JPH01100248A - Two-phase stainless steel and its production - Google Patents

Two-phase stainless steel and its production

Info

Publication number
JPH01100248A
JPH01100248A JP25610787A JP25610787A JPH01100248A JP H01100248 A JPH01100248 A JP H01100248A JP 25610787 A JP25610787 A JP 25610787A JP 25610787 A JP25610787 A JP 25610787A JP H01100248 A JPH01100248 A JP H01100248A
Authority
JP
Japan
Prior art keywords
less
rolling
stainless steel
reduction
per pass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25610787A
Other languages
Japanese (ja)
Inventor
Shinji Tsuge
信二 柘植
Masao Koike
小池 正夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP25610787A priority Critical patent/JPH01100248A/en
Publication of JPH01100248A publication Critical patent/JPH01100248A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To manufacture a two-phase stainless steel minimal in the occurrence of rolling defects by incorporating specific percentages of C, Si, Mn, P, S, Cr, Ni, Mo, W, Ti, B, Cu, Al, Ca, N, and O to Fe. CONSTITUTION:A two-phase stainless steel which has a composition consisting of, by weight, <=0.03% C, 0.1-1.0% Si, 0.3-2.0% Mn, <=0.035% P, <=0.0020% S, 23.5-26.5% Cr, 6.0-8.0% Ni, 2.5-3.5% Mo, 0.1-1.0% W, 0.005-0.10% Ti, 0.0005-0.0100% B, 0.2-2.0% Cu, 0.01-0.05% Al, 0.0005-0.0100% Ca, 0.08-0.2% N, <=0.0060% O, and the balance essentially Fe and further containing, if necessary, <=0.5% V and/or <=0.5% Nb is prepared. By this method, a sound high-Cr two-phase stainless steel strip practically free from rolling defects can be stably manufactured by means of hot coil rolling with high efficiency.

Description

【発明の詳細な説明】 く産業上の利用分野〉 この発明は、連続鋳造スラブからのホットコイル圧延に
おいても圧延疵(表面疵や耳割れ)を発生することが少
ない25Cr系二相ステンレス鋼、及び該圧延疵の少な
い25Cr系二相ステンレス鋼材料の製造方法に関する
ものである。
[Detailed Description of the Invention] Industrial Application Fields The present invention provides a 25Cr duplex stainless steel that rarely generates rolling defects (surface defects and edge cracks) even during hot coil rolling from continuously cast slabs. The present invention also relates to a method for producing a 25Cr duplex stainless steel material with fewer rolling defects.

〈従来技術とその問題点〉 Crを多量に含有する二相ステンレス鋼は、塩化物るよ
る孔食、隙間腐食並びに応力腐食等に対して強い抵抗性
を備えているため、海水を用いる熱交換器を始め、化学
製造機器や油井用配管材料等として広い用途を誇ってい
るが、一方で、この二相ステンレス鋼には一般に高温変
形能が劣ると言う欠点があり、熱間加工を施すと割れが
入り易いことから、健全な熱間加工製品を得ることが非
常に難しい材料でもあった。
<Prior art and its problems> Duplex stainless steel containing a large amount of Cr has strong resistance to pitting corrosion, crevice corrosion, stress corrosion, etc. caused by chlorides, so it cannot be used for heat exchange using seawater. Duplex stainless steel has a wide range of uses, including containers, chemical manufacturing equipment, and oil well piping materials. However, on the other hand, duplex stainless steel has the disadvantage of generally inferior high-temperature deformability, and when hot-worked, it It was also a material that was extremely difficult to obtain into sound hot-processed products because it was prone to cracking.

そこで、従来、この二相ステンレス鋼の高温変形能を改
善すべ(次に示すような手段が提案され、相応の効果が
得られるとの報告がなされている。
Therefore, the following measures have been proposed to improve the high-temperature deformability of this duplex stainless steel, and it has been reported that a corresponding effect can be obtained.

(al  γ相の比率を15〜55%に規制して十分に
多いα相を確保できるように成分設計すると共に、鋼塊
成分をバランスさせることによって高温でのγ相とα相
との強度を近付け、かつBの添加により結晶粒界を強化
する方法(特公昭59−14099号公報)。
(al) In addition to regulating the ratio of γ phase to 15% to 55% and designing the composition to ensure a sufficient amount of α phase, the strength of the γ phase and α phase at high temperatures can be improved by balancing the steel ingot components. A method of strengthening grain boundaries by increasing the grain boundaries and adding B (Japanese Patent Publication No. 59-14099).

(bl  鋼中のS及び0を低減すると共に、必要に応
じて希土類元素を添加して鋼溶製時の脱0及び脱Sを強
化する方法(特公昭57−15660号公報)。
(bl) A method of reducing S and 0 in steel and adding rare earth elements as necessary to strengthen the removal of 0 and S during steel melting (Japanese Patent Publication No. 15660/1983).

(CI  A1とCaとを複合添加して介在物の形態を
変える方法(特公昭54−24364号公報)。
(A method of changing the form of inclusions by adding CI A1 and Ca in combination (Japanese Patent Publication No. 54-24364).

しかしながら、これらの方法をそのまま適用したとして
も、連続鋳造スラブを素材としてホットコイル圧延を行
った場合には依然として表面疵や耳割れ(以降、圧延疵
と総称する)の発生を免れ得す、圧延疵発生の認められ
ない健全な高Cr含を二相ステンレス鋼熱延鋼帯を能率
良(製造する技術は未だ確立されていないと言うのが現
状であった。
However, even if these methods are applied as they are, when hot coil rolling is performed using continuously cast slabs as raw materials, surface flaws and edge cracks (hereinafter collectively referred to as rolling flaws) can still be avoided. The current situation is that the technology for efficiently manufacturing a healthy high-Cr content hot-rolled steel strip with no defects has yet been established.

