WO2024053276A1 - Steel cast slab, continuous casting method, and method for producing steel cast slab - Google Patents
Steel cast slab, continuous casting method, and method for producing steel cast slab Download PDFInfo
- Publication number
- WO2024053276A1 WO2024053276A1 PCT/JP2023/027675 JP2023027675W WO2024053276A1 WO 2024053276 A1 WO2024053276 A1 WO 2024053276A1 JP 2023027675 W JP2023027675 W JP 2023027675W WO 2024053276 A1 WO2024053276 A1 WO 2024053276A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel slab
- slab
- less
- steel
- mold
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 194
- 239000010959 steel Substances 0.000 title claims abstract description 194
- 238000000034 method Methods 0.000 title claims description 49
- 238000009749 continuous casting Methods 0.000 title claims description 41
- 238000004519 manufacturing process Methods 0.000 title claims description 30
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 20
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 18
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 16
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 10
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 9
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 8
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 6
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 4
- 238000007711 solidification Methods 0.000 claims description 51
- 230000008023 solidification Effects 0.000 claims description 51
- 238000010438 heat treatment Methods 0.000 claims description 47
- 239000000843 powder Substances 0.000 claims description 37
- 238000005266 casting Methods 0.000 claims description 21
- 238000011282 treatment Methods 0.000 claims description 17
- 229910052791 calcium Inorganic materials 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 229910052749 magnesium Inorganic materials 0.000 claims description 9
- 229910052796 boron Inorganic materials 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims description 8
- 229910052758 niobium Inorganic materials 0.000 claims description 8
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- 229910052720 vanadium Inorganic materials 0.000 claims description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 57
- 238000012360 testing method Methods 0.000 description 29
- 239000000203 mixture Substances 0.000 description 28
- 210000004027 cell Anatomy 0.000 description 27
- 239000000463 material Substances 0.000 description 24
- 238000005336 cracking Methods 0.000 description 23
- 229910004283 SiO 4 Inorganic materials 0.000 description 17
- 230000015271 coagulation Effects 0.000 description 17
- 238000005345 coagulation Methods 0.000 description 17
- 230000010355 oscillation Effects 0.000 description 17
- 239000011575 calcium Substances 0.000 description 15
- 238000001816 cooling Methods 0.000 description 15
- 239000011777 magnesium Substances 0.000 description 15
- 239000010949 copper Substances 0.000 description 13
- 238000005096 rolling process Methods 0.000 description 13
- 239000011651 chromium Substances 0.000 description 12
- 239000010955 niobium Substances 0.000 description 12
- 239000010936 titanium Substances 0.000 description 12
- 230000007423 decrease Effects 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 10
- 238000000465 moulding Methods 0.000 description 10
- 239000011593 sulfur Substances 0.000 description 10
- 230000035882 stress Effects 0.000 description 9
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 8
- 239000011574 phosphorus Substances 0.000 description 8
- 230000008646 thermal stress Effects 0.000 description 7
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 210000001787 dendrite Anatomy 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000005496 eutectics Effects 0.000 description 5
- 239000007791 liquid phase Substances 0.000 description 5
- 239000011733 molybdenum Substances 0.000 description 5
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 5
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000010953 base metal Substances 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 229910001208 Crucible steel Inorganic materials 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000002436 steel type Substances 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- -1 AlN are generated Chemical class 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910000746 Structural steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000011418 maintenance treatment Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/10—Supplying or treating molten metal
- B22D11/108—Feeding additives, powders, or the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/16—Controlling or regulating processes or operations
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
Definitions
- the present invention relates to a steel slab containing Ni (nickel), a continuous casting method, and a method for producing a steel slab.
- Ni-containing steel Steel containing around 9% by mass of Ni (hereinafter also referred to as Ni-containing steel) is also referred to as 9% Ni steel.
- 9% Ni steel can withstand use at temperatures below -160°C, and is therefore widely used as a welded structural steel for low-temperature applications such as LNG tanks, for example.
- Ni-containing steel is prone to scratches on its surface.
- a slab after being cast has many cracks (hereinafter also referred to as surface cracks) on and near the surface.
- S (sulfur), P (phosphorus), etc. contained in the steel slab become concentrated in a specific region.
- An increase in the concentration of S (sulfur) and P (phosphorus) causes grain boundary embrittlement of the steel slab. Therefore, in this region, surface cracks occur because the embrittled grain boundaries are destroyed by tensile stress.
- Patent Document 1 discloses controlling the cooling rate and the surface temperature of the slab in a secondary cooling zone when continuously casting molten steel containing 5 to 10% by mass of Ni. ing.
- Patent Document 2 describes that when continuously casting Ni-containing steel containing 8 to 10% by mass of Ni, the reduction of area at the time of casting is estimated, and the secondary Controlling the cooling intensity is disclosed.
- Ni-containing steels having a Ni content of less than 7.5% by mass is increasing significantly.
- the present invention has been made in view of the above problems, and provides a steel slab containing 2.0% by mass or more and less than 7.5% by mass of Ni and less surface cracking, a continuous casting method, and a continuous casting method for producing a steel slab.
- the purpose is to provide a manufacturing method.
- the present invention has the following features.
- a continuous casting method for casting the steel slab according to [1] or [2] A continuous casting method that includes the step of vibrating a mold at a frequency of 80 cycles or more per minute.
- a continuous casting method for casting the steel slab according to [1] or [2] A step of adding mold powder having a viscosity of 0.5 Pa ⁇ s (5 poise) or more at 1300° C. into the mold, A continuous casting method comprising the step of vibrating a mold at a frequency of 50 cycles or more per minute.
- the size of the solidification cells can be made smaller than the conventional size. Thereby, segregation of S (sulfur) and P (phosphorus) at the interface of the solidification cell can be reduced more than before. As a result, embrittlement at the interface of the solidified cells can be suppressed. Moreover, the stress acting on the interface of the coagulation cell can also be dispersed. Thereby, it is possible to suppress the occurrence of cracks at the interface of the solidification cells, and it is possible to reduce the occurrence of cracks on the surface of the steel slab. As a result, it is possible to reduce the processing time for the treatment for removing cracks on the surface of the steel slab, and it is possible to improve productivity and reduce manufacturing costs.
- the Ni-containing steel slab of the present invention (hereinafter also simply referred to as steel slab) contains 2.0% by mass or more and less than 7.5% by mass of Ni.
- the steel slab can be used, for example, as a low-temperature steel used in a temperature range lower than room temperature.
- the Ni-containing steel slab of the present invention has, in mass %, C: 0.03% or more and 0.10% or less, Si: 0.01% or more and 0.50% or less, Mn: 0.10% or more and 1 .00% or less, P: 0.001% or more and 0.010% or less, S: 0.0001% or more and 0.0050% or less, Ni: 2.0% or more and less than 7.5%, Al: 0.010% N: 0.0010% to 0.0050%, O: 0.0005% to 0.0040%, and the remainder consists of Fe and inevitable impurities.
- the steel slab By containing C (carbon) as a composition, the steel slab can ensure the strength of the base material. In particular, by setting the C content in the steel slab to 0.03% by mass (hereinafter simply referred to as "%") or more, the strength of the base material can be improved. When the content of C contained in the steel slab becomes excessive, cementite and island martensite, which become the starting point of brittle fracture, increase, and there is a possibility that suitable toughness cannot be obtained. By controlling the content of C contained in the steel slab to 0.10% or less, appropriate toughness of the steel slab can be obtained.
- the steel slab By containing Si (silicon) as a composition, the steel slab can enhance the deoxidizing effect of removing oxygen contained in the steel slab. Moreover, the strength of the base material can be ensured by containing Si as a composition of the steel slab. When the amount of Si added increases, island-like martensite is generated in the structure of the weld heat-affected zone (HAZ), and good toughness of the HAZ tends to not be obtained.
- Si silicon
- HAZ weld heat-affected zone
- the steel slab By containing Mn as a composition, the steel slab can ensure the strength of the base material.
- the amount of Mn added increases, there is a tendency that good HAZ toughness cannot be obtained.
- the strength of the base material can be improved.
- suitable toughness of the HAZ can be ensured.
- the steel slab When steel slabs contain P (phosphorus) as a composition, they tend to cause grain boundary embrittlement. For this reason, the steel slab preferably contains P (phosphorus) in the lowest possible amount.
- P (phosphorus) content of the steel slab is 0.010% or less, it is possible to suppress the promotion of surface cracking due to grain boundary embrittlement. Thereby, the toughness of the base material and the HAZ can be improved.
- the P (phosphorus) content of the steel slab is set to 0.001% or more, it is possible to suppress an increase in the load of dephosphorization refining in the steelmaking process, and to suppress an increase in manufacturing costs. Can be done.
- the steel slab When steel slabs contain S (sulfur) as a composition, they tend to cause grain boundary embrittlement. For this reason, the steel slab preferably contains as low a content of S (sulfur) as possible.
- S (sulfur) content of the steel slab is 0.0050% or less, it is possible to suppress the occurrence of grain boundary embrittlement and the promotion of surface cracking. Thereby, the toughness of the base material and the HAZ can be improved.
- S (sulfur) reduces the toughness of steel slabs as inclusions such as MnS. For this reason, it is desirable that the S (sulfur) content of the steel slab be low.
- the S (sulfur) content of the steel slab is set to 0.0001% or more, it is possible to suppress an increase in the load of dephosphorization refining in the steelmaking process, and to suppress an increase in manufacturing costs. Can be done.
- the steel slab contains Ni (nickel) in a composition of 2.0% or more and less than 7.5%.
- Ni nickel
- the steel slab can realize physical properties equivalent to 9% Ni steel with a lower Ni content than 9% Ni steel.
- the Ni content of the steel slab is preferably 2.0% or more and less than 7.5%, and preferably 6.5% or more and less than 7.5%. Note that if the Ni content is less than 2.0%, there is a tendency that the toughness at low temperatures due to Ni cannot be obtained.
- the steel slab By containing Al (aluminum) as a composition, the steel slab can enhance the deoxidizing effect of removing oxygen contained in the steel slab. Moreover, the strength of the base material can be ensured by containing Al (aluminum) as a composition of the steel slab. When the amount of Al (aluminum) added increases, the base material and HAZ toughness tend to decrease due to coarse AlN.
- the steel slab When a steel slab contains N (nitrogen) as a composition, coarse metal nitrides such as AlN are generated, which tends to reduce the toughness of the base material and HAZ. For this reason, the steel slab preferably contains as low a content of N (nitrogen) as possible.
- N (nitrogen) content of the steel slab By setting the N (nitrogen) content of the steel slab to 0.0050% or less, suitable toughness of the base material and HAZ can be ensured.
- N (nitrogen) content of the steel slab By setting the N (nitrogen) content of the steel slab to 0.0010% or more, it is possible to suppress the increase in the burden of denitrification treatment and nitrogen absorption prevention treatment in the steel manufacturing process, which leads to an increase in manufacturing costs. This can be suppressed.
- the steel slab When a steel slab contains O (oxygen) as a composition, inclusions tend to form and the base metal and HAZ toughness tend to decrease. For this reason, the steel slab preferably contains as low a content of O (oxygen) as possible. When the O (oxygen) content of the steel slab is 0.0040% or less, suitable toughness of the base material and HAZ can be ensured.
- the O (oxygen) content of the steel slab is set to 0.0005% or more, it is possible to suppress an increase in the load of inclusion removal treatment in the steel manufacturing process, and to suppress an increase in manufacturing costs. be able to.
- the steel slab is selected from Cu, Cr, Mo, Nb, V, Ti, B, Ca, and Mg in order to improve the strength and toughness of the base metal and joint. It is preferable to contain one or more kinds.
- the steel slab preferably contains Cu (copper) as a composition.
- Cu (copper) as a composition, the steel slab can ensure the strength of the base material.
- the amount of Cu (copper) added increases, there is a tendency that good HAZ toughness cannot be obtained.
- the steel slab preferably contains Cr (chromium) as a composition.
- Cr chromium
- the steel slab can ensure the strength of the base material.
- the amount of Cr (chromium) added increases, there is a tendency that good HAZ toughness cannot be obtained.
- the steel slab preferably contains Mo (molybdenum) as a composition.
- Mo (molybdenum) as a composition, the steel slab can ensure the strength of the base material.
- the amount of Mo (molybdenum) added increases, there is a tendency that good HAZ toughness cannot be obtained.
- the steel slab preferably contains Nb (niobium) as a composition.
- Nb (niobium) As a composition, the steel slab can ensure the strength of the base material and can achieve finer crystal grains. When the amount of Nb (niobium) added increases, there is a tendency that good HAZ toughness cannot be obtained.
- Nb (niobium) in the steel slab by setting the content of Nb (niobium) in the steel slab to 0.003% or more, it is possible to obtain good strength of the base metal and to make the crystals in the slab finer. . Further, by controlling the content of Nb (niobium) in the steel slab to 0.100% or less, suitable toughness of the HAZ can be ensured.
- the steel slab preferably contains V (vanadium) as a composition.
- V (vanadium) as a composition, the steel slab can ensure the strength of the base material and can achieve finer crystal grains.
- the amount of V (vanadium) added increases, there is a tendency that good HAZ toughness cannot be obtained.
- V (vanadium) in the steel slab by setting the content of V (vanadium) in the steel slab to 0.003% or more, it is possible to obtain good base material strength and to make the crystals in the slab finer. . Further, by controlling the content of V (vanadium) in the steel slab to 0.100% or less, suitable toughness of the HAZ can be ensured.
- the steel slab preferably contains Ti (titanium) as a composition.
- Ti (titanium) as a composition, the steel slab can ensure the strength of the base material and can achieve finer grains of crystals in the slab.
- HAZ toughness tends to decrease due to coarse TiN.
- the steel slab preferably contains B (boron) as a composition.
- B (boron) as a composition, the steel slab can improve hardenability even in a very small amount. As a result, when performing controlled cooling and quenching heat treatment, a significant increase in strength can be achieved.
- HAZ toughness tends to decrease due to the precipitation of coarse boron nitrides and carbides.
- good strength can be obtained by setting the B (boron) content of the steel slab to 0.0002% or more. Further, by controlling the B (boron) content of the steel slab to 0.0025% or less, suitable HAZ toughness can be ensured.
- the steel slab preferably contains Ca (calcium) as a composition.
- Ca (calcium) combines with S to become CaS.
- CaS suppresses ductility-degrading cracking at grain boundaries and reduces surface cracking.
- HAZ toughness decreases due to the formation of coarse Ca-containing inclusions. There is a tendency to
- the steel slab preferably contains Mg (magnesium) as a composition.
- Mg manganesium
- the steel slab can control the form of inclusions and improve toughness.
- Mg (magnesium) combines with S to become MgS.
- MgS can suppress ductility reduction cracking at grain boundaries.
- MgS has a large effect of making the austenite grain size fine, and can reduce surface cracking during continuous casting or rolling.
- the amount of Mg (magnesium) added increases, the HAZ toughness tends to decrease due to the formation of coarse Mg-containing inclusions.
- Mg (magnesium) content of the steel slab to 0.0005% or more, good strength can be obtained. Further, by controlling the content of Mg (magnesium) in the steel slab to 0.0030% or less, suitable toughness of the HAZ can be ensured.
- the density of solidification nuclei on the surface of the steel slab is 0.35 pieces/mm 2 or more.
- the density of coagulation nuclei on the surface is preferably 0.35 pieces/ mm2 or more and less than 5.00 pieces/ mm2 , and preferably 0.50 pieces/mm2 or more and less than 5.00 pieces/ mm2. More preferred.
- the density of solidified nuclei is 5.00 pieces/mm 2 or more, it is not preferable because it is necessary to use mold powder that is cooled more intensely and to set the mold vibration frequency to a very high value. That is, if the cooling of the mold becomes too strong, there is a tendency for vertical cracks to occur more prominently due to non-uniform cooling of the steel slab within the mold. In addition, operational problems such as breakouts due to insufficient inflow of mold powder are likely to occur. From the above, it cannot be said that it is effective to extremely increase the density of coagulation nuclei (5.00 pieces/mm 2 or more).
