JP4285869B2 - Method for producing Cr-containing thin steel sheet - Google Patents

Method for producing Cr-containing thin steel sheet Download PDF

Info

Publication number
JP4285869B2
JP4285869B2 JP2000005031A JP2000005031A JP4285869B2 JP 4285869 B2 JP4285869 B2 JP 4285869B2 JP 2000005031 A JP2000005031 A JP 2000005031A JP 2000005031 A JP2000005031 A JP 2000005031A JP 4285869 B2 JP4285869 B2 JP 4285869B2
Authority
JP
Japan
Prior art keywords
less
steel
thin steel
containing thin
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000005031A
Other languages
Japanese (ja)
Other versions
JP2001192782A (en
Inventor
祐司 小山
阿部  雅之
明彦 高橋
隆 諸星
謙 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000005031A priority Critical patent/JP4285869B2/en
Publication of JP2001192782A publication Critical patent/JP2001192782A/en
Application granted granted Critical
Publication of JP4285869B2 publication Critical patent/JP4285869B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はCr含有薄鋼板、特に耐リジング性に優れる高純度Cr含有薄鋼板の製造方法に関するものである。
【0002】
【従来の技術】
Cr含有鋼は耐食性や耐熱性に優れており、建材や自動車用部品など広い用途に使われている。
特に板厚5mm以下のいわゆる薄鋼板のうち、C,Nを低下させ、さらに添加Tiでこれらを固定することにより鋼中の固溶C,N量の低減を図った高純度Cr含有薄鋼板は、プレス限界、深絞り限界が高いため、自動車排気系部材などの高い加工性を要求される用途に用いられている。
【0003】
フェライト系ステンレス鋼に代表されるCr含有薄鋼板をプレス成形すると、リジングとよばれる圧延方向に沿った縞状の凹凸が生じる場合がある。リジングは成形品の美観を損なうのみならず、これを除去する研磨負荷が生じるため、Cr含有薄鋼板をプレス成形する際の問題点となっている。
【0004】
耐リジング性を向上させるには、鋳造時の凝固組織に起因する粗大なコロニーバンドを細かく分断することが必要で、熱間圧延時の再結晶を促進させる方法、凝固組織を等軸晶で細粒にする方法が提案されている。
熱間圧延工程および熱間圧延後の焼鈍工程でフェライト系ステンレス鋼の再結晶を促進することでコロニーバンドを細かく分断する技術については、例えば特開平4−160117号公報、特開平5−179358号公報に開示されている。これらの技術によりC、N量を特に低減していない汎用フェライト系ステンレス薄鋼板の耐リジング性は改善できる。しかしながら本発明で対象としている高純度Cr含有鋼では、このような汎用鋼に比較して熱間圧延前の鋳片組織が粗大なため、上述のような技術では鋳片組織を十分に再結晶させることができず、リジングの低減効果もほとんど得られない。
【0005】
また、鋳片組織を等軸晶化、細粒化することによりコロニーバンドを細かく分断しリジングの発生を抑制する方法として、例えば特開昭52−47522号公報に低温鋳造と電磁攪拌とを効果的に組み合わせる技術が開示されている。しかしながらこの技術においても、本発明で対象としている高純度Cr含有鋼に対しては効果が小さく、特に鋳片の厚み方向1/4部付近については柱状晶が粗大に成長してしまう。
【0006】
また特開平10−324956号公報には、Mgを含有する酸化物を凝固の接種核として活用することで鋳片組織を等軸晶化、細粒化する技術が開示されている。この技術によりフェライト系ステンレス鋼の耐リジング性を大きく改善することができるが、Mg添加後180秒以内に溶鋼の凝固を開始しなくてはこのような鋼は得られない。実機製造ラインではMgを添加する精錬設備から鋳造設備への溶鋼の移送、鋳造可能なタイミング待ち等に時間を要するため、Mg添加後180秒以内に凝固を開始することは非常に困難である。
【0007】
【発明が解決しようとする課題】
上述のように、従来の製造技術では高純度Cr含有薄鋼板の耐リジング性を十分に向上させることは不可能であった。