即ち、前述したホットコイル圧延は、約200關厚程度
のスラブに、例えば第1図に示す如く、僅か12〜14
バス程度の圧下を加えることで最小約31n厚程度の鋼
帯とする厳しい加工を加えるものである。そのため、連
続鋳造スラブのような鋳込み組織のままの高Cr含有二
相ステンレス鋼素材では、前記提案の手段を講じたとし
てもホットコイル圧延に耐えるだけの十分な変形能を付
与するに至らず、圧延疵の発生が余儀無くされたのであ
る。
That is, the above-mentioned hot coil rolling can produce a slab with a thickness of about 200 mm, for example, as shown in FIG.
By applying a reduction comparable to that of a bath, severe processing is applied to produce a steel strip with a minimum thickness of about 31 nm. Therefore, even with the above-mentioned proposed measures, it is not possible to impart sufficient deformability to withstand hot coil rolling in a high Cr-containing duplex stainless steel material with a cast structure, such as a continuously cast slab. Rolling defects were unavoidable.

従って、これまでは25Cr系等のような高Cr含有二
相ステンレス鋼熱延鋼帯は、鋼塊法による圧延素材を使
用しないことには製造することができなかった。
Therefore, until now, hot-rolled steel strips of high Cr-containing duplex stainless steels such as 25Cr-based steel strips have not been able to be manufactured without using rolled materials by the steel ingot method.

ところが、鋼塊法による圧延素材を用いる場合には、ホ
ットコイル圧延を行う前の分塊圧延が必須である。その
上、厄介なことには、分塊圧延後のスラブはシグマ相が
析出し易く、−旦シグマ相が析出すると靭性の低下を招
いてしまってスラブ手入れ時に割れを発生し、大幅な歩
留り低下を引き起こすとの問題があった。そして、この
シグマ相の発生を回避するためには、分塊圧延後直ちに
水冷するか、これに続いて更に溶体化処理を施した後に
スラブ手入れすると言う能率の悪い工程が必要であった
However, when using a material rolled by the steel ingot method, it is essential to perform blooming before hot coil rolling. Moreover, the problem is that the sigma phase is likely to precipitate in the slab after blooming, and once the sigma phase precipitates, the toughness decreases and cracks occur during slab maintenance, resulting in a significant decrease in yield. There was a problem with causing this. In order to avoid the occurrence of this sigma phase, it is necessary to perform water cooling immediately after blooming, or to carry out further solution treatment followed by slab cleaning, which is an inefficient process.

〈問題点を解決するための手段〉 このようなことから、本発明者等は、鋳込み組織のまま
の連続鋳造スラブ形態であっても優れた高温変形能を示
す圧延疵発生の少ない二相ステンレス鋼を見出し、かつ
、作業能率や製造コスト等の点からも格段に有利である
ところの、連続鋳造スラブのホットコイル圧延によって
も圧延疵発生の無い健全な二相ステンレス鋼熱延鋼帯を
安定製造し得る手段の確立を目指して様々な観点からの
研究を開始したのである。
<Means for Solving the Problems> Based on the above, the present inventors have developed a duplex stainless steel that exhibits excellent high-temperature deformability and less occurrence of rolling defects even in the form of a continuously cast slab with a cast structure. We have found a stable duplex stainless steel hot-rolled steel strip that is stable and free from rolling defects even through hot coil rolling of continuously cast slabs, which is extremely advantageous in terms of work efficiency and manufacturing costs. They began research from various perspectives with the aim of establishing a means of manufacturing.

そして、熱間引張り試験、熱間圧延試験、実機試作等を
繰り返したところ、次の^)〜C)に示すような知見が
得られたのである。
After repeating hot tensile tests, hot rolling tests, and actual prototype production, the following findings were obtained.

A)高Cr含有二相ステンレス鋼に微量のCa及びBを
複合添加した上で成分の微調整を行った場合には、Ca
成分による高温域から低温域までの変形能向上作用と、
B成分による中温域での変形能改善作用とが相俟って、
格別な耐食性能の劣化を伴うことなく鋼の熱間変形能が
顕著に高くなること。
A) When a trace amount of Ca and B is added in combination to high Cr-containing duplex stainless steel and the components are finely adjusted, Ca
The effect of improving deformability from high temperature range to low temperature range due to the ingredients,
Coupled with the deformability improving effect in the medium temperature range due to component B,
A remarkable increase in the hot deformability of steel without any significant deterioration in corrosion resistance.

第2図は、C: 0.015%(以降、成分割合を表わ
す%は重量%とする)、 Si : 0.40%、 M
n : 0.89%。
Figure 2 shows C: 0.015% (hereinafter, % representing component proportions is expressed as weight %), Si: 0.40%, M
n: 0.89%.

P : 0.023%、  S : 0.0010%、
 Cr : 25.2%、Niニア、0%、 Mo :
 25.0%、W:0.29%、 Cu : 0.50
%。
P: 0.023%, S: 0.0010%,
Cr: 25.2%, Ni near, 0%, Mo:
25.0%, W: 0.29%, Cu: 0.50
%.

Al1 : 0.013%、N:0.14%及びO: 
0.003%を含むと共に残部が実質的にFeから成る
鋼、及びこれに0.0029%のB、 0.0034%
のCa、又は0.0030%のBと0.0036%のC
aとをそれぞれ添加した鋼を小型真空溶解炉で溶解して
得た17kg偏平鋼塊(48D厚X160m幅×195
鶴長)を機械加工し、10鶴φ径x130n長の熱間引
張り(グリ−プル)試験片としたものの熱間引張り試験
結果を示すものである。なお、熱間引張り試験は、Ar
雰囲気中で先ず1200℃に加熱し、試験片表面に溶着
しだ熱電対にて温度制御しながら冷却中に歪速度:約1
sec−’で破断させる方法で行い、破断後の断面絞り
率で熱間変形能を評価した。この第2図に示される結果
からも、微量のB及びCaの複合添加によって熱間での
延性が著しく向上することが確認できる。
Al1: 0.013%, N: 0.14% and O:
A steel containing 0.003% and the balance substantially consisting of Fe, and 0.0029% B and 0.0034% B.
of Ca, or 0.0030% B and 0.0036% C
A 17 kg flat steel ingot (48D thickness x 160m width x 195mm
This figure shows the hot tensile test results of a hot tensile (Greeple) test piece of 10 cranes φ diameter x 130 n length obtained by machining the crane length. Note that the hot tensile test was performed using Ar
First, the test piece was heated to 1200°C in an atmosphere, and the temperature was controlled by a thermocouple that was welded to the surface of the test piece. During cooling, the strain rate was approximately 1.
The hot deformability was evaluated by the cross-sectional reduction ratio after the fracture. The results shown in FIG. 2 also confirm that the hot ductility is significantly improved by the combined addition of trace amounts of B and Ca.

