JPH0660369B2 - Cr-Ni type stainless steel that is less likely to crack during the casting process or the subsequent hot rolling process - Google Patents

Cr-Ni type stainless steel that is less likely to crack during the casting process or the subsequent hot rolling process

Info

Publication number
JPH0660369B2
JPH0660369B2 JP63087344A JP8734488A JPH0660369B2 JP H0660369 B2 JPH0660369 B2 JP H0660369B2 JP 63087344 A JP63087344 A JP 63087344A JP 8734488 A JP8734488 A JP 8734488A JP H0660369 B2 JPH0660369 B2 JP H0660369B2
Authority
JP
Japan
Prior art keywords
amount
log
stainless steel
hot rolling
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63087344A
Other languages
Japanese (ja)
Other versions
JPH01259143A (en
Inventor
全紀 上田
阿部  雅之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63087344A priority Critical patent/JPH0660369B2/en
Publication of JPH01259143A publication Critical patent/JPH01259143A/en
Publication of JPH0660369B2 publication Critical patent/JPH0660369B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鋳片と鋳型で相対速度差のない、所謂同期式
連続鋳造法を用いて、Cr−Ni系ステンレス鋼を製造する
プロセスにおいて、連続鋳造を、鋳片厚さが製品ゲージ
に近い厚さとなる形で行なうに際し、鋳造過程ならびに
熱間圧延過程で、材料に割れを生ぜしめないCr−Ni系ス
テンレス鋼に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a process for producing a Cr-Ni-based stainless steel by using a so-called synchronous continuous casting method in which there is no relative speed difference between a slab and a mold. The present invention relates to a Cr-Ni-based stainless steel that does not cause cracks in the material during the casting process and the hot rolling process when performing continuous casting in a form in which the thickness of the slab is close to the product gauge.

(従来の技術) 従来、ステンレス鋼ストリップを得るには、たとえば特
開昭56−139278号公報に開示されているように、鋳型を
鋳造方向に、2〜3Hzの周波数で振動させつつ溶鋼を連
続鋳造し、100mm以上の厚さを有する鋳片を得、次い
で鋳片の表面手入れを行ない、加熱炉で1000℃以上
に加熱した後、複数の圧延機から構成される圧延機列に
よって熱間圧延してホットストリップを得、これを素材
としている。
(Prior Art) Conventionally, in order to obtain a stainless steel strip, for example, as disclosed in JP-A-56-139278, continuous casting of molten steel is performed while vibrating the mold in the casting direction at a frequency of 2-3 Hz. After casting, a slab having a thickness of 100 mm or more is obtained, then the slab is surface-cleaned, heated to 1000 ° C. or more in a heating furnace, and then hot-rolled by a rolling mill train composed of a plurality of rolling mills. To get a hot strip, which is the material.

しかしながら、この従来のプロセスによるときは、長大
な熱間圧延設備を必要とするほか、鋳片を加熱するため
のエネルギや圧延動力として多大のエネルギを必要とす
る等の点で問題がある。
However, this conventional process is problematic in that it requires a long hot rolling facility and requires a large amount of energy for heating the slab and rolling power.

更にこのホットストリップを冷間圧延するに際しては、
最終製品に要求される形状(平坦さ)、材質、表面性状
を得るために、強い熱間加工を受けたホットストリップ
を焼鈍によって軟化せしめ、冷延し易くするとともに、
熱間圧延過程でホットストリップに生じたスケール疵等
を、酸洗工程の後に研削によって除去することを、事前
に行なわねばならない。このような従来技術は薄板のみ
でなく、線材や、厚板においても同様の問題を有してい
る。
When cold rolling this hot strip,
In order to obtain the shape (flatness), material and surface properties required for the final product, the hot strip that has undergone strong hot working is softened by annealing to facilitate cold rolling, and
It has to be performed in advance to remove scale flaws and the like generated on the hot strip during the hot rolling process by grinding after the pickling step. Such a conventional technique has the same problem not only in the thin plate but also in the wire rod and the thick plate.

一方、上に述べた従来技術における基本的な問題である
100mm以上の厚さを有する鋳片をホットストリップに
圧延するために長大な熱間圧延設備と多大の加熱エネル
ギ、圧延動力を要する、という問題を解決すべく、連続
鋳造の過程で、ホットストリップと同等か、或いはそれ
に近い厚さの鋳片を得るプロセスの研究が進められてい
る。
On the other hand, in order to roll a slab having a thickness of 100 mm or more, which is a basic problem in the above-mentioned conventional technique, into a hot strip, a long hot rolling facility, a large amount of heating energy, and a rolling power are required. In order to solve the problem, research on a process for obtaining a slab having a thickness equal to or close to that of hot strip in the process of continuous casting is under way.

例えば、「鉄と鋼」’85,A197 〜’85,A256 において、
特集された論文に、前述の、ホットストリップを連続鋳
造によって直接的に得るプロセスが開示されている。
For example, in "Iron and Steel"'85, A197 to '85, A256,
In a special paper, the above-mentioned process for directly obtaining hot strip by continuous casting is disclosed.

かかる連続鋳造プロセスにあっては、得ようとする鋳片
(ストリップ)のゲージが1〜10mmの水準であるとき
には、ツインドラム(Twin Drum)方式が、またゲージ
が20〜50mmの水準であるときには、ツインベルト
(Twin Belt)方式が専ら適用される。これらの鋳造方
式は従来の鋳型振動方式に対して同期式連続鋳造法と呼
ばれ、極力製品形状に近い形での鋳造を狙いに、多数の
研究がなされているところである。
In such a continuous casting process, when the gauge of the slab (strip) to be obtained is in the level of 1 to 10 mm, the twin drum system is used, and when the gauge is in the level of 20 to 50 mm. , Twin Belt method is applied exclusively. These casting methods are called synchronous continuous casting methods in contrast to the conventional mold vibration method, and many studies are being conducted with the aim of casting in a shape as close to the product shape as possible.

以上の研究において、現在最も大きな課題となっている
のは製品に近い形で鋳造することで、凝固時、表面積が
大きくなり、凝固の不均一化が生じやすく、鋳造から凝
固過程で割れを生じやすい点である。
In the above research, the biggest problem at present is to cast in a shape close to the product, the surface area becomes large during solidification, uneven solidification tends to occur, and cracks occur during the solidification process from casting. This is an easy point.

たとえばツインドラム方式の連続鋳造法で特に鋳片の幅
の拡大に伴なって、幅方向において凝固が不均一となり
易く、このことに起因して鋳造過程で鋳片に割れを生じ
易い。又厚手のゲージから直接熱間圧延する場合にも割
れを生じやすい。
For example, in the twin-drum type continuous casting method, the solidification tends to become uneven in the width direction particularly with the expansion of the width of the slab, which causes cracks in the slab during the casting process. Also, cracking is likely to occur when hot rolling directly from a thick gauge.

この種の鋳片の割れは、ストリップを連続鋳造によって
直接的に得る過程を織込んだステンレス鋼ストリップの
製造プロセスにおいて、重大な隘路となる。
This type of slab cracking becomes a significant bottleneck in the process of manufacturing stainless steel strips which incorporates the process of directly obtaining the strip by continuous casting.