そこで本発明の課題は、コロニーバンドを細かく分断することで耐リジング性に優れた高純度Cr含有薄鋼板の製造方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、高純度Cr含有鋼のコロニーバンドを細かく分断するのに有効な介在物の組成、大きさ、分布を詳細に検討した。また、このような介在物を生成させるのに有効な製造方法についても精査した。その結果、最大径が0.5〜10μmの範囲のMg系酸化物が製品板の断面に3個/mm2 以上存在すると、その薄鋼板の耐リジング性は大きく向上することが明確となった。さらに高純度Cr含有鋼にMgを0.0005〜0.005%添加し、溶鋼過熱度を50℃以下として鋳造することでこのような酸化物を生成させられることを見出し、本発明を完成した。なお、溶鋼過熱度とは液相温度を規準とした際の溶鋼温度のことである。
【0009】
すなわち本発明の要旨は次の通りである。
(1) 質量%で、
C:0.015%以下、 Cr:3〜30%、
Ti:8×(C+N)〜0.4%、 N:0.02%以下、
Mg:0.0005〜0.005%
を含有し、残部がFeおよび不可避的不純物からなる鋼を、溶鋼過熱度を50℃以下として鋳造し、熱間圧延し、前記熱間圧延終了後の鋼板を650℃以上で捲き取るか、あるいは前記熱間圧延後の鋼帯を800〜1100℃の温度範囲で10分間以下保持した後、冷間圧延さらに仕上げ焼鈍を行い、前記仕上げ焼鈍後に、最大径が0.5〜10μmの範囲のMg系酸化物を1mm当たり3個以上含有することを特徴とするCr含有薄鋼板の製造方法。
(2) 鋼中に、さらに質量%で、
Mo:2.0%以下、 Ni:2.0%以下、 Cu:2.0%以下
の一種または二種以上を含有することを特徴とする前記(1)に記載のCr含有薄鋼板の製造方法。
(3) 鋼中に、さらに質量%で、
Nb:0.5%以下、 V:0.5%以下、 Zr:0.5%以下
の一種または二種以上を含有することを特徴とする前記(1)または(2)に記載のCr含有薄鋼板の製造方法。
(4) 鋼中に、さらに質量%で、B:0.005%以下を含有することを特徴とする前記(1)〜(3)のいずれか1項に記載のCr含有薄鋼板の製造方法。
【0010】
【発明の実施の形態】
以下に本発明を詳細に説明する。
始めに本発明を以下の実験結果に基づいて詳細に説明する。
質量%で、C:0.0050%、Cr:17.2%、Ti:0.20%、Mo:1.2%、N:0.0068%、Mg:0.0028%の成分組成を有する高純度Cr含有鋼を実験室で溶製し、過熱度を変化させて鋳造した。さらに得られた鋳片を熱間圧延、冷間圧延さらに仕上げ焼鈍して薄鋼板とし、リジング高さを測定した結果が図1である。リジング高さは薄鋼板に16%の引張歪を付与し、圧延方向に垂直な方向の凹凸高さを測定した。
図1から明らかなように、溶鋼過熱度を低下させることにより仕上焼鈍板のリジング高さは低下し、溶鋼過熱度50℃以下とすることで非常に優れた耐リジング性を有するようになる。
【0011】
これらの薄鋼板を調査すると、リジング高さはMg系酸化物の密度と対応していることが判明した。すなわちMg系酸化物の密度が大きくなるのに従ってリジング高さは小さくなり、最大径が0.5〜10μmのMg系酸化物の密度が3個/mm2 以上の場合にリジング高さが大きく低下していた。
【0012】
次に本発明の限定範囲について述べる。
C:0.015質量%以下とする必要がある。0.015%を超えて含有すると、Cr炭化物の粒界析出に伴う溶接熱影響部の耐食性劣化が生じ易くなる。また侵入型で固溶するため鋼を著しく強化する元素であり、0.015%を超えて含有すると加工性が劣化し、さらにCを固定するためのTi必要量が増加してしまう。これらの理由から上限を0.015%とした。
【0013】
Cr:3質量%以上30質量%以下とする必要がある。優れた耐食性、耐熱性を得るために3%以上の含有が必要である。しかしながら30%を超えて含有しても要求される性能は既に十分満足しており、単に合金コストの増大を招くのみである。
【0014】
Ti:C+Nの8倍以上で0.4質量%以下とする必要がある。TiはC、Nと容易に結合し、鋼中に固溶するC,N量を実質的に低減する作用があり、その結果加工性を高めることができる。この効果は8×(C+N)未満の含有量では不十分である。また0.4%を超えて含有しても鋼の熱間加工性を低下させ、熱間圧延中の疵発生の原因となることから、その上限を0.4%とした。
【0015】
Mg:0.0005%以上0.005%以下とする必要がある。本発明の根幹を成す添加元素であり、コロニーバンドを細かく分断するようなMg系酸化物を得るには、0.0005質量%以上の添加が必要である。しかしながら0.005%を超えて含有しても効果は飽和しており、耐食性が劣化するのみであることから、その上限を0.005質量%とした。
【0016】
N:0.02質量%以下とする必要がある。Cと同様に侵入型で固溶するため鋼を著しく強化する元素であり、0.02%を超えて含有すると加工性が劣化し、さらにNを固定するためのTi必要量が増加してしまうため、上限を0.02%とした。
【0017】
Mo,Ni,Cu:特に高耐食性が必要な用途には、それぞれ2.0質量%以下の範囲でこれらの元素の一種または二種以上を添加することが有効である。2.0%を超えて含有してもその効果は飽和し、合金コストの増大を招くため、上限を2.0%とした。
【0018】
