JPS6320414A - Production of high-toughness high-tensile steel plate - Google Patents

Production of high-toughness high-tensile steel plate

Info

Publication number
JPS6320414A
JPS6320414A JP16510786A JP16510786A JPS6320414A JP S6320414 A JPS6320414 A JP S6320414A JP 16510786 A JP16510786 A JP 16510786A JP 16510786 A JP16510786 A JP 16510786A JP S6320414 A JPS6320414 A JP S6320414A
Authority
JP
Japan
Prior art keywords
steel
temperature
surface layer
toughness
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16510786A
Other languages
Japanese (ja)
Inventor
Hideji Okaguchi
秀治 岡口
Tamotsu Hashimoto
保 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP16510786A priority Critical patent/JPS6320414A/en
Publication of JPS6320414A publication Critical patent/JPS6320414A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To improve the uniformity of the hardness in the thickness direction of a steel plate by heating a specifically composed steel contg. Nb, V or Ti to a prescribed temp. and rough-rolling the steel, then subjecting the rolled steel to primary force cooling and recuperation treatment of the surface layer part under specific conditions. CONSTITUTION:The steel contg., by weight %, 0.02-0.18 C, <=1.0 Si, 0.5-2.0 Mn, 0.005-0.080 solAl, and 0.005-0.150 respectively >=1 kinds among Nb, Ti and V, if necessary, contg. >=1 kinds of 0.05-1.00 Cr, Mo and Cu respectively and 0.1-3.0 Ni, and consisting of the balance Fe is prepd. Such steel is heated to 1,050-1,250 deg.C at which the Nb, Ti and V are thoroughly solutionized. The heated steel is roughly rolled and the rolled steel is force-cooled until the surface layer part of the steel plate falls down to the ferrite transformation initiation temp. or below at the time when a suitable plate thickness is attained in the mid-way of rolling. The steel plate is in succession subjected to the recuperation treatment for 30sec-10min to restore the temp. of the above-mentioned surface layer part to the austenite transformation end temp. or above and further, the steel plate is force-cooled down to <=650 deg.C at >=4 deg.C/sec cooling rate in the central part of the thickness.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、板厚方向に硬さの不均一がなく、−膜構造
物用としても、或いは海洋構造物用としても好適な高靭
性高張力鋼板を安定・確実に製造する方法に関するもの
である。
[Detailed Description of the Invention] <Industrial Field of Application> The present invention provides a high-toughness material with no non-uniformity in hardness in the thickness direction, and which is suitable for use in membrane structures and offshore structures. This invention relates to a method for stably and reliably manufacturing tensile steel plates.

近年、船舶、圧力容器、ラインパイプ、建築物等に代表
される溶接樽造物の大型化に伴い、安全性と経済性の面
から使用鋼材のより一層の高張力化が望まれており、ま
た同時に溶接作業性と同じく安全性の面からは高靭性と
優れた溶接性が鋼材に要求されている。
In recent years, with the increase in the size of welded barrel structures such as ships, pressure vessels, line pipes, and buildings, there has been a desire for steel materials with even higher tensile strength from the standpoint of safety and economy. At the same time, steel materials are required to have high toughness and excellent weldability from the standpoint of safety as well as welding workability.

勿論、このような要求に対して、熱間圧延後に強制冷却
を行う“制御圧延−加速冷却法”や“直接焼入れ(Di
rect−Quench)法1等の高靭性高張力鋼材の
製造方法が開発され、得られる鋼材の良好な溶接性や靭
性、或いは添加合金元素削減下でも実現される高い強度
が注目され、低温用鋼材やラインパイプ等の製造に一般
的に活用されるようになってきた。
Of course, in response to these demands, the "controlled rolling-accelerated cooling method" in which forced cooling is performed after hot rolling, and the "direct quenching (Di
A manufacturing method for high-toughness, high-strength steel, such as the rect-quench method 1, has been developed, and the resulting steel has attracted attention for its good weldability and toughness, as well as its high strength, which can be achieved even with a reduction in added alloying elements. It has come to be commonly used for manufacturing line pipes, etc.

しかし、一方で、このような加速冷却を利用した鋼材の
製造方法には「厚さが厚くなるにつれて厚さ方向の硬さ
変動が大きくなる(中心部に比して表層部が硬くなる)
」と言う問題点も指摘されていたのである。なぜなら、
厚さ方向の硬さ変動が大きくて中心部に比し表面近傍の
硬度が高い鋼材では、環境割れ感受性が高まる上、例え
ばラインパイプ製管時等において十分な冷間加工性を示
さないからである。
However, on the other hand, this method of manufacturing steel materials using accelerated cooling has the following problem: ``As the thickness increases, the hardness variation in the thickness direction increases (the surface layer becomes harder than the center).
'' problems were also pointed out. because,
Steel materials with large hardness fluctuations in the thickness direction and higher hardness near the surface than in the center are more susceptible to environmental cracking and do not exhibit sufficient cold workability when making line pipes, for example. be.

〈従来技術とその問題点〉 このようなことから、高強度・高靭性を有しかつ厚さ方
向のバラツキも少ない鋼材を製造することについては、
従来から熱処理鋼或いは制御圧延鋼の何れを問わずに様
々な検討が加えられており、いくつかの有望な提案もな
されている。
<Prior art and its problems> From the above, regarding the production of steel materials that have high strength and toughness and have little variation in the thickness direction,
Various studies have been made in the past, regardless of whether the steel is heat treated or controlled rolled, and some promising proposals have been made.

例えば、特開昭60−169517号公和Gこは、アシ
キュラーフェライトm織網が板厚方向の硬さ均一性に優
れているとの知見に基づいた、rNb添加鋼に熱間圧延
後加速冷却を施し、引き続いて焼入れ・焼戻し処理を行
うことにより組織をアシキュラーフェライト組織として
板厚方向硬さの均一な鋼材を得る方法」が開示されてい
る。
For example, in JP-A No. 60-169517, Kowa G has developed an rNb-added steel that is accelerated after hot rolling based on the knowledge that an acicular ferrite m-woven network has excellent hardness uniformity in the plate thickness direction. A method for obtaining a steel material with uniform hardness in the thickness direction by cooling and subsequently quenching and tempering to change the structure to an acicular ferrite structure is disclosed.