鋳造過程やその後の熱間圧延過程で鋳片に割れを生ぜし
めないための技術的手段としては、鋳造方式、鋳造機の
工夫或いは操業法を工夫することによって、幅方向にお
ける凝固を均一化する接近方法も考えられるけれども、
鋼組成によって問題を解決する接近方法も極めて重要で
ある。
As a technical means for preventing cracks in the slab during the casting process and the subsequent hot rolling process, the solidification in the width direction is made uniform by devising the casting method, the casting machine or the operation method. Although it is possible to approach it,
Approaching methods to solve problems by steel composition are also extremely important.

特に今後重要となる高合金鋼やステンレス鋼では極めて
重要な課題であるが、かかる技術的手段についてはこれ
までに開示がない。
This is an extremely important issue especially for high alloy steels and stainless steels, which will be important in the future, but such technical means has not been disclosed so far.

(発明が解決しようとする課題) この発明は、ストリップを、溶鋼の連続鋳造によって直
接的に得る過程を織込んだ、Cr−Ni系ステンレス鋼スト
リップの製造プロセスにあって、十分に広い幅のストリ
ップを対象とするときも、鋳造過程やその後の熱間圧延
過程で鋳片に割れを生じることのないCr-Ni 系ステンレ
ス鋼を提供することを目的としてなされた。
(Problem to be Solved by the Invention) The present invention is a production process for a Cr-Ni-based stainless steel strip, which includes a process of directly obtaining a strip by continuous casting of molten steel, and has a sufficiently wide width. The object was to provide a Cr-Ni-based stainless steel that does not cause cracks in the slab during the casting process and the subsequent hot rolling process even when the strip is targeted.

(課題を解決するための手段) 本発明の要旨とする処は、下記のとおりである。(Means for Solving the Problem) The gist of the present invention is as follows.

(1) 重量で、Cr:11〜40%、Ni:5〜70%、S
i:0.05〜2.0%、Mn≦7.0%、C≦0.2
%、N≦0.4%を含有し、凝固時の平衡分配係数が小
さく特に偏析し易いS、B、P、Oに関してはS≦0.00
6 %、B≦0.0015%、P≦0.035 %、O≦0.015 %であ
り、しかも合金中のNi+30×N量とΔSとの関係(但
しΔS=S−0.8×Ca−0.5×Y−0.3×Mg−
0.3×Ce)が ΔS≦0.0141−0.009 log(Ni+30N) を満足し、かつNi+30×N量とP量との関係が P≦0.060−0.025 log(Ni+30N) を満足することを特徴とする鋳造過程或いはその後の熱
間圧延過程で割れを起こし難いCr−Ni系ステンレス鋼。
(1) By weight, Cr: 11-40%, Ni: 5-70%, S
i: 0.05 to 2.0%, Mn ≤ 7.0%, C ≤ 0.2
%, N ≦ 0.4%, the equilibrium distribution coefficient during solidification is small and S, B, P, and O are particularly susceptible to S ≦ 0.00.
6%, B ≦ 0.0015%, P ≦ 0.035%, O ≦ 0.015%, and the relationship between Ni + 30 × N amount and ΔS in the alloy (where ΔS = S−0.8 × Ca−0.5 × Y). -0.3 x Mg-
Casting characterized in that 0.3 × Ce) satisfies ΔS ≦ 0.0141−0.009 log (Ni + 30N) and the relationship between Ni + 30 × N amount and P amount satisfies P ≦ 0.060−0.025 log (Ni + 30N). Cr-Ni stainless steel that is less likely to crack during the process or the subsequent hot rolling process.

(2) 重量で、Cr:11〜40%、Ni:5〜70%、S
i:0.05〜2.0%、Mn≦7.0%、C≦0.2
%、N≦0.4%を含有し、更にY≦0.06%、Ce≦
0.02%、Mg≦0.02%、Ca≦0.01%の1種ま
たは2種以上を含み、凝固時の平衡分配係数が小さく特
に偏析し易いS、B、P、Oに関してはS≦0.006 %、
B≦0.0015%、P≦0.035 %、O≦0.015 %であり、し
かも合金中のNi+30×N量とΔSとの関係(但しΔS
=S−0.8×Ca−0.5×Y−0.3×Mg−0.3×
Ce)が ΔS≦0.0141−0.009 log(Ni+30N) を満足し、かつNi+30×N量とP量との関係が P≦0.060−0.025 log(Ni+30N) を満足することを特徴とする鋳造過程或いはその後の熱
間圧延過程で割れを起こし難いCr−Ni系ステンレス鋼。
(2) Cr: 11-40%, Ni: 5-70%, S by weight
i: 0.05 to 2.0%, Mn ≤ 7.0%, C ≤ 0.2
%, N ≦ 0.4%, Y ≦ 0.06%, Ce ≦
It contains 0.02%, Mg ≦ 0.02%, Ca ≦ 0.01%, or 2 or more kinds, and has a small equilibrium distribution coefficient during solidification and is easily segregated. S, B, P, and O are S. ≤ 0.006%,
B ≦ 0.0015%, P ≦ 0.035%, O ≦ 0.015%, and the relationship between ΔS and the amount of Ni + 30 × N in the alloy (however, ΔS
= S-0.8xCa-0.5xY-0.3xMg-0.3x
Ce) satisfies ΔS ≦ 0.0141−0.009 log (Ni + 30N), and the relationship between the amount of Ni + 30 × N and the amount of P satisfies P ≦ 0.060−0.025 log (Ni + 30N). Cr-Ni series stainless steel that does not easily crack during the hot rolling process.

(3) 重量で、Cr:11〜40%、Ni:5〜70%、S
i:0.05〜2.0%、Mn≦7.0%、C≦0.2
%、N≦0.4%を含有し、更にMo≦7%、Cu≦4%、
Al≦7%、Nb≦1%、Ti≦1%、Zr≦0.2%の1種また
は2種以上を含み、凝固時の平衡分配係数が小さく特に
偏析し易いS、B、P、Oに関してはS≦0.006%、B
≦0.0015%、P≦0.035 %、O≦0.015%であり、しか
も合金中のNi+30×N量とΔSとの関係(但しΔS=S
−0.8×Ca−0.5×Y−0.3×Mg−0.3×Ce)
が ΔS≦0.0141−0.009 log(Ni+30N) を満足し、かつNi+30×N量とP量との関係が P≦0.060−0.025 log(Ni+30N) を満足することを特徴とする鋳造過程或いはその後の熱
間圧延過程で割れを起こし難いCr−Ni系ステンレス鋼。
(3) Cr: 11-40%, Ni: 5-70%, S by weight
i: 0.05 to 2.0%, Mn ≤ 7.0%, C ≤ 0.2
%, N ≦ 0.4%, Mo ≦ 7%, Cu ≦ 4%,
Containing one or more of Al ≤ 7%, Nb ≤ 1%, Ti ≤ 1%, Zr ≤ 0.2%, and having a small equilibrium distribution coefficient during solidification, which is particularly prone to segregation, S, B, P, O S ≦ 0.006%, B
≤0.0015%, P≤0.035%, O≤0.015%, and the relationship between the amount of Ni + 30 × N in the alloy and ΔS (where ΔS = S
-0.8 x Ca-0.5 x Y-0.3 x Mg-0.3 x Ce)
Satisfying ΔS ≦ 0.0141-0.009 log (Ni + 30N) and the relationship between Ni + 30 × N content and P content satisfying P ≦ 0.060-0.025 log (Ni + 30N). Cr-Ni-based stainless steel that does not easily crack during the rolling process.