- the density of solidification nuclei on the surface of a steel slab can be measured by the following method. For example, on the surface of a steel slab, a lump (solidification cell or dendrite cell) in which dendrite branches are oriented in approximately the same direction can be considered to have grown from one solidification nucleus. That is, by calculating the number of the lumps per predetermined area, the density of the solidified core can be calculated.
- the number of solidification nuclei be as large as possible in order to suppress surface cracking. Specifically, if the density of solidification nuclei on the surface of the steel slab is 0.35 pieces/mm 2 or more, surface cracking can be effectively suppressed.
- the continuous casting method for casting steel slabs explained above will be explained.
- One way to increase the density of solidification nuclei on the surface of a continuously cast steel slab is to strengthen the cooling during the initial solidification of continuous casting, that is, to strengthen the cooling within the mold. .
- continuous casting of steel slabs containing Ni includes a step of adding mold powder from above the surface of molten steel in a mold.
- the mold powder functions as an antioxidant, a heat insulator, and a lubricant between the mold and the solidified shell.
- the thickness of the inflow layer can be made thin, and the heat removal ability of the mold can be increased, thereby increasing the density of the solidification cores.
- the mold powder is composed of CaO, SiO2, Na2O , CaF2 , Al2O3 , etc.
- the thermal conductivity of the mold powder is significantly lower than that of the metals molten steel and copper that constitutes the continuous casting mold.
- Heat removal from molten steel to the mold depends on the thickness of the inflow layer of mold powder.
- the thickness of the inflow layer of mold powder can be estimated from the consumption amount of mold powder.
- the thickness of the molding powder inflow layer is usually about 0.1 to 0.3 mm.
- the steel slab is preferably continuously cast by adding mold powder having a viscosity of 0.5 Pa ⁇ s (5 poise) or more at 1300° C. into the mold.
- the viscosity of the mold powder at 1300°C is preferably 0.5 Pa ⁇ s (5 poise) or more and 5.0 Pa ⁇ s (50 poise) or less, and 1.0 Pa ⁇ s (10 poise) or more and 5.0 Pa ⁇ s (50 poise) or less is more preferable.
- the viscosity of the molding powder By setting the viscosity of the molding powder at 1300° C. to 0.5 Pa ⁇ s (5 poise) or more, it is possible to make it difficult for the molding powder to flow into the gap between the solidified shell and the mold. Therefore, the thickness of the inflow layer of mold powder can be reduced, and the heat removal from the molten steel to the mold can be increased. Thereby, the density of solidification nuclei can be increased, that is, 0.35 pieces/mm 2 or more, and the occurrence of surface cracks can be suppressed.
- the density of solidified nuclei can also be controlled by vibrating the mold at a predetermined frequency (oscillation cycle). For example, when the mold vibrates, some of the dendrite dendrites in the middle of solidification dissociate and adhere to the surface of the mold powder inflow layer. When dendrite dendrites adhere to the surface of the mold powder inflow layer, solidification nuclei are generated from that location. Thereby, the density of coagulation nuclei can be increased.
- Continuous casting preferably includes, for example, a step of vibrating the mold at a frequency of 80 cycles or more per minute.
- the frequency at which the mold is vibrated is preferably 80 to 400 cycles, more preferably 100 to 400 cycles.
- the frequency of vibration of the mold is less than 80 cycles, there is a possibility that sufficient solidification core density cannot be ensured. Furthermore, if the frequency of vibration of the mold exceeds 400 cycles, the mold tends to resonate and casting becomes unstable.
- the viscosity of the mold powder can be changed depending on the frequency (oscillation cycle) of the mold. For example, when the frequency (oscillation cycle) of the mold is 50 cycles per minute, it is preferable to use a molding powder with a viscosity of 0.5 Pa ⁇ s (5 poise) or more at 1300°C. Even in this case, the density of solidification nuclei on the surface of the Ni-containing steel slab can be set to 0.35 pieces/mm 2 or more.
- the vibration frequency (oscillation cycle) of the mold is 80 cycles per minute, it is preferable to use a molding powder having a viscosity of 0.15 Pa ⁇ s (1.5 poise) or more at 1300°C. Even in this case, the density of solidification nuclei on the surface of the Ni-containing steel slab can be set to 0.35 pieces/mm 2 or more.
- a molding powder with a mold frequency (oscillation cycle) of 80 cycles or more per minute and a viscosity of 0.5 Pa ⁇ s (5 poise) or more at 1300°C. Under such conditions, surface cracking of the steel slab can be significantly reduced.
- the flat surface is thought to have been formed by a type of solidification cracking. More specifically, when molten steel solidifies, C, S, P, etc. are concentrated in the final solidified part, and the melting point is lowered.
- the flat surface is formed by shrinking the surrounding area that has already been solidified while a low melting point liquid phase is present in the final solidified part.
- surface cracking occurs when solute elements such as C, S, and P are concentrated at the boundary between two solidified cells that make up the solidified shell when the solidified shell grows within the mold.
- solute elements such as C, S, and P
- a liquid phase with a low melting point is generated, resulting in solidification cracking.
- the crack progresses further due to thermal stress in the secondary cooling zone, stress due to bending straightening, etc.
- Solidification cracking is less likely to occur as the concentration of solute elements in the final solidification zone decreases, and as the thermal stress acting on the final solidification zone decreases. For example, when the size of the solidification cell becomes smaller, the cooling rate naturally increases and concentration of solute elements is suppressed. Moreover, when the size of the solidification cells is small, thermal stress is dispersed, and the thermal stress acting on the interface of each solidification cell becomes small. Reducing the size of the solidification cells is effective in preventing solidification cracking.
- the size of the solidification cell can be reduced by increasing the density of solidification nuclei in the portion where the molten steel contacts the mold.
- the Ni-containing steel slab of the present invention has a high density of solidification nuclei, the size of the solidification cells can be reduced. As a result, a Ni-containing steel slab with less surface cracking can be provided.
- initial solidification on the surface of a steel slab can be controlled.
- a large number of solidification nuclei are generated, and the concentration of impurity elements such as P (phosphorus) and S (sulfur) and C (carbon) on the interface of the solidification cell is reduced. Therefore, solidification cracking at the interface of the solidification cells can be suppressed. Therefore, so-called surface cracks occurring on the surface of the steel slab can be suppressed.
- the Ni-containing steel slab according to the present invention has a density of solidification nuclei on the slab surface of 0.35 pieces/mm 2 or more. Therefore, the size of the coagulation cell can be reduced. This reduces the concentration of S and P at the interface of the solidification cells, so that embrittlement at the interface of the solidification cells can be suppressed. Moreover, the stress acting on the interface of the solidification cell is also dispersed, and solidification cracking at the interface of the solidification cell can be suppressed. As a result, the occurrence of cracks on the surface of the steel slab can be reduced.
- the method for manufacturing steel slabs containing Ni includes a care process in which a slab manufactured by a continuous casting method is treated, and after the care process, the slab is heated at a heating temperature of 1100°C or less in a heating furnace. and a heating step.
- steel slabs are manufactured using slabs produced by continuous casting of molten steel.
- the generated slab is heated at 1000 to 1200° C. (first heat treatment).
- the slab subjected to the first heating is subjected to preliminary rolling (light blooming) to a thickness of about 60 to 90%.
- the pre-rolled slab is ground until there are no flaws, and a care process is performed to remove the flaws.
- the treated slab is heated at 1000 to 1200°C (second heat treatment). Rolling (main rolling) is performed on the slab that has been subjected to the second heat treatment.
- Fe 2 SiO 4 scale is produced in steel containing 0.05% or more of silicon (Si) as Fe 2 SiO 4 is produced. Note that the eutectic temperature of Fe 2 SiO 4 with wustite (FeO) is 1170°C. Fe 2 SiO 4 is a liquid phase oxide above the eutectic temperature.
- Fe 2 SiO 4 scale When Fe 2 SiO 4 scale is generated, grain boundaries become brittle. Since Fe 2 SiO 4 scale is in a liquid phase at high temperatures, it easily diffuses into grain boundaries and deep into the matrix.
- the manufacturing process be performed at a temperature equal to or lower than the eutectic temperature of Fe 2 SiO 4 .
- the heating temperature of the heating furnace be equal to or lower than the eutectic temperature of Fe 2 SiO 4 .
- Fe 2 SiO 4 scale at grain boundaries is also related to the segregation of elements such as P and S in the regions. For this reason, even if the manufacturing process is performed at a temperature below the eutectic temperature of about 1100° C., for example, liquid phase Fe 2 SiO 4 scale may be generated in a part of the region.
- the heating step is performed at a temperature of 1100° C. or lower, and it is more preferable that the heating step is performed at a temperature of 1050° C. or lower. . Further, it is preferable that the rolling step is performed after the slab is heated in the heating step under such conditions.
- a slab when a slab is produced by controlling the density of solidified cores by the continuous casting method of the present invention, it has superior toughness than conventional slabs, so it can be used to produce steel slabs without pre-rolling such as light blooming. can be manufactured.
- a steel slab when a slab is produced by controlling the density of solidification nuclei by the continuous casting method of the present invention, a steel slab can be produced by performing the following (1) to (3).
- a care process is performed to remove the flaws by grinding approximately 3 to 6 mm from the surface until the generated slab is free of flaws (care process).
- Heating the treated slab at 1100° C. or lower heating step.
- the slab subjected to the heating process is rolled (main rolling).
- Ni steel with a Ni content of 3.5% by mass was created by melting steel.
- a converter and an RH vacuum degassing device were used to create the molten steel.
- test Nos. 1 to 20 A test was conducted to cast this molten steel using a vertical bending type continuous slab casting machine.
- the vertical bending continuous slab casting machine had a thickness of 250 mm and a width of 2100 mm.
- the test was conducted in a total of 20 heats (Test Nos. 1 to 20).
- Table 1 shows the chemical components of Test Nos. 1 to 20.
- Table 2 shows the casting conditions in the continuous casting machine for test Nos. 1 to 20.
- the casting speed was 0.8 m/min.
- the amplitude of the mold oscillation was 8 mm.
- the frequency of the oscillation was 60 cycles per minute.
- the molding powder used had a viscosity of 0.20 Pa ⁇ s at 1300°C.
- the casting speed was 0.8 m/min.
- the amplitude of the mold oscillation was 8 mm.
- the frequency of the oscillation was 60 cycles per minute.
- the molding powder used had a viscosity of 0.06 to 2.00 Pa ⁇ s at 1300°C.
- the casting speed was 0.8 m/min.
- the amplitude of the mold oscillation was 8 mm.
- the frequency of the oscillation was 80 cycles per minute.
- the molding powder used had a viscosity of 0.20 Pa ⁇ s at 1300°C.
- the casting speed was 0.8 m/min.
- the amplitude of the mold oscillation was 8 mm.
- the frequency of the oscillation was 80 cycles per minute.
- the molding powder used had a viscosity of 0.5 Pa ⁇ s at 1300°C.
- the cast steel slab was cut into a length of 300 mm.
- the cut samples were subjected to the following treatments and then evaluated for surface cracks.
- the surface of each sample was subjected to shot blasting to remove the oxide film on the surface. Thereafter, surface cracks were determined by penetrant testing. Regarding the determined surface cracks, the length and number of cracks were measured.
- the density of solidified nuclei on the surface of the slab was measured by the following method. A sample was taken from the surface of a steel slab, and the oxide film on the surface was removed by shot blasting. The surface of the steel slab from which the oxide film had been removed was mirror-ground and corroded with picric acid to reveal the solidified structure.
- the coagulated tissue that appeared was photographed.
- a mass coagulation cell or dendrite cell
- dendrite branches were oriented in almost the same direction was considered to have grown from one coagulation nucleus.
- the density of coagulation nuclei was calculated by calculating the number of the lumps per predetermined area.
- the number of coagulated cells was counted as the mass shown in the photograph of the coagulated tissue, and the density was determined by dividing by the area occupied by the coagulated cells. Furthermore, the size of the coagulation cell tends to be small near the oscillation mark and to become large away from the oscillation mark. For this reason, the range in which coagulation cells were counted was from one oscillation mark adjacent to the other oscillation marks, and the average value was determined.
- Table 3 shows test no. The results of the investigation of the density of solidified nuclei from 1 to 20 and the total crack length (crack length x number of cracks) are shown.
- Test Nos. 1, 6, 11, and 16 the density of coagulation nuclei was less than 0.35 pieces/mm 2 . In Test Nos. 1, 5, 9, and 13, many surface cracks occurred. In addition, in Test Nos. 1, 6, 11, and 16, cracks occurred at a distance of 3 mm or 6 mm from the surface.
- test No. 2 in which the density of coagulation nuclei exceeds 1.50 pieces/ mm2 .
- samples No. 5, 10, 15, and 20 a significant reduction in surface cracking was confirmed.
- tests within the scope of the present invention are indicated as "invention examples”, and other tests are indicated as “comparative examples”.
- Method A A care process is performed to remove the flaws by grinding approximately 3 to 6 mm from the surface until the generated slab is free of flaws.
- the treated slab is heated at 1050°C or 1200°C (first heat treatment).
- the slab subjected to the first heating is pre-rolled (light blooming) to a thickness of 250 mm to 190 mm.
- the pre-rolled slab is cleaned by grinding approximately 3 to 6 mm from the surface to remove any flaws until there are no flaws.
- the treated slab is heated at 1050°C or 1200°C (second heat treatment).
- the slab subjected to the second heat treatment was subjected to main rolling, and its thickness was changed from 190 mm to 25 mm. Thereafter, flaws were inspected on surfaces at distances of 3 mm, 6 mm, and 9 mm from the surface (hereinafter also referred to as product inspection).
- Method B A care process is performed to remove the flaws by grinding approximately 3 to 6 mm from the surface until the generated slab is free of flaws (care process).
- the treated slab is heated at 1050°C or 1200°C (heating step).
- the slab subjected to the heating process was subjected to main rolling to a thickness of 25 mm from 250 mm. Thereafter, product inspection was performed on surfaces at distances of 3 mm, 6 mm, and 9 mm from the surface.
- Table 4 shows the occurrence of surface flaws after rolling each product.
- Test No. Slabs 2 to 5, 7 to 10, 12 to 15, and 17 to 20 heated at a heating temperature of 1050°C were evaluated as " ⁇ : No product defects" even if light blooming was not performed. It was done. Therefore, for these tests, process costs can be significantly reduced and product quality can be stably improved.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Continuous Casting (AREA)
Abstract
Provided is a steel cast slab that contains from 2.0 mass% to less than 7.5 mass% of Ni and has few surface cracks. The steel cast slab containing Ni is composed of, in mass%, C: 0.03% to 0.10%, Si: 0.01% to 0.50%, Mn: 0.10% to 1.00%, P: 0.001% to 0.010%, S: 0.0001% to 0.0050%, Ni: 2.0% to less than 7.5%, Al: 0.010% to 0.080%, N: 0.0010% to 0.0050%, and O: 0.0005% to 0.0040%, with the remainder comprising Fe and unavoidable impurities. The density of solidified nuclei in the surface of the steel cast slab is 0.35/mm2 or more.
Description
本発明は、Ni(ニッケル)を含有する鋼鋳片、連続鋳造方法、鋼鋳片の製造方法に関する。
The present invention relates to a steel slab containing Ni (nickel), a continuous casting method, and a method for producing a steel slab.
鋼にNiを添加すると低温靭性が向上することが知られている。9質量%前後のNiを含有する鋼(以下、Ni含有鋼とも称する)は、9%Ni鋼とも称されている。9%Ni鋼は、-160℃以下での使用にも耐えるため、例えば、LNGタンクなどの低温用の溶接構造用鋼として広く使用されている。
It is known that adding Ni to steel improves low-temperature toughness. Steel containing around 9% by mass of Ni (hereinafter also referred to as Ni-containing steel) is also referred to as 9% Ni steel. 9% Ni steel can withstand use at temperatures below -160°C, and is therefore widely used as a welded structural steel for low-temperature applications such as LNG tanks, for example.