しかしながら、この方法では、板厚方向における被処理
鋼材の焼入れ性そのものが均一なままであることへの配
慮が足りず、焼入れのために強水冷を行った場合の“表
面部と中心部との速度差による表面部硬さの上界”が避
けられないので、十分に満足できる均一な板厚方向硬さ
の実現は極めて困難であった。
However, this method does not take into account that the hardenability of the steel to be treated remains uniform in the thickness direction, and when strong water cooling is performed for hardening, Since there is an unavoidable upper limit on the surface hardness due to the speed difference, it has been extremely difficult to achieve a sufficiently uniform hardness in the thickness direction.

一方、特公昭51−15804号公報や、本出願人の提
案に係る特開昭59−182916号公報には、「予備
冷却によって加速冷却前の調板表面部と中心部とのU織
に差を与え、これを加速冷却することで最終的に板厚方
向の硬さを均一にする方法」が開示されている。つまり
、これらの方法は、予備冷却により綱板中心部をオース
テナイト−相組織に、そして表面部を〔オーステナイト
+フェライト〕混合相として表面部の焼入れ性を軽減し
、これによって板厚方向の硬さが均一な鋼板を実現しよ
うとするものであり、この点では十分な効果が得られる
ものではあったが、その後の検討により、このようにし
て得られた製品網板は表層部が“二相から急冷された組
織”となっているため、該部分の伸びや靭性に劣化傾向
が懸念される場合もあるとの問題点が指摘されたのであ
る。
On the other hand, Japanese Patent Publication No. 51-15804 and Japanese Patent Application Laid-Open No. 59-182916 proposed by the present applicant state that ``Preliminary cooling makes a difference in the U-weave between the surface part of the tuning plate and the center part before accelerated cooling. A method is disclosed in which the hardness is finally made uniform in the thickness direction by giving the same thickness and accelerating cooling. In other words, these methods reduce the hardenability of the steel plate by making the center part of the steel plate an austenite-phase structure and the surface part a mixed phase of [austenite + ferrite], thereby increasing the hardness in the thickness direction. This was an attempt to achieve a uniform steel plate, and although it was sufficiently effective in this respect, subsequent studies revealed that the surface layer of the product mesh plate obtained in this way was “two-phase”. It was pointed out that there was a problem that there was a concern that the elongation and toughness of the part might tend to deteriorate because the structure was quenched rapidly.

く問題点を解決するための手段〉 本発明者等は、従来の高張力鋼板に認められる前記問題
点を踏まえた上で、板厚方向の硬さが十分に満足できる
均一性を有し、しかも伸びや靭性等の特性の点でも格別
な難点の無い高靭性高張力鋼材を安定・確実に製造し得
る方法を提供すべく、鋼材成分組成や鋼材製造条件等を
総合した見地からの研究を行ったところ、 「所定割合でNb、 V或いはTiを含有する特定成分
組成鋼を、まずこれらの元素が十分に固溶する温度域に
加熱して熱間圧延を施し、圧延の途中で適当な板厚とな
った時点でフェライト変態開始温度以下までへの表層部
の一次的強制冷却と、これに続(特定°時間内で行うオ
ーステナイト変態終了温度以上への復熱処理(口板中心
部からの自然復熱、或いは表面近傍の急速加熱等)とを
施すと口材表層部の焼入れ性が著しく低下し、その後に
加速冷却を行っても表層部硬さのみが高くなることが防
止されて厚さ方向に強度不均一の無い鋼板が得られる」 との知見を得るに至ったのである。
Means for Solving the Problems> Based on the above problems observed in conventional high-strength steel sheets, the present inventors have developed a steel sheet that has sufficiently uniform hardness in the thickness direction, Moreover, in order to provide a method for stably and reliably manufacturing high-toughness, high-strength steel materials that do not have any particular drawbacks in terms of properties such as elongation and toughness, we are conducting research from a comprehensive perspective of steel material composition, steel manufacturing conditions, etc. They found that ``a steel with a specific composition containing Nb, V, or Ti in a predetermined proportion is first heated to a temperature range where these elements are sufficiently dissolved in solid solution, hot-rolled, and then heated at an appropriate temperature during rolling. At the point when the plate thickness is reached, the surface layer is first forcedly cooled to below the ferrite transformation start temperature, followed by reheating treatment (from the center of the mouth plate to above the austenite transformation finish temperature within a specified time). (natural recuperation, rapid heating near the surface, etc.) will significantly reduce the hardenability of the surface layer of the mouth material, and even if accelerated cooling is performed afterwards, only the hardness of the surface layer will be prevented from increasing. This led to the discovery that a steel plate with no uniformity in strength in the transverse direction can be obtained.

この発明は、上記知見に基づいてなされたものであり、 C: 0.02〜0.18%(以下、成分割合を表す%
は重量%とする)、 Si : 1.0%以下、 Mn : 0.5〜2.0
%、so It 、A j! : 0.005〜0.0
80%、を含有すると共に Nb : 0.005〜0.150%、Ti : 0.
005〜0.150%、v : o、oos〜0.15
0% のうちの1種以上を含むか、或いは、更にCr : 0
.05〜1.00%、 Mo : 0.05〜1.00%、 Cu : 0.05〜1.00%、 Ni:0.1〜3.0% のうちの1種以上をも含み、残部がFe及び不可避的不
純物からなる鋼を1050〜1250℃の温度に加熱し
て粗圧延後、表層部温度がフェライト変態開始温度以下
になるまで強制冷却し、引き続いて30秒〜10分の復
熱処理によって前記表層部温度をオーステナイト変態終
了温度以上に復熱させてから仕上げ圧延を行い、次いで
4℃/sec以上の板厚中心部の冷却速度で650℃以
下にまで強制冷却することにより、肉1方向の硬さが均
一な高靭性高張力鋼板を安定して製造し得るようにした
点、 に特徴を有するものである。
This invention was made based on the above findings, and C: 0.02 to 0.18% (hereinafter referred to as % representing the component ratio).
is weight%), Si: 1.0% or less, Mn: 0.5 to 2.0
%, so It, A j! : 0.005~0.0
80%, Nb: 0.005 to 0.150%, Ti: 0.
005~0.150%, v: o, oos~0.15
0%, or further contains Cr: 0
.. 05-1.00%, Mo: 0.05-1.00%, Cu: 0.05-1.00%, Ni: 0.1-3.0%, and the remainder Steel consisting of Fe and unavoidable impurities is heated to a temperature of 1050 to 1250°C and rough rolled, then forcedly cooled until the surface layer temperature becomes below the ferrite transformation starting temperature, followed by reheating treatment for 30 seconds to 10 minutes. The surface layer temperature is reheated to the austenite transformation end temperature or higher, and then finish rolling is performed, and then the thickness center is forcibly cooled to 650°C or less at a cooling rate of 4°C/sec or more. The present invention is characterized in that it is possible to stably manufacture a high-toughness, high-strength steel plate with uniform directional hardness.