B)更に、前記Ca及びBを添加した二相ステンレス鋼
に微量のTiをも複合添加すると、Ti成分による凝固
組織を微細化して熱間加工性、靭性及び低温域での加工
性を改善する作用もが絡み合って、苛酷な熱間圧延を施
したとしても圧延疵を殆んど発生しない程に熱間圧延性
が向上すること。
B) Furthermore, when a small amount of Ti is added in combination to the duplex stainless steel to which Ca and B have been added, the solidified structure due to the Ti component is refined, improving hot workability, toughness, and workability in a low temperature range. The functions are intertwined to improve hot rollability to such an extent that almost no rolling defects occur even when severe hot rolling is performed.

第3図は、第1図の結果が得られたtlm(B及びCa
を添加したものと、BもCaも添加しないもの)に各挿
置のTiを添加して溶製した偏平鋼塊から46寵厚X1
00n幅X 130 vrx長の熱間圧延試験片を採取
した後、これを電気炉にて1250℃に1時間均熱して
炉出し、その後試験片の表面温度で1150℃で圧延を
開始し9パス(4611→40n+−3:3+m−=2
7m →22mm →17m+* →13mm−10u
+ → 8  *m → 61M)にて611m厚に仕
上げた際の熱間加工性を示したものである。なお、仕上
げバスは850℃で実施し、熱間加工性は試験後の“耳
割れの深さ”で評価した。この第3図に示される結果か
らも、Ti+B及びCaの複合添加によって熱間加工性
が著しく向上することが分かる。
Figure 3 shows the tlm (B and Ca) where the results in Figure 1 were obtained.
46 mm thickness
After taking a hot-rolled test piece with a width of 00n and a length of 130vrx, it was soaked in an electric furnace at 1250°C for 1 hour and taken out of the furnace, and then rolling was started at 1150°C with the surface temperature of the test piece for 9 passes. (4611→40n+-3:3+m-=2
7m →22mm →17m+* →13mm-10u
+ → 8*m → 61M) to show the hot workability when finished to a thickness of 611 m. Note that the finishing bath was carried out at 850°C, and hot workability was evaluated by the "depth of edge cracking" after the test. The results shown in FIG. 3 also show that the combined addition of Ti+B and Ca significantly improves hot workability.

C)ホットコイル圧延工程での比圧延材の挙動を仔細に
検討することによって、粗圧延ロール群での強圧下・は
主に表面疵を誘発し、仕上圧延ロール群での強圧下は主
に耳割れを誘発するものであることが明らかとなったが
、圧延素材として上記B)項に示したように成分調整し
た二相ステンレス鋼を用いると共に、粗圧延ロール群及
び仕上圧延ロール群での圧下量並びに圧下率をそれぞれ
特定の範囲に調整し、かつ仕上圧延を温度降下が進まな
い特定の温度領域で終了すれば、圧延素材として鋳込み
組織のままの連続鋳造スラブを使用したとしても、表面
疵発生の殆んどない健全な二相ステンレス鋼熱延銅帯が
安定して得られること。
C) By carefully examining the behavior of the specific rolled material in the hot coil rolling process, we found that the strong reduction in the rough rolling roll group mainly induces surface defects, and the strong reduction in the finishing roll group mainly causes surface defects. It has become clear that this induces edge cracking, but in addition to using duplex stainless steel whose composition has been adjusted as shown in section B) above as the rolling material, the rough rolling roll group and finishing rolling roll group If the rolling reduction amount and rolling reduction rate are adjusted to specific ranges, and finish rolling is finished in a specific temperature range where the temperature does not decrease, even if a continuously cast slab with the cast structure is used as the rolled material, the surface To stably obtain a sound duplex stainless steel hot-rolled copper strip with almost no occurrence of defects.

この発明は、上記知見に基づいてなされたものであり、 [二相ステンレス鋼を、 C: 0.03%以下、  Si : 0.1〜1.0
%。
This invention has been made based on the above findings, [duplex stainless steel, C: 0.03% or less, Si: 0.1 to 1.0]
%.

Mn : 0.3〜2.0%、  P:0.035%以
下。
Mn: 0.3 to 2.0%, P: 0.035% or less.

S : 0.0020%以下、  Cr : 23.5
〜26.5%。
S: 0.0020% or less, Cr: 23.5
~26.5%.

Ni : 6.0〜8.0%、   Mo : 2.5
〜3.5%。
Ni: 6.0-8.0%, Mo: 2.5
~3.5%.

W:Q、1〜1.0%、   Ti : 0.005〜
0.10%。
W: Q, 1-1.0%, Ti: 0.005-
0.10%.

B : 0.0005〜0.0100%、   Cu 
: 0.2〜2.0%。
B: 0.0005-0.0100%, Cu
: 0.2-2.0%.

八Il :  0.01〜0.05%、      C
a  :  0.0005〜0.0100%。
Eight Il: 0.01-0.05%, C
a: 0.0005-0.0100%.

N : 0.08〜0.2%、   O: 0.006
0%以下を含有すると共に、必要により更に V:Q、5%以下。
N: 0.08-0.2%, O: 0.006
Contains 0% or less, and further contains V:Q of 5% or less if necessary.

Nb : 0.5%以下 のうちの1種以上をも含み、残部が実質的にFeより成
る成分組成に構成することにより、圧延底発生を極力低
減したて点」 に特徴を有し、更には、 rc:0.03%以下、  Si : 0.1〜1.0
%。
Nb: 0.5% or less, by configuring the composition to be composed of one or more of 0.5% or less, and the remainder being substantially Fe, the rolling bottom generation is reduced as much as possible. rc: 0.03% or less, Si: 0.1-1.0
%.