(4) 重量で、Cr:11〜40%、Ni:5〜70%、S
i:0.05〜2.0%、Mn≦7.0%、C≦0.2
%、N≦0.4%を含有し、更にY≦0.06%、Ce≦
0.02%、Mg≦0.02%、Ca≦0.01%の1種ま
たは2種以上及びMo≦7%、Cu≦4%、Al≦7%、Nb≦
1%、Ti≦1%、Zr≦0.2%の1種または2種以上を
含み、凝固時の平衡分配係数が小さく特に偏析し易い
S、B、P、Oに関してはS≦0.006 %、B≦0.0015
%、P≦0.035 %、O≦0.015 %であり、しかも合金中
のNi+30×N量とΔSとの関係(但しΔS=S−0.
8×Ca−0.5×Y−0.3×Mg−0.3×Ce)が ΔS≦0.0141−0.009 log(Ni+30N) を満足し、かつNi+30×N量とP量との関係が P≦0.060−0.025 log(Ni+30N) を満足することを特徴とする鋳造過程或いはその後の熱
間圧延過程で割れを起こし難いCr−Ni系ステンレス鋼。
(4) By weight, Cr: 11-40%, Ni: 5-70%, S
i: 0.05 to 2.0%, Mn ≤ 7.0%, C ≤ 0.2
%, N ≦ 0.4%, Y ≦ 0.06%, Ce ≦
One or more of 0.02%, Mg ≦ 0.02%, Ca ≦ 0.01% and Mo ≦ 7%, Cu ≦ 4%, Al ≦ 7%, Nb ≦
1%, Ti ≦ 1%, Zr ≦ 0.2%, or one or more kinds, and has a small equilibrium distribution coefficient during solidification, which is particularly prone to segregation. For S, B, P and O, S ≦ 0.006%, B ≦ 0.0015
%, P ≦ 0.035%, O ≦ 0.015%, and the relationship between the amount of Ni + 30 × N in the alloy and ΔS (where ΔS = S−0.
8 × Ca−0.5 × Y−0.3 × Mg−0.3 × Ce) satisfies ΔS ≦ 0.0141−0.009 log (Ni + 30N), and the relation between the amount of Ni + 30 × N and the amount of P is P ≦ Cr-Ni-based stainless steel that is resistant to cracking during the casting process or the subsequent hot rolling process, which is characterized by satisfying 0.060-0.025 log (Ni + 30N).

以下に、本発明を詳細に説明する。The present invention will be described in detail below.

既に述べたように、所謂同期式連続鋳造法により、極力
製品ゲージに近い厚さの鋳片(ストリップ)を得るプロ
セス、たとえばツインドラム(双ロール法)方式のプロ
セスにおいては、鋳片(ストリップ)の広幅化に伴なっ
て、幅方向における凝固の不均一さに起因して局部的な
収縮による応力が発生し、材料の延性限界をこえると、
凝固直後の鋳片表面に割れを生じ易い。またやや厚い鋳
片を鋳造し鋳片を直接熱間圧延する場合にも凝固不均一
部から割れを発生することがある。
As described above, in the process of obtaining a slab (strip) having a thickness as close as possible to the product gauge by the so-called synchronous continuous casting method, for example, in the twin drum (twin roll method) process, the slab (strip) is used. Along with the widening of, stress due to local shrinkage due to uneven solidification in the width direction, if the ductility limit of the material is exceeded,
Cracks are likely to occur on the surface of the slab immediately after solidification. Also, when a slightly thick slab is cast and the slab is directly hot-rolled, cracks may occur from the non-uniform solidification portion.

前述のような鋳片の割れを防止するためには、 (1)凝固を均一化させ局部的な収縮を発生させないよう
な鋳造機や鋳造法の進歩と、(2)凝固直後の鋳片が極力
延性に富む方向の合金設計という両面の対策が必要であ
る。
In order to prevent slab cracking as described above, (1) advances in casting machines and casting methods that homogenize solidification and prevent local shrinkage, and (2) slabs immediately after solidification It is necessary to take measures on both sides of designing the alloy so that it is as ductile as possible.

従来、通常の100mm以上の厚さを有する連続鋳造鋳片
の再加熱後の熱間圧延過程での割れ現象の解明ならびに
その防止手段については種々の研究がなされて来た。
Conventionally, various studies have been made on the elucidation of cracking phenomenon in a hot rolling process after reheating a normal cast slab having a thickness of 100 mm or more and a means for preventing the cracking phenomenon.

しかしながら、ツインドラム方式やツインベルト方式の
連続鋳造プロセスにおける如く、鋳片のゲージ(厚さ)
が製品に近い状態で鋳造され、急冷凝固される鋳片やそ
の後の熱間圧延過程での割れ現象の解明ならびに割れ防
止手段の研究は未だ十分ではなかった。
However, as in the twin drum type or twin belt type continuous casting process, the gauge (thickness) of the slab
The slab that is cast in a state close to the product and rapidly solidified, and the crack phenomenon in the subsequent hot rolling process and the research on crack prevention means have not been sufficiently researched.

本発明者等は、急冷強固される、薄いゲージの鋳片の割
れを防止する手段を、凝固直後の材料(鋳片)に延性を
付与する方向で研究を進めた。
The inventors of the present invention conducted research on means for preventing cracking of a thin gauge slab that is rapidly cooled and strengthened, in the direction of imparting ductility to a material (slab) immediately after solidification.

各種の合金について、丸棒引張り試験片を通電加熱し、
平行部中央が溶解開始するまで昇温し、溶融開始温度を
測定し、その後急冷して、溶融開始温度よりそれぞれ2
0℃,40℃,60℃,80℃,100℃低い温度のと
ころで保持し、引張試験を実施し、破断までの試験片の
絞り(%)と引張強度を測定した。絞りが60%以上に
達する温度を測定して合金の延性を評価した。より高温
で60%以上の絞りを示す合金が融点直下で延性の大き
な材料である。なお、調査した合金組成はオーステナイ
ト系ステンレス鋼を主とするCr−Ni系合金で次のような
組成を有するものである。
For various alloys, a round bar tensile test piece is electrically heated,
The temperature is raised until the center of the parallel part begins to melt, the melting start temperature is measured, and then it is rapidly cooled to 2 from the melting start temperature.
The test piece was held at low temperatures of 0 ° C., 40 ° C., 60 ° C., 80 ° C. and 100 ° C., and a tensile test was carried out to measure the drawing (%) and tensile strength of the test piece until breaking. The ductility of the alloy was evaluated by measuring the temperature at which the drawing reaches 60% or more. An alloy showing a drawing rate of 60% or more at a higher temperature is a material having large ductility just below the melting point. The alloy composition investigated is a Cr-Ni alloy mainly composed of austenitic stainless steel and has the following composition.

組成は重量パーセントで表示している。Compositions are given in weight percent.