ところで、Ni含有鋼は、表面に疵が発生しやすいことが知られている。例えば、鋳造された後の鋳片には、表面及び表面の近傍に多数の割れ(以下、表面割れとも称する)が存在する。
By the way, it is known that Ni-containing steel is prone to scratches on its surface. For example, a slab after being cast has many cracks (hereinafter also referred to as surface cracks) on and near the surface.
従来から、Niを含有する鋼鋳片の表面割れは、粗大な凝固組織の結晶粒界に沿って発生していることが知られている。具体的には、表面割れは、Ni含有鋼の延性が低下する600~900℃の温度範囲、すなわち、連続鋳造の二次冷却帯の区間において、矯正応力、バルジング応力、熱応力などの引張り応力が鋼鋳片に加えられることによって発生すると考えられている。
It has been known that surface cracks in steel slabs containing Ni occur along the grain boundaries of the coarse solidified structure. Specifically, surface cracking is caused by tensile stresses such as straightening stress, bulging stress, and thermal stress in the temperature range of 600 to 900°C, where the ductility of Ni-containing steel decreases, that is, in the secondary cooling zone section of continuous casting. It is thought that this is caused by the addition of carbon to steel slabs.
より詳しくは、鋼鋳片に引張り応力が加えられると、特定の領域において当該鋼鋳片に含まれているS(硫黄)やP(リン)などが濃化する。S(硫黄)やP(リン)の濃度の増加は、鋼鋳片の粒界脆化を招く。したがって、当該領域においては、脆化した結晶粒界が引張り応力によって破壊されることにより表面割れが発生する。
More specifically, when tensile stress is applied to a steel slab, S (sulfur), P (phosphorus), etc. contained in the steel slab become concentrated in a specific region. An increase in the concentration of S (sulfur) and P (phosphorus) causes grain boundary embrittlement of the steel slab. Therefore, in this region, surface cracks occur because the embrittled grain boundaries are destroyed by tensile stress.
このような表面割れを防止するために、鋼鋳片を鋳造する際の二次冷却において鋼鋳片の温度を管理することが行われている。例えば、特許文献1には、Niを5~10質量%含有する溶鋼を連続鋳造する際に、二次冷却帯における、冷却速度の制御及び、鋳片の表面温度の制御を行うことが開示されている。
In order to prevent such surface cracks, the temperature of the steel slab is controlled during secondary cooling when casting the steel slab. For example, Patent Document 1 discloses controlling the cooling rate and the surface temperature of the slab in a secondary cooling zone when continuously casting molten steel containing 5 to 10% by mass of Ni. ing.
また、特許文献2には、Niを8~10質量%含有するNi含有鋼を連続鋳造する際に、鋳造時における絞り値を推定し、この絞り値が50%以上になるように、二次冷却強度を制御することが開示されている。
In addition, Patent Document 2 describes that when continuously casting Ni-containing steel containing 8 to 10% by mass of Ni, the reduction of area at the time of casting is estimated, and the secondary Controlling the cooling intensity is disclosed.
このように、多くの表面割れを抑制する連続鋳造方法が提案されているが、表面割れの発生を完全に抑制することは困難である。鋼鋳片に表面割れが生じると、グラインダーなどを用いて表面を研削する等による、いわゆる手入れ処理によって表面割れが除去される。このため、表面割れが多くなると、手入れ処理の範囲や、処理時間も長くなるため生産性が低下し、製造コストが上昇する問題がある。
As described above, many continuous casting methods have been proposed to suppress surface cracks, but it is difficult to completely suppress the occurrence of surface cracks. When surface cracks occur in a steel slab, the surface cracks are removed by so-called maintenance treatment, such as by grinding the surface using a grinder or the like. For this reason, when surface cracks increase, the range of cleaning treatment and treatment time become longer, resulting in lower productivity and higher manufacturing costs.
ところで、近年では、Ni合金の価格が高騰しているため、鋼におけるNiの含有量を低減させることが行われている。例えば、9%Ni鋼の代替として7%Ni鋼による代替鋼種を拡充することが行われている。また、エチレン液化燃料容器向けには、5%Ni鋼が用いられている。このように、Niの含有量が7.5質量%未満のNi含有鋼においても需要が非常に高まってきている。
Incidentally, in recent years, as the price of Ni alloys has risen, efforts have been made to reduce the Ni content in steel. For example, as an alternative to 9% Ni steel, 7% Ni steel is being expanded as an alternative steel type. Furthermore, 5% Ni steel is used for ethylene liquefied fuel containers. As described above, the demand for Ni-containing steels having a Ni content of less than 7.5% by mass is increasing significantly.
Ni含有量が7.5質量%未満の比較的にNiの含有量が少ない鋼種についても、上記の粗大な凝固組織の結晶粒界に沿った鋼鋳片の表面割れの発生が製造上の課題となっている。
Even for steel types with a relatively low Ni content (less than 7.5% by mass), the occurrence of surface cracks in steel slabs along the grain boundaries of the coarse solidified structure described above is a manufacturing issue. It becomes.
本発明は、上記問題に鑑みてなされたものであり、Niを2.0質量%以上7.5質量%未満含有しかつ、表面割れが少ない鋼鋳片、連続鋳造方法及び、鋼鋳片の製造方法を提供することを目的とする。
The present invention has been made in view of the above problems, and provides a steel slab containing 2.0% by mass or more and less than 7.5% by mass of Ni and less surface cracking, a continuous casting method, and a continuous casting method for producing a steel slab. The purpose is to provide a manufacturing method.
上記課題を解決するため、本発明は以下の特徴を有する。
In order to solve the above problems, the present invention has the following features.
[1]
質量%で、C:0.03%以上0.10%以下、Si:0.01%以上0.50%以下、Mn:0.1%以上1.0%以下、P:0.001%以上0.010%以下、S:0.0001%以上0.0050%以下、Ni:2.0%以上7.5%未満、Al:0.010%以上0.080%以下、N:0.0010%以上0.0050%以下、O:0.0005%以上0.0040%以下を含有し、残部がFe及び不可避的不純物からなる、Ni を含有する鋼鋳片であって、前記鋼鋳片の表面における凝固核の密度が0.35個/mm2以上である鋼鋳片。
[2]
更に、質量%で、Cu:0.03%以上1.50%以下、Cr:0.03%以上1.00%以下、Mo:0.02%以上1.00%以下、Nb:0.003%以上0.100%以下、V:0.003%以上0.100%以下、Ti:0.005%以上0.020%以下、B:0.0002%以上0.0025%以下、Ca:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0030%以下から選択される1種又は2種以上を含有する、[1]に記載の鋼鋳片。
[3]
[1]又は[2]に記載の鋼鋳片を鋳造するための連続鋳造方法であって、
1300℃における粘度が0.5Pa・s(5ポアズ)以上のモールドパウダーを鋳型内に添加する工程を含む、連続鋳造方法。
[4]
[1]又は[2]に記載の鋼鋳片を鋳造するための連続鋳造方法であって、
鋳型を毎分80サイクル以上の振動数で振動させる工程を含む、連続鋳造方法。
[5]
[1]又は[2]に記載の鋼鋳片を鋳造するための連続鋳造方法であって、
1300℃における粘度が0.5Pa・s(5ポアズ)以上のモールドパウダーを鋳型内に添加する工程及び、
鋳型を毎分50サイクル以上の振動数で振動させる工程、を含む、連続鋳造方法。
[6]
[1]又は[2]に記載の鋼鋳片を鋳造するための連続鋳造方法であって、
1300℃における粘度が0.15Pa・s(1.5ポアズ)以上のモールドパウダーを鋳型内に添加する工程及び、
鋳型を毎分80サイクル以上の振動数で振動させる工程、を含む、連続鋳造方法。
[7]
[3]~[6]のいずれかに記載された連続鋳造方法で製造されたスラブに対して手入れ処理を行う手入れ工程と、
前記手入れ工程の後、加熱炉内の加熱温度を1100℃以下で前記スラブを加熱する加熱工程と、を含むNiを含有する、鋼鋳片の製造方法。 [1]
In mass%, C: 0.03% or more and 0.10% or less, Si: 0.01% or more and 0.50% or less, Mn: 0.1% or more and 1.0% or less, P: 0.001% or more 0.010% or less, S: 0.0001% or more and 0.0050% or less, Ni: 2.0% or more and less than 7.5%, Al: 0.010% or more and 0.080% or less, N: 0.0010 % or more and 0.0050% or less, O: 0.0005% or more and 0.0040% or less, and the remainder is Fe and inevitable impurities, the steel slab containing Ni. A steel slab having a density of solidification nuclei on the surface of 0.35 pieces/mm 2 or more.
[2]
Further, in mass%, Cu: 0.03% or more and 1.50% or less, Cr: 0.03% or more and 1.00% or less, Mo: 0.02% or more and 1.00% or less, Nb: 0.003 % or more and 0.100% or less, V: 0.003% or more and 0.100% or less, Ti: 0.005% or more and 0.020% or less, B: 0.0002% or more and 0.0025% or less, Ca: 0 The steel slab according to [1], containing one or more selected from .0005% to 0.0050%, Mg: 0.0005% to 0.0030%.
[3]
A continuous casting method for casting the steel slab according to [1] or [2],
A continuous casting method including a step of adding mold powder having a viscosity of 0.5 Pa·s (5 poise) or more at 1300°C into a mold.
[4]
A continuous casting method for casting the steel slab according to [1] or [2],
A continuous casting method that includes the step of vibrating a mold at a frequency of 80 cycles or more per minute.
[5]
A continuous casting method for casting the steel slab according to [1] or [2],
A step of adding mold powder having a viscosity of 0.5 Pa·s (5 poise) or more at 1300° C. into the mold,
A continuous casting method comprising the step of vibrating a mold at a frequency of 50 cycles or more per minute.
[6]
A continuous casting method for casting the steel slab according to [1] or [2],
Adding mold powder with a viscosity of 0.15 Pa·s (1.5 poise) or more at 1300°C into the mold;
A continuous casting method comprising the step of vibrating a mold at a frequency of 80 cycles or more per minute.
[7]
A care step of performing care treatment on a slab manufactured by the continuous casting method described in any one of [3] to [6];
A method for producing a steel slab containing Ni, including a heating step of heating the slab at a heating temperature of 1100° C. or lower in a heating furnace after the care step.
質量%で、C:0.03%以上0.10%以下、Si:0.01%以上0.50%以下、Mn:0.1%以上1.0%以下、P:0.001%以上0.010%以下、S:0.0001%以上0.0050%以下、Ni:2.0%以上7.5%未満、Al:0.010%以上0.080%以下、N:0.0010%以上0.0050%以下、O:0.0005%以上0.0040%以下を含有し、残部がFe及び不可避的不純物からなる、Ni を含有する鋼鋳片であって、前記鋼鋳片の表面における凝固核の密度が0.35個/mm2以上である鋼鋳片。
[2]
更に、質量%で、Cu:0.03%以上1.50%以下、Cr:0.03%以上1.00%以下、Mo:0.02%以上1.00%以下、Nb:0.003%以上0.100%以下、V:0.003%以上0.100%以下、Ti:0.005%以上0.020%以下、B:0.0002%以上0.0025%以下、Ca:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0030%以下から選択される1種又は2種以上を含有する、[1]に記載の鋼鋳片。
[3]
[1]又は[2]に記載の鋼鋳片を鋳造するための連続鋳造方法であって、
1300℃における粘度が0.5Pa・s(5ポアズ)以上のモールドパウダーを鋳型内に添加する工程を含む、連続鋳造方法。
[4]
[1]又は[2]に記載の鋼鋳片を鋳造するための連続鋳造方法であって、
鋳型を毎分80サイクル以上の振動数で振動させる工程を含む、連続鋳造方法。
[5]
[1]又は[2]に記載の鋼鋳片を鋳造するための連続鋳造方法であって、
1300℃における粘度が0.5Pa・s(5ポアズ)以上のモールドパウダーを鋳型内に添加する工程及び、
鋳型を毎分50サイクル以上の振動数で振動させる工程、を含む、連続鋳造方法。
[6]
[1]又は[2]に記載の鋼鋳片を鋳造するための連続鋳造方法であって、
1300℃における粘度が0.15Pa・s(1.5ポアズ)以上のモールドパウダーを鋳型内に添加する工程及び、
鋳型を毎分80サイクル以上の振動数で振動させる工程、を含む、連続鋳造方法。
[7]
[3]~[6]のいずれかに記載された連続鋳造方法で製造されたスラブに対して手入れ処理を行う手入れ工程と、
前記手入れ工程の後、加熱炉内の加熱温度を1100℃以下で前記スラブを加熱する加熱工程と、を含むNiを含有する、鋼鋳片の製造方法。 [1]
In mass%, C: 0.03% or more and 0.10% or less, Si: 0.01% or more and 0.50% or less, Mn: 0.1% or more and 1.0% or less, P: 0.001% or more 0.010% or less, S: 0.0001% or more and 0.0050% or less, Ni: 2.0% or more and less than 7.5%, Al: 0.010% or more and 0.080% or less, N: 0.0010 % or more and 0.0050% or less, O: 0.0005% or more and 0.0040% or less, and the remainder is Fe and inevitable impurities, the steel slab containing Ni. A steel slab having a density of solidification nuclei on the surface of 0.35 pieces/mm 2 or more.
[2]
Further, in mass%, Cu: 0.03% or more and 1.50% or less, Cr: 0.03% or more and 1.00% or less, Mo: 0.02% or more and 1.00% or less, Nb: 0.003 % or more and 0.100% or less, V: 0.003% or more and 0.100% or less, Ti: 0.005% or more and 0.020% or less, B: 0.0002% or more and 0.0025% or less, Ca: 0 The steel slab according to [1], containing one or more selected from .0005% to 0.0050%, Mg: 0.0005% to 0.0030%.
[3]
A continuous casting method for casting the steel slab according to [1] or [2],
A continuous casting method including a step of adding mold powder having a viscosity of 0.5 Pa·s (5 poise) or more at 1300°C into a mold.
[4]
A continuous casting method for casting the steel slab according to [1] or [2],
A continuous casting method that includes the step of vibrating a mold at a frequency of 80 cycles or more per minute.
[5]
A continuous casting method for casting the steel slab according to [1] or [2],
A step of adding mold powder having a viscosity of 0.5 Pa·s (5 poise) or more at 1300° C. into the mold,
A continuous casting method comprising the step of vibrating a mold at a frequency of 50 cycles or more per minute.
[6]
A continuous casting method for casting the steel slab according to [1] or [2],
Adding mold powder with a viscosity of 0.15 Pa·s (1.5 poise) or more at 1300°C into the mold;
A continuous casting method comprising the step of vibrating a mold at a frequency of 80 cycles or more per minute.
[7]
A care step of performing care treatment on a slab manufactured by the continuous casting method described in any one of [3] to [6];
A method for producing a steel slab containing Ni, including a heating step of heating the slab at a heating temperature of 1100° C. or lower in a heating furnace after the care step.