続いて、この発明において対象調の成分割合、並びに加
熱・圧延条件を前記の如くに限定した理由を説明する。
Next, the reason why the component ratio of the symmetrical tone and the heating and rolling conditions are limited as described above in this invention will be explained.

A)鋼の成分割合 (al   C C成分には鋼材の強度を確保する作用があるが、その含
有量が0.02%未満では前記作用に所望の効果が得ら
れず、一方、0.18%を越えて含有させると母材及び
溶接部の靭性劣化を招(ようになることから、C含有量
は0.02〜0.18%と定めた。
A) Component ratio of steel (Al C The C component has the effect of ensuring the strength of steel materials, but if its content is less than 0.02%, the desired effect cannot be obtained, and on the other hand, 0.18% If the C content exceeds 0.0%, the toughness of the base metal and welded part will deteriorate. Therefore, the C content was set at 0.02 to 0.18%.

Cb)   5i Stは鋼の脱酸剤として有効な成分であり、また固溶強
化を通じて強度上昇にも有効であるが、1.0%を越え
て含有させると靭性及び溶接性に悪影響が出て(ること
から、Si含有量は1.0%以下と定めた。
Cb) 5i St is an effective component as a deoxidizing agent for steel, and is also effective in increasing strength through solid solution strengthening, but if it is contained in excess of 1.0%, toughness and weldability are adversely affected. (Thus, the Si content was determined to be 1.0% or less.

(c)  Mn 9o成分には母材及び溶接部の強度並びに靭性を向上さ
せる作用があるが、その0.5%未満では前記作用に所
望の効果が得られず、一方、2.0%を越えて含有させ
ると、ベイナイト組織等の低温変態生成物の富化による
靭性劣化を招くようになることから、Mn含有量は0.
5〜2.0%と定めた。
(c) The Mn 9o component has the effect of improving the strength and toughness of the base metal and welded part, but if it is less than 0.5%, the desired effect cannot be obtained; If the Mn content exceeds 0.00, the Mn content will deteriorate the toughness due to the enrichment of low-temperature transformation products such as bainite structure.
It was set at 5 to 2.0%.

(d)   sol、A1 11は鋼の脱酸剤として、そして結晶粒微細化のために
添加される成分であるが、その含有量がSol、^lで
o、oos%未満ではこれらの添加目的に対して十分な
効果が得られず、一方、soj、Ajlが0.080%
を越えて含有させると非金属介在物の量が急激に増加し
て靭性劣化を招くようになることから、sol、11’
含有量は0.005〜0.080%と定めた。
(d) Sol, A1 11 is a component added as a deoxidizing agent for steel and for grain refinement, but if its content is less than o, oos% in Sol,^l, the purpose of these additions is On the other hand, soj and Ajl were 0.080%
If the content exceeds sol, 11', the amount of non-metallic inclusions will rapidly increase, leading to deterioration of toughness.
The content was determined to be 0.005% to 0.080%.

(e)  Nbs Ti、、及び■ これらの元素はこの発明において特に重要な役割を持つ
鋼成分であり、オーステナイト中或いはフェライト中に
炭窒化物として析出し鋼の強度・靭性を向上させると同
時に、所定の熱履歴を与えることによって鋼材(特に前
記熱履歴が与えられる鋼材表層部)の焼入れ性を低下さ
せ、加速冷却材の板厚方向硬さを均一にする作用を有し
ているので1種又は2種以上含有せしめられるが、各々
o、oos%未満では前記作用に所望の効果が得られず
、一方、何れも0.15(1%を越えて含有させると溶
接部の靭性劣化を招くようになることから、Nb、Ti
及び■の1種以上の含有量はそれぞれ0.005〜0.
150%と定めた。
(e) Nbs Ti, and ■ These elements are steel components that play a particularly important role in this invention, and are precipitated as carbonitrides in austenite or ferrite, improving the strength and toughness of the steel. It is a type 1 type because it has the effect of reducing the hardenability of the steel material (particularly the surface layer of the steel material to which the above-mentioned heat history is applied) by providing a predetermined thermal history, and making the hardness of the accelerated cooling agent uniform in the thickness direction. Or, two or more types can be contained, but if each is less than o and oos%, the desired effect cannot be obtained in the above-mentioned action.On the other hand, if each is contained in excess of 0.15 (1%), the toughness of the welded part will deteriorate. From this, Nb, Ti
The content of one or more of (1) and (2) is 0.005 to 0.0, respectively.
It was set at 150%.

ff)  Cr−MO% C11%及びNiこれらの元
素には何れも泪の強度を同上させる作用があるので、更
なる高強度が必要な場合に1種又は2種以上添加される
成分であるが、各成分の含有量限定理由を付随的な作用
と共に以下に説明する。
ff) Cr-MO% C11% and Ni These elements all have the effect of increasing the strength of tears, so if even higher strength is required, one or more of these elements are added. The reason for limiting the content of each component will be explained below along with the accompanying effects.