C:0.005 〜0.10% O:0.002 〜0.015 % Si:0.05〜4.0% N:0.005 〜0.40% Mn:0.1〜7.0% Ti:0〜1.0% P:0.001 〜0.040 % Nb:0〜1.0% S:0.0003〜0.02% Ca:0〜0.01% Cr:11〜40% Zr:0〜0.2% Ni:5〜70% Ce:0〜0.06% Mo:0〜7.0% Y:0〜0.06% Cu:0〜4.0% Mg:0〜0.06% Al:0〜7.0% B:0〜0.010 % 主要合金組成と共に微量の不純物の影響についても検討
し、あわせて微量成分の影響に注目した。
C: 0.005-0.10% O: 0.002-0.015% Si: 0.05-4.0% N: 0.005-0.40% Mn: 0.1-7.0% Ti: 0-1.0% P: 0.001-0.040% Nb: 0-1.0% S: 0.0003-0.02% Ca: 0-0.01% Cr: 11-40% Zr: 0-0.2% Ni: 5-70% Ce: 0-0.06% Mo: 0- 7.0% Y: 0-0.06% Cu: 0-4.0% Mg: 0-0.06% Al: 0-7.0% B: 0-0.010% The effect of trace impurities along with the main alloy composition is also examined. At the same time, we paid attention to the influence of trace components.

こうして、凝固点直下から100℃低温までの間での合
金の延性に対する。合金組成の影響を調査した結果次の
事が判明した。典型的な例は第1図の通りである。
Thus, for the ductility of the alloy from just below the freezing point to a low temperature of 100 ° C. As a result of investigating the influence of the alloy composition, the following was found. A typical example is shown in FIG.

延性を劣化させる成分:S,B,P,O,N,Ni,Si 延性を向上させる成分:Y,Ce,Ca,Mg 顕著な影響を示さない:Cr,Mo,Mn,Cu,Ti,C,Al この結果延性を劣化させる成分は、S,B,P,O等が
特に顕著であるが、これらはすべてよく研究されている
平衡分配係数の小さい群である(鉄鋼便覧第3版,基礎
編のP217)。すなわち凝固時に偏析しやすい不純物
成分が、合金の融点直下の延性を大きく劣化させている
ことが判明した。事実、融点直下での割れは鋳造時の粒
界を通るが、この部分にはSやPの偏析がきわめて顕著
であることも判明した。従来よりSやP等についてはこ
のような傾向は一部知られていたが、今回Bも有害であ
ることが判明し、S以上に悪影響することがはじめて明
らかになり、平衡分配係数が小さい(0.1以下)群の
成分が凝固時に偏析し、融点直下の延性を大きく劣化さ
せていることをはじめて明らかにした。実験ではNi量も
増大すると延性を劣化させ、Siは少ない程有効であるこ
とが判ったが、これらは先の不純物偏析を助長すること
で影響すると考えられる。
Ingredients that deteriorate ductility: S, B, P, O, N, Ni, Si Ingredients that improve ductility: Y, Ce, Ca, Mg No significant effect: Cr, Mo, Mn, Cu, Ti, C , Al As a result, S, B, P, O, etc. are the most prominent components that deteriorate ductility, but these are all well-studied groups with small equilibrium partition coefficients (Steel Manual, 3rd Edition, Basics). Pp. 217). That is, it was found that the impurity components that are easily segregated during solidification significantly deteriorate the ductility just below the melting point of the alloy. In fact, although cracks just below the melting point pass through the grain boundaries during casting, it was also found that segregation of S and P was extremely remarkable in this portion. Although such a tendency was known for S and P etc. from the past, it was found that B was also harmful this time, and it became clear for the first time that S or more was adversely affected, and the equilibrium distribution coefficient was small ( It was clarified for the first time that the components of the (0.1 or less) group segregated during solidification, and the ductility just below the melting point was greatly deteriorated. In the experiment, it was found that the ductility deteriorates when the amount of Ni increases, and that the smaller the amount of Si is, the more effective it is. However, it is considered that these influence by promoting the above-mentioned impurity segregation.

延性を向上させる成分は、Yが特に顕著であるが、Ce,C
a,Mg等で、明らかにSやOを固定して、これらの偏析傾
向を抑制する成分であることが判った。ステンレスが高
合金で重要なCr,Mo,Mn,Cu,Ti,Nb等はさして大きく影響
せず、Cも余り影響しない。
As a component that improves ductility, Y is particularly remarkable, but Ce, C
It has been found that S and O are clearly fixed with a, Mg, etc. to suppress the segregation tendency of these. Cr, Mo, Mn, Cu, Ti, Nb, etc., which are important alloys of stainless steel as a high alloy, do not have a great influence, and C does not so much.

以上の結果、特に偏析傾向の大きな、平衡分配係数が小
さいS,B,O,P等は極力低減するか、凝固前に固定
することが必要である。Sは特に有害で、低減するか
Y,Ce,Ca,Mg等で固定する必要がある。Bも有害で、B
の混入をさけ低減することが必要である。Oは脱酸剤の
活用で低減することが可能である。Pは後述する通り、
Ni量との関係で影響度が異なり、Ni量との関連で低減す
ることが必要である。
As a result, S, B, O, P, etc., which have a particularly large segregation tendency and a small equilibrium distribution coefficient, need to be reduced as much as possible or fixed before solidification. S is particularly harmful and needs to be reduced or fixed with Y, Ce, Ca, Mg or the like. B is also harmful, B
It is necessary to reduce the contamination of O can be reduced by utilizing a deoxidizer. P is as described below,
The degree of influence differs depending on the amount of Ni, and it is necessary to reduce it in relation to the amount of Ni.

一方合金組成の点ではNiやNは悪影響があっても使用す
べき成分である。こうして必要とされるNiやNのレベル
においても十分な延性を確保し得るように、S,P,
B,O等の偏析成分のコントロールが重要である。こう
して各種の合金で割れ抑制に必要な延性レベル(〜60
%絞り)を検討した結果、合金のNi量とN量で、Ni+3
0×Nの量に応じて、SやPの量をきびしく規制する必
要のあることが判明した。特にS量に関しては、S量の
低減と共に、添加したY,Ce,Ca,Mg等により固定され
る最も考慮したΔS量(ここでΔS量は次の通り定義し
た。ΔS=S−0.8×Ca−0.5×Y−0.3×Mg−
0.3×Ce)Ni+30×Nとの関係を第2図に示すよう
に、 ΔS≦0.0141−0.009 log(Ni+30N) を満足する必要がある。すなわち合金のNi+30×Nが
増大するにつれて、S量を低減し、更に必要に応じて、
Y,Ce,Ca,Mg等の1種又は2種以上を添加して、ΔS
を小さくすることが必要である。しかしY,Ce,Ca,Mg
等は余り多量に添加すると、耐食性等に有害で、Y≦
0.06%、Ce≦0.02%、Ca≦0.01%、Mg≦
0.02%の範囲としなければならない。
On the other hand, in terms of alloy composition, Ni and N are components that should be used even if they have a bad influence. In order to ensure sufficient ductility even at the required Ni and N levels, S, P,
It is important to control segregation components such as B and O. Thus, in various alloys, the ductility level (~ 60
% Reduction), the result shows that the amount of Ni and N in the alloy is Ni + 3
It has been found that it is necessary to strictly regulate the amounts of S and P according to the amount of 0 × N. In particular, regarding the S amount, the ΔS amount that is most considered is fixed by the addition of Y, Ce, Ca, Mg, etc. together with the reduction of the S amount (here, the ΔS amount is defined as follows: ΔS = S−0.8. XCa-0.5xY-0.3xMg-
As shown in FIG. 2, the relation with 0.3 × Ce) Ni + 30 × N is required to satisfy ΔS ≦ 0.0141−0.009 log (Ni + 30N). That is, as the amount of Ni + 30 × N in the alloy increases, the amount of S is reduced, and if necessary,
ΔS by adding one or more of Y, Ce, Ca, Mg, etc.
Needs to be small. But Y, Ce, Ca, Mg
Etc. are harmful to the corrosion resistance if added in a too large amount, and Y ≦
0.06%, Ce ≦ 0.02%, Ca ≦ 0.01%, Mg ≦
It must be in the range of 0.02%.