Mn : 0.3〜2.0%、  P : 0.035
%以下。
Mn: 0.3-2.0%, P: 0.035
%below.

S : 0.0020%以下、  Cr : 23.5
〜26.5%。
S: 0.0020% or less, Cr: 23.5
~26.5%.

Ni : 6.0〜8.0%、  Mo : 2.5〜
3.5%。
Ni: 6.0~8.0%, Mo: 2.5~
3.5%.

W:0.1〜1.0%、  Ti : 0.005〜0
.10%。
W: 0.1-1.0%, Ti: 0.005-0
.. 10%.

B : 0.0005〜0.0100%、  Cu :
 0.2〜2.0%。
B: 0.0005-0.0100%, Cu:
0.2-2.0%.

八1 7 0.01〜0.05 %、    Ca  
:  0.0005〜0.0100%。
81 7 0.01-0.05%, Ca
: 0.0005-0.0100%.

N : 0.08〜0.2%、   O: 0.006
0%以下を含有すると共に、必要により更に V:Q、5%以下。
N: 0.08-0.2%, O: 0.006
Contains 0% or less, and further contains V:Q of 5% or less if necessary.

Nb : 0.5%以下 のうちの1種以上をも含み、残部が実質的にFeより成
る連続鋳造スラブを1200〜1330℃に均熱した後
、粗圧延ロール群での圧延を1パス当りの圧下量:60
+n以下。
After soaking a continuous casting slab containing one or more of Nb: 0.5% or less and the remainder substantially consisting of Fe at 1200 to 1330°C, rolling with a group of rough rolling rolls per pass is performed. Reduction amount: 60
+n or less.

1パス当りの圧下率;40%以下 の条件で行い、かつ仕上圧延ロール群での圧延を1パス
当りの圧下量:121m以下。
Rolling rate per pass: 40% or less, and rolling with the finishing roll group: rolling amount per pass: 121 m or less.

1パス当りの圧下率=35%以下。Reduction rate per pass = 35% or less.

総圧下率:90%以下 の条件で実施すると共に、850℃以上で圧延を仕上げ
ることによって、圧延底の極めて少ない二相ステンレス
鋼を安定して製造し得るようにした点」 をも特徴とするものである。
It is also characterized by the fact that it is possible to stably produce duplex stainless steel with extremely few rolling bottoms by carrying out the rolling at a total rolling reduction of 90% or less and finishing the rolling at a temperature of 850°C or higher. It is something.

ここで、二相ステンレス鋼の成分組成並びにホットコイ
ル圧延条件を前記の如くに限定した理由は次の通りであ
る。
Here, the reason why the composition of the duplex stainless steel and the hot coil rolling conditions are limited as described above is as follows.

(A)  成分組成 (al  C C含有量が0.03%を超えると炭化物が粒界析出する
ようになり、耐食性及び靭性が劣化し易くなることから
、C含有量は0.03%以下と定めた。
(A) Component composition (al C If the C content exceeds 0.03%, carbides will precipitate at grain boundaries, and corrosion resistance and toughness will tend to deteriorate. Therefore, the C content should be 0.03% or less. Established.

fb)   5t Siは鋼の脱酸のために不可欠な成分であり、十分な脱
酸効果を確保するには0.1%以上含有させる必要があ
るが、1.0%を超えて含有させると靭性の劣化を招く
ようになることから、S+含有量は0.1〜1.0%と
定めた。
fb) 5t Si is an essential component for deoxidizing steel, and to ensure a sufficient deoxidizing effect, it must be contained at 0.1% or more, but if it is contained in excess of 1.0%, The S+ content was set at 0.1 to 1.0% since this would lead to deterioration of toughness.

(C)   Mn Mn成分もSiと同様に脱酸作用を有しているが、その
含有量が0.3%未満でぼ該作用による所望の効果が得
られない。一方、Mn含有量2.0%までは鋼に格別な
悪影響が及ぼされることがないため、Mn含有量は0.
3〜2.0%と定めた。
(C) Mn Although the Mn component also has a deoxidizing effect like Si, if its content is less than 0.3%, the desired effect due to this effect cannot be obtained. On the other hand, Mn content up to 2.0% does not have any particular adverse effect on steel, so Mn content is 0.0%.
It was set at 3 to 2.0%.

+d)   P Pは鋼の熱間加工性並びに耐食性を劣化させる不純物元
素であるが、0.035%までは許容される、二とから
、P含有量は0.035%以下と定めた。
+d) P P is an impurity element that deteriorates the hot workability and corrosion resistance of steel, but up to 0.035% is allowed. Based on the above, the P content was determined to be 0.035% or less.

(el  S Sは鋼の熱間加工性を著しく害する不純物元素であり、
0.0020%を超える含有量を許すと所望の熱間圧延
性を確保することができなくなる。従ってS含有量は0
.0020%以下に規制する必要があるが、できれば0
.0010%以下に制限するのが好ましい。
(el SS S is an impurity element that significantly impairs the hot workability of steel,
If the content exceeds 0.0020%, desired hot rolling properties cannot be ensured. Therefore, the S content is 0
.. It is necessary to regulate it to 0.020% or less, but if possible, 0.
.. It is preferable to limit it to 0.010% or less.

(f)  Cr Crは鋼の一般耐食性を向上させる重要な成分であり、
二相ステンレス鋼に求められる所望の耐食、性を確保す
るためには23.5%以上を含有させることが必要であ
る。一方、26.5%を超えてCrを含有させると加工
性に悪影響が出るようになることから、Cr含有量は2
3.5〜26.5%と定めた。
(f) Cr Cr is an important component that improves the general corrosion resistance of steel,
In order to ensure the desired corrosion resistance and properties required for duplex stainless steel, it is necessary to contain 23.5% or more. On the other hand, if Cr content exceeds 26.5%, workability will be adversely affected, so the Cr content should be 2.
It was set at 3.5% to 26.5%.