本発明によれば、鋼鋳片の表面における凝固核の密度が0.35個/mm2以上であるため、凝固セルのサイズを従来のサイズよりも小さくすることができる。これにより、凝固セルの界面におけるS(硫黄)及びP(リン)の偏析を従来よりも軽減することができる。その結果、凝固セルの界面での脆化を抑制することができる。また、凝固セルの界面に作用する応力も分散させることができる。これにより、凝固セルの界面における割れの発生を抑制することができ、鋼鋳片の表面における割れの発生を低減することができる。その結果、鋼鋳片の表面の割れを除去するための手入れ処理の処理時間を軽減することができ、生産性の向上及び製造コストの低減を図ることができる。
According to the present invention, since the density of solidification nuclei on the surface of the steel slab is 0.35 pieces/mm 2 or more, the size of the solidification cells can be made smaller than the conventional size. Thereby, segregation of S (sulfur) and P (phosphorus) at the interface of the solidification cell can be reduced more than before. As a result, embrittlement at the interface of the solidified cells can be suppressed. Moreover, the stress acting on the interface of the coagulation cell can also be dispersed. Thereby, it is possible to suppress the occurrence of cracks at the interface of the solidification cells, and it is possible to reduce the occurrence of cracks on the surface of the steel slab. As a result, it is possible to reduce the processing time for the treatment for removing cracks on the surface of the steel slab, and it is possible to improve productivity and reduce manufacturing costs.
本発明のNiを含有する鋼鋳片(以下、単に鋼鋳片とも称する)は、Niを2.0質量%以上7.5質量%未満含有する。鋼鋳片は、例えば、常温よりも低い温度域で用いられる低温用鋼として用いることができる。
The Ni-containing steel slab of the present invention (hereinafter also simply referred to as steel slab) contains 2.0% by mass or more and less than 7.5% by mass of Ni. The steel slab can be used, for example, as a low-temperature steel used in a temperature range lower than room temperature.
本発明のNiを含有する鋼鋳片は、質量%で、C:0.03%以上0.10%以下、Si:0.01%以上0.50%以下、Mn:0.10%以上1.00%以下、P:0.001%以上0.010%以下、S:0.0001%以上0.0050%以下、Ni:2.0%以上7.5%未満、Al:0.010%以上0.080%以下、N:0.0010%以上0.0050%以下、O:0.0005%以上0.0040%以下を含有し、残部がFe及び不可避的不純物からなる。
The Ni-containing steel slab of the present invention has, in mass %, C: 0.03% or more and 0.10% or less, Si: 0.01% or more and 0.50% or less, Mn: 0.10% or more and 1 .00% or less, P: 0.001% or more and 0.010% or less, S: 0.0001% or more and 0.0050% or less, Ni: 2.0% or more and less than 7.5%, Al: 0.010% N: 0.0010% to 0.0050%, O: 0.0005% to 0.0040%, and the remainder consists of Fe and inevitable impurities.
鋼鋳片は、C(炭素)を組成として含むことにより、母材の強度を確保することができる。特に、鋼鋳片に含まれるCの含有量を0.03質量%(以下、単に「%」と記す)以上とすることで、母材の強度を良好なものとすることができる。鋼鋳片に含まれるCの含有量が過剰になると、脆性破壊の起点となるセメンタイトや、島状マルテンサイトが増加し、好適な靭性が得られない恐れがある。鋼鋳片に含まれるCの含有量を0.10%以下とすることで、適切な鋼鋳片の靭性を得ることができる。
By containing C (carbon) as a composition, the steel slab can ensure the strength of the base material. In particular, by setting the C content in the steel slab to 0.03% by mass (hereinafter simply referred to as "%") or more, the strength of the base material can be improved. When the content of C contained in the steel slab becomes excessive, cementite and island martensite, which become the starting point of brittle fracture, increase, and there is a possibility that suitable toughness cannot be obtained. By controlling the content of C contained in the steel slab to 0.10% or less, appropriate toughness of the steel slab can be obtained.
鋼鋳片は、Si(珪素)を組成として含むことにより、鋼鋳片に含まれる酸素を取り除く脱酸の効果を高めることができる。また、鋼鋳片は、Siを組成として含むことにより、母材の強度を確保することができる。Siの添加量が高くなると、溶接熱影響部(HAZ:Heat-Affected Zone)の組織中に島状マルテンサイトが生成し、良好なHAZの靭性が得られない傾向がある。
By containing Si (silicon) as a composition, the steel slab can enhance the deoxidizing effect of removing oxygen contained in the steel slab. Moreover, the strength of the base material can be ensured by containing Si as a composition of the steel slab. When the amount of Si added increases, island-like martensite is generated in the structure of the weld heat-affected zone (HAZ), and good toughness of the HAZ tends to not be obtained.
すなわち、鋼鋳片のSiの含有量を0.50%以下とすることで、好適なHAZの靭性を確保することができる。鋼鋳片のSiの含有量を0.01%以上とすることで、優れた脱酸の効果を得ることができ、また母材の強度を良好なものとすることができる。
That is, by controlling the Si content of the steel slab to 0.50% or less, suitable toughness of the HAZ can be ensured. By setting the Si content of the steel slab to 0.01% or more, an excellent deoxidizing effect can be obtained and the strength of the base material can be improved.
鋼鋳片は、Mnを組成として含むことにより、母材の強度を確保することができる。Mnの添加量が高くなると、良好なHAZの靭性が得られない傾向がある。
By containing Mn as a composition, the steel slab can ensure the strength of the base material. When the amount of Mn added increases, there is a tendency that good HAZ toughness cannot be obtained.
特に、鋼鋳片のMnの含有量を0.10%以上とすることで、母材の強度を良好なものとすることができる。また、鋼鋳片のMnの含有量を1.00%以下とすることで、好適なHAZの靭性を確保することができる。
In particular, by setting the Mn content of the steel slab to 0.10% or more, the strength of the base material can be improved. Further, by controlling the Mn content of the steel slab to 1.00% or less, suitable toughness of the HAZ can be ensured.
鋼鋳片は、P(リン)を組成として含むと粒界脆化を招く傾向がある。このため、鋼鋳片は、P(リン)を可能な限り低い量を組成として含むとよい。鋼鋳片のP(リン)含有量が0.010%以下であることにより、粒界脆化によって表面割れが促進されることを抑制することができる。これにより、母材及びHAZの靭性を良好なものとすることができる。
When steel slabs contain P (phosphorus) as a composition, they tend to cause grain boundary embrittlement. For this reason, the steel slab preferably contains P (phosphorus) in the lowest possible amount. When the P (phosphorus) content of the steel slab is 0.010% or less, it is possible to suppress the promotion of surface cracking due to grain boundary embrittlement. Thereby, the toughness of the base material and the HAZ can be improved.
また、鋼鋳片のP(リン)の含有量を0.001%以上とすることで、製鋼工程における脱燐精錬の負荷を上がることを抑制し、製造コストの上昇を招くことを抑制することができる。
In addition, by setting the P (phosphorus) content of the steel slab to 0.001% or more, it is possible to suppress an increase in the load of dephosphorization refining in the steelmaking process, and to suppress an increase in manufacturing costs. Can be done.
鋼鋳片は、S(硫黄)を組成として含むと粒界脆化を招く傾向がある。このため、鋼鋳片は、S(硫黄)を組成として可能な限り低い量を含むとよい。鋼鋳片のS(硫黄)含有量が0.0050%以下であることにより、粒界脆化をもたらし、表面割れの発生が促進されることを抑制することができる。これにより、母材及びHAZの靭性を良好なものとすることができる。特にS(硫黄)は、MnSなどの介在物として鋼鋳片の靭性を低下させる。このため、鋼鋳片のS(硫黄)の含有量は低い方が望ましい。
When steel slabs contain S (sulfur) as a composition, they tend to cause grain boundary embrittlement. For this reason, the steel slab preferably contains as low a content of S (sulfur) as possible. When the S (sulfur) content of the steel slab is 0.0050% or less, it is possible to suppress the occurrence of grain boundary embrittlement and the promotion of surface cracking. Thereby, the toughness of the base material and the HAZ can be improved. In particular, S (sulfur) reduces the toughness of steel slabs as inclusions such as MnS. For this reason, it is desirable that the S (sulfur) content of the steel slab be low.
また、鋼鋳片のS(硫黄)の含有量を0.0001%以上とすることで、製鋼工程における脱燐精錬の負荷を上がることを抑制し、製造コストの上昇を招くことを抑制することができる。
In addition, by setting the S (sulfur) content of the steel slab to 0.0001% or more, it is possible to suppress an increase in the load of dephosphorization refining in the steelmaking process, and to suppress an increase in manufacturing costs. Can be done.
上述の通り、鋼鋳片は、Ni(ニッケル)を組成として2.0%以上7.5%未満を含む。鋼鋳片は、上述の成分を含むことにより、9%Ni鋼より少ないNiの含有量で、9%Ni鋼と同等の物性を実現することができる。このような目的から、鋼鋳片のNiの含有量は、2.0%以上7.5%未満とするとよく、6.5%以上7.5%未満とするとことが好ましい。尚、Niの含有量が2.0%未満では、Niによる低温における靭性が得られない傾向がある。
As mentioned above, the steel slab contains Ni (nickel) in a composition of 2.0% or more and less than 7.5%. By containing the above-mentioned components, the steel slab can realize physical properties equivalent to 9% Ni steel with a lower Ni content than 9% Ni steel. For this purpose, the Ni content of the steel slab is preferably 2.0% or more and less than 7.5%, and preferably 6.5% or more and less than 7.5%. Note that if the Ni content is less than 2.0%, there is a tendency that the toughness at low temperatures due to Ni cannot be obtained.
鋼鋳片は、Al(アルミニウム)を組成として含むことにより、鋼鋳片に含まれる酸素を取り除く脱酸の効果を高めることができる。また、鋼鋳片は、Al(アルミニウム)を組成として含むことにより、母材の強度を確保することができる。Al(アルミニウム)の添加量が高くなると、粗大なAlNにより母材及びHAZ靭性が低下する傾向がある。
By containing Al (aluminum) as a composition, the steel slab can enhance the deoxidizing effect of removing oxygen contained in the steel slab. Moreover, the strength of the base material can be ensured by containing Al (aluminum) as a composition of the steel slab. When the amount of Al (aluminum) added increases, the base material and HAZ toughness tend to decrease due to coarse AlN.
すなわち、鋼鋳片のAl(アルミニウム)の含有量を0.080%以下とすることで、好適なHAZの靭性を確保することができる。特に、鋼鋳片のSiの含有量を0.010%以上とすることで、優れた脱酸の効果を得ることができる。
That is, by controlling the Al (aluminum) content of the steel slab to 0.080% or less, suitable HAZ toughness can be ensured. In particular, by setting the Si content of the steel slab to 0.010% or more, an excellent deoxidizing effect can be obtained.
鋼鋳片は、N(窒素)を組成として含むとAlN等の粗大な金属窒化物が生成され、母材及びHAZ靭性が低下する傾向がある。このため、鋼鋳片は、N(窒素)を組成として可能な限り低い量を含むとよい。
When a steel slab contains N (nitrogen) as a composition, coarse metal nitrides such as AlN are generated, which tends to reduce the toughness of the base material and HAZ. For this reason, the steel slab preferably contains as low a content of N (nitrogen) as possible.
鋼鋳片のN(窒素)含有量が0.0050%以下であることにより、好適な母材及びHAZの靭性を確保することができる。また、鋼鋳片のN(窒素)の含有量が0.0010%以上とすることで、製鋼工程における脱窒処理及び吸窒防止処理の負荷を上がることを抑制し、製造コストの上昇を招くことを抑制することができる。
By setting the N (nitrogen) content of the steel slab to 0.0050% or less, suitable toughness of the base material and HAZ can be ensured. In addition, by setting the N (nitrogen) content of the steel slab to 0.0010% or more, it is possible to suppress the increase in the burden of denitrification treatment and nitrogen absorption prevention treatment in the steel manufacturing process, which leads to an increase in manufacturing costs. This can be suppressed.
鋼鋳片は、O(酸素)を組成として含むと、介在物を形成し母材及びHAZ靭性が低下する傾向がある。このため、鋼鋳片は、O(酸素)を組成として可能な限り低い量を含むとよい。鋼鋳片のO(酸素)含有量が0.0040%以下であることにより、好適な母材及びHAZの靭性を確保することができる。
When a steel slab contains O (oxygen) as a composition, inclusions tend to form and the base metal and HAZ toughness tend to decrease. For this reason, the steel slab preferably contains as low a content of O (oxygen) as possible. When the O (oxygen) content of the steel slab is 0.0040% or less, suitable toughness of the base material and HAZ can be ensured.
また、鋼鋳片のO(酸素)の含有量が0.0005%以上とすることで、製鋼工程における介在物除去処理の負荷を上がることを抑制し、製造コストの上昇を招くことを抑制することができる。
In addition, by setting the O (oxygen) content of the steel slab to 0.0005% or more, it is possible to suppress an increase in the load of inclusion removal treatment in the steel manufacturing process, and to suppress an increase in manufacturing costs. be able to.
更に、鋼鋳片は、上記の合金元素の他に、母材や継手の強度及び靭性の向上のために、Cu、Cr、Mo、Nb、V、Ti、B、Ca、Mgから選択される1種または2種以上を含有することが好ましい。
Furthermore, in addition to the above alloying elements, the steel slab is selected from Cu, Cr, Mo, Nb, V, Ti, B, Ca, and Mg in order to improve the strength and toughness of the base metal and joint. It is preferable to contain one or more kinds.
鋼鋳片は、Cu(銅)を組成として含むとよい。鋼鋳片は、Cu(銅)を組成として含むことにより、母材の強度を確保することができる。Cu(銅)の添加量が高くなると、良好なHAZの靭性が得られない傾向がある。
The steel slab preferably contains Cu (copper) as a composition. By containing Cu (copper) as a composition, the steel slab can ensure the strength of the base material. When the amount of Cu (copper) added increases, there is a tendency that good HAZ toughness cannot be obtained.
すなわち、鋼鋳片のCu(銅)の含有量を0.03%以上とすることで、良好な母材の強度を得ることができる。また、鋼鋳片のCu(銅)の含有量を1.50%以下とすることで、好適なHAZの靭性を確保することができる。
That is, by setting the Cu (copper) content of the steel slab to 0.03% or more, good base material strength can be obtained. Further, by controlling the content of Cu (copper) in the steel slab to 1.50% or less, suitable toughness of the HAZ can be ensured.
鋼鋳片は、Cr(クロム)を組成として含むとよい。鋼鋳片は、Cr(クロム)を組成として含むことにより、母材の強度を確保することができる。Cr(クロム)の添加量が高くなると、良好なHAZの靭性が得られない傾向がある。
The steel slab preferably contains Cr (chromium) as a composition. By containing Cr (chromium) as a composition, the steel slab can ensure the strength of the base material. When the amount of Cr (chromium) added increases, there is a tendency that good HAZ toughness cannot be obtained.
すなわち、鋼鋳片のCr(クロム)の含有量を0.03%以上とすることで、良好な母材の強度を得ることができる。また、鋼鋳片のCr(クロム)の含有量を1.00%以下とすることで、好適なHAZの靭性を確保することができる。
That is, by setting the Cr (chromium) content of the steel slab to 0.03% or more, good base material strength can be obtained. Further, by controlling the content of Cr (chromium) in the steel slab to 1.00% or less, suitable toughness of the HAZ can be ensured.
鋼鋳片は、Mo(モリブデン)を組成として含むとよい。鋼鋳片は、Mo(モリブデン)を組成として含むことにより、母材の強度を確保することができる。Mo(モリブデン)の添加量が高くなると、良好なHAZの靭性が得られない傾向がある。
The steel slab preferably contains Mo (molybdenum) as a composition. By containing Mo (molybdenum) as a composition, the steel slab can ensure the strength of the base material. When the amount of Mo (molybdenum) added increases, there is a tendency that good HAZ toughness cannot be obtained.
すなわち、鋼鋳片のMo(モリブデン)の含有量を0.02%以上とすることで、良好な母材の強度を得ることができる。また、鋼鋳片のMo(モリブデン)の含有量を1.00%以下とすることで、好適なHAZの靭性を確保することができる。
That is, by setting the content of Mo (molybdenum) in the steel slab to 0.02% or more, good strength of the base material can be obtained. Further, by controlling the content of Mo (molybdenum) in the steel slab to 1.00% or less, suitable toughness of the HAZ can be ensured.