特にYが有効であるが、Yは高価であり、上限を0.0
6%とした。Ce,Ca,Mg等も微量で効果を示す。
Y is particularly effective, but Y is expensive and the upper limit is 0.0.
It was 6%. A small amount of Ce, Ca, Mg, etc. also has an effect.

同様にPも第3図に示すように、 P≦0.060−0.025 log(Ni+30N) を満足するように、Ni+30×Nに応じて低減する必要
がある。BはいづれにおいてもB≦0.0015%とすべきで
あり、Oも脱酸してO≦0.015%とする必要があ
る。なおY,Ce,Ca等は鋳造時の流動で反応が加速さ
れ、量が変動するが、あくまでも鋳造・凝固の直前の成
分規定が上述した条件である。
Similarly, as shown in FIG. 3, P also needs to be reduced according to Ni + 30 × N so as to satisfy P ≦ 0.060−0.025 log (Ni + 30N). In all cases, B should be 0.0015%, and O should be deoxidized to O0.015%. The reaction of Y, Ce, Ca, etc. is accelerated by the flow at the time of casting, and the amount thereof varies, but the above-mentioned conditions are the component specifications immediately before casting and solidification.

以上鋳造凝固時に特に偏析しやすい4種の不純物を低減
ないし固定し、NiとN量に応じて許容範囲内にコントロ
ールすれば、融点直下の延性は大幅に改善され、更にそ
の後の熱間圧延過程においても割れを起こしにくい鋼と
なる。
By reducing or fixing the four types of impurities that are particularly prone to segregation during solidification during casting and controlling them within the allowable range according to the amounts of Ni and N, the ductility immediately below the melting point is greatly improved, and the hot rolling process thereafter It becomes steel that is hard to crack even in.

もちろんCr量,Mo量等も若干影響するが、次に限定する
組成範囲に関しては、先に述べた成分に比較して影響度
は小さい。したがって本発明の考え方は次の組成範囲に
適応し得る。又薄板のみでなく、線材、鋼管、板にも適
応し得るものである。
Of course, the Cr amount, Mo amount, etc. also have some influence, but the composition range to be limited next has a smaller influence than the components described above. Therefore, the concept of the present invention can be applied to the following composition ranges. Further, not only thin plates, but also wire rods, steel pipes, and plates can be applied.

C:0.005 〜0.20% O:≦0.015 % Si:0.05〜2.0% N:0.005 〜0.40% Mn:0.1〜7.0% Ti:0〜1.0% P:≦0.035 % Nb:0〜1.0% S:≦0.006 % B:≦0.0015% Cr:11〜40% Y:≦0.06% Ni:5〜70% Ce:≦0.02% Mo:0〜7.0% Ca:≦0.01% Cu:0〜4.0% Mg:≦0.02% Al:0〜7.0% Zr:≦0.2% 以下に本発明合金成分の限定理由について述べる。C: 0.005 to 0.20% O: ≤ 0.015% Si: 0.05 to 2.0% N: 0.005 to 0.40% Mn: 0.1 to 7.0% Ti: 0 to 1.0% P: ≤ 0.035% Nb: 0 to 1.0% S: ≤ 0.006% B: ≤ 0.0015% Cr: 11 to 40% Y: ≤ 0.06% Ni: 5 to 70% Ce: ≤ 0.02% Mo: 0 to 7.0% Ca: ≤ 0.01 % Cu: 0 to 4.0% Mg: ≤ 0.02% Al: 0 to 7.0% Zr: ≤ 0.2% The reasons for limiting the alloy components of the present invention will be described below.

今回合金の融点直下の高温延性が合金成分の偏析傾向と
密接に関連し、したがって従来からよく知られた平衡分
配係数の小さな(≦0.1)、偏析しやすい成分である
S,B,O,Pを特に制御し、量的に規制することが必
要なことを見出し、これらの偏析を助長するNi量とNの
関連で量的規制を明らかにした。
This time, the high temperature ductility just below the melting point of the alloy is closely related to the segregation tendency of the alloy components. Therefore, the well-known equilibrium distribution coefficient (≦ 0.1), which is a component that easily segregates S, B, O. , P was found to be required to be controlled and quantitatively regulated, and the quantitative regulation was clarified in relation to the amount of Ni and N, which promote the segregation.

Sはきわめて偏析しやすい成分で、極力低くするか、
Y,Ce,Ca,Mg等の硫化物を生成しやすい成分を添加し
て固定することが必要である。特にNiやNを多く含有す
る合金においてはNi+30×N量に応じてSを減ずるこ
とが必要になる。こうしてΔS=S−0.8×Ca−0.
5×Y−0.3×Mg−0.3×Ceを定義し、各成分の重
量パーセントで求めたΔSとNi+30×N量の関係を第
2図に示すように、 ΔS≦0.0141−0.009 log(Ni+30N) を満足させることで、割れを防止することが出来る。な
おSは0.006%以下としたが、これを越えると割れ
を防止し得ない。又Yは0.06%以下で添加出来最も
有効である。Ce,Mgは0.02%以下、Caは0.01%
以下の範囲で1種又は2種以上必要に応じて添加する。
しかし余り多量に加えると、耐食性を劣化させる。Yは
特に有効であるが高価であり、0.06%以下とした。
これら添加元素は微量で相乗効果が大きい。
S is a component that is extremely prone to segregation.
It is necessary to add and fix components such as Y, Ce, Ca, and Mg that easily form sulfides. In particular, in an alloy containing a large amount of Ni or N, it is necessary to reduce S according to the amount of Ni + 30 × N. Thus ΔS = S−0.8 × Ca−0.
As shown in FIG. 2, the relation between ΔS and the amount of Ni + 30 × N obtained by defining 5 × Y−0.3 × Mg−0.3 × Ce as the weight percentage of each component is ΔS ≦ 0.0141−0.009 log By satisfying (Ni + 30N), cracking can be prevented. The S content was 0.006% or less, but if it exceeds this value, cracking cannot be prevented. Further, Y is most effective because it can be added at 0.06% or less. Ce, Mg 0.02% or less, Ca 0.01%
One kind or two or more kinds are added in the following ranges, if necessary.
However, adding too much deteriorates the corrosion resistance. Y is particularly effective, but it is expensive, and is set to 0.06% or less.
These additive elements have a small amount and a large synergistic effect.