Nb,V,Zr:特に溶接部の高耐食性が必要な用途には、それぞれ0.5%質量以下の範囲でこれらの元素の一種または二種以上を添加することが有効である。これらの元素はC,Nと容易に結合し、溶接熱影響部のCr炭窒化物の析出を抑制して耐食性を向上させる。0.5%を超えて含有してもその効果は飽和し、合金コストの増大、延性の低下を招くため、上限を0.5%とした。
【0019】
B:特に高い2次加工性が必要な用途の場合には、0.005%質量以下の範囲で添加することが有効である。Bは製品を加工した際に生じた鋼中の欠陥を修復し、2次加工性を高める効果がある。しかしながらB含有量が0.005%を超えると鋼の熱間加工性を低下させ、熱間圧延中で割れや疵を生じることから、その上限を0.005%とした。
【0020】
本発明では、Mg系酸化物が鋳造時にはフェライトの凝固核として作用し鋳片組織を等軸晶化、細粒化することでコロニーバンドを細かく分断するものと考えられ、さらに熱間圧延の再加熱時にはピニング粒子として作用することにより、フェライトの粒成長を抑制し、熱間圧延時の再結晶を促進する効果があるものと考えられる。このような効果を有するMg系酸化物を生成させるためには、上述のようにMgを0.0005%以上0.005%以下の範囲で鋼に添加したうえで、鋳造時の溶鋼過熱度を50℃以下とする必要がある。溶鋼過熱度が50℃を超えると凝固時のMg系酸化物の密度が低下し鋳片組織が粗大な柱状晶となり、また熱間圧延の再加熱時にフェライトが粒成長してしまい、熱間圧延時の再結晶が遅延されるためコロニーバンドは細かく分断されない。
【0021】
Mg系酸化物としては、Mg単独での酸化物のほかにMgとTiとの複合酸化物、不可避的不純物として鋼中に含まれるAlやCaとMgとの複合酸化物などが有り得るが、酸化物中にMgを含んでさえいればコロニーバンドを細かく分断する機能を有する。さらにこれらの酸化物をTiNで覆った形であっても、コロニーバンドを細かく分断する効果がある。
【0022】
Mg系酸化物の大きさについては、最大径が0.5〜10μmの範囲のものがコロニーバンドを細かく分断する機能を有する。最大径が0.5μm未満であると鋳造時にフェライトの凝固核として作用しないためである。また最大径が10μmを超えるとこのような機能は発現しない。
【0023】
Mg系酸化物の個数については、最大径が0.5μm〜10μmのものが薄鋼板中に3個/mm 以上存在しなくてはならない。最大径が0.5μm〜10μmのMg系酸化物が薄鋼板中に3個/mm 未満しか存在しなければ、コロニーバンドを細かく分断する機能が不十分で、耐リジング性の向上は望めない。
なお、Mg系酸化物の大きさや個数は、Mg原料の種類の選定(金属MgまたはMg合金等、またそのサイズ)、Mg添加前の溶存酸素量や酸化物の種類の調整、もしくは溶鋼ないし鋳型へのMg添加タイミングや方法等、を適宜選択することで調整できる。
【0024】
より高い耐リジング性が要求される用途の場合には、熱間圧延終了後の鋼板を650℃以上で捲き取るか、熱間圧延後の鋼帯を800〜1100℃の温度範囲で10分間以下保持するとよい。これらの処理で再結晶が促進されることによりコロニーバンドがさらに細かく分断され、非常に優れた耐リジング性を有する高純度Cr含有薄鋼板が得られる。ここで熱間圧延終了後の鋼板を650℃未満の温度で捲き取っても再結晶の促進効果は小さい。
また熱間圧延後の鋼帯を800℃未満の温度で保持した場合も、再結晶の促進効果は小さいためコロニーバンドは十分には分断されない。また1100℃を超える温度で保持した場合や10分間を超えて保持した場合は、粒成長してしまい、冷間圧延後の仕上焼鈍時の再結晶が遅延され加工性が劣化する。
【0025】
【実施例】
表1に示す化学成分を有する13種の高純度フェライト系ステンレス鋼A〜Mを溶製し、表2に示す溶鋼過熱度のもと連続鋳造により250mm厚の鋳片とした。これらの鋳片を3mm厚まで熱間圧延した後に温度を変化させてこれらを捲取り、熱間圧延鋼帯とした。一部の熱間圧延鋼帯については焼鈍を施した。これらの鋼帯を0.6mm厚まで冷間圧延した後仕上焼鈍を施して薄鋼板とした。
得られた薄鋼板の圧延面に平行な面を鏡面研磨、電解エッチングし、抽出レプリカを採取した。このレプリカを成分分析が可能な透過型電子顕微鏡で観察し、最大径が0.5〜10μmであるMg系酸化物の数を計測した。またこの薄鋼板のリジング高さも測定した。これら測定結果についても表2に示した。
【0026】
Mgを0.0005%以上添加している鋼A〜Jについては、鋳造時の溶鋼過熱度が50℃以下の場合、仕上焼鈍板の最大径が0.5〜10μmであるMg系酸化物の密度が3個/mm2 以上となり、優れた耐リジング性が得られる。また熱間圧延鋼板を650℃以上の高温で捲き取ったり、熱間圧延鋼帯に800〜1100℃の温度範囲で10分間以下の焼鈍を施すと、耐リジング性はさらに向上する。
【0027】
Mgを0.0005%以上添加している鋼A〜Jについても、鋳造時の溶鋼過熱度が50℃を超えると、仕上焼鈍板の最大径が0.5〜10μmであるMg系酸化物の密度が3個/mm2 未満となり、耐リジング性は向上しない。
一方、Mg添加量が0.0005%未満である鋼K〜Mについては、鋳造時の溶鋼過熱度を50℃以下に低下させても耐リジング性はほとんど向上しない。仕上げ焼鈍板における最大径が0.5〜10μmであるMg系酸化物の密度が3個/mm2 未満となるからである。
【0028】
【表1】