鋼鋳片は、Nb(ニオブ)を組成として含むとよい。鋼鋳片は、Nb(ニオブ)を組成として含むことにより、母材の強度を確保することができるかつ、結晶の細粒化を図ることができる。Nb(ニオブ)の添加量が高くなると、良好なHAZの靭性が得られない傾向がある。
The steel slab preferably contains Nb (niobium) as a composition. By containing Nb (niobium) as a composition, the steel slab can ensure the strength of the base material and can achieve finer crystal grains. When the amount of Nb (niobium) added increases, there is a tendency that good HAZ toughness cannot be obtained.
すなわち、鋼鋳片のNb(ニオブ)の含有量を0.003%以上とすることで、良好な母材の強度を得ることができかつ、スラブ中の結晶の細粒化を図ることができる。また、鋼鋳片のNb(ニオブ)の含有量を0.100%以下とすることで、好適なHAZの靭性を確保することができる。
In other words, by setting the content of Nb (niobium) in the steel slab to 0.003% or more, it is possible to obtain good strength of the base metal and to make the crystals in the slab finer. . Further, by controlling the content of Nb (niobium) in the steel slab to 0.100% or less, suitable toughness of the HAZ can be ensured.
鋼鋳片は、V(バナジウム)を組成として含むとよい。鋼鋳片は、V(バナジウム)を組成として含むことにより、母材の強度を確保することができかつ、結晶の細粒化を図ることができる。V(バナジウム)の添加量が高くなると、良好なHAZの靭性が得られない傾向がある。
The steel slab preferably contains V (vanadium) as a composition. By containing V (vanadium) as a composition, the steel slab can ensure the strength of the base material and can achieve finer crystal grains. When the amount of V (vanadium) added increases, there is a tendency that good HAZ toughness cannot be obtained.
すなわち、鋼鋳片のV(バナジウム)の含有量を0.003%以上とすることで、良好な母材の強度を得ることができかつ、スラブ中の結晶の細粒化を図ることができる。また、鋼鋳片のV(バナジウム)の含有量を0.100%以下とすることで、好適なHAZの靭性を確保することができる。
In other words, by setting the content of V (vanadium) in the steel slab to 0.003% or more, it is possible to obtain good base material strength and to make the crystals in the slab finer. . Further, by controlling the content of V (vanadium) in the steel slab to 0.100% or less, suitable toughness of the HAZ can be ensured.
鋼鋳片は、Ti(チタン)を組成として含むとよい。鋼鋳片は、Ti(チタン)を組成として含むことにより、母材の強度を確保することができかつ、スラブ中の結晶の細粒化を図ることができる。Ti(チタン)の添加量が高くなると、粗大なTiNによりHAZ靭性が低下する傾向がある。
The steel slab preferably contains Ti (titanium) as a composition. By containing Ti (titanium) as a composition, the steel slab can ensure the strength of the base material and can achieve finer grains of crystals in the slab. When the amount of Ti (titanium) added increases, HAZ toughness tends to decrease due to coarse TiN.
すなわち、鋼鋳片のTi(チタン)の含有量を0.005%以上とすることで、良好な母材の強度を得ることができかつ、結晶の細粒化を図ることができる。また、鋼鋳片のTi(チタン)の含有量を0.020%以下とすることで、好適なHAZの靭性を確保することができる。
That is, by setting the content of Ti (titanium) in the steel slab to 0.005% or more, it is possible to obtain good strength of the base material and to achieve finer grain size of the crystals. Further, by controlling the content of Ti (titanium) in the steel slab to 0.020% or less, suitable toughness of the HAZ can be ensured.
鋼鋳片は、B(ボロン)を組成として含むとよい。鋼鋳片は、B(ボロン)を組成として含むことにより、極微量でも焼入れ性を向上させることができる。その結果、制御冷却及び焼入れ熱処理を施す場合に、顕著な強度上昇を図ることができる。B(ボロン)の添加量が高くなると、粗大なボロン窒化物や炭硼化物を析出することによりHAZ靭性が低下する傾向がある。
The steel slab preferably contains B (boron) as a composition. By containing B (boron) as a composition, the steel slab can improve hardenability even in a very small amount. As a result, when performing controlled cooling and quenching heat treatment, a significant increase in strength can be achieved. When the amount of B (boron) added increases, HAZ toughness tends to decrease due to the precipitation of coarse boron nitrides and carbides.
すなわち、鋼鋳片のB(ボロン)の含有量を0.0002%以上とすることで、良好な強度を得ることができる。また、鋼鋳片のB(ボロン)の含有量を0.0025%以下とすることで、好適なHAZの靭性を確保することができる。
That is, good strength can be obtained by setting the B (boron) content of the steel slab to 0.0002% or more. Further, by controlling the B (boron) content of the steel slab to 0.0025% or less, suitable HAZ toughness can be ensured.
鋼鋳片は、Ca(カルシウム)を組成として含むとよい。鋼鋳片は、Ca(カルシウム)を含むことで、介在物の形態制御を行うことができ、靭性を向上させることができる。Ca(カルシウム)は、Sと結合して、CaSとなる。CaSは、粒界での延性低下割れを抑制しかつ、表面割れの低減を図ることができるCa(カルシウム)の添加量が高くなると、粗大なCa含有介在物が生成することによりHAZ靭性が低下する傾向がある。
The steel slab preferably contains Ca (calcium) as a composition. By containing Ca (calcium), the steel slab can control the form of inclusions and improve toughness. Ca (calcium) combines with S to become CaS. CaS suppresses ductility-degrading cracking at grain boundaries and reduces surface cracking. When the amount of Ca (calcium) added increases, HAZ toughness decreases due to the formation of coarse Ca-containing inclusions. There is a tendency to
すなわち、鋼鋳片のCa(カルシウム)の含有量を0.0005%以上とすることで、良好な強度を得ることができる。また、鋼鋳片のCa(カルシウム)の含有量を0.0050%以下とすることで、好適なHAZの靭性を確保することができる。
That is, by setting the Ca (calcium) content of the steel slab to 0.0005% or more, good strength can be obtained. Further, by controlling the content of Ca (calcium) in the steel slab to 0.0050% or less, suitable toughness of the HAZ can be ensured.
鋼鋳片は、Mg(マグネシウム)を組成として含むとよい。鋼鋳片は、Mg(マグネシウム)を含むことで、介在物の形態制御を行うことができ、靭性を向上させることができる。Mg(マグネシウム)は、Sと結合して、MgSとなる。MgSは、粒界での延性低下割れを抑制することができる。
The steel slab preferably contains Mg (magnesium) as a composition. By containing Mg (magnesium), the steel slab can control the form of inclusions and improve toughness. Mg (magnesium) combines with S to become MgS. MgS can suppress ductility reduction cracking at grain boundaries.
またMgSは、オーステナイト粒径を微細にする効果が大きく、連続鋳造時や圧延時の表面割れの低減を図ることができる。Mg(マグネシウム)の添加量が高くなると、粗大なMg含有介在物が生成することによりHAZ靭性が低下する傾向がある。
Furthermore, MgS has a large effect of making the austenite grain size fine, and can reduce surface cracking during continuous casting or rolling. When the amount of Mg (magnesium) added increases, the HAZ toughness tends to decrease due to the formation of coarse Mg-containing inclusions.
すなわち、鋼鋳片のMg(マグネシウム)の含有量を0.0005%以上とすることで、良好な強度を得ることができる。また、鋼鋳片のMg(マグネシウム)の含有量を0.0030%以下とすることで、好適なHAZの靭性を確保することができる。
That is, by setting the Mg (magnesium) content of the steel slab to 0.0005% or more, good strength can be obtained. Further, by controlling the content of Mg (magnesium) in the steel slab to 0.0030% or less, suitable toughness of the HAZ can be ensured.
鋼鋳片は、その表面における凝固核の密度が0.35個/mm2以上である。表面における凝固核の密度は、0.35個/mm2以上5.00個/mm2未満であることが好ましく、0.50個/mm2以上5.00個/mm2未満であることがさらに好ましい。
The density of solidification nuclei on the surface of the steel slab is 0.35 pieces/mm 2 or more. The density of coagulation nuclei on the surface is preferably 0.35 pieces/ mm2 or more and less than 5.00 pieces/ mm2 , and preferably 0.50 pieces/mm2 or more and less than 5.00 pieces/ mm2. More preferred.
凝固核の密度を5.00個/mm2以上とすると、より強冷却なモールドパウダーを使用し、鋳型振動数を非常に高い値にする必要があるため好ましくない。すなわち、鋳型の冷却が強くなりすぎると、鋳型内の鋼鋳片の冷却が不均一となることに起因する縦割れの発生が顕著となる傾向がある。また、モールドパウダーの流入不足によるブレークアウトなどの操業上の問題も生じやすくなる。以上により、凝固核の密度を極端に高くする(5.00個/mm2以上とする)ことは有効と言えない。
If the density of solidified nuclei is 5.00 pieces/mm 2 or more, it is not preferable because it is necessary to use mold powder that is cooled more intensely and to set the mold vibration frequency to a very high value. That is, if the cooling of the mold becomes too strong, there is a tendency for vertical cracks to occur more prominently due to non-uniform cooling of the steel slab within the mold. In addition, operational problems such as breakouts due to insufficient inflow of mold powder are likely to occur. From the above, it cannot be said that it is effective to extremely increase the density of coagulation nuclei (5.00 pieces/mm 2 or more).
鋼鋳片の表面の凝固核の密度は、以下の方法により測定することができる。例えば、鋼鋳片の表面において、デンドライト樹枝がほぼ同じ方向を向いている塊(凝固セル、又はデンドライトセル)は、1つの凝固核から成長したものとみなすことができる。すなわち、所定の面積当たりの当該塊の数を算出することにより、凝固核の密度を算出することができる。
The density of solidification nuclei on the surface of a steel slab can be measured by the following method. For example, on the surface of a steel slab, a lump (solidification cell or dendrite cell) in which dendrite branches are oriented in approximately the same direction can be considered to have grown from one solidification nucleus. That is, by calculating the number of the lumps per predetermined area, the density of the solidified core can be calculated.
実際のNi含有鋼鋳片を詳細に調査した結果、表面割れを抑制するためには、凝固核の個数が多いほど望ましい。具体的には、鋼鋳片の表面における凝固核の密度が0.35個/mm2以上であれば、効果的に表面割れを抑制することができる。
As a result of detailed investigation of actual Ni-containing steel slabs, it is desirable that the number of solidification nuclei be as large as possible in order to suppress surface cracking. Specifically, if the density of solidification nuclei on the surface of the steel slab is 0.35 pieces/mm 2 or more, surface cracking can be effectively suppressed.
以上で説明した、鋼鋳片を鋳造するための連続鋳造方法について説明する。
連続鋳造の鋼鋳片の表面での凝固核の密度を高くする方法の1つとして、連続鋳造の初期凝固時の冷却を強くすること、つまり、鋳型内での冷却を強化することが挙げられる。 The continuous casting method for casting steel slabs explained above will be explained.
One way to increase the density of solidification nuclei on the surface of a continuously cast steel slab is to strengthen the cooling during the initial solidification of continuous casting, that is, to strengthen the cooling within the mold. .
連続鋳造の鋼鋳片の表面での凝固核の密度を高くする方法の1つとして、連続鋳造の初期凝固時の冷却を強くすること、つまり、鋳型内での冷却を強化することが挙げられる。 The continuous casting method for casting steel slabs explained above will be explained.
One way to increase the density of solidification nuclei on the surface of a continuously cast steel slab is to strengthen the cooling during the initial solidification of continuous casting, that is, to strengthen the cooling within the mold. .
一般的に、Niを含有する鋼鋳片の連続鋳造は、鋳型の溶鋼の湯面上からモールドパウダーを添加する工程を含む。モールドパウダーは、酸化防止剤、保温剤、鋳型と凝固シェルとの潤滑剤などとして機能する。
Generally, continuous casting of steel slabs containing Ni includes a step of adding mold powder from above the surface of molten steel in a mold. The mold powder functions as an antioxidant, a heat insulator, and a lubricant between the mold and the solidified shell.
このモールドパウダーは、凝固シェルと鋳型との間隙に流入することから、溶鋼と鋳型とは直接接触せず、溶鋼はモールドパウダーの流入層を介して鋳型によって間接的に冷却されている。
Since this mold powder flows into the gap between the solidified shell and the mold, there is no direct contact between the molten steel and the mold, and the molten steel is indirectly cooled by the mold via the inflow layer of mold powder.
したがって、モールドパウダーの粘度を調整することにより、その流入層の厚さを薄く形成し、鋳型における抜熱能力を高めることにより、凝固核の密度を高くすることができる。
Therefore, by adjusting the viscosity of the mold powder, the thickness of the inflow layer can be made thin, and the heat removal ability of the mold can be increased, thereby increasing the density of the solidification cores.
例えば、モールドパウダーは、CaO、SiO2、Na2O、CaF2、Al2O3などで構成されている。モールドパウダーの熱伝導度は、金属である溶鋼及び連続鋳造用鋳型を構成する銅のそれよりも著しく低い。
For example, the mold powder is composed of CaO, SiO2, Na2O , CaF2 , Al2O3 , etc. The thermal conductivity of the mold powder is significantly lower than that of the metals molten steel and copper that constitutes the continuous casting mold.
溶鋼から鋳型への抜熱は、モールドパウダーの流入層の厚さに左右される。モールドパウダーの流入層の厚さが薄くなれば鋳型による冷却効率が高くなる。厚さが厚くなれば冷却効率が低下する。
Heat removal from molten steel to the mold depends on the thickness of the inflow layer of mold powder. The thinner the mold powder inflow layer, the higher the cooling efficiency of the mold. As the thickness increases, cooling efficiency decreases.
モールドパウダーの流入層の厚さは、モールドパウダーの消費量から推定できる。モールドパウダーの流入層の厚さは、通常、0.1~0.3mm程度とされている。
The thickness of the inflow layer of mold powder can be estimated from the consumption amount of mold powder. The thickness of the molding powder inflow layer is usually about 0.1 to 0.3 mm.
モールドパウダーの流入層の厚さを薄く形成するためには、粘度の高いモールドパウダーを使用するとよい。したがって、鋼鋳片は、1300℃における粘度が0.5Pa・s(5ポアズ)以上のモールドパウダーを鋳型内に添加して連続鋳造することが好ましい。
In order to form a thin mold powder inflow layer, it is preferable to use a mold powder with high viscosity. Therefore, the steel slab is preferably continuously cast by adding mold powder having a viscosity of 0.5 Pa·s (5 poise) or more at 1300° C. into the mold.
モールドパウダーの1300℃における粘度は、0.5Pa・s(5ポアズ)以上5.0Pa・s(50ポアズ)以下であることが好ましく、1.0Pa・s(10ポアズ)以上5.0Pa・s(50ポアズ)以下であることがより好ましい。
The viscosity of the mold powder at 1300°C is preferably 0.5 Pa·s (5 poise) or more and 5.0 Pa·s (50 poise) or less, and 1.0 Pa·s (10 poise) or more and 5.0 Pa·s (50 poise) or less is more preferable.
モールドパウダーの1300℃における粘度は、0.5Pa・s(5ポアズ)以上とすることで、凝固シェルと鋳型との間隙にモールドパウダーを流れ込みにくくすることができる。このため、モールドパウダーの流入層の厚さを薄くすることができ、溶鋼から鋳型への抜熱を大きくすることができる。これにより、凝固核の密度を高くする、すなわち、0.35個/mm2以上とすることができ、表面割れの発生を抑制することができる。
By setting the viscosity of the molding powder at 1300° C. to 0.5 Pa·s (5 poise) or more, it is possible to make it difficult for the molding powder to flow into the gap between the solidified shell and the mold. Therefore, the thickness of the inflow layer of mold powder can be reduced, and the heat removal from the molten steel to the mold can be increased. Thereby, the density of solidification nuclei can be increased, that is, 0.35 pieces/mm 2 or more, and the occurrence of surface cracks can be suppressed.