BはSに次いで偏析しやすく、割れを助長する。したが
って微量Bの管理が重要である。鋳造時のBを0.0015%
以下にしなければならない。このためには原料や耐火物
からの混入を抑えなければならない。これを越えると割
れを助長する。
B tends to segregate next to S and promotes cracking. Therefore, it is important to manage the trace amount B. B in casting is 0.0015%
Must be: For this purpose, it is necessary to suppress contamination from raw materials and refractories. Exceeding this will promote cracking.

Oも偏析しやすい成分であり、凝固時偏析して割れを助
長する。十分脱酸して0.015%以下とすることが必
要である。なお鋼中に存在するOはAl≦0.08%,Si≦
2.0%やY≦0.06%,Ce≦0.02%,Mg≦0.02%,Ca≦
0.01%等の選択添加の脱酸で固定すれば十分である。
O is also a component that easily segregates, and segregates during solidification to promote cracking. It is necessary to sufficiently deoxidize it to 0.015% or less. O existing in steel is Al ≦ 0.08%, Si ≦
2.0% or Y ≦ 0.06%, Ce ≦ 0.02%, Mg ≦ 0.02%, Ca ≦
It is sufficient to fix by deoxidation with selective addition of 0.01%.

Pも偏析傾向が大きく、出来る限り低いことが望ましい
が、その許容限界はNi+30×N量との関係で第3図に
示すように、 P≦0.060−0.025 log(Ni+30N) により決めることが出来る。特にNiやNを多く含有する
合金でPを減ずることが必要になる。S,B,O量のコ
ントロールと並行してP量を第3図の通り, P≦0.060−0.025 log(Ni+=30N) に規制することで融点直下からすぐれた延性が得られ
る。
P also has a large segregation tendency and is preferably as low as possible, but its allowable limit can be determined by P ≦ 0.060−0.025 log (Ni + 30N) as shown in FIG. 3 in relation to the amount of Ni + 30 × N. In particular, it is necessary to reduce P in an alloy containing a large amount of Ni or N. In parallel with the control of the amounts of S, B, and O, as shown in Fig. 3, by controlling P to 0.060-0.025 log (Ni + = 30N), excellent ductility can be obtained from just below the melting point.

なお、Ni,N,Si等も融点直下の延性を劣化させるが、
合金組成として必須の成分である。Niはオーステナイト
相の安定化の点で5%は必要下限であり、多い方が組成
の安定性、耐食性の点で有効であるが、70%を越える
と高価となり、又割れやすさも顕著になる。Nは相の安
定化、高強度化、耐食性の向上の点で有効でCrと共に固
溶量も増し、多い程効果が大である。しかし0.4%を
越えると固溶限をこえ、気泡を生じる。Siは脱酸剤とし
て、又湯流れの点で有効であり耐スケール性の点で好ま
しい成分である。しかし融点直下の延性の点では少ない
方が好ましい。したがってSiの上限は2.0%とし、下
限は経済性の点で0.05%とした。
Although Ni, N, Si, etc. also deteriorate ductility just below the melting point,
It is an essential component as an alloy composition. Ni is 5% as a necessary lower limit in terms of stabilizing the austenite phase, and a larger amount is more effective in terms of composition stability and corrosion resistance. However, when it exceeds 70%, it becomes expensive and cracking becomes remarkable. . N is effective in stabilizing the phase, enhancing the strength, and improving the corrosion resistance, and the solid solution amount increases together with Cr. The larger the amount, the greater the effect. However, if it exceeds 0.4%, it exceeds the solid solubility limit and bubbles are generated. Si is effective as a deoxidizing agent, from the viewpoint of the flow of molten metal, and is a preferable component from the viewpoint of scale resistance. However, in terms of ductility just below the melting point, it is preferably as small as possible. Therefore, the upper limit of Si is set to 2.0%, and the lower limit is set to 0.05% in terms of economy.

他の合金組成に関しては特に大きな影響は認められず、
したがって先に述べた検討範囲とした。
No significant effect was observed for other alloy compositions,
Therefore, it was set as the study range mentioned above.

(実施例) 通常通り、溶製し2次精錬をされた各種のCr−Ni系ステ
ンレス鋼を溶製した。溶製された鋼の成分を第1表に示
す。これらは先に述べたように主成分はもちろん、特
に、S,B,P,Oに注目し更にNi+30×N量に応じ
て第2図,第3図をもとに、ΔS量とP量をコントロー
ルし、Y,Ce,Ca,MgやAl量等で成分調整した。
(Example) As usual, various Cr-Ni-based stainless steels which were melted and secondarily refined were melted. Table 1 shows the components of the molten steel. As described above, these are not only the main components, but especially S, B, P, and O. Further, according to the Ni + 30 × N amount, based on FIGS. Was controlled, and the components were adjusted by the amounts of Y, Ce, Ca, Mg, Al and the like.

その後、取鍋にて十分温度コントロールした後、水冷式
銅鋳型より成る双ロール鋳造機により鋳造し、8mmから
1mmの薄鋳片を鋳造した。鋳造幅は600mmである。双
ロール直下から気体及び水により幅方向に均一に冷却し
て、1100℃まで冷却した。
Then, after sufficiently controlling the temperature in a ladle, casting was performed by a twin roll casting machine composed of a water-cooled copper mold, and thin cast pieces of 8 mm to 1 mm were cast. The casting width is 600 mm. It was uniformly cooled in the width direction from below the twin rolls with gas and water, and then cooled to 1100 ° C.

鋳片はその後冷却され巻取られたが、S,B,P,O量
の規制を満たす本発明鋼の鋳片には割れは全く発生しな
かった。
The slab was then cooled and wound up, but no cracks occurred in the slab of the steel of the present invention satisfying the regulation of the amounts of S, B, P and O.

一部の鋳片には表面温度で1350℃〜1150℃間で50%以
下の圧下率で熱間圧延を加えたが、この熱間圧延時にも
割れは発生しなかった。
Although hot rolling was applied to some of the cast pieces at a surface temperature of 1350 ° C to 1150 ° C at a rolling reduction of 50% or less, cracks did not occur during the hot rolling.

一方、第1表に示した比較合金においては、すでに述べ
たS,B,P,Oの含有量が多く、又Ni+30×Nとの
関係を満さず、いづれも鋳造時幅方向を主とした小さな
割れが発生した。
On the other hand, in the comparative alloys shown in Table 1, the contents of S, B, P and O described above are large, and the relation with Ni + 30 × N is not satisfied, and both are mainly in the width direction during casting. A small crack occurred.

〔発明の効果〕 本発明によれば、鋳片と鋳型で相対速度差のない、所謂
同期式連続鋳造法を用いて、Cr−Ni系ステンレス鋼を製
造するプロセスにおいて、連続鋳造を、鋳片厚さが製品
ゲージに近い厚さとなる形で行なうに際し、鋳造過程な
らびに熱間圧延過程で、材料に割れを生じないCr−Ni系
ステンレス鋼を提供することが出来る。
[Effects of the Invention] According to the present invention, there is no relative speed difference between the cast piece and the mold, using a so-called synchronous continuous casting method, in the process of producing Cr-Ni stainless steel, continuous casting, the cast piece It is possible to provide a Cr-Ni-based stainless steel that does not crack in the material during the casting process and the hot rolling process when the thickness is close to the product gauge.