Figure 0004285869
【0029】
【表2】
Figure 0004285869
【0030】
【発明の効果】
以上に説明した通り、本発明により耐リジング性に優れた高純度Cr含有薄鋼板を提供することが可能となった。
【図面の簡単な説明】
【図1】Mg:0.0028%を含む高純Cr含有鋼を過熱度を変化させて鋳造し、熱間圧延、冷間圧延さらに仕上げ焼鈍して薄鋼板とし、リジング高さを測定した結果である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a Cr-containing thin steel sheet, particularly a high-purity Cr-containing thin steel sheet having excellent ridging resistance.
[0002]
[Prior art]
Cr-containing steel is excellent in corrosion resistance and heat resistance, and is used in a wide range of applications such as building materials and automotive parts.
In particular, among so-called thin steel sheets with a thickness of 5 mm or less, high purity Cr-containing thin steel sheets that reduce C and N, and further fix these with added Ti to reduce the amount of dissolved C and N in the steel are: Since the press limit and deep drawing limit are high, they are used for applications requiring high workability such as automobile exhaust system members.
[0003]
When a Cr-containing thin steel plate typified by ferritic stainless steel is press-formed, striped irregularities along the rolling direction called ridging may occur. Ridging not only impairs the aesthetics of the molded product, but also causes a polishing load to remove the ridging, which is a problem when press-forming a Cr-containing thin steel sheet.
[0004]
In order to improve the ridging resistance, it is necessary to finely divide the coarse colony band resulting from the solidified structure at the time of casting. This method promotes recrystallization during hot rolling, and the solidified structure is made of equiaxed crystals. A method of making grains has been proposed.
For techniques for finely dividing the colony band by promoting recrystallization of ferritic stainless steel in the hot rolling process and the annealing process after hot rolling, for example, Japanese Patent Laid-Open Nos. 4-160117 and 5-179358 are disclosed. It is disclosed in the publication. These techniques can improve the ridging resistance of a general-purpose ferritic stainless steel sheet in which the amounts of C and N are not particularly reduced. However, in the high-purity Cr-containing steel that is the subject of the present invention, the slab structure before hot rolling is coarse compared to such a general-purpose steel. The effect of reducing ridging is hardly obtained.
[0005]
Also, as a method for suppressing the generation of ridging by finely dividing the colony band by equiaxial crystallization and fine graining of the slab structure, for example, Japanese Patent Application Laid-Open No. 52-47522 is effective for low temperature casting and electromagnetic stirring. Techniques for combining them are disclosed. However, even in this technique, the effect is small with respect to the high-purity Cr-containing steel that is the subject of the present invention, and columnar crystals grow coarsely particularly in the vicinity of ¼ part in the thickness direction of the slab.
[0006]
Japanese Patent Application Laid-Open No. 10-324956 discloses a technique for equiaxial crystallization and fine graining of a slab structure by utilizing an oxide containing Mg as an inoculation nucleus for solidification. Although this technique can greatly improve the ridging resistance of ferritic stainless steel, such steel cannot be obtained unless solidification of the molten steel is started within 180 seconds after the addition of Mg. In the actual machine production line, it takes time to transfer molten steel from the refining equipment to which the Mg is added to the casting equipment, and to wait for the timing at which casting is possible, so it is very difficult to start solidification within 180 seconds after the addition of Mg.
[0007]
[Problems to be solved by the invention]
As described above, it has been impossible to sufficiently improve the ridging resistance of the high purity Cr-containing thin steel sheet by the conventional manufacturing technique.
Then, the subject of this invention is providing the manufacturing method of the high purity Cr containing thin steel plate excellent in ridging resistance by dividing | segmenting a colony band finely.
[0008]
[Means for Solving the Problems]
The present inventors have studied in detail the composition, size, and distribution of inclusions effective for finely dividing the colony band of high-purity Cr-containing steel. Moreover, the manufacturing method effective in producing | generating such an inclusion was also investigated. As a result, it became clear that the ridging resistance of the thin steel sheet is greatly improved when Mg-based oxides having a maximum diameter in the range of 0.5 to 10 μm are present in the cross section of the product plate at 3 pieces / mm 2 or more. . Furthermore, it discovered that such an oxide was produced | generated by adding 0.0005-0.005% of Mg to high purity Cr containing steel, and making molten steel superheat degree 50 degrees C or less, and completed this invention. . In addition, molten steel superheat degree is a molten steel temperature at the time of making liquid phase temperature into a standard.
[0009]
That is, the gist of the present invention is as follows.
(1) In mass%,
C: 0.015% or less, Cr: 3 to 30%,
Ti: 8 × (C + N) to 0.4%, N: 0.02% or less,
Mg: 0.0005 to 0.005%
Steel, the balance being Fe and inevitable impurities, cast at a molten steel superheat degree of 50 ° C. or less, hot-rolled , and scraping the steel plate after the hot rolling at 650 ° C. or higher, or After holding the steel strip after the hot rolling at a temperature range of 800 to 1100 ° C. for 10 minutes or less, cold rolling and finish annealing are performed, and after the finish annealing, Mg having a maximum diameter of 0.5 to 10 μm. A method for producing a Cr-containing thin steel sheet, comprising 3 or more oxides per mm 2 .