凝固核の密度は、鋳型を所定の振動数(オシレーション・サイクル)で振動させることによっても制御することができる。例えば、鋳型が振動することにより、凝固途中のデンドライト樹枝状晶の一部が解離してモールドパウダー流入層の表面に付着する。デンドライト樹枝状晶がモールドパウダー流入層の表面に付着すると、その箇所から凝固核が発生する。これにより、凝固核の密度を高めることができる。
The density of solidified nuclei can also be controlled by vibrating the mold at a predetermined frequency (oscillation cycle). For example, when the mold vibrates, some of the dendrite dendrites in the middle of solidification dissociate and adhere to the surface of the mold powder inflow layer. When dendrite dendrites adhere to the surface of the mold powder inflow layer, solidification nuclei are generated from that location. Thereby, the density of coagulation nuclei can be increased.
連続鋳造は、例えば、鋳型を毎分80サイクル以上の振動数で振動させる工程を含むことが好ましい。当該鋳型を振動させる振動数は、80~400サイクルであることが好ましく、100~400サイクルであることがより好ましい。
Continuous casting preferably includes, for example, a step of vibrating the mold at a frequency of 80 cycles or more per minute. The frequency at which the mold is vibrated is preferably 80 to 400 cycles, more preferably 100 to 400 cycles.
当該鋳型を振動させる振動数が80サイクル未満であると、十分な凝固核の密度を確保することができない恐れがある。また、当該鋳型を振動させる振動数が400サイクルを超えると、鋳型が共振を起こして鋳造が不安定となる傾向がある。
If the frequency of vibration of the mold is less than 80 cycles, there is a possibility that sufficient solidification core density cannot be ensured. Furthermore, if the frequency of vibration of the mold exceeds 400 cycles, the mold tends to resonate and casting becomes unstable.
モールドパウダーの粘度は、鋳型の振動数(オシレーション・サイクル)に応じて変更することができる。例えば、鋳型の振動数(オシレーション・サイクル)を毎分50サイクルとした場合、1300℃における粘度が0.5Pa・s(5ポアズ)以上のモールドパウダーを使用するとよい。このようにしても、Niを含有する鋼鋳片の表面での凝固核の密度を0.35個/mm2以上とすることができる。
The viscosity of the mold powder can be changed depending on the frequency (oscillation cycle) of the mold. For example, when the frequency (oscillation cycle) of the mold is 50 cycles per minute, it is preferable to use a molding powder with a viscosity of 0.5 Pa·s (5 poise) or more at 1300°C. Even in this case, the density of solidification nuclei on the surface of the Ni-containing steel slab can be set to 0.35 pieces/mm 2 or more.
また、例えば、鋳型の振動数(オシレーション・サイクル)を毎分80サイクルとした場合、1300℃における粘度が0.15Pa・s(1.5ポアズ)以上のモールドパウダーを使用するとよい。このようにしても、Niを含有する鋼鋳片の表面での凝固核の密度を0.35個/mm2以上とすることができる。
Further, for example, when the vibration frequency (oscillation cycle) of the mold is 80 cycles per minute, it is preferable to use a molding powder having a viscosity of 0.15 Pa·s (1.5 poise) or more at 1300°C. Even in this case, the density of solidification nuclei on the surface of the Ni-containing steel slab can be set to 0.35 pieces/mm 2 or more.
特に、鋳型の振動数(オシレーション・サイクル)を毎分80サイクル以上とし、1300℃における粘度が0.5Pa・s(5ポアズ)以上のモールドパウダーを使用することが好ましい。このような条件では、鋼鋳片の表面割れを大幅に減少させることができる。
In particular, it is preferable to use a molding powder with a mold frequency (oscillation cycle) of 80 cycles or more per minute and a viscosity of 0.5 Pa·s (5 poise) or more at 1300°C. Under such conditions, surface cracking of the steel slab can be significantly reduced.
ところで、Niを含有する鋼鋳片の表面には、細かいディンプルを含む面及び、極めて平坦な面が存在する。ディンプルを含む面は、600~900℃の延性低下温度領域で結晶粒界が破壊されて形成されたと考えられる。
By the way, on the surface of a steel slab containing Ni, there are a surface containing fine dimples and an extremely flat surface. It is thought that the surface containing dimples was formed when grain boundaries were destroyed in the ductility decreasing temperature range of 600 to 900°C.
平坦な面は、その形状から、一種の凝固割れにより形成されたと考えられる。より具体的には、溶鋼が凝固する際に最終凝固部は、C、S、Pなどが濃化して融点が低下する。平坦な面は、最終凝固部に低融点の液相が存在している状態で、既に凝固が完了した周囲の部分が収縮して形成される。
Based on its shape, the flat surface is thought to have been formed by a type of solidification cracking. More specifically, when molten steel solidifies, C, S, P, etc. are concentrated in the final solidified part, and the melting point is lowered. The flat surface is formed by shrinking the surrounding area that has already been solidified while a low melting point liquid phase is present in the final solidified part.
より具体的には、表面割れは、鋳型内で凝固シェルが成長する際に、凝固シェルを構成する2つの凝固セルの境界に、C、S、Pなどの溶質元素が濃化する。その結果、低融点の液相が生じることにより凝固割れが発生する。この凝固割れを起点として、二次冷却帯での熱応力や曲げ矯正による応力などによって更に割れが進行すると考えられる。
More specifically, surface cracking occurs when solute elements such as C, S, and P are concentrated at the boundary between two solidified cells that make up the solidified shell when the solidified shell grows within the mold. As a result, a liquid phase with a low melting point is generated, resulting in solidification cracking. Starting from this solidification crack, it is thought that the crack progresses further due to thermal stress in the secondary cooling zone, stress due to bending straightening, etc.
従って、従来実施されていた二次冷却帯での熱応力や曲げ矯正応力を緩和するだけでは表面割れを十分に抑制することができない。表面割れを抑制するためには、鋳型での初期凝固における凝固割れを抑制することが重要かつ、必要である。
Therefore, it is not possible to sufficiently suppress surface cracks simply by relaxing the thermal stress and bending straightening stress in the secondary cooling zone, which has been conventionally practiced. In order to suppress surface cracking, it is important and necessary to suppress solidification cracking during initial solidification in the mold.
凝固割れは、最終凝固部での溶質元素の濃化が少ないほど、また、最終凝固部に作用する熱応力が小さいほど発生しにくい。例えば、凝固セルのサイズが小さくなると、自ずと冷却速度が速くなって溶質元素の濃化が抑制される。また、凝固セルのサイズが小さいと熱応力が分散され、個々の凝固セルの界面に作用する熱応力が小さくなる。凝固セルのサイズを小さくすることは、凝固割れの防止に有効である。
Solidification cracking is less likely to occur as the concentration of solute elements in the final solidification zone decreases, and as the thermal stress acting on the final solidification zone decreases. For example, when the size of the solidification cell becomes smaller, the cooling rate naturally increases and concentration of solute elements is suppressed. Moreover, when the size of the solidification cells is small, thermal stress is dispersed, and the thermal stress acting on the interface of each solidification cell becomes small. Reducing the size of the solidification cells is effective in preventing solidification cracking.
一般的に、凝固セルの個数と凝固核の個数とは相関関係があり、凝固セルのサイズは、凝固核の密度が高くなるほど小さくなることが知られている。このため、凝固セルのサイズは、溶鋼が鋳型と接触する部分における凝固核の密度を高くすることで小さくすることができる。
It is generally known that there is a correlation between the number of coagulation cells and the number of coagulation nuclei, and the size of the coagulation cells becomes smaller as the density of coagulation nuclei increases. Therefore, the size of the solidification cell can be reduced by increasing the density of solidification nuclei in the portion where the molten steel contacts the mold.
すなわち、本発明のNiを含有する鋼鋳片は、高い凝固核の密度を有するため、凝固セルのサイズを小さくすることができる。その結果、表面割れが少ないNiを含有する鋼鋳片を提供することができる。
That is, since the Ni-containing steel slab of the present invention has a high density of solidification nuclei, the size of the solidification cells can be reduced. As a result, a Ni-containing steel slab with less surface cracking can be provided.
本発明の連続鋳造方法によれば、鋼鋳片の表面における初期凝固を制御することができる。これにより、多数の凝固核が発生され、凝固セルの界面へのP(リン)やS(硫黄)などの不純物元素及びC(炭素)の濃化が低減される。このため、凝固セルの界面での凝固割れを抑制することができる。したがって、鋼鋳片の表面に発生する、いわゆる表面割れを抑制することができる。
According to the continuous casting method of the present invention, initial solidification on the surface of a steel slab can be controlled. As a result, a large number of solidification nuclei are generated, and the concentration of impurity elements such as P (phosphorus) and S (sulfur) and C (carbon) on the interface of the solidification cell is reduced. Therefore, solidification cracking at the interface of the solidification cells can be suppressed. Therefore, so-called surface cracks occurring on the surface of the steel slab can be suppressed.
以上のように、本発明に係るNi含有鋼鋳片は、鋳片表面での凝固核の密度が0.35個/mm2以上である。このため、凝固セルのサイズを小さくすることができる。これにより、凝固セルの界面でのS及びPの濃化が軽減されるため、凝固セルの界面での脆化を抑制することができる。また、凝固セルの界面に作用する応力も分散され、凝固セルの界面における凝固割れを抑制することができる。その結果、鋼鋳片の表面における割れの発生を低減することができる。
As described above, the Ni-containing steel slab according to the present invention has a density of solidification nuclei on the slab surface of 0.35 pieces/mm 2 or more. Therefore, the size of the coagulation cell can be reduced. This reduces the concentration of S and P at the interface of the solidification cells, so that embrittlement at the interface of the solidification cells can be suppressed. Moreover, the stress acting on the interface of the solidification cell is also dispersed, and solidification cracking at the interface of the solidification cell can be suppressed. As a result, the occurrence of cracks on the surface of the steel slab can be reduced.
また本発明では、上述した連続鋳造で生成したスラブを用いて鋼鋳片を製造する方法について説明する。Niを含有する鋼鋳片の製造方法は、連続鋳造方法で製造されたスラブに対して手入れ処理を行う手入れ工程と、手入れ工程の後、加熱炉内の加熱温度を1100℃以下でスラブを加熱する加熱工程と、を含む。
Further, in the present invention, a method for manufacturing a steel slab using a slab produced by the above-mentioned continuous casting will be described. The method for manufacturing steel slabs containing Ni includes a care process in which a slab manufactured by a continuous casting method is treated, and after the care process, the slab is heated at a heating temperature of 1100°C or less in a heating furnace. and a heating step.
鋼鋳片の製造方法では、溶鋼を連続鋳造して生成したスラブを用いて鋼鋳片を製造する。従来では、生成したスラブを1000~1200℃で加熱する(第1加熱処理)。第1加熱が行われたスラブを厚さが60~90%程度にする予備圧延(軽分塊圧延)を行う。予備圧延が行われたスラブに疵がなくなるまで研削して、疵を除去する手入れ処理を行う。手入れ処理が行われたスラブを1000~1200℃で加熱する(第2加熱処理)。第2加熱処理が行われたスラブに圧延(本圧延)が行われている。
In the method for manufacturing steel slabs, steel slabs are manufactured using slabs produced by continuous casting of molten steel. Conventionally, the generated slab is heated at 1000 to 1200° C. (first heat treatment). The slab subjected to the first heating is subjected to preliminary rolling (light blooming) to a thickness of about 60 to 90%. The pre-rolled slab is ground until there are no flaws, and a care process is performed to remove the flaws. The treated slab is heated at 1000 to 1200°C (second heat treatment). Rolling (main rolling) is performed on the slab that has been subjected to the second heat treatment.
従来の製造方法で製造した鋼鋳片には、オーステナイト粒界にスケールを伴った割れが存在することが確認されている。このスケールの組成には、Fe2SiO4(ファイアライト)が含まれている。スケールを伴った割れの原因の1つとして、Fe2SiO4(ファイアライト)の存在が挙げられている。
It has been confirmed that steel slabs manufactured by conventional manufacturing methods have cracks accompanied by scale at austenite grain boundaries. The composition of this scale includes Fe 2 SiO 4 (firelite). The presence of Fe 2 SiO 4 (firelite) is cited as one of the causes of cracks accompanied by scale.
Fe2SiO4スケールは、シリコン(Si)を0.05%以上含有する鋼において、Fe2SiO4の生成に伴って生成される。尚、Fe2SiO4は、ウスタイト(FeO)との共晶温度が1170℃である。Fe2SiO4は、共晶温度以上で液相酸化物である。
Fe 2 SiO 4 scale is produced in steel containing 0.05% or more of silicon (Si) as Fe 2 SiO 4 is produced. Note that the eutectic temperature of Fe 2 SiO 4 with wustite (FeO) is 1170°C. Fe 2 SiO 4 is a liquid phase oxide above the eutectic temperature.
Fe2SiO4スケールが生成されると結晶粒界が脆弱になる。Fe2SiO4スケールは、高温下で液相であるため、結晶粒界や母相の深部まで拡散しやすい。
When Fe 2 SiO 4 scale is generated, grain boundaries become brittle. Since Fe 2 SiO 4 scale is in a liquid phase at high temperatures, it easily diffuses into grain boundaries and deep into the matrix.
Fe2SiO4スケールが生成された後に、熱応力や圧延が行われる際の歪によって粒界割れが生じる。したがって、連続鋳造において表面の疵の発生を抑制しても、Fe2SiO4(ファイアライト)の存在により製品である鋼鋳片の表面に疵が形成される。
After Fe 2 SiO 4 scale is generated, intergranular cracking occurs due to thermal stress or strain during rolling. Therefore, even if the occurrence of surface flaws is suppressed in continuous casting, flaws are formed on the surface of the product steel slab due to the presence of Fe 2 SiO 4 (firelite).
よって、鋼鋳片を製造する際には、その製造工程においてFe2SiO4の共晶温度以下で実行されることが好ましい。言い換えれば、加熱炉の加熱温度をFe2SiO4の共晶温度以下とすることが好ましい。
Therefore, when manufacturing a steel slab, it is preferable that the manufacturing process be performed at a temperature equal to or lower than the eutectic temperature of Fe 2 SiO 4 . In other words, it is preferable that the heating temperature of the heating furnace be equal to or lower than the eutectic temperature of Fe 2 SiO 4 .
尚、結晶粒界部におけるFe2SiO4スケールの生成には、当該領域にP,S等の元素が偏析していることも関連している。このため、例えば、1100℃程度の共晶温度以下の温度で製造工程を実施しても、当該領域の一部に液相のFe2SiO4スケールが生成する場合がある。
Note that the formation of Fe 2 SiO 4 scale at grain boundaries is also related to the segregation of elements such as P and S in the regions. For this reason, even if the manufacturing process is performed at a temperature below the eutectic temperature of about 1100° C., for example, liquid phase Fe 2 SiO 4 scale may be generated in a part of the region.
このため、Fe2SiO4スケールを伴った割れが生じることを抑制するためには、1100℃以下で加熱工程が実行されることが好ましく、1050℃以下で加熱工程が実行されることがさらに好ましい。また、このような条件下で加熱工程においてスラブを加熱した後に、圧延工程が行われることが好ましい。
Therefore, in order to suppress the occurrence of cracks accompanied by Fe 2 SiO 4 scale, it is preferable that the heating step is performed at a temperature of 1100° C. or lower, and it is more preferable that the heating step is performed at a temperature of 1050° C. or lower. . Further, it is preferable that the rolling step is performed after the slab is heated in the heating step under such conditions.
ところで、本発明の連続鋳造方法により凝固核の密度を制御してスラブを生成した場合には、従来のスラブよりも優れた靭性を有するため、軽分塊圧延等の予備圧延なしに鋼鋳片を製造することができる。
By the way, when a slab is produced by controlling the density of solidified cores by the continuous casting method of the present invention, it has superior toughness than conventional slabs, so it can be used to produce steel slabs without pre-rolling such as light blooming. can be manufactured.