Q  Cr、及び−〇 これらの成分の強度向上作用は、何れもその含有量が0
.05%未満では所望の効果を示さず、一方、それぞれ
1.00%を越えて含有量させると母材及び溶接部の靭
性劣化を招くようになることから、Cr及び40の含有
量は何れも0.05〜1.00%と定めた。
Q Cr and -〇The strength-improving effect of these components is due to their content being 0.
.. If the content of Cr and 40 is less than 0.05%, the desired effect will not be exhibited, while if the content exceeds 1.00%, the toughness of the base metal and welded part will deteriorate. It was set at 0.05-1.00%.

○ Cu Cu成分には、鋼の強度向上作用は勿論のこと、耐食性
改善作用もあるが、その含有量が0.05%未満では上
記作用に所望の効果が得られず、一方、1.00%を越
えて含有させるとスラブに熱間割れが発生し易くなるこ
とから、その含有量を0.05〜1.00%と定めた。
○ Cu The Cu component not only improves the strength of steel but also improves corrosion resistance, but if its content is less than 0.05%, the desired effect cannot be obtained; Since hot cracking is likely to occur in the slab if the content exceeds 0.05% to 1.00%.

○ Ni Ni成分には、鋼の強度向上作用は勿論のこと、靭性並
びに耐食性を改善する作用もあるが、その含有量が0.
1%未満では上記作用に所望の効果が得られず、一方、
3.0%を越えて含有させると母材及び溶接部の靭性が
劣化するようになることから、Ni含有量は0.1〜3
.0%と定めた。
○ Ni The Ni component not only improves the strength of steel, but also improves toughness and corrosion resistance, but if its content is 0.
If it is less than 1%, the desired effect cannot be obtained in the above action; on the other hand,
If the Ni content exceeds 3.0%, the toughness of the base metal and weld zone will deteriorate, so the Ni content should be 0.1 to 3.
.. It was set as 0%.

B)加熱・圧延条件 (a)  加熱温度 熱間圧延に先立つ加熱温度が1050℃未満では添加し
たNb、 Ti、 V、Cr、 MOSCu及びNi等
が鋼中へ十分に固溶せず、鋼に所望の強度及び靭性を付
与し得なくなる上、後述する予備冷却時の熱履歴によっ
て表層部と中心部の焼入れ性に差を付けることができな
くなる。一方、前記加熱温度が1250℃を越えるとオ
ーステナイト粒が粗大化し過ぎて、後で行われる“圧延
−加速冷却”によっても十分な靭性を確保できな(なる
。従って、熱間圧延に先立つ加熱温度を1050〜12
50℃と定めた。
B) Heating/Rolling Conditions (a) Heating Temperature If the heating temperature prior to hot rolling is less than 1050°C, the added Nb, Ti, V, Cr, MOSCu, Ni, etc. will not be sufficiently solid-dissolved in the steel and will not form in the steel. Not only will it not be possible to impart the desired strength and toughness, but it will also no longer be possible to differentiate the hardenability between the surface layer portion and the center portion due to the thermal history during preliminary cooling, which will be described later. On the other hand, if the heating temperature exceeds 1250°C, the austenite grains will become too coarse, making it impossible to ensure sufficient toughness even with the subsequent "rolling-accelerated cooling" process. 1050~12
The temperature was set at 50°C.

山) 予備冷却温度 粗圧延後の鋼材に対しては、表層部の焼入れ性を低下さ
せるために一旦強制冷却(例えば水冷)が施されるが、
このような予備冷却による表層部の水冷停止温度を「フ
ェライト変態開始温度以下」と定めたのは、フェライト
変態開始温度以上(即ちオーステナイト域)にて冷却を
停止した場合にはその後に復熱処理を行っても表層部の
焼入れ性が低下せず、厚さ方向に均一な硬さを有する鋼
材が得られないからである。
Pre-cooling temperature Steel materials after rough rolling are once forcedly cooled (e.g. water-cooled) to reduce the hardenability of the surface layer.
The reason why the water-cooling stop temperature of the surface layer due to preliminary cooling is set as "below the ferrite transformation start temperature" is because if cooling is stopped at the ferrite transformation start temperature or higher (i.e., in the austenite region), reheating treatment will be performed afterwards. This is because even if this is done, the hardenability of the surface layer portion will not deteriorate and a steel material having uniform hardness in the thickness direction will not be obtained.

なお、予備冷却の手段は格別に制限されるものではない
が、熱履歴の効果を板厚方向に十分行き渡らせると言う
目的からは30〜150龍の板厚に対して300〜30
00 ff/m”・min程度の強水冷を2〜60秒程
度行うのが望ましい。
The means of pre-cooling is not particularly limited, but for the purpose of ensuring that the effect of thermal history is sufficiently distributed in the thickness direction, the pre-cooling means should be 300 to 30 mm for a plate thickness of 30 to 150 mm.
It is desirable to perform strong water cooling at about 00 ff/m''·min for about 2 to 60 seconds.

(C1復熱処理時間、及び復熱温度 この発明では、上述したように、鋼材表層部の焼入れ性
を低下させるため、予備冷却後の鋼材を“鋼材中心部か
らの自然復熱”や“表面近傍の局所加熱”等の手段にて
表層部温度がオーステナイト変態終了温度(Ac3点)
以上となるように復熱させる必要がある。そして、この
復熱温度がAc3点未満であると厚さ方向に均一な硬さ
を有する鋼材が得られない上、粗大ベイナイトが混入し
たりして表層部の靭性及び延性を劣化させてしまう。
(C1 reheating treatment time and recuperation temperature In this invention, as mentioned above, in order to reduce the hardenability of the surface layer of the steel material, the steel material after preliminary cooling is processed by "natural reheating from the center of the steel material" or "near the surface area." The temperature of the surface layer reaches the end temperature of austenite transformation (Ac 3 points)
It is necessary to reheat so that the temperature reaches the above level. If the recuperation temperature is less than the Ac3 point, a steel material having uniform hardness in the thickness direction cannot be obtained, and coarse bainite may be mixed in, resulting in deterioration of the toughness and ductility of the surface layer.