(2) In steel, by mass%,
Mo: 2.0% or less, Ni: 2.0% or less, Cu: 2.0% or less, containing one or more of Cr-containing thin steel sheets as described in (1) above Method.
(3) In steel, further in mass%,
Nb: 0.5% or less, V: 0.5% or less, Zr: 0.5% or less, or one or two or more of Cr content as described in (1) or (2) above Manufacturing method of thin steel sheet.
(4) The method for producing a Cr-containing thin steel sheet according to any one of (1) to (3), wherein the steel further contains B: 0.005% or less by mass%. .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
First, the present invention will be described in detail based on the following experimental results.
By mass%, C: 0.0050%, Cr: 17.2%, Ti: 0.20%, Mo: 1.2%, N: 0.0068%, Mg: 0.0028% High purity Cr-containing steel was melted in the laboratory and cast with varying superheat. Further, FIG. 1 shows the result of measuring the ridging height of the obtained slab by hot rolling, cold rolling, and finish annealing to form a thin steel plate. The ridging height was obtained by applying a tensile strain of 16% to the thin steel plate and measuring the height of the unevenness in the direction perpendicular to the rolling direction.
As is apparent from FIG. 1, the ridging height of the finish annealed plate is lowered by lowering the degree of superheating of the molten steel, and has a very excellent ridging resistance when the degree of superheating of the molten steel is 50 ° C. or less.
[0011]
Investigation of these thin steel sheets revealed that the ridging height corresponds to the density of the Mg-based oxide. That is, as the density of the Mg-based oxide increases, the ridging height decreases, and when the density of the Mg-based oxide having a maximum diameter of 0.5 to 10 μm is 3 pieces / mm 2 or more, the ridging height decreases greatly. Was.
[0012]
Next, the limited range of this invention is described.
C: It is necessary to set it as 0.015 mass% or less. If it exceeds 0.015%, corrosion resistance deterioration of the weld heat-affected zone due to grain boundary precipitation of Cr carbide tends to occur. In addition, it is an element that reinforces steel remarkably because it dissolves in an interstitial form. If it exceeds 0.015%, workability deteriorates, and further, the necessary amount of Ti for fixing C increases. For these reasons, the upper limit was made 0.015%.
[0013]
Cr: It is necessary to set it as 3 to 30 mass%. In order to obtain excellent corrosion resistance and heat resistance, it is necessary to contain 3% or more. However, even if the content exceeds 30%, the required performance has already been sufficiently satisfied, and it merely increases the alloy cost.
[0014]
It is necessary to be not less than 0.4% by mass at least 8 times Ti: C + N. Ti is easily bonded to C and N, and has the effect of substantially reducing the amount of C and N dissolved in the steel. As a result, workability can be improved. This effect is insufficient with a content of less than 8 × (C + N). Moreover, even if it contains exceeding 0.4%, the hot workability of steel will be reduced and it will cause the flaw generation | occurrence | production in hot rolling, Therefore The upper limit was made into 0.4%.
[0015]
Mg: It is necessary to be 0.0005% or more and 0.005% or less. Addition of 0.0005% by mass or more is necessary to obtain an Mg-based oxide that is an additive element forming the basis of the present invention and that finely divides a colony band. However, even if the content exceeds 0.005%, the effect is saturated and only the corrosion resistance deteriorates, so the upper limit was made 0.005% by mass.
[0016]
N: It is necessary to set it as 0.02 mass% or less. It is an element that reinforces steel remarkably because it dissolves in an interstitial form in the same way as C, and if it exceeds 0.02%, workability deteriorates, and further, the necessary amount of Ti for fixing N increases. Therefore, the upper limit was made 0.02%.
[0017]
Mo, Ni, Cu: For applications that require high corrosion resistance, it is effective to add one or more of these elements within a range of 2.0% by mass or less. Even if the content exceeds 2.0%, the effect is saturated and the alloy cost is increased, so the upper limit was made 2.0%.
[0018]
Nb, V, Zr: It is effective to add one or more of these elements within a range of 0.5% by mass or less, particularly for applications that require high corrosion resistance of the weld. These elements easily combine with C and N, and suppress the precipitation of Cr carbonitride in the weld heat affected zone, thereby improving the corrosion resistance. Even if the content exceeds 0.5%, the effect is saturated, resulting in an increase in alloy costs and a decrease in ductility, so the upper limit was made 0.5%.
[0019]
B: For applications that require particularly high secondary workability, it is effective to add in a range of 0.005% by mass or less. B has an effect of repairing defects in the steel generated when the product is processed and improving secondary workability. However, if the B content exceeds 0.005%, the hot workability of the steel is lowered, and cracks and wrinkles occur during hot rolling, so the upper limit was made 0.005%.
[0020]
In the present invention, it is considered that the Mg-based oxide acts as a solidification nucleus of ferrite during casting, and the slab structure is equiaxed and refined to finely divide the colony band. By acting as pinning particles during heating, it is considered that there is an effect of suppressing the grain growth of ferrite and promoting recrystallization during hot rolling. In order to produce an Mg-based oxide having such an effect, after adding Mg to the steel in the range of 0.0005% or more and 0.005% or less as described above, the superheat degree of the molten steel at the time of casting is set. It is necessary to make it 50 degrees C or less. When the superheated degree of molten steel exceeds 50 ° C, the density of Mg-based oxides during solidification decreases and the slab structure becomes coarse columnar crystals, and ferrite grains grow during reheating of hot rolling, and hot rolling Since the recrystallization at the time is delayed, the colony band is not finely divided.