したがって、本発明の連続鋳造方法により凝固核の密度を制御してスラブを生成した場合には、下記の(1)~(3)を行うことにより鋼鋳片を製造することができる。
Therefore, when a slab is produced by controlling the density of solidification nuclei by the continuous casting method of the present invention, a steel slab can be produced by performing the following (1) to (3).
(1)生成されたスラブの疵がなくなるまで、およそ表面から3~6mmを研削して疵を除去する手入れ処理を行う(手入れ工程)。
(2)手入れ処理がされたスラブを1100℃以下で加熱する(加熱工程)。
(3)加熱工程が行われたスラブを圧延(本圧延)する。 (1) A care process is performed to remove the flaws by grinding approximately 3 to 6 mm from the surface until the generated slab is free of flaws (care process).
(2) Heating the treated slab at 1100° C. or lower (heating step).
(3) The slab subjected to the heating process is rolled (main rolling).
(2)手入れ処理がされたスラブを1100℃以下で加熱する(加熱工程)。
(3)加熱工程が行われたスラブを圧延(本圧延)する。 (1) A care process is performed to remove the flaws by grinding approximately 3 to 6 mm from the surface until the generated slab is free of flaws (care process).
(2) Heating the treated slab at 1100° C. or lower (heating step).
(3) The slab subjected to the heating process is rolled (main rolling).
このように、スラブの温度を1100℃以下で加熱処理を実施することで、鋼鋳片(製品)の表面の疵欠陥を製品として問題のないレベルに抑制することができる。言い換えれば、このように、鋼鋳片を製造することにより、Fe2SiO4スケールの生成を抑制することができ、1回の圧延工程で疵の発生が抑制された鋼鋳片(製品)を製造することが可能となる。
In this way, by performing the heat treatment at a temperature of the slab of 1100° C. or lower, it is possible to suppress the flaws on the surface of the steel slab (product) to a level that does not pose a problem as a product. In other words, by producing steel slabs in this way, the formation of Fe 2 SiO 4 scale can be suppressed, and steel slabs (products) with suppressed occurrence of defects can be produced in one rolling process. It becomes possible to manufacture.
Niの含有量が3.5質量%である3.5%Ni鋼、同含有量が5.0質量%である5%Ni鋼及び、同含有量が7.0質量%である5%Ni鋼を溶製して溶鋼を作成した。溶鋼の作成には、転炉及びRH真空脱ガス装置を用いた。
3.5% Ni steel with a Ni content of 3.5% by mass, 5% Ni steel with a Ni content of 5.0% by mass, and 5% Ni steel with a Ni content of 7.0% by mass. Molten steel was created by melting steel. A converter and an RH vacuum degassing device were used to create the molten steel.
垂直曲げ型スラブ連続鋳造機を用いて、この溶鋼を鋳造する試験をした。垂直曲げ型スラブ連続鋳造機は、厚さ250mm、幅2100mmであった。試験は、合計20ヒート実施(試験No.1~20)した。表1に、試験No.1~20の化学成分を示す。表2に、試験No.1~20の連続鋳造機での鋳造条件を示す。
A test was conducted to cast this molten steel using a vertical bending type continuous slab casting machine. The vertical bending continuous slab casting machine had a thickness of 250 mm and a width of 2100 mm. The test was conducted in a total of 20 heats (Test Nos. 1 to 20). Table 1 shows the chemical components of Test Nos. 1 to 20. Table 2 shows the casting conditions in the continuous casting machine for test Nos. 1 to 20.
試験No.1、4、6、9、11、14、16については、鋳造速度は、0.8m/minとした。鋳型のオシレーションの振幅は8mmとした。同オシレーションの振動数は、毎分60サイクルとした。モールドパウダーは、1300℃における粘度が0.20Pa・sのものを用いた。
For Test Nos. 1, 4, 6, 9, 11, 14, and 16, the casting speed was 0.8 m/min. The amplitude of the mold oscillation was 8 mm. The frequency of the oscillation was 60 cycles per minute. The molding powder used had a viscosity of 0.20 Pa·s at 1300°C.
試験No.2、3、5、7、8、10、12、13、15、17、18については、鋳造速度は、0.8m/minとした。鋳型のオシレーションの振幅は8mmとした。同オシレーションの振動数は、毎分60サイクルとした。モールドパウダーは、1300℃における粘度が0.06~2.00Pa・sのものを用いた。
For Test Nos. 2, 3, 5, 7, 8, 10, 12, 13, 15, 17, and 18, the casting speed was 0.8 m/min. The amplitude of the mold oscillation was 8 mm. The frequency of the oscillation was 60 cycles per minute. The molding powder used had a viscosity of 0.06 to 2.00 Pa·s at 1300°C.
試験No.19については、鋳造速度は、0.8m/minとした。鋳型のオシレーションの振幅は8mmとした。同オシレーションの振動数は、毎分80サイクルとした。モールドパウダーは、1300℃における粘度が0.20Pa・sのものを用いた。
For test No. 19, the casting speed was 0.8 m/min. The amplitude of the mold oscillation was 8 mm. The frequency of the oscillation was 80 cycles per minute. The molding powder used had a viscosity of 0.20 Pa·s at 1300°C.
試験No.20については、鋳造速度は、0.8m/minとした。鋳型のオシレーションの振幅は8mmとした。同オシレーションの振動数は、毎分80サイクルとした。モールドパウダーは、1300℃における粘度が0.5Pa・sのものを用いた。
For test No. 20, the casting speed was 0.8 m/min. The amplitude of the mold oscillation was 8 mm. The frequency of the oscillation was 80 cycles per minute. The molding powder used had a viscosity of 0.5 Pa·s at 1300°C.
鋳造後の鋼鋳片を長さ300mmに切り出した。切り出した試料について、次の処理を行った後に表面割れの評価を行った。各試料の表面をショットブラスト処理して表面の酸化膜を除去した。その後、浸透探傷試験により表面割れを判別した。判別した表面割れについて、割れの長さ及び個数を測定した。
The cast steel slab was cut into a length of 300 mm. The cut samples were subjected to the following treatments and then evaluated for surface cracks. The surface of each sample was subjected to shot blasting to remove the oxide film on the surface. Thereafter, surface cracks were determined by penetrant testing. Regarding the determined surface cracks, the length and number of cracks were measured.
表面割れの深さを調べるために、表面からの距離3mmの位置、6mmの位置、9mmの位置で研削した。研削したそれぞれの面において、浸透探傷試験により表面割れを判別した。判別した表面割れについて、割れの長さ及び個数を測定した。
In order to investigate the depth of surface cracks, grinding was performed at a distance of 3 mm, 6 mm, and 9 mm from the surface. On each ground surface, surface cracks were determined by penetrant testing. Regarding the determined surface cracks, the length and number of cracks were measured.
鋳片表面の凝固核の密度は、以下の方法により測定した。鋼鋳片の表面から試料を採取し、ショットブラストにより表面の酸化膜を除去した。酸化膜が除去された鋼鋳片の表面を鏡面研削し、ピクリン酸で腐食して凝固組織を現出させた。
The density of solidified nuclei on the surface of the slab was measured by the following method. A sample was taken from the surface of a steel slab, and the oxide film on the surface was removed by shot blasting. The surface of the steel slab from which the oxide film had been removed was mirror-ground and corroded with picric acid to reveal the solidified structure.
現出させた凝固組織を写真撮影した。写真において、デンドライト樹枝がほぼ同じ方向を向いている塊(凝固セル、又はデンドライトセル)を1つの凝固核から成長したものとみなした。所定の面積当たりの当該塊の数を算出することにより、凝固核の密度を算出した。
The coagulated tissue that appeared was photographed. In the photograph, a mass (coagulation cell or dendrite cell) in which dendrite branches were oriented in almost the same direction was considered to have grown from one coagulation nucleus. The density of coagulation nuclei was calculated by calculating the number of the lumps per predetermined area.
具体的には、凝固組織の写真に写っている塊を凝固セルの個数として数え、その凝固セルの占めている面積で除して凝固核の密度とした。また、凝固セルの大きさは、オシレーションマークの近くでは小さく、オシレーションマークから離れると大きくなる傾向がある。このため、凝固セルを数える範囲は、互いに隣接する1のオシレーションマークから他のオシレーションマークまでとし、平均的な値を求めた。
Specifically, the number of coagulated cells was counted as the mass shown in the photograph of the coagulated tissue, and the density was determined by dividing by the area occupied by the coagulated cells. Furthermore, the size of the coagulation cell tends to be small near the oscillation mark and to become large away from the oscillation mark. For this reason, the range in which coagulation cells were counted was from one oscillation mark adjacent to the other oscillation marks, and the average value was determined.
表3に、試験No.1~20の凝固核の密度及び、割れ総長さ(割れ長さ×割れ個数) の調査結果を示す。
Table 3 shows test no. The results of the investigation of the density of solidified nuclei from 1 to 20 and the total crack length (crack length x number of cracks) are shown.
試験No.1、6、11、16では、凝固核の密度が0.35個/mm2未満であった。試験No.1、5、9、13では、多くの表面割れが発生した。また、試験No.1、6、11、16は、表面からの距離3mmの位置又は、6mmの位置で割れが発生していた。
In Test Nos. 1, 6, 11, and 16, the density of coagulation nuclei was less than 0.35 pieces/mm 2 . In Test Nos. 1, 5, 9, and 13, many surface cracks occurred. In addition, in Test Nos. 1, 6, 11, and 16, cracks occurred at a distance of 3 mm or 6 mm from the surface.
これに対して、試験No.2~5、7~10、12~15、17~20では、凝固核の密度が0.35個/mm2よりも高い結果が得られた。試験No.2~5、7~10、12~15、17~20の結果を参照すると、凝固核の密度が高くなるにつれて、表面割れの発生が減少している。
On the other hand, in Test Nos. 2 to 5, 7 to 10, 12 to 15, and 17 to 20, results in which the density of coagulation nuclei was higher than 0.35 pieces/mm 2 were obtained. Referring to the results of Test Nos. 2 to 5, 7 to 10, 12 to 15, and 17 to 20, as the density of solidification nuclei increases, the occurrence of surface cracks decreases.
特に、凝固核の密度が1.50個/mm2を超える試験No.5、10、15、20では、大幅な表面割れの減少が確認された。尚、表3の備考欄には、本発明の範囲内の試験を「本発明例」と表示し、それ以外を「比較例」と表示している。
In particular, test No. 2 in which the density of coagulation nuclei exceeds 1.50 pieces/ mm2 . In samples No. 5, 10, 15, and 20, a significant reduction in surface cracking was confirmed. In addition, in the remarks column of Table 3, tests within the scope of the present invention are indicated as "invention examples", and other tests are indicated as "comparative examples".
(鋼鋳片の製造試験)
試験No.1~20のスラブを下記の方法で加熱工程及び、圧延工程を行い、鋼鋳片(以下、製品とも称する)を製造した。製品は、従来の製造方法に相当する「方法A」及び、本発明の製造方法に相当する「方法B」を用いて作成した。 (Manufacturing test of steel slabs)
Test No. Slabs 1 to 20 were subjected to a heating process and a rolling process in the following manner to produce steel slabs (hereinafter also referred to as products). The products were created using "Method A", which corresponds to the conventional manufacturing method, and "Method B", which corresponds to the manufacturing method of the present invention.
試験No.1~20のスラブを下記の方法で加熱工程及び、圧延工程を行い、鋼鋳片(以下、製品とも称する)を製造した。製品は、従来の製造方法に相当する「方法A」及び、本発明の製造方法に相当する「方法B」を用いて作成した。 (Manufacturing test of steel slabs)
Test No. Slabs 1 to 20 were subjected to a heating process and a rolling process in the following manner to produce steel slabs (hereinafter also referred to as products). The products were created using "Method A", which corresponds to the conventional manufacturing method, and "Method B", which corresponds to the manufacturing method of the present invention.
(方法A)
生成したスラブに疵がなくなるまで、およそ表面から3~6mmを研削して疵を除去する手入れ処理を行う。手入れ処理をしたスラブを1050℃又は、1200℃で加熱する(第1加熱処理)。第1加熱が行われたスラブを厚さが250mmから190mmとする予備圧延(軽分塊圧延)を行う。予備圧延が行われたスラブに疵がなくなるまで、およそ表面から3~6mmを研削して疵を除去する手入れ処理を行う。手入れ処理が行われたスラブを1050℃又は、1200℃で加熱する(第2加熱処理)。第2加熱処理が行われたスラブに本圧延し、厚さを190mmから25mmにした。その後、表面からの距離が3mm、6mm、9mmの面における疵を検査(以下、製品検査とも称する)した。 (Method A)
A care process is performed to remove the flaws by grinding approximately 3 to 6 mm from the surface until the generated slab is free of flaws. The treated slab is heated at 1050°C or 1200°C (first heat treatment). The slab subjected to the first heating is pre-rolled (light blooming) to a thickness of 250 mm to 190 mm. The pre-rolled slab is cleaned by grinding approximately 3 to 6 mm from the surface to remove any flaws until there are no flaws. The treated slab is heated at 1050°C or 1200°C (second heat treatment). The slab subjected to the second heat treatment was subjected to main rolling, and its thickness was changed from 190 mm to 25 mm. Thereafter, flaws were inspected on surfaces at distances of 3 mm, 6 mm, and 9 mm from the surface (hereinafter also referred to as product inspection).
生成したスラブに疵がなくなるまで、およそ表面から3~6mmを研削して疵を除去する手入れ処理を行う。手入れ処理をしたスラブを1050℃又は、1200℃で加熱する(第1加熱処理)。第1加熱が行われたスラブを厚さが250mmから190mmとする予備圧延(軽分塊圧延)を行う。予備圧延が行われたスラブに疵がなくなるまで、およそ表面から3~6mmを研削して疵を除去する手入れ処理を行う。手入れ処理が行われたスラブを1050℃又は、1200℃で加熱する(第2加熱処理)。第2加熱処理が行われたスラブに本圧延し、厚さを190mmから25mmにした。その後、表面からの距離が3mm、6mm、9mmの面における疵を検査(以下、製品検査とも称する)した。 (Method A)
A care process is performed to remove the flaws by grinding approximately 3 to 6 mm from the surface until the generated slab is free of flaws. The treated slab is heated at 1050°C or 1200°C (first heat treatment). The slab subjected to the first heating is pre-rolled (light blooming) to a thickness of 250 mm to 190 mm. The pre-rolled slab is cleaned by grinding approximately 3 to 6 mm from the surface to remove any flaws until there are no flaws. The treated slab is heated at 1050°C or 1200°C (second heat treatment). The slab subjected to the second heat treatment was subjected to main rolling, and its thickness was changed from 190 mm to 25 mm. Thereafter, flaws were inspected on surfaces at distances of 3 mm, 6 mm, and 9 mm from the surface (hereinafter also referred to as product inspection).
(方法B)
生成したスラブに疵がなくなるまで、およそ表面から3~6mmを研削して疵を除去する手入れ処理を行う(手入れ工程)。手入れ処理をしたスラブを1050℃又は、1200℃で加熱する(加熱工程)。加熱工程が行われたスラブに本圧延し、厚さを250mmから25mmにした。その後、表面からの距離が3mm、6mm、9mmの面について製品検査をした。 (Method B)
A care process is performed to remove the flaws by grinding approximately 3 to 6 mm from the surface until the generated slab is free of flaws (care process). The treated slab is heated at 1050°C or 1200°C (heating step). The slab subjected to the heating process was subjected to main rolling to a thickness of 25 mm from 250 mm. Thereafter, product inspection was performed on surfaces at distances of 3 mm, 6 mm, and 9 mm from the surface.