(g)  Ni Ni成分は鋼の機械的性質、加工性及び一般耐食性を向
上させると共に、鋼の組織をオーステナイト−フェライ
トの二相組織とするために不可欠なものであるが、その
含有量が6.0%未満では上記効果が得られず、一方、
8.0%を超えて含有させてもコストに見合う特性改善
効果が得られないことから、Ni含有量は6.0〜8.
0%と定めた。
(g) Ni The Ni component is essential for improving the mechanical properties, workability, and general corrosion resistance of steel, and for making the steel structure into an austenite-ferrite two-phase structure. If it is less than .0%, the above effects cannot be obtained;
Even if the Ni content exceeds 8.0%, the property improvement effect commensurate with the cost cannot be obtained, so the Ni content should be 6.0 to 8.0%.
It was set as 0%.

(h)  M。(h) M.

Mo成分には鋼の局部耐食性を著しく向上させる作用が
あるので、耐食性合金ではCrと共に添加して耐食性の
更なる改善が図られるが、その含有量が2.5%未満で
あると前記作用による所望の効果が得られず、一方、3
.5%を超えて含有させるとコスト上昇に見合うだけの
効果が確保できないばかりか、加工性に悪い影響を及ぼ
すことが懸念されることから、MO含有量は2.5〜3
.5%と定めた。
Since the Mo component has the effect of significantly improving the local corrosion resistance of steel, it is added together with Cr in corrosion-resistant alloys to further improve the corrosion resistance, but if the Mo content is less than 2.5%, the above effect will occur. On the other hand, 3
.. If the MO content exceeds 5%, not only will it not be possible to ensure an effect commensurate with the cost increase, but there is also concern that it will have a negative impact on processability, so the MO content should be 2.5 to 3%.
.. It was set at 5%.

(1)   W W成分にも鋼の局部耐食性を改善する作用があるが、そ
の含有量が0.1%未満では前記作用による所望の効果
が得られず、一方、1.0%を超えて含有量させても更
なる耐食性向上効果を得ることが困難であることから、
W含有量は0.1〜1.0%と定めた。
(1) W The W component also has the effect of improving the local corrosion resistance of steel, but if its content is less than 0.1%, the desired effect due to the above effect cannot be obtained; on the other hand, if it exceeds 1.0%, Since it is difficult to obtain further corrosion resistance improvement effect even if the content is increased,
The W content was determined to be 0.1 to 1.0%.

(J)  Ti N含有鋼にTiを添加すると溶鋼中でTiNを析出させ
て“浸漬ノズル詰まり”や“地底”を引き起こす恐れが
あるとして、通常はN入りの鋼へのTi添加は行われる
ことがなかった。しかしながら、本発明に係る鋼では掻
く微量のTiを添加することにより、“地底”や“浸漬
ノズル詰まり”を生じることもなく、結晶粒を微細化し
て熱間加工性を向上させ、かつ耐食性を改善する作用を
発揮することとなる。しかし、Ti含有量が0.005
%未満では前記作用による所望の効果が得られず、一方
、0.10%を超えて含有させると、Nを多量に含有す
る本発明鋼では上述のように溶鋼中でTiNを析出して
“地底”を発生するようになることから、Ti含有量は
o、oos〜0.10%と定めた。
(J) Ti Adding Ti to N-containing steel may cause TiN to precipitate in the molten steel and cause "submerged nozzle clogging" or "underground", so Ti is normally not added to N-containing steel. There was no. However, by adding a small amount of Ti to the steel according to the present invention, it does not cause "underground" or "submerged nozzle clogging", it refines the grains, improves hot workability, and improves corrosion resistance. This results in an improving effect. However, the Ti content is 0.005
If the content exceeds 0.10%, TiN will precipitate in the molten steel as described above, and if the content exceeds 0.10%, TiN will precipitate in the molten steel. The Ti content was determined to be 0.00% to 0.10%, since this would result in the formation of "underground".

(k)   B B成分は鋼の熱間加工性を改善するためにCa及びTi
と共に添加されるが、その含有量がo、ooos%未満
では熱間加工性改善効果が十分でなく、一方、0.01
00%を超えて含有させると溶融脆化を促進して逆に熱
間加工性を害するようになることから、S含有量は0.
0005〜0.0100%と定めた。
(k) B The B component contains Ca and Ti to improve the hot workability of steel.
However, if the content is less than o, oos%, the effect of improving hot workability is insufficient;
If S content exceeds 0.00%, melt embrittlement will be promoted and hot workability will be adversely affected.
0005 to 0.0100%.

(1)  Cu Cu成分には鋼の耐食性を向上する作用があるが、その
含有量が0.2%未満では上記作用による所望の効果が
得られず、一方、2.0%を超えて含有させても更なる
耐食性改善効果が得られないことから、Cu含有量は0
.2〜2.0%と定めた。
(1) Cu Although the Cu component has the effect of improving the corrosion resistance of steel, if the content is less than 0.2%, the desired effect due to the above effect cannot be obtained; on the other hand, if the content exceeds 2.0% Since no further corrosion resistance improvement effect can be obtained even if the Cu content is 0.
.. It was set at 2 to 2.0%.

(m)  Al Alも脱酸成分として不可欠なものであり、十分な脱酸
効果を確保するためには0.01%以上含有させる必要
があるが、0.05%を超えて含有させると靭性劣化を
招くようになることから、AN含有量は0.01〜0.
05%と定めた。
(m) Al Al is also essential as a deoxidizing component, and in order to ensure a sufficient deoxidizing effect, it must be contained at 0.01% or more, but if it is contained in excess of 0.05%, the toughness The AN content should be 0.01 to 0.0.
It was set at 0.5%.