[0021]
Examples of Mg-based oxides include Mg and Ti composite oxides in addition to Mg alone, and inevitable impurities such as Al and Ca and Mg composite oxides. As long as Mg is contained in the product, it has a function of finely dividing the colony band. Furthermore, even if these oxides are covered with TiN, there is an effect of finely dividing the colony band.
[0022]
Regarding the size of the Mg-based oxide, those having a maximum diameter in the range of 0.5 to 10 μm have a function of finely dividing the colony band. This is because if the maximum diameter is less than 0.5 μm, it does not act as a solidification nucleus of ferrite during casting. Moreover, when the maximum diameter exceeds 10 μm, such a function does not appear.
[0023]
Regarding the number of Mg-based oxides, the maximum diameter of 0.5 μm to 10 μm is 3 / mm 2 in the thin steel plate. It must exist. Mg oxide with a maximum diameter of 0.5 μm to 10 μm is 3 / mm 2 in the thin steel plate. If the amount is less than 1, the function of finely dividing the colony band is insufficient, and improvement in ridging resistance cannot be expected.
The size and number of Mg-based oxides can be determined by selecting the type of Mg raw material (metal Mg or Mg alloy, etc., and its size), adjusting the amount of dissolved oxygen and the type of oxide before adding Mg, or molten steel or mold. The timing can be adjusted by appropriately selecting the timing and method of adding Mg.
[0024]
For applications that require higher ridging resistance, the steel sheet after hot rolling is scraped at 650 ° C. or higher, or the steel strip after hot rolling is at a temperature range of 800 to 1100 ° C. for 10 minutes or less. It is good to hold. By promoting recrystallization by these treatments, the colony band is further finely divided, and a high purity Cr-containing thin steel sheet having very excellent ridging resistance is obtained. Here, even if the steel sheet after hot rolling is scraped off at a temperature of less than 650 ° C., the effect of promoting recrystallization is small.
Even when the steel strip after hot rolling is held at a temperature of less than 800 ° C., the colony band is not sufficiently divided because the effect of promoting recrystallization is small. Moreover, when it hold | maintains at the temperature exceeding 1100 degreeC, or when it hold | maintains exceeding 10 minutes, a grain will grow and the recrystallization at the time of the finish annealing after cold rolling will be delayed, and workability will deteriorate.
[0025]
【Example】
Thirteen types of high-purity ferritic stainless steels A to M having the chemical components shown in Table 1 were melted and cast into 250 mm thick slabs by continuous casting under the molten steel superheat degree shown in Table 2. These cast slabs were hot-rolled to a thickness of 3 mm, and then the temperature was changed to scrape them to obtain hot-rolled steel strips. Some hot-rolled steel strips were annealed. These steel strips were cold-rolled to a thickness of 0.6 mm and then subjected to finish annealing to obtain thin steel plates.
A surface parallel to the rolling surface of the obtained thin steel plate was mirror-polished and electrolytically etched to extract an extracted replica. This replica was observed with a transmission electron microscope capable of component analysis, and the number of Mg-based oxides having a maximum diameter of 0.5 to 10 μm was counted. The ridging height of this thin steel plate was also measured. These measurement results are also shown in Table 2.
[0026]
For steels A to J to which Mg is added in an amount of 0.0005% or more, when the molten steel superheat degree during casting is 50 ° C. or less, the maximum diameter of the finish annealed plate is 0.5 to 10 μm. The density is 3 pieces / mm 2 or more, and excellent ridging resistance is obtained. Further, when the hot-rolled steel sheet is scraped off at a high temperature of 650 ° C. or higher or the hot-rolled steel strip is annealed at a temperature range of 800 to 1100 ° C. for 10 minutes or less, the ridging resistance is further improved.
[0027]
For steels A to J to which Mg is added in an amount of 0.0005% or more, when the superheated degree of molten steel at the time of casting exceeds 50 ° C., the maximum diameter of the finish annealed plate is 0.5 to 10 μm. The density is less than 3 pieces / mm 2 and the ridging resistance is not improved.
On the other hand, for steels K to M with an Mg addition amount of less than 0.0005%, the ridging resistance is hardly improved even when the molten steel superheat degree during casting is lowered to 50 ° C. or less. This is because the density of the Mg-based oxide having a maximum diameter of 0.5 to 10 μm in the finish annealed sheet is less than 3 pieces / mm 2 .
[0028]
[Table 1]
Figure 0004285869
[0029]
[Table 2]
Figure 0004285869
[0030]
【The invention's effect】
As explained above, according to the present invention, it has become possible to provide a high purity Cr-containing thin steel sheet having excellent ridging resistance.
[Brief description of the drawings]
FIG. 1 shows a result of measuring ridging height by casting a high purity Cr-containing steel containing Mg: 0.0028% while changing the degree of superheating, hot rolling, cold rolling and finish annealing to form a thin steel plate. It is.