生成したスラブに疵がなくなるまで、およそ表面から3~6mmを研削して疵を除去する手入れ処理を行う(手入れ工程)。手入れ処理をしたスラブを1050℃又は、1200℃で加熱する(加熱工程)。加熱工程が行われたスラブに本圧延し、厚さを250mmから25mmにした。その後、表面からの距離が3mm、6mm、9mmの面について製品検査をした。 (Method B)
A care process is performed to remove the flaws by grinding approximately 3 to 6 mm from the surface until the generated slab is free of flaws (care process). The treated slab is heated at 1050°C or 1200°C (heating step). The slab subjected to the heating process was subjected to main rolling to a thickness of 25 mm from 250 mm. Thereafter, product inspection was performed on surfaces at distances of 3 mm, 6 mm, and 9 mm from the surface.
製品検査は、以下の3段階で評価した。
○:製品疵無し
△:製品疵少量(手入れ処理によって製品として採用可能)
×:製品疵大量(手入れ処理を施しても疵が残り、製品として採用不可能) Product inspection was evaluated in the following three stages.
○: No product defects △: Small amount of product defects (can be used as a product with proper care)
×: Large amount of product flaws (Flaws remain even after care treatment, making it impossible to use as a product)
○:製品疵無し
△:製品疵少量(手入れ処理によって製品として採用可能)
×:製品疵大量(手入れ処理を施しても疵が残り、製品として採用不可能) Product inspection was evaluated in the following three stages.
○: No product defects △: Small amount of product defects (can be used as a product with proper care)
×: Large amount of product flaws (Flaws remain even after care treatment, making it impossible to use as a product)
表4に、各製品圧延後の表面疵発生状況を示す。
Table 4 shows the occurrence of surface flaws after rolling each product.
方法Aでスラブの加熱温度が1200℃で製造した場合、製品の疵は若干残るものの、当該疵は生産阻害を生じない範囲内であった。
When the slab was manufactured using Method A at a heating temperature of 1200°C, some flaws remained in the product, but the flaws were within a range that did not hinder production.
5~7%Ni鋼の試験No.1,6,11については、手入れの処理の量が9mmであった。これに対して、これら以外の5~7%Ni鋼の試験についての手入れの処理の量は、3~6mmであった。また、3.5%Ni鋼の試験No.16については、手入れの処理の量が6mmであった。これに対して、3.5%Ni鋼のこれら以外の試験についての手入れの処理の量は、3mmであった。すなわち、本発明例は、比較例よりも手入れ処理の量を大幅に低減できている。
5-7% Ni steel test No. For Nos. 1, 6, and 11, the amount of treatment was 9 mm. In contrast, the amount of care treatment for the other 5-7% Ni steel tests was 3-6 mm. Also, test No. 3.5% Ni steel. For No. 16, the amount of care treatment was 6 mm. In contrast, the amount of care treatment for these other tests for the 3.5% Ni steel was 3 mm. That is, in the example of the present invention, the amount of maintenance processing can be significantly reduced compared to the comparative example.
試験No.2~5、7~10、12~15、17~20のスラブの加熱温度が1050℃としたものは、軽分塊圧延を行わなかった場合でも、「○:製品欠陥無し」の評価が得られた。したがって、これらの試験については、プロセスコストの大幅な削減及び、製品の品質を安定して向上させることができる。
Test No. Slabs 2 to 5, 7 to 10, 12 to 15, and 17 to 20 heated at a heating temperature of 1050°C were evaluated as "○: No product defects" even if light blooming was not performed. It was done. Therefore, for these tests, process costs can be significantly reduced and product quality can be stably improved.
製品の疵(欠陥部)についてEPMA(Electron Probe MicroAnalyzer)で調査した結果、1200℃でスラブを加熱した試験例では、疵中にFe2SiO4成分のスケールが 多量に含まれていることが分かった。スラブを加熱する際の酸化スケールの影響が疵の形成に大きく寄与することが分かった。
As a result of investigating product flaws (defects) using an EPMA (Electron Probe MicroAnalyzer), it was found that in a test example in which the slab was heated to 1200°C, a large amount of Fe 2 SiO 4 component scale was contained in the flaws. Ta. It was found that the influence of oxide scale during heating of the slab significantly contributed to the formation of defects.
Claims (10)
- 質量%で、C:0.03%以上0.10%以下、Si:0.01%以上0.50%以下、Mn:0.10%以上1.00%以下、P:0.001%以上0.010%以下、S:0.0001%以上0.0050%以下、Ni:2.0%以上7.5%未満、Al:0.010%以上0.080%以下、N:0.0010%以上0.0050%以下、O:0.0005%以上0.0040%以下を含有し、残部がFe及び不可避的不純物からなる、Niを含有する鋼鋳片であって、前記鋼鋳片の表面における凝固核の密度が0.35個/mm2以上である鋼鋳片。 In mass%, C: 0.03% or more and 0.10% or less, Si: 0.01% or more and 0.50% or less, Mn: 0.10% or more and 1.00% or less, P: 0.001% or more 0.010% or less, S: 0.0001% or more and 0.0050% or less, Ni: 2.0% or more and less than 7.5%, Al: 0.010% or more and 0.080% or less, N: 0.0010 % or more and 0.0050% or less, O: 0.0005% or more and 0.0040% or less, and the remainder is Fe and unavoidable impurities. A steel slab having a density of solidification nuclei on the surface of 0.35 pieces/mm 2 or more.
- 更に、質量%で、Cu:0.03%以上1.50%以下、Cr:0.03%以上1.00%以下、Mo:0.02%以上1.00%以下、Nb:0.003%以上0.100%以下、V:0.003%以上0.100%以下、Ti:0.005%以上0.020%以下、B:0.0002%以上0.0025%以下、Ca:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0030%以下から選択される1種又は2種以上を含有する、請求項1に記載の鋼鋳片。 Further, in mass%, Cu: 0.03% or more and 1.50% or less, Cr: 0.03% or more and 1.00% or less, Mo: 0.02% or more and 1.00% or less, Nb: 0.003 % or more and 0.100% or less, V: 0.003% or more and 0.100% or less, Ti: 0.005% or more and 0.020% or less, B: 0.0002% or more and 0.0025% or less, Ca: 0 The steel slab according to claim 1, containing one or more selected from .0005% to 0.0050%, Mg: 0.0005% to 0.0030%.
- 請求項1又は2に記載の鋼鋳片を鋳造するための連続鋳造方法であって、
1300℃における粘度が0.5Pa・s(5ポアズ)以上のモールドパウダーを鋳型内に添加する工程を含む、連続鋳造方法。 A continuous casting method for casting the steel slab according to claim 1 or 2,
A continuous casting method including a step of adding mold powder having a viscosity of 0.5 Pa·s (5 poise) or more at 1300°C into a mold. - 請求項1又は2に記載の鋼鋳片を鋳造するための連続鋳造方法であって、
鋳型を毎分80サイクル以上の振動数で振動させる工程を含む、連続鋳造方法。 A continuous casting method for casting the steel slab according to claim 1 or 2,
A continuous casting method that includes the step of vibrating a mold at a frequency of 80 cycles or more per minute. - 請求項1又は2に記載の鋼鋳片を鋳造するための連続鋳造方法であって、
1300℃における粘度が0.5Pa・s(5ポアズ)以上のモールドパウダーを鋳型内に添加する工程及び、
鋳型を毎分50サイクル以上の振動数で振動させる工程、を含む、連続鋳造方法。 A continuous casting method for casting the steel slab according to claim 1 or 2,
A step of adding mold powder having a viscosity of 0.5 Pa·s (5 poise) or more at 1300° C. into the mold,
A continuous casting method comprising the step of vibrating a mold at a frequency of 50 cycles or more per minute. - 請求項1又は2に記載の鋼鋳片を鋳造するための連続鋳造方法であって、
1300℃における粘度が0.15Pa・s(1.5ポアズ)以上のモールドパウダーを鋳型内に添加する工程及び、
鋳型を毎分80サイクル以上の振動数で振動させる工程、を含む、連続鋳造方法。 A continuous casting method for casting the steel slab according to claim 1 or 2,
Adding mold powder with a viscosity of 0.15 Pa·s (1.5 poise) or more at 1300°C into the mold;
A continuous casting method comprising the step of vibrating a mold at a frequency of 80 cycles or more per minute. - 請求項3に記載された連続鋳造方法で製造されたスラブに対して手入れ処理を行う手入れ工程と、
前記手入れ工程の後、加熱炉内の加熱温度を1100℃以下で前記スラブを加熱する加熱工程と、を含むNiを含有する、鋼鋳片の製造方法。 A care step of performing care treatment on the slab manufactured by the continuous casting method according to claim 3;
A method for producing a steel slab containing Ni, including a heating step of heating the slab at a heating temperature of 1100° C. or lower in a heating furnace after the care step. - 請求項4に記載された連続鋳造方法で製造されたスラブに対して手入れ処理を行う手入れ工程と、
前記手入れ工程の後、加熱炉内の加熱温度を1100℃以下で前記スラブを加熱する加熱工程と、を含むNiを含有する、鋼鋳片の製造方法。 A care step of performing care treatment on the slab manufactured by the continuous casting method according to claim 4;
A method for producing a steel slab containing Ni, including a heating step of heating the slab at a heating temperature of 1100° C. or lower in a heating furnace after the care step. - 請求項5に記載された連続鋳造方法で製造されたスラブに対して手入れ処理を行う手入れ工程と、
前記手入れ工程の後、加熱炉内の加熱温度を1100℃以下で前記スラブを加熱する加熱工程と、を含むNiを含有する、鋼鋳片の製造方法。 A care step of performing care treatment on the slab manufactured by the continuous casting method according to claim 5;
A method for producing a steel slab containing Ni, including a heating step of heating the slab at a heating temperature of 1100° C. or lower in a heating furnace after the care step. - 請求項6に記載された連続鋳造方法で製造されたスラブに対して手入れ処理を行う手入れ工程と、
前記手入れ工程の後、加熱炉内の加熱温度を1100℃以下で前記スラブを加熱する加熱工程と、を含むNiを含有する、鋼鋳片の製造方法。 A care step of performing care treatment on the slab manufactured by the continuous casting method according to claim 6;
A method for producing a steel slab containing Ni, including a heating step of heating the slab at a heating temperature of 1100° C. or lower in a heating furnace after the care step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023556717A JP7563626B2 (en) | 2022-09-09 | 2023-07-28 | Steel slab, continuous casting method, and method for manufacturing steel slab |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022143845 | 2022-09-09 | ||
JP2022-143845 | 2022-09-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024053276A1 true WO2024053276A1 (en) | 2024-03-14 |
Family
ID=90192366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/027675 WO2024053276A1 (en) | 2022-09-09 | 2023-07-28 | Steel cast slab, continuous casting method, and method for producing steel cast slab |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7563626B2 (en) |
WO (1) | WO2024053276A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5726141A (en) * | 1980-07-23 | 1982-02-12 | Nippon Kokan Kk <Nkk> | Preventing method for surface flaw in continuous casting of ni-containing steel for low temperature use |
JPH01228644A (en) * | 1988-03-09 | 1989-09-12 | Nippon Steel Corp | Method for preventing surface crack on ni-contained steel in continuous casting |
JPH02250917A (en) * | 1989-03-24 | 1990-10-08 | Nippon Steel Corp | Production of steel for large heat input welding excellent in toughness at low temperature |
JPH0810919A (en) * | 1994-06-27 | 1996-01-16 | Kawasaki Steel Corp | Method for continuously casting nickel-containing steel |
JP2001081516A (en) * | 1999-09-17 | 2001-03-27 | Nkk Corp | METHOD FOR HOT-ROLLING Ni-CONTAINING STEEL EXCELLENT IN SURFACE CHARACTERISTIC |
JP2009248099A (en) * | 2008-04-02 | 2009-10-29 | Jfe Steel Corp | Ni-CONTAINING STEEL SLAB AND CONTINUOUS CASTING METHOD FOR Ni-CONTAINING STEEL |
-
2023
- 2023-07-28 WO PCT/JP2023/027675 patent/WO2024053276A1/en unknown
- 2023-07-28 JP JP2023556717A patent/JP7563626B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5726141A (en) * | 1980-07-23 | 1982-02-12 | Nippon Kokan Kk <Nkk> | Preventing method for surface flaw in continuous casting of ni-containing steel for low temperature use |
JPH01228644A (en) * | 1988-03-09 | 1989-09-12 | Nippon Steel Corp | Method for preventing surface crack on ni-contained steel in continuous casting |
JPH02250917A (en) * | 1989-03-24 | 1990-10-08 | Nippon Steel Corp | Production of steel for large heat input welding excellent in toughness at low temperature |
JPH0810919A (en) * | 1994-06-27 | 1996-01-16 | Kawasaki Steel Corp | Method for continuously casting nickel-containing steel |
JP2001081516A (en) * | 1999-09-17 | 2001-03-27 | Nkk Corp | METHOD FOR HOT-ROLLING Ni-CONTAINING STEEL EXCELLENT IN SURFACE CHARACTERISTIC |
JP2009248099A (en) * | 2008-04-02 | 2009-10-29 | Jfe Steel Corp | Ni-CONTAINING STEEL SLAB AND CONTINUOUS CASTING METHOD FOR Ni-CONTAINING STEEL |
Also Published As
Publication number | Publication date |
---|---|
JPWO2024053276A1 (en) | 2024-03-14 |
TW202413666A (en) | 2024-04-01 |
JP7563626B2 (en) | 2024-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4363403B2 (en) | Steel for line pipe excellent in HIC resistance and line pipe manufactured using the steel | |
JP6484716B2 (en) | Lean duplex stainless steel and manufacturing method thereof | |
JP6787238B2 (en) | Manufacturing method of steel for machine structure | |
JP6951060B2 (en) | Manufacturing method of slabs | |
JP2009074123A (en) | METHOD FOR MANUFACTURING Ni-CONTAINING STEEL HAVING EXCELLENT SURFACE QUALITY | |
JP6131833B2 (en) | Method for continuous casting of Ti deoxidized steel | |
JP5157598B2 (en) | Ni-containing steel slab and method for continuously casting Ni-containing steel | |
JP3508715B2 (en) | High Cr steel slab and seamless steel pipe | |
JP3633515B2 (en) | Hot-rolled steel sheet having excellent resistance to hydrogen-induced cracking and method for producing the same | |
JP4922971B2 (en) | Composite roll for hot rolling and manufacturing method thereof | |
JP7563626B2 (en) | Steel slab, continuous casting method, and method for manufacturing steel slab | |
JP7063401B2 (en) | Manufacturing method of high manganese steel slab and manufacturing method of high manganese steel slab or steel plate | |
TWI856765B (en) | Slab steel, continuous casting method and method for manufacturing slab steel | |
JP7508018B2 (en) | Manufacturing method of Ni-containing steel slab | |
JP2838468B2 (en) | Method for producing Cr-Ni stainless steel alloy for preventing cracking in hot rolling | |
JPH0660369B2 (en) | Cr-Ni type stainless steel that is less likely to crack during the casting process or the subsequent hot rolling process | |
JPH0790504A (en) | Ni-containing steel for low temperature use and secondary cooling method of its continuously cast slab | |
WO2024210081A1 (en) | Continuously cast slab and manufacturing method therefor | |
JP6852722B2 (en) | Work roll for hot rolling rough rolling stand | |
JP3298519B2 (en) | Steel sheet free of hydrogen defects and method for producing the same | |
WO2024209834A1 (en) | Nickel-containing steel slab and method for producing nickel-containing steel slab | |
JP2002371314A (en) | METHOD FOR MANUFACTURING SLAB OF Ni-CONTAINING STEEL | |
JP3498506B2 (en) | Method for producing Ni-containing low-temperature steel by continuous casting | |
JP2017024057A (en) | Continuous casting method | |
KR20010009878A (en) | A Method for Manufacturing Continuously Cast Strands from High Ni Containing Steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2023556717 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23862819 Country of ref document: EP Kind code of ref document: A1 |