つまり、こうした“強制冷却−復熱処理”を行うことに
よりNb5Ti、 Vの作用が生かされて鋼材表層部の
焼入れ性低下が実現されると共に、該表層部に細粒オー
ステナイトが形成されてその延性・靭性が向上する訳で
あるが、この効果をより安定に確保するためには復熱湯
度をAc、点〜(Ac。
In other words, by performing such "forced cooling-recuperation treatment", the effects of Nb5Ti and V are utilized to reduce the hardenability of the surface layer of the steel material, and fine-grained austenite is formed in the surface layer, improving its ductility. This improves toughness, but in order to ensure this effect more stably, the recuperating hot water temperature must be adjusted to Ac.

点+100℃〕とするのが好ましい。point +100°C] is preferable.

更に、Nb、 Ti或いは■による表層部の焼入れ性軽
減効果を高能率作業下で確実ならしめるためには、復熱
処理時間(予備冷却停止から仕上圧延開始までの時間)
を30秒〜10分に調整することも重要である。なぜな
ら、30秒未満の短時間復熱処理では表層部の焼入れ性
低下効果が十分ではなく、一方、復熱処理時間が10分
を越えると圧延能率や経済性を著しく低下させるためで
ある。
Furthermore, in order to ensure the effect of reducing the hardenability of the surface layer by Nb, Ti or
It is also important to adjust the time to between 30 seconds and 10 minutes. This is because short-time reheating treatment of less than 30 seconds does not sufficiently reduce the hardenability of the surface layer portion, while reheating treatment time of more than 10 minutes significantly reduces rolling efficiency and economic efficiency.

なお、復熱に表面近傍の外部加熱手段を採用する場合に
はガスバーナー、赤外線加熱装置或いは誘導加熱装置等
の使用が可能であるが、温度制御や作業性の観点からす
れば誘導加熱によるのが望ましい。そして、予備冷却後
の自然復熱又は局所(表面)加熱による復熱処理の容易
さの観点からは、圧延材の板厚は30〜150mm程度
であることが好ましい。
In addition, when adopting external heating means near the surface for recuperation, it is possible to use a gas burner, infrared heating device, induction heating device, etc., but from the viewpoint of temperature control and workability, induction heating is preferable. is desirable. From the viewpoint of ease of natural recuperation after preliminary cooling or recuperation treatment by local (surface) heating, the thickness of the rolled material is preferably about 30 to 150 mm.

(dl  仕上げ圧延後の加速冷却条件この加速冷却は
、鋼材の強度及び靭性を向上させるために行うもので、
この発明の方法が目的とする高靭性高張力鋼板の製造に
は不可欠な工程である。しかし、この際の冷却速度が板
厚中心部の平均冷却速度で4℃/sec未満であったり
、加速冷却(水冷)停止温度が650℃を上回った場合
には十分な強度・靭性向上効果を得ることができない。
(dl Accelerated cooling conditions after finish rolling This accelerated cooling is performed to improve the strength and toughness of the steel material.
This is an essential step for producing high-toughness, high-strength steel sheets, which is the objective of the method of this invention. However, if the average cooling rate at the center of the plate thickness is less than 4°C/sec or if the accelerated cooling (water cooling) stop temperature exceeds 650°C, sufficient strength and toughness improvement effects may not be achieved. can't get it.

従って、加速冷却は板厚中心部の冷却速度で4℃/se
c以上にて行い、かつ630°C以下まで実施すること
と定めた。
Therefore, accelerated cooling is performed at a cooling rate of 4°C/sec at the center of the plate thickness.
It was specified that the test should be carried out at temperatures above 630°C and below 630°C.

さて、第1図は、第1表に示す成分組成の鋼を熱間加工
した際の予備冷却による熱履歴条件と得られる鋼材の硬
さとの関係を示すグラフであり、熱間加工再現状9!装
置により小型試験片をr 1200゛Cに加熱後、10
00℃で25%の加工を行い、更に850℃で50%の
加工を重ねてから、そのまま冷却速度:30°C/se
cで室温まで冷却した場合(図中0)」と、「同じ<1
200℃に加熱してから1000℃で25%の加工を行
った後、−旦400℃に冷却し、引き続いて1分間の加
熱処理で900℃にまで復熱させてから850℃にて5
0%の加工を施した後、そのまま冷却速度:30℃/s
ecで室温まで冷却した場合(図中[F])」の硬度差
を確認することができる。
Now, Figure 1 is a graph showing the relationship between the thermal history conditions due to preliminary cooling and the hardness of the obtained steel material when hot working steel having the composition shown in Table 1. ! After heating the small test piece to r 1200°C using the device,
After 25% processing at 00°C, 50% processing at 850°C, cooling rate: 30°C/se.
When cooled to room temperature at c (0 in the figure) and "Same <1"
After heating to 200°C, processing at 1000°C for 25%, cooling to 400°C, then reheating to 900°C by heat treatment for 1 minute, and then heating to 850°C for 5%.
After 0% processing, cooling rate: 30℃/s
It is possible to confirm the difference in hardness when cooled to room temperature using EC ([F] in the figure).