Claims (4)

質量%で、
C :0.015%以下、
Cr:3〜30%、
Ti:8×(C+N)〜0.4%、
N :0.02%以下、
Mg:0.0005〜0.005%
を含有し、残部がFeおよび不可避的不純物からなる鋼を、溶鋼過熱度を50℃以下として鋳造し、熱間圧延し、前記熱間圧延終了後の鋼板を650℃以上で捲き取るか、あるいは前記熱間圧延後の鋼帯を800〜1100℃の温度範囲で10分間以下保持した後、冷間圧延さらに仕上げ焼鈍を行い、前記仕上げ焼鈍後に、最大径が0.5〜10μmの範囲のMg系酸化物を1mm 当たり3個以上含有することを特徴とするCr含有薄鋼板の製造方法。
% By mass
C: 0.015% or less,
Cr: 3-30%
Ti: 8 × (C + N) to 0.4%,
N: 0.02% or less,
Mg: 0.0005 to 0.005%
Steel, the balance being Fe and inevitable impurities, cast at a molten steel superheat degree of 50 ° C. or less, hot-rolled , and scraping the steel plate after the hot rolling at 650 ° C. or higher, or After holding the steel strip after the hot rolling at a temperature range of 800 to 1100 ° C. for 10 minutes or less, cold rolling and finish annealing are performed, and after the finish annealing, Mg having a maximum diameter of 0.5 to 10 μm. 1mm 2 of system oxide The manufacturing method of the Cr containing thin steel plate characterized by containing 3 or more per.
鋼中に、さらに質量%で、
Mo:2.0%以下、
Ni:2.0%以下、
Cu:2.0%以下
の一種または二種以上を含有することを特徴とする請求項1に記載のCr含有薄鋼板の製造方法。
In steel, further mass%,
Mo: 2.0% or less,
Ni: 2.0% or less,
The method for producing a Cr-containing thin steel sheet according to claim 1, comprising Cu: 2.0% or less of one kind or two or more kinds.
鋼中に、さらに質量%で、
Nb:0.5%以下、
V :0.5%以下、
Zr:0.5%以下
の一種または二種以上を含有することを特徴とする請求項1または2に記載のCr含有薄鋼板の製造方法。
In steel, further mass%,
Nb: 0.5% or less,
V: 0.5% or less,
The method for producing a Cr-containing thin steel sheet according to claim 1 or 2, comprising one or more of Zr: 0.5% or less.
鋼中に、さらに質量%で、
B :0.005%以下
を含有することを特徴とする請求項1〜3のいずれか1項に記載のCr含有薄鋼板の製造方法。
In steel, further mass%,
B: 0.005% or less is contained, The manufacturing method of the Cr containing thin steel plate of any one of Claims 1-3 characterized by the above-mentioned.
JP2000005031A 2000-01-13 2000-01-13 Method for producing Cr-containing thin steel sheet Expired - Lifetime JP4285869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000005031A JP4285869B2 (en) 2000-01-13 2000-01-13 Method for producing Cr-containing thin steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000005031A JP4285869B2 (en) 2000-01-13 2000-01-13 Method for producing Cr-containing thin steel sheet