(n)  Ca Ca成分には鋼中のSを硫化物として固定して熱間加工
性を改善する作用があり、B及びTiと共に添加するこ
とで熱間加工性向上効果が一段と顕著化するものである
が、その含有量が0.0005%未満では前記作用によ
る所望の効果が得られず、一方、o、oioo%を超え
て含有量させると、逆に熱間加工性及び耐食性を劣化す
ることとなるので、Ca含有量は0.0005〜0.0
100%と定めた。
(n) Ca Ca component has the effect of fixing S in steel as sulfide and improving hot workability, and when added together with B and Ti, the effect of improving hot workability becomes even more pronounced. However, if the content is less than 0.0005%, the desired effect due to the above action cannot be obtained, while if the content exceeds o, oiooo%, hot workability and corrosion resistance will deteriorate. Therefore, the Ca content is 0.0005 to 0.0
It was set as 100%.

(0)N N成分には母材のみならず溶接部の耐孔食性及び耐隙間
腐食性を向上させる作用があるが、その含有量が0.0
8%未満では上記作用に所望の効果が得られず、一方、
0.2%を超えて含有させると窒化物が析出し易くなっ
て耐食性及び靭性に悪影響を及ぼすことから、N含有量
は0.08〜0.2%と定めた。
(0)N The N component has the effect of improving the pitting corrosion resistance and crevice corrosion resistance not only of the base metal but also of the welded part, but its content is 0.0
If it is less than 8%, the desired effect cannot be obtained in the above action;
If the N content exceeds 0.2%, nitrides tend to precipitate, which adversely affects corrosion resistance and toughness, so the N content was set at 0.08 to 0.2%.

(p)0 0は鋼の熱間加工性及び靭性に悪影響を及ぼす不純物元
素であるが、その含有量が0.006%未満であれば上
記弊害はそれほど顕著化しないことから、0含有量を0
.006%未満と限定した。
(p) 0 0 is an impurity element that adversely affects the hot workability and toughness of steel, but if its content is less than 0.006%, the above-mentioned adverse effects will not be so pronounced. 0
.. It was limited to less than 0.006%.

(ql  V、及びNb これらの成分は何れも結晶粒を微細化して熱間加工性を
向上させる作用と耐食性を改善する作用とを有している
ので、必要に応じて何れか1種又は両者複合で添加され
るものであるが、何れの場合も0.5%を超えて含有さ
せると靭性に悪影響を及ぼすようになることから、■含
有量及びNb含有量とも0.5%以下と定めた。
(ql V, and Nb) These components both have the effect of improving hot workability by refining crystal grains and improving corrosion resistance, so either one or both of them can be used as necessary. Although it is added as a composite, in any case, if the content exceeds 0.5%, it will have a negative effect on toughness, so the content and Nb content are both set at 0.5% or less. Ta.

(B)  ホットコイル圧延条件 (a)  加熱温度 圧延に際してのスラブ加熱温度が1200℃未満である
と熱間加工性が悪くなり、一方、1330℃を超えて加
熱すると炉内での“スラブ垂れ”等の問題を引き起こし
て製造能率を低下させることから、該加熱温度は120
0〜1330℃と定めたが、できれば1230〜128
0℃に調整するのが好ましい。
(B) Hot coil rolling conditions (a) Heating temperature If the slab heating temperature during rolling is less than 1200°C, hot workability will deteriorate, while if heated above 1330°C, "slab sag" in the furnace will occur. The heating temperature is set at 120° C. to reduce manufacturing efficiency.
It was set as 0 to 1330℃, but preferably 1230 to 128℃.
It is preferable to adjust the temperature to 0°C.

(b)  粗圧延ロール群での圧延条件i)1バス当り
の圧下量 1バス当り6011よりも大きい圧下を加えると主とし
て表面疵が発生し易くなることから、粗圧延ロール群で
の1バス当りの圧下量を60鶴以下と限定した。
(b) Rolling conditions for the rough rolling roll group i) Reduction amount per bath Since applying a rolling reduction larger than 6011 per bath mainly tends to cause surface defects, the rolling conditions for the rough rolling roll group per bus The reduction amount was limited to 60 cranes or less.

1i)1バス当りの圧下率 ■バス当り40%よりも大きい圧下を加えると、やはり
主として表面疵が発生し易くなることから、粗圧延ロー
ル群での1バス当りの圧下率を40mm以下と限定した
1i) Reduction rate per bath ■ If a reduction greater than 40% per bath is applied, surface defects are likely to occur, so the reduction rate per bath in the rough rolling roll group is limited to 40 mm or less. did.

(C)  仕上圧延ロール群での圧延条件i)  1バ
ス当りの圧下量 仕上圧延ロール群中での被圧延材は、板厚が薄くなって
耳部の温度は950℃以下に低下している。従って、1
バス当り120よりも大きい圧下を加えると耳割れ及び
表面疵が発生し易くなることから、仕上圧延ロール群で
の1バス当りの圧下量を12w1以下と限定した。
(C) Rolling conditions in the finishing roll group i) Reduction amount per bath The material to be rolled in the finishing rolling roll group has become thinner and the temperature at the edge has decreased to 950°C or less. . Therefore, 1
Since applying a rolling reduction greater than 120 per bus tends to cause edge cracks and surface flaws, the rolling reduction per bus in the finishing roll group was limited to 12w1 or less.

1i)1バス当りの圧下率 ■バス当り35%よりも大きい圧下を加えると耳割れが
発生し易くなることから、1バス当りの圧下率を35%
以下と限定した。
1i) Rolling reduction rate per bath ■ If a larger reduction than 35% is applied per bath, edge cracking is likely to occur, so the rolling reduction rate per bath is set to 35%.
Limited to the following.

iii )総圧下率 仕上圧延ロール群での圧延では6〜7バスの圧下が連続
的に加えられ、鋼板の成る部分が仕上圧延ロール群に入
ってから出てくるまでに要する時間は最短で約10秒で
ある。ところが、二相ステンレス鋼の場合にはこの圧延
中にオーステナイト相の回復・再結晶が殆んど進行しな
い厳しい条件となることから、変形能として“仕上圧延
の総圧下率”に匹敵する値がそのまま要求されることと
なる。勿論、本発明では鋼成分や加熱温度等を適正に設
定することにより著しく高い変形能及び加工性を確保す
ることができるが、90%を超える総圧下率の下では耳
割れや表面疵の発生を防止し得ないことから、総圧下率
を90%以下と限定した。
iii) Total Reduction Ratio During rolling with the finishing roll group, 6 to 7 baths of reduction are applied continuously, and the time required for the part of the steel plate to enter the finishing roll group and come out is at least about It is 10 seconds. However, in the case of duplex stainless steel, the conditions are severe in that the recovery and recrystallization of the austenite phase hardly progresses during this rolling, so the deformability has a value comparable to the "total reduction in finish rolling". It will be requested as is. Of course, in the present invention, extremely high deformability and workability can be ensured by appropriately setting the steel composition, heating temperature, etc., but under a total reduction rate of over 90%, edge cracks and surface flaws occur. Since this cannot be prevented, the total rolling reduction rate was limited to 90% or less.