そして、これらの比較から、Nb或いはTi−Vを含有
する鋼ではr400℃への冷却に次く900℃への再加
熱」によって著しい硬度低下、即ち焼入れ性の低下が実
現できるのに対して、Ti、 Nb、■を含まない比較
鋼ではこのような熱履歴を施しても焼入れ性の低下効果
は極めて少ないことが分かる。また、第1図からは、予
備冷却による熱履歴を与えた試料であっても、 ○ 強制冷却時にフェライト変態温度を下回らないもの
く図中O)、 ○ 復熱時間が30秒より短いもの(図中■)、では硬
度低下が極めて小さく、その効果が十分でないことも分
かり、更には、復熱温度が低くてオーステナイト変態温
度を越えないものでは粗大ベイナイトとフェライトの混
合組織を呈したり(図中[F])、硬度低下が生じない
(図中[F])等、十分な効果を得られないことが分か
る。
From these comparisons, it is found that steel containing Nb or Ti-V can achieve a significant decrease in hardness, that is, a decrease in hardenability, by cooling to 400℃ and then reheating to 900℃. It can be seen that in the comparison steel that does not contain Ti, Nb, and ■, even when subjected to such a heat history, the effect of reducing hardenability is extremely small. Furthermore, from Figure 1, even if the sample has been given a thermal history due to pre-cooling, ○ those that do not fall below the ferrite transformation temperature during forced cooling (O in the figure), ○ those whose reheating time is shorter than 30 seconds ( ■) in the figure shows that the hardness reduction is extremely small and the effect is not sufficient.Furthermore, in the cases where the recuperation temperature is low and does not exceed the austenite transformation temperature, a mixed structure of coarse bainite and ferrite is exhibited (Fig. It can be seen that sufficient effects cannot be obtained, such as medium [F]) and no decrease in hardness ([F] in the figure).

一方、第2図は、上記知見より決定した熱履歴条件で圧
延を行った場合の鋼材厚さ方向の硬度変化を本発明対象
鋼(第1表のA鋼)と比較鋼(第1表のC11il)と
について調査した結果を示したものである(A鋼の結果
は第2図<a)に、Cflの結果は第2図世)に示した
)。なお、この調査は、各鋼を1200度に加熱してま
ず6011厚にまで熱間圧延してから、流量密度: 1
000 Il/m”・+minの水冷を15秒間施しく
表面温度が450℃となる)、その後60秒間の板厚中
心部からの自然復熱を行って表層温度を900℃とした
後、再度の圧延を800℃まで行って板厚を30mmと
し、その後直ちに冷却速度(板厚中心部の平均冷却速度
):10℃/secで550℃まで加速冷却してから放
冷した板材について実施された。
On the other hand, Figure 2 shows the change in hardness in the thickness direction of the steel material when rolling is performed under the thermal history conditions determined from the above findings, between the steel subject to the present invention (Steel A in Table 1) and the comparative steel (Steel A in Table 1). (The results for A steel are shown in Figure 2<a), and the results for Cfl are shown in Figure 2). In addition, in this investigation, each steel was heated to 1200 degrees and first hot rolled to a thickness of 6011, and then the flow density: 1
000 Il/m"・+min water cooling for 15 seconds to bring the surface temperature to 450°C), then natural reheating from the center of the plate thickness for 60 seconds to bring the surface temperature to 900°C, and then The test was carried out on a plate material that was rolled to 800°C to a plate thickness of 30 mm, immediately thereafter acceleratedly cooled to 550°C at a cooling rate (average cooling rate at the center of the plate thickness) of 10°C/sec, and then allowed to cool.

そして、比較のため、各圧延間に予備冷却を行わずにそ
のまま放冷し、800℃より加速冷却したものの結果も
第2図に併せて示した。
For comparison, FIG. 2 also shows the results obtained by allowing the material to cool as it is without pre-cooling between each rolling, and by accelerating cooling from 800.degree.

第2図に示される結果からは、熱履歴を与えないもの(
図中のO印)や鋼の構成成分としてNb、Tis Vの
何れかを含まないもの(第2図(b))では得られた鋼
板の表面硬度上昇が生じていて、板厚方向の強度が不均
一であるのに対し、成分組成が前記本発明の条件を満た
しており、かつ本発明で限定した条件通りの熱履歴を与
えた鋼板(第2図(a)の・印)では表層の硬度上昇が
抑えられ、極めて優れた板厚方向硬さの均一性が確保さ
れていることが分かる。
From the results shown in Figure 2, it is clear that the results do not give any thermal history (
O mark in the figure) and steel that does not contain either Nb or Tis V as a constituent component (Figure 2 (b)), the surface hardness of the obtained steel plate increases, and the strength in the thickness direction increases. On the other hand, in a steel plate whose composition satisfies the conditions of the present invention and has been given a thermal history according to the conditions defined by the present invention (marked with * in Fig. 2 (a)), the surface layer is non-uniform. It can be seen that the increase in hardness is suppressed, and extremely excellent uniformity of hardness in the thickness direction is ensured.

次いで、この発明を、より具体的な実施例によって比較
例と対比しながら説明する。
Next, the present invention will be explained using more specific examples and in comparison with comparative examples.

〈実施例〉 まず、第2表に示される化学成分組成の各鋼片を準備し
、これらを第3表に示す熱履歴条件の熱間圧延及び加速
冷却条件にて3011厚の鋼板とした。
<Example> First, steel pieces having the chemical compositions shown in Table 2 were prepared, and these were hot-rolled under the heat history conditions shown in Table 3 and made into steel plates with a thickness of 3011 under accelerated cooling conditions.

なお、圧延途中の予備冷却(水冷)は板厚70鶴の時点
で行うと共に、復熱処理後の仕上げ圧延は〔復熱湯度〜
800℃〕で実施し、800℃で圧延を仕上げた後は直
ちに加速冷却(水冷)を施した。ここで、復熱温度が8
00℃を切るものについては、復熱後できるだけ高い温
度(はぼ復熱温度)で仕上げ圧延を完了し直ちに加速冷
却を行った。
Preliminary cooling (water cooling) during rolling is performed when the plate thickness reaches 70 mm, and finish rolling after reheating treatment is performed at [recuperation temperature ~
800°C], and immediately after finishing the rolling at 800°C, accelerated cooling (water cooling) was performed. Here, the recuperation temperature is 8
For those whose temperature was below 00°C, finish rolling was completed at a temperature as high as possible after reheating (the recuperation temperature), and accelerated cooling was immediately performed.

このようにして得られた各′m板について、その機械的
性質を測定すると共に板厚方向の硬さ分布を調査し、そ
の結果を第3表に併せて示した。
The mechanical properties of each of the thus obtained plates were measured, and the hardness distribution in the thickness direction was also investigated, and the results are also shown in Table 3.

