manufacturing method therefor
WO2015022729A1 (en) 2013-08-13 2015-02-19 新日鐵住金株式会社 Steel plate
CN112912532A (en) * 2018-10-26 2021-06-04 株式会社Posco High-strength steel material having excellent sulfide stress corrosion cracking resistance and method for producing same
WO2024053276A1 (en) * 2022-09-09 2024-03-14 Jfeスチール株式会社 Steel cast slab, continuous casting method, and method for producing steel cast slab

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792129A (en) * 1980-11-27 1982-06-08 Nippon Steel Corp Production of nonrefined high toughness steel
JPS5980717A (en) * 1982-10-29 1984-05-10 Nippon Kokan Kk <Nkk> Manufacture of unnormalized ni steel for low temperature use with superior toughness at high heat input welded joint
JPS6176614A (en) * 1984-09-21 1986-04-19 Nippon Kokan Kk <Nkk> Manufacture of steel material for large heat input welding
JPS61113715A (en) * 1984-11-09 1986-05-31 Kawasaki Steel Corp Manufacture of steel for large heat input welding
JPS621842A (en) * 1985-06-26 1987-01-07 Nippon Steel Corp Tough, high tension steel having superior toughness in weld zone
JPS6462201A (en) * 1987-08-31 1989-03-08 Nippon Steel Corp Manufacture of directly rolled thick steel plate having good characteristics in low reduction ratio

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792129A (en) * 1980-11-27 1982-06-08 Nippon Steel Corp Production of nonrefined high toughness steel
JPS5980717A (en) * 1982-10-29 1984-05-10 Nippon Kokan Kk <Nkk> Manufacture of unnormalized ni steel for low temperature use with superior toughness at high heat input welded joint
JPS6176614A (en) * 1984-09-21 1986-04-19 Nippon Kokan Kk <Nkk> Manufacture of steel material for large heat input welding
JPS61113715A (en) * 1984-11-09 1986-05-31 Kawasaki Steel Corp Manufacture of steel for large heat input welding
JPS621842A (en) * 1985-06-26 1987-01-07 Nippon Steel Corp Tough, high tension steel having superior toughness in weld zone
JPS6462201A (en) * 1987-08-31 1989-03-08 Nippon Steel Corp Manufacture of directly rolled thick steel plate having good characteristics in low reduction ratio

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014201877A1 (en) 2013-06-19 2014-12-24 宝山钢铁股份有限公司 Zinc-induced-crack resistant steel plate and manufacturing method therefor
WO2015022729A1 (en) 2013-08-13 2015-02-19 新日鐵住金株式会社 Steel plate
CN112912532A (en) * 2018-10-26 2021-06-04 株式会社Posco High-strength steel material having excellent sulfide stress corrosion cracking resistance and method for producing same
WO2024053276A1 (en) * 2022-09-09 2024-03-14 Jfeスチール株式会社 Steel cast slab, continuous casting method, and method for producing steel cast slab

Also Published As

Publication number Publication date
JPH0768577B2 (en) 1995-07-26

Similar Documents

Publication Publication Date Title
JP3990724B2 (en) High strength secondary hardened steel with excellent toughness and weldability
US3567434A (en) Stainless steels
JP3898814B2 (en) Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness
JPH01230713A (en) Production of high-strength and high-toughness steel having excellent stress corrosion cracking resistance
JPS601929B2 (en) Manufacturing method of strong steel
WO2004022807A1 (en) Steel product for high heat input welding and method for production thereof
US4534805A (en) Low alloy steel plate and process for production thereof
JP2837732B2 (en) Manufacturing method of large heat input welding steel with excellent low temperature toughness
JPH01159356A (en) High tension steel having superior tougeness at weld heat-affected zone
JP4237904B2 (en) Ferritic heat resistant steel sheet with excellent creep strength and toughness of base metal and welded joint and method for producing the same
JPH02250917A (en) Production of steel for large heat input welding excellent in toughness at low temperature
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JPH06306551A (en) High strength martensitic stainless steel and its production
NO300552B1 (en) Process for the manufacture of low alloy steel with high corrosion resistance for pipelines
JP2004323966A (en) Steel sheet superior in quake resistance and weldability, and manufacturing method therefor
JPH02254118A (en) Production of steel for highly heated welding having excellent low temperature toughness
JPH04157117A (en) Production of rolled shape steel having excellent toughness of base metal and weld zone
JPS6320414A (en) Production of high-toughness high-tensile steel plate
JPH03249126A (en) Soaking treatment in production of high strength steel
CN107974613A (en) The production method of the X80 level pipe line steels of resisting sulfide stress corrosion cracking
JPS6358906B2 (en)
JPS6117885B2 (en)
JPH03264615A (en) Manufacture of steel for high heat input welding having superior toughness at low temperature
JPH0313525A (en) Production of high-mn nonmagnetic steel having excellent sr brittle resistant characteristic, high strength and high toughness
JP2004003013A (en) High-strength steel sheet superior in toughness of weld heat-affected zone, and manufacturing method therefor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070726

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 14