【図面の簡単な説明】[Brief description of drawings]

第1図は融点直下の延性に対する各種合金元素の影響を
示す図、第2図は鋼中のNi+30×N(%)とΔS=S−
0.8×Ca−0.5×Y−0.3×Mg−0.3×Ce(%)
との関係で、融点直下の延性良好域を示す図、第3図は
鋼中のNi+30×N(%)とP(%)との関係で、融点直下
の延性良好域を示す図である。
Figure 1 shows the effect of various alloying elements on the ductility just below the melting point, and Figure 2 shows Ni + 30 × N (%) and ΔS = S- in steel.
0.8 x Ca-0.5 x Y-0.3 x Mg-0.3 x Ce (%)
FIG. 3 is a diagram showing a good ductility region just below the melting point, and FIG. 3 is a diagram showing a good ductility region just below the melting point in relation to Ni + 30 × N (%) and P (%) in the steel.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】重量で、Cr:11〜40%、Ni:5〜70
%、Si:0.05〜2.0%、Mn≦7.0%、C≦0.
2%、N≦0.4%を含有し、凝固時の平衡分配係数が
小さく特に偏析し易いS、B、P、Oに関してはS≦0.
006 %、B≦0.0015%、P≦0.035 %、O≦0.015 %で
あり、しかも合金中のNi+30×N量とΔSとの関係
(但しΔS=S−0.8×Ca−0.5×Y−0.3×Mg
−0.3×Ce)が ΔS≦0.0141−0.009 log(Ni+30N) を満足し、かつNi+30×N量とP量との関係が P≦0.060−0.25 log(Ni+30N) を満足することを特徴とする鋳造過程或いはその後の熱
間圧延過程で割れを起こし難いCr−Ni系ステンレス鋼。
1. By weight, Cr: 11-40%, Ni: 5-70
%, Si: 0.05 to 2.0%, Mn ≦ 7.0%, C ≦ 0.
2% and N ≦ 0.4% are included, and the equilibrium distribution coefficient at the time of solidification is small and S ≦ B for S, B, P and O which are particularly prone to segregation.
006%, B ≦ 0.0015%, P ≦ 0.035%, O ≦ 0.015%, and the relationship between Ni + 30 × N amount and ΔS in the alloy (where ΔS = S−0.8 × Ca−0.5 × Y). -0.3 x Mg
−0.3 × Ce) satisfies ΔS ≦ 0.0141−0.009 log (Ni + 30N), and the relationship between the amount of Ni + 30 × N and the amount of P satisfies P ≦ 0.060−0.25 log (Ni + 30N). Cr-Ni stainless steel that is less prone to cracking during the casting process or the subsequent hot rolling process.
【請求項2】重量で、Cr:11〜40%、Ni:5〜70
%、Si:0.05〜2.0%、Mn≦7.0%、C≦0.
2%、N≦0.4%を含有し、更にY≦0.06%、Ce
≦0.02%、Mg≦0.02%、Ca≦0.01%の1種
または2種以上を含み、凝固時の平衡分配係数が小さく
特に偏析し易いS、B、P、Oに関してはS≦0.006
%、B≦0.0015%、P≦0.035 %、O≦0.015 %であ
り、しかも合金中のNi+30×N量とΔSとの関係(但
しΔS=S−0.8×Ca−0.5×Y−0.3×Mg−
0.3×Ce)が ΔS≦0.0141−0.009 log(Ni+30N) を満足し、かつNi+30×N量とP量との関係が P≦0.060−0.025 log(Ni+30N) を満足することを特徴とする鋳造過程或いはその後の熱
間圧延過程で割れを起こし難いCr−Ni系ステンレス鋼。
2. By weight, Cr: 11-40%, Ni: 5-70
%, Si: 0.05 to 2.0%, Mn ≦ 7.0%, C ≦ 0.
2%, N ≦ 0.4%, Y ≦ 0.06%, Ce
Includes one or more of ≦ 0.02%, Mg ≦ 0.02%, Ca ≦ 0.01%, and has a small equilibrium distribution coefficient during solidification, and S, B, P and O are particularly prone to segregation. S ≦ 0.006
%, B ≦ 0.0015%, P ≦ 0.035%, O ≦ 0.015%, and the relationship between the amount of Ni + 30 × N in the alloy and ΔS (where ΔS = S−0.8 × Ca−0.5 × Y− 0.3 x Mg-
Casting characterized in that 0.3 × Ce) satisfies ΔS ≦ 0.0141−0.009 log (Ni + 30N) and the relationship between Ni + 30 × N amount and P amount satisfies P ≦ 0.060−0.025 log (Ni + 30N). Cr-Ni stainless steel that is less likely to crack during the process or the subsequent hot rolling process.
【請求項3】重量で、Cr:11〜40%、Ni:5〜70
%、Si:0.05〜2.0%、Mn≦7.0%、C≦
0.2%、N≦0.4%を含有し、更にMo≦7%、Cu≦
4%、Al≦7%、Nb≦1%、Ti≦1%、Zr≦0.2%の
1種または2種以上を含み、凝固時の平衡分配係数が小
さく特に偏析し易いS、B、P、Oに関してはS≦0.00
6%、B≦0.0015%、P≦0.035 %、O≦0.015 %であ
り、しかも合金中のNi+30×N量とΔSとの関係(但し
ΔS=S−0.8×Ca−0.5×Y−0.3×Mg−0.
3×Ce)が ΔS≦0.0141−0.009 log(Ni+30N) を満足し、かつNi+30×N量とP量との関係が P≦0.060−0.025 log(Ni+30N) を満足することを特徴とする鋳造過程或いはその後の熱
間圧延過程で割れを起こし難いCr−Ni系ステンレス鋼。
3. By weight, Cr: 11-40%, Ni: 5-70
%, Si: 0.05 to 2.0%, Mn ≦ 7.0%, C ≦
0.2%, N ≦ 0.4%, Mo ≦ 7%, Cu ≦
4%, Al ≤ 7%, Nb ≤ 1%, Ti ≤ 1%, Zr ≤ 0.2%, and one or more of them, which have a small equilibrium distribution coefficient during solidification and are particularly prone to segregation S, B, S ≦ 0.00 for P and O
6%, B ≦ 0.0015%, P ≦ 0.035%, O ≦ 0.015%, and the relationship between Ni + 30 × N content and ΔS in the alloy (where ΔS = S−0.8 × Ca−0.5 × Y). -0.3 x Mg-0.
3 × Ce) satisfies ΔS ≦ 0.0141−0.009 log (Ni + 30N) and the relationship between the amount of Ni + 30 × N and the amount of P satisfies P ≦ 0.060−0.025 log (Ni + 30N), or Cr-Ni-based stainless steel that does not easily crack during the subsequent hot rolling process.
【請求項4】重量で、Cr:11〜40%、Ni:5〜70
%、Si:0.05〜2.0%、Mn≦7.0%、C≦0.
2%、N≦0.4%を含有し、更にY≦0.06%、Ce
≦0.02%、Mg≦0.02%、Ca≦0.01%の1種
または2種以上及びMo≦7%、Cu≦4%、Al≦7%、Nb
≦1%、Ti≦1%、Zr≦0.2%の1種または2種以上
を含み、凝固時の平衡分配係数が小さく特に偏析し易い
S、B、P、Oに関してはS≦0.006 %、B≦0.0015
%、P≦0.035 %、O≦0.015 %であり、しかも合金中
のNi+30×N量とΔSとの関係(但しΔS=S−0.
8×Ca−0.5×Y−0.3×Mg−0.3×Ce)が ΔS≦0.0141−0.009 log(Ni+30N) を満足し、かつNi+30×N量とP量との関係が P≦0.060−0.025 log(Ni+30N) を満足することを特徴とする鋳造過程或いはその後の熱
間圧延過程で割れを起こし難いCr−Ni系ステンレス鋼。
4. By weight, Cr: 11-40%, Ni: 5-70
%, Si: 0.05 to 2.0%, Mn ≦ 7.0%, C ≦ 0.
2%, N ≦ 0.4%, Y ≦ 0.06%, Ce
≦ 0.02%, Mg ≦ 0.02%, Ca ≦ 0.01%, one or more kinds and Mo ≦ 7%, Cu ≦ 4%, Al ≦ 7%, Nb
≤ 1%, Ti ≤ 1%, Zr ≤ 0.2%, 1 or 2 or more, and has a small equilibrium distribution coefficient during solidification and is particularly prone to segregation S ≤ 0.006% for S, B, P and O , B ≦ 0.0015
%, P ≦ 0.035%, O ≦ 0.015%, and the relationship between the amount of Ni + 30 × N in the alloy and ΔS (where ΔS = S−0.
8 × Ca−0.5 × Y−0.3 × Mg−0.3 × Ce) satisfies ΔS ≦ 0.0141−0.009 log (Ni + 30N), and the relation between the amount of Ni + 30 × N and the amount of P is P ≦ Cr-Ni-based stainless steel that is resistant to cracking during the casting process or the subsequent hot rolling process, which is characterized by satisfying 0.060-0.025 log (Ni + 30N).
JP63087344A 1988-04-11 1988-04-11 Cr-Ni type stainless steel that is less likely to crack during the casting process or the subsequent hot rolling process Expired - Lifetime JPH0660369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63087344A JPH0660369B2 (en) 1988-04-11 1988-04-11 Cr-Ni type stainless steel that is less likely to crack during the casting process or the subsequent hot rolling process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63087344A JPH0660369B2 (en) 1988-04-11 1988-04-11 Cr-Ni type stainless steel that is less likely to crack during the casting process or the subsequent hot rolling process