硬さ分布の評価は第2図で示す如き分布図を作成して行
い、第2図(alの・印で示したように表層部と中心部
とで実質的な硬さのバラツキが認められないものについ
ては「○印」で、また硬さのバラツキがやや認められる
ものについては「△印」で、そして硬さのバラツキが顕
著なものについては「×印jで表示した。
The hardness distribution was evaluated by creating a distribution map as shown in Figure 2. Items with no hardness are marked with a ``○'' mark, items with slight variations in hardness are marked with a △ mark, and items with noticeable variations in hardness are marked with an x mark j.

第3表に示される結果からも明らかなように、本発明で
規定する条件通りに製造された鋼板は強度及び靭性に優
れることは勿論、優れた板厚方向の硬さ均一性を有する
のに対して、製造条件の何れかが本発明の条件から外れ
た鋼板は上記特性を十分に満足しないことが分かる(な
お、綱の化学成分組成が本発明で規定する条件から外れ
ている場合には、処理条件が本発明の規定を満たしてい
ても上記良好な特性を確保できないことは第2図(bl
で示した通りである)。
As is clear from the results shown in Table 3, the steel plate manufactured according to the conditions specified in the present invention not only has excellent strength and toughness, but also has excellent hardness uniformity in the thickness direction. On the other hand, it can be seen that a steel sheet whose manufacturing conditions deviate from the conditions specified in the present invention does not fully satisfy the above characteristics (in addition, if the chemical composition of the steel sheet deviates from the conditions specified in the present invention, As shown in Figure 2 (bl
(as shown in ).

以上に説明した如く、この発明によれば、板厚方向に硬
さの不均一がなく、しかも優れた靭性を有する高張力F
4仮を安定して高能率生産することができ、船舶、圧力
容器、ラインパイプ、建築構造物等、各種鋼構造物の信
顛性を一段と高めてその大型化にも十分対処することが
可能となるなど、産業上極めて有用な効果がもたらされ
るのである。
As explained above, according to the present invention, there is no non-uniformity in hardness in the thickness direction, and the high tensile F material has excellent toughness.
It is possible to stably and efficiently produce four types of steel structures, and it is possible to further improve the reliability of various steel structures such as ships, pressure vessels, line pipes, and building structures, and to fully cope with the increase in size. This brings about extremely useful effects industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、各種成分組成の鋼について予備冷却条件を変
えて熱間圧延・加速冷却したものの硬さを比較したグラ
フ、 第2図は、熱間圧延・加速冷却によって鋼板を製造する
に際して、予備冷却を施した場合と施さなかった場合の
板厚方向硬さ分布を比較したグラフであり、第2図(a
lは本発明対象鋼についてのもの、第2図中)は比較鋼
についてのものである。
Figure 1 is a graph comparing the hardness of steels of various compositions hot rolled and accelerated cooled with different precooling conditions. Figure 2 is a graph comparing the hardness of steel sheets with different precooling conditions. This is a graph comparing the hardness distribution in the thickness direction when precooling is applied and when it is not applied.
1 is for the steel subject to the present invention, and 1) is for the comparative steel.

Claims (2)

【特許請求の範囲】[Claims] (1)重量割合にて、 C:0.02〜0.18%、Si:1.0%以下、Mn
:0.5〜2.0%、sol.Al:0.005〜0.
080%、を含有すると共に Nb:0.005〜0.150%、 Ti:0.005〜0.150%、 V:0.005〜0.150% のうちの1種以上をも含み、残部がFe及び不可避的不
純物からなる鋼を1050〜1250℃の温度に加熱し
て粗圧延後、表層部温度がフェライト変態開始温度以下
になるまで強制冷却し、引き続いて30秒〜10分の復
熱処理によって前記表層部温度をオーステナイト変態終
了温度以上に復熱させてから仕上げ圧延を行い、次いで
4℃/sec以上の板厚中心部の冷却速度で650℃以
下にまで強制冷却することを特徴とする、肉厚方向の硬
さが均一な高靭性高張力鋼板の製造法。
(1) Weight percentage: C: 0.02 to 0.18%, Si: 1.0% or less, Mn
:0.5-2.0%, sol. Al: 0.005-0.
080%, and also contains one or more of Nb: 0.005 to 0.150%, Ti: 0.005 to 0.150%, V: 0.005 to 0.150%, and the remainder Steel consisting of Fe and unavoidable impurities is heated to a temperature of 1050 to 1250°C and rough rolled, then forcedly cooled until the surface layer temperature becomes below the ferrite transformation starting temperature, followed by reheating treatment for 30 seconds to 10 minutes. Finish rolling is performed after the surface layer temperature is reheated to a temperature equal to or higher than the austenite transformation end temperature, and then forced cooling is performed to 650°C or less at a cooling rate of the central part of the plate thickness of 4°C/sec or more. , a method for manufacturing high-toughness, high-strength steel plates with uniform hardness in the thickness direction.
(2)重量割合にて、 C:0.02〜0.18%、Si:1.0%以下、Mn
:0.5〜2.0%、sol.Al:0.005〜0.
080%、を含有すると共に Nb:0.005〜0.150%、 Ti:0.005〜0.150%、 V:0.005〜0.150% のうちの1種以上、並びに Cr:0.05〜1.00%、 Mo:0.05〜1.00%、 Cu:0.05〜1.00%、 Ni:0.1〜3.0% のうちの1種以上をも含み、残部がFe及び不可避的不
純物からなる鋼を1050〜1250℃の温度に加熱し
て粗圧延後、表層部温度がフェライト変態開始温度以下
になるまで強制冷却し、引き続いて30秒〜10分の復
熱処理によって前記表層部温度をオーステナイト変態終
了温度以上に復熱させてから仕上げ圧延を行い、次いで
4℃/sec以上の板厚中心部の冷却速度で650℃以
下にまで強制冷却することを特徴とする、肉厚方向の硬
さが均一な高靭性高張力鋼板の製造法。
(2) Weight percentage: C: 0.02 to 0.18%, Si: 1.0% or less, Mn
:0.5-2.0%, sol. Al: 0.005-0.
080%, and one or more of Nb: 0.005-0.150%, Ti: 0.005-0.150%, V: 0.005-0.150%, and Cr: 0 .05 to 1.00%, Mo: 0.05 to 1.00%, Cu: 0.05 to 1.00%, Ni: 0.1 to 3.0%. Steel, the remainder of which consists of Fe and unavoidable impurities, is heated to a temperature of 1050 to 1250°C and rough rolled, then forcedly cooled until the surface layer temperature falls below the ferrite transformation initiation temperature, followed by 30 seconds to 10 minutes of recovery. Finish rolling is performed after the surface layer temperature is reheated to a temperature equal to or higher than the austenite transformation end temperature by heat treatment, and then forced cooling is performed to 650°C or less at a cooling rate of 4°C/sec or more at the center of the plate thickness. A method for manufacturing high-toughness, high-strength steel plates with uniform hardness in the thickness direction.
JP16510786A 1986-07-14 1986-07-14 Production of high-toughness high-tensile steel plate Pending JPS6320414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16510786A JPS6320414A (en) 1986-07-14 1986-07-14 Production of high-toughness high-tensile steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16510786A JPS6320414A (en) 1986-07-14 1986-07-14 Production of high-toughness high-tensile steel plate