(dl  仕上圧延温度 仕上圧延温度が850℃を下回ると炭窒化物或いは金属
間化合物の析出を促進して靭性を害すると共に、耳割れ
や表面疵が顕著となることから、仕上圧延温度を850
℃以上と限定した。
(dl Finish rolling temperature If the finish rolling temperature is lower than 850℃, the precipitation of carbonitrides or intermetallic compounds will be promoted and the toughness will be impaired, and edge cracks and surface defects will become noticeable. Therefore, the finish rolling temperature should be set to 850℃.
It was limited to temperatures above ℃.

続いて、この発明を実施例により、比較例と対比しなが
ら更に具体的に説明する。
Next, the present invention will be described in more detail using Examples and in comparison with Comparative Examples.

〈実施例〉 まず、常法にて第1表に示す如き成分組成の各種二相ス
テンレス鋼を溶製し、連続鋳造により第2表に示す厚み
のスラブを得た。
<Example> First, various duplex stainless steels having the compositions shown in Table 1 were melted using a conventional method, and slabs having the thickness shown in Table 2 were obtained by continuous casting.

次いで、これらスラブを加熱した後、そのまま或いは一
部については粗圧延を施してから第1図に示したような
ロール配列下でののホントコイル圧延に供し、熱延鋼帯
を製造した。なお、このホットコイル圧延条件は第2表
に示した通りであった。
Next, after heating these slabs, they were subjected to rough rolling as they were, or some of them were subjected to rough rolling, and then subjected to true coil rolling under the roll arrangement shown in FIG. 1 to produce hot rolled steel strips. The hot coil rolling conditions were as shown in Table 2.

このようにして得られた熱延鋼帯について表面疵の状況
を調べると共に、発生した耳割れの最大値を測定し、そ
の結果を第2表に併せて示した。
The hot-rolled steel strip thus obtained was examined for surface flaws, and the maximum value of edge cracks that occurred was measured, and the results are also shown in Table 2.

なお、表面疵の状況は銅帯の中央部とエツジ部の両者で
調査し、 ○・・・割れ無し、 △・・・割れ最大深さがO,0m以上0.1m未満。
The condition of surface flaws was investigated both at the center and at the edges of the copper strip.○...No cracks, △...The maximum crack depth was 0.0 m or more and less than 0.1 m.

×・・・割れ最大深さが0.1m1m以上に区分けして
表示した。
×: The maximum crack depth was divided into 0.1 m and 1 m or more and displayed.

第2表に示される結果からも明らかなように、本発明で
規定する条件通りに製造された二相ステンレス鋼熱延鋼
板は連続鋳造スラブを素材としても表面疵を発生するこ
とがなく、かつ耳割れが101以上になることがないの
に対して、本発明で規定する条件を外れたものでは表面
疵の発生が見られる上、耳割れの程度が大きく、実際上
満足できる製品になっていないことが分かる。
As is clear from the results shown in Table 2, the hot-rolled duplex stainless steel sheets manufactured according to the conditions specified in the present invention do not generate surface defects even when made from continuous cast slabs. While the edge cracking never exceeds 101, products that do not meet the conditions stipulated in the present invention show surface flaws and a large degree of edge cracking, making the product practically unsatisfactory. I can see that there isn't.

〈効果の総括〉 以上に説明した如(、この発明によれば、連続鋳造スラ
ブを素材とした場合でも、圧延疵の殆んど無い健全な高
Cr含有二相ステンレス鋼の鋼帯をホットコイル圧延に
て高能率で安定生産することができ、耐食性部材には欠
かせない品質の安定した二相ステンレス鋼板をコスト安
く提供することが可能となるなど、産業上有用な効果が
もたらされるのである。
<Summary of Effects> As explained above (according to the present invention, even when continuous casting slabs are used as raw materials, a sound steel strip of high Cr-containing duplex stainless steel with almost no rolling defects is hot coiled. It brings industrially useful effects, such as the ability to produce stable, highly efficient rolling products, and the ability to provide duplex stainless steel sheets of stable quality, which are essential for corrosion-resistant components, at low cost. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、−殻内なホットコイル圧延設備におけるロー
ル配列の例を示した概略説明図。 第2図は、25Cr系二相ステンレス鋼の熱間引張り試
験結果を、B或いはCa無添加のものとこれらを添加し
たものとを比較して示したグラフ。 第3図は、25Cr系二相ステンレス鋼の熱間圧延性に
及ぼすTi添加量の影響を示すグラフ。 図面において、 R7−Rb・・・粗圧延ロール群。 F、〜F、・・・仕上圧延ロール群。 VSB・・・スケールブレーカ−1 DC・・・ダウンコイラー。
FIG. 1 is a schematic explanatory diagram showing an example of roll arrangement in an in-shell hot coil rolling facility. FIG. 2 is a graph showing the hot tensile test results of 25Cr duplex stainless steel, comparing those without B or Ca additives and those with these added. FIG. 3 is a graph showing the influence of the amount of Ti added on the hot rolling properties of 25Cr duplex stainless steel. In the drawings, R7-Rb...Rough rolling roll group. F, ~F, ... finishing roll group. VSB...Scale breaker-1 DC...Down coiler.