Publications (2)

Publication Number Publication Date
JPH01259143A JPH01259143A (en) 1989-10-16
JPH0660369B2 true JPH0660369B2 (en) 1994-08-10

Family

ID=13912252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63087344A Expired - Lifetime JPH0660369B2 (en) 1988-04-11 1988-04-11 Cr-Ni type stainless steel that is less likely to crack during the casting process or the subsequent hot rolling process

Country Status (1)

Country Link
JP (1) JPH0660369B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4111821C1 (en) * 1991-04-11 1991-11-28 Vdm Nickel-Technologie Ag, 5980 Werdohl, De
JP3512304B2 (en) * 1996-08-15 2004-03-29 日本冶金工業株式会社 Austenitic stainless steel
JP3842053B2 (en) * 2001-03-02 2006-11-08 山陽特殊製鋼株式会社 High strength low thermal expansion alloy with excellent twisting characteristics and its alloy wire
JP5616283B2 (en) * 2011-04-25 2014-10-29 日本冶金工業株式会社 Fe-Ni-Cr-Mo alloy and method for producing the same
JP6611236B2 (en) * 2015-08-28 2019-11-27 日本冶金工業株式会社 Fe-Cr-Ni-Mo alloy and method for producing the same
JP6875593B1 (en) * 2020-12-23 2021-05-26 日本冶金工業株式会社 Fe-Ni-Cr alloy with excellent corrosion resistance, weldability, and oxidation resistance and its manufacturing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5871360A (en) * 1981-10-23 1983-04-28 Nippon Steel Corp Manufacture of austenitic stainless steel with superior corrosion resistance and workability and its plate
JPS5915979A (en) * 1982-07-20 1984-01-27 株式会社東芝 Liquid crystal display and manufacture thereof
JPS59182956A (en) * 1983-04-02 1984-10-17 Nippon Steel Corp High-alloy stainless steel with superior hot workability
JPS60211054A (en) * 1984-04-03 1985-10-23 Nippon Kokan Kk <Nkk> Austenitic stainless steel having superior hot workability
JPS6173868A (en) * 1984-09-19 1986-04-16 Nippon Steel Corp Austenitic stainless steel having high creep rupture strength
JPS6187855A (en) * 1984-10-05 1986-05-06 Sumitomo Metal Ind Ltd Stainless steel having superior corrosion resistance and hot workability
JPS6214628A (en) * 1985-07-12 1987-01-23 Minolta Camera Co Ltd Camera with preview mechanism
JPS62297443A (en) * 1986-06-18 1987-12-24 Nippon Yakin Kogyo Co Ltd Austenitic stainless steel having superior hot workability and high corrosion resistance

Also Published As

Publication number Publication date
JPH01259143A (en) 1989-10-16

Similar Documents

Publication Publication Date Title
JP5972870B2 (en) Austenitic-ferritic stainless steel with improved machinability
JP6484716B2 (en) Lean duplex stainless steel and manufacturing method thereof
JP3076814B2 (en) Aluminum-manganese-iron duplex stainless steel alloy
JP6131833B2 (en) Method for continuous casting of Ti deoxidized steel
JPH0660369B2 (en) Cr-Ni type stainless steel that is less likely to crack during the casting process or the subsequent hot rolling process
JPH0211663B2 (en)
Paul et al. Effect of hot rolling process on microstructure and properties of low-carbon Al-killed steels produced through TSCR technology
JPH0565263B2 (en)
JP7063401B2 (en) Manufacturing method of high manganese steel slab and manufacturing method of high manganese steel slab or steel plate
JP3598771B2 (en) Martensitic stainless steel excellent in hot workability and sulfide stress cracking resistance, method of bulk rolling thereof, seamless steel pipe using these, and method of manufacturing the same
JP2561476B2 (en) Method for preventing cracking during rapid solidification of Cr-Ni stainless steel or Cr-Ni high alloy steel
JP2833442B2 (en) Ni-containing steel for low temperature and secondary cooling method of continuous cast slab thereof
JP3518517B2 (en) Manufacturing method of high chromium / ferritic heat resistant steel
JPH0112561B2 (en)
JP4190617B2 (en) Method for producing hot rolled sheet of stainless steel
JPH022925B2 (en)
JP3423815B2 (en) Method for producing ferritic stainless steel to prevent surface flaws from occurring during hot rolling
WO2024053276A1 (en) Steel cast slab, continuous casting method, and method for producing steel cast slab
JP4285869B2 (en) Method for producing Cr-containing thin steel sheet
JPS6364516B2 (en)
JP3775178B2 (en) Thin steel plate and manufacturing method thereof
JPH06304607A (en) Manufacture of preventing crack in hot rolling of cr-ni base stainless steel alloy
JPH07292418A (en) Production of chromium-nickel stainless steel free from occurrence of surface flaw at hot rolling
JPH08253813A (en) Production of high chromium ferritic stainless steel plate
JPH07100819B2 (en) Method for producing Cr-Ni-based stainless steel sheet having excellent mechanical properties and surface properties

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 14