Publications (1)

Publication Number Publication Date
JPS6320414A true JPS6320414A (en) 1988-01-28

Family

ID=15806030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16510786A Pending JPS6320414A (en) 1986-07-14 1986-07-14 Production of high-toughness high-tensile steel plate

Country Status (1)

Country Link
JP (1) JPS6320414A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320758A (en) * 1992-05-18 1993-12-03 Kobe Steel Ltd Production of thick steel plate excellent in toughness at low temperature
JP2009138276A (en) * 2009-01-16 2009-06-25 Jfe Steel Corp Design method for precipitation-strengthened high-strength steel sheet, production method therefor, and precipitation-strengthened high-strength steel sheet
CN104120350A (en) * 2014-07-04 2014-10-29 四川易亨机械制造有限公司 High-performance alloy steel and manufacturing method thereof
EP4032993A4 (en) * 2019-09-20 2022-07-27 JFE Steel Corporation Thick steel sheet, and method for producing same
EP4032992A4 (en) * 2019-09-20 2022-11-09 JFE Steel Corporation Thick steel sheet, and method for producing thick steel sheet
EP4206336A1 (en) * 2021-12-29 2023-07-05 Voestalpine Grobblech GmbH Plate and thermomechanical processing method of raw material for producing a plate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176616A (en) * 1984-09-25 1986-04-19 Nippon Steel Corp Manufacture of thick steel plate superior in toughness

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176616A (en) * 1984-09-25 1986-04-19 Nippon Steel Corp Manufacture of thick steel plate superior in toughness

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320758A (en) * 1992-05-18 1993-12-03 Kobe Steel Ltd Production of thick steel plate excellent in toughness at low temperature
JP2009138276A (en) * 2009-01-16 2009-06-25 Jfe Steel Corp Design method for precipitation-strengthened high-strength steel sheet, production method therefor, and precipitation-strengthened high-strength steel sheet
CN104120350A (en) * 2014-07-04 2014-10-29 四川易亨机械制造有限公司 High-performance alloy steel and manufacturing method thereof
EP4032993A4 (en) * 2019-09-20 2022-07-27 JFE Steel Corporation Thick steel sheet, and method for producing same
EP4032992A4 (en) * 2019-09-20 2022-11-09 JFE Steel Corporation Thick steel sheet, and method for producing thick steel sheet
EP4206336A1 (en) * 2021-12-29 2023-07-05 Voestalpine Grobblech GmbH Plate and thermomechanical processing method of raw material for producing a plate
WO2023126507A1 (en) * 2021-12-29 2023-07-06 Voestalpine Grobblech Gmbh Heavy plate and thermomechanical handling method for a starting material for the production of a heavy plate

Similar Documents

Publication Publication Date Title
US5876521A (en) Ultra high strength, secondary hardening steels with superior toughness and weldability
US4776900A (en) Process for producing nickel steels with high crack-arresting capability
JP2005320561A (en) High-strength hot-dip galvanized steel sheet superior in spot weldability and quality stability of material
JPS62174322A (en) Manufacture of low yield ratio high tension steel plate superior in cold workability
JPH04325657A (en) High strength hot rolled steel sheet excellent in stretch-flanging property and its manufacture
JPH0920922A (en) Production of high toughness steel plate for low temperature use
JPS6320414A (en) Production of high-toughness high-tensile steel plate
JP3246993B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JPH03211230A (en) Production of low alloy steel for line pipe with high corrosion resistance
JP3264956B2 (en) Accelerated cooling type manufacturing method for thick steel plate
JPH05245657A (en) Production of high ni alloy clad steel sheet excellent in brittleness propagation stoppage property of base metal
JPH0557332B2 (en)
JPH0317244A (en) High strength hot rolled steel plate high having excellent workability and weldability and its manufacture
JPS5952207B2 (en) Manufacturing method of low yield ratio, high toughness, high tensile strength steel plate
JPH0331423A (en) Production of high tensile electric welded steel tube having excellent low temp. toughness
JPS6320413A (en) Production of high-toughness high-tensile steel plate
JPS5828327B2 (en) Method for producing ultra-low carbon high tensile strength steel with extremely excellent ductility
JPS62139821A (en) Production of high-ductility high-strength cold rolled steel sheet
JPH05148544A (en) Production of high-strength high-toughness steel plate having uniform hardness distribution in thickness direction
JPS6338518A (en) Production of steel plate having excellent hydrogen induced cracking resistance
JPH04333526A (en) Hot rolled high tensile strength steel plate having high ductility and its production
JPS63179019A (en) Manufacture of high tension steel plate having low yield ratio
JPH02305923A (en) Production of high tensile electric welded steel pipe having excellent low-temp. toughness
JPS5945735B2 (en) Method for manufacturing high-strength cold-rolled steel sheets with excellent ductility through continuous annealing
JPS61127814A (en) Manufacture of high tension steel plate having excellent low-temperature toughness