Publications (2)

Publication Number Publication Date
JP2001192782A JP2001192782A (en) 2001-07-17
JP4285869B2 true JP4285869B2 (en) 2009-06-24

Family

ID=18533723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000005031A Expired - Lifetime JP4285869B2 (en) 2000-01-13 2000-01-13 Method for producing Cr-containing thin steel sheet

Country Status (1)

Country Link
JP (1) JP4285869B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3778962A4 (en) * 2018-03-30 2021-12-22 NIPPON STEEL Stainless Steel Corporation Ferritic stainless steel with excellent ridging resistance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100357471C (en) * 2002-03-27 2007-12-26 新日本制铁株式会社 Cast piece and sheet of ferritic stainless steel, and method for production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3778962A4 (en) * 2018-03-30 2021-12-22 NIPPON STEEL Stainless Steel Corporation Ferritic stainless steel with excellent ridging resistance

Also Published As

Publication number Publication date
JP2001192782A (en) 2001-07-17

Similar Documents

Publication Publication Date Title
KR100637790B1 (en) Method for continuous casting of highly ductile ferritic stainless steel strips between rolls, and resulting thin strips
JP4390961B2 (en) Ferritic stainless steel with excellent surface properties and corrosion resistance
JP6921228B2 (en) Highly formable steel sheet and manufacturing method for manufacturing lightweight structural parts
JP6306353B2 (en) Method for producing slab for ferritic stainless steel cold rolled steel sheet and method for producing ferritic stainless steel cold rolled steel sheet
JP2001262264A (en) Al-Mg-Si SERIES Al ALLOY SHEET EXCELLENT IN TOUGHNESS AND BENDABILITY
KR20220078525A (en) aluminum alloy
JP4285869B2 (en) Method for producing Cr-containing thin steel sheet
JP3288626B2 (en) High workability ferritic stainless steel sheet excellent in ridging characteristics and method for producing the same
JP2008013812A (en) High toughness and high tensile strength thick steel plate and its production method
JP2001271143A (en) Ferritic stainless steel excellent in ridging resistance and its production method
JP4271826B2 (en) Steel with a fine solidification structure
JP3941363B2 (en) Ferritic stainless cold-rolled steel sheet excellent in ductility, workability and ridging resistance, and method for producing the same
WO2022145068A1 (en) Steel material
JP2623606B2 (en) Manufacturing method of ferritic stainless steel
JP2002194505A (en) Ferrite stainless steel and its production method of the same
JP3779784B2 (en) Method for producing ferritic stainless steel with excellent surface properties
JPH01100248A (en) Two-phase stainless steel and its production
JPH07166285A (en) Hardened al alloy sheet by baking and production thereof
JP3488173B2 (en) Cr-containing thin steel sheet excellent in ridging resistance and method for producing the same
JP2007270168A (en) Method for producing chromium-containing ferritic steel sheet
JPS6320412A (en) Hot working method for austenitic stainless steel containing mo and n
JP3458831B2 (en) Method for producing Cr-based stainless steel
JP2002283024A (en) Method for producing steel material for structure excellent in toughness at heat affected part of welding
JP4454117B2 (en) Method for producing Cr-containing thin steel sheet
JP4357080B2 (en) Solidified grain refined steel and solidified grain refined austenitic stainless steel and their welded joints

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090129

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4285869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term