Claims (4)

【特許請求の範囲】[Claims] (1)重量割合にて C:0.03%以下、Si:0.1〜1.0%、Mn:
0.3〜2.0%、P:0.035%以下、S:0.0
020%以下、Cr:23.5〜26.5%、Ni:6
.0〜8.0%、Mo:2.5〜3.5%、W:0.1
〜1.0%、Ti:0.005〜0.10%、B:0.
0005〜0.0100%、Cu:0.2〜2.0%、
Al:0.01〜0.05%、Ca:0.0005〜0
.0100%、N:0.08〜0.2%、O:0.00
60%以下を含むと共に、残部が実質的にFeより成る
ことを特徴とする、圧延疵発生の少ない二相ステンレス
鋼。
(1) C: 0.03% or less, Si: 0.1-1.0%, Mn:
0.3-2.0%, P: 0.035% or less, S: 0.0
020% or less, Cr: 23.5-26.5%, Ni: 6
.. 0-8.0%, Mo: 2.5-3.5%, W: 0.1
~1.0%, Ti:0.005~0.10%, B:0.
0005-0.0100%, Cu: 0.2-2.0%,
Al: 0.01-0.05%, Ca: 0.0005-0
.. 0100%, N: 0.08-0.2%, O: 0.00
A duplex stainless steel with less occurrence of rolling defects, characterized in that the stainless steel contains 60% or less of Fe, and the remainder is substantially made of Fe.
(2)重量割合にて C:0.03%以下、Si:0.1〜1.0%、Mn:
0.3〜2.0%、P:0.035%以下、S:0.0
020%以下、Cr:23.5〜26.5%、Ni:6
.0〜8.0%、Mo:2.5〜3.5%、W:0.1
〜1.0%、Ti:0.005〜0.10%、B:0.
0005〜0.0100%、Cu:0.2〜2.0%、
Al:0.01〜0.05%、Ca:0.0005〜0
.0100%、N:0.08〜0.2%、O:0.00
60%以下を含有すると共に、更に V:0.5%以下、 Nb:0.5%以下 のうちの1種以上をも含み、残部が実質的にFeより成
ることを特徴とする、圧延疵発生の少ない二相ステンレ
ス鋼。
(2) C: 0.03% or less, Si: 0.1 to 1.0%, Mn:
0.3-2.0%, P: 0.035% or less, S: 0.0
020% or less, Cr: 23.5-26.5%, Ni: 6
.. 0-8.0%, Mo: 2.5-3.5%, W: 0.1
~1.0%, Ti:0.005~0.10%, B:0.
0005-0.0100%, Cu: 0.2-2.0%,
Al: 0.01-0.05%, Ca: 0.0005-0
.. 0100%, N: 0.08-0.2%, O: 0.00
60% or less, and further contains one or more of V: 0.5% or less and Nb: 0.5% or less, and the remainder is substantially composed of Fe. Duplex stainless steel with low generation.
(3)重量割合にて C:0.03%以下、Si:0.1〜1.0%、Mn:
0.3〜2.0%、P:0.035%以下、S:0.0
020%以下、Cr:23.5〜26.5%、Ni:6
.0〜8.0%、Mo:2.5〜3.5%、W:0.1
〜1.0%、Ti:0.005〜0.10%、B:0.
0005〜0.0100%、Cu:0.2〜2.0%、
Al:0.01〜0.05%、Ca:0.0005〜0
.0100%、N:0.08〜0.2%、O:0.00
60%以下を含むと共に、残部が実質的にFeより成る
連続鋳造スラブを1200〜1330℃に均熱した後、
粗圧延ロール群での圧延を 1パス当りの圧下量:60mm以下、 1パス当りの圧下率:40%以下 の条件で行い、かつ仕上圧延ロール群での圧延を1パス
当りの圧下量:12mm以下、 1パス当りの圧下率:35%以下、 総圧下率:90%以下 の条件で実施すると共に、850℃以上で圧延を仕上げ
ることを特徴とする、圧延疵発生の少ない二相ステンレ
ス鋼の製造方法。
(3) C: 0.03% or less, Si: 0.1-1.0%, Mn:
0.3-2.0%, P: 0.035% or less, S: 0.0
020% or less, Cr: 23.5-26.5%, Ni: 6
.. 0-8.0%, Mo: 2.5-3.5%, W: 0.1
~1.0%, Ti:0.005~0.10%, B:0.
0005-0.0100%, Cu: 0.2-2.0%,
Al: 0.01-0.05%, Ca: 0.0005-0
.. 0100%, N: 0.08-0.2%, O: 0.00
After soaking a continuous casting slab containing 60% or less and the remainder substantially consisting of Fe to 1200 to 1330°C,
Rolling with the rough rolling roll group is carried out under the following conditions: Reduction amount per pass: 60 mm or less, Reduction ratio per pass: 40% or less, and rolling with the finishing roll group is performed under the conditions of Reduction amount per pass: 12 mm. The following describes a duplex stainless steel with less occurrence of rolling defects, which is carried out under the conditions of a rolling reduction rate of 35% or less per pass, a total rolling reduction rate of 90% or less, and finishing the rolling at 850°C or higher. Production method.
(4)重量割合にて C:0.03%以下、Si:0.1〜1.0%、Mn:
0.3〜2.0%、P:0.035%以下、S:0.0
020%以下、Cr:23.5〜26.5%、Ni:6
.0〜8.0%、Mo:2.5〜3.5%、W:0.1
〜1.0%、Ti:0.005〜0.10%、B:0.
0005〜0.0100%、Cu:0.2〜2.0%、
Al:0.01〜0.05%、Ca:0.0005〜0
.0100%、N:0.08〜0.2%、O:0.00
60%以下を含有すると共に、更に V:0.5%以下、 Nb:0.5%以下 のうちの1種以上をも含み、残部が実質的にFeより成
る連続鋳造スラブを1200〜1330℃に均熱した後
、粗圧延ロール群での圧延を 1パス当りの圧下量:60mm以下、 1パス当りの圧下率:40%以下 の条件で行い、かつ仕上圧延ロール群での圧延を1パス
当りの圧下量:12mm以下、 1パス当りの圧下率:35%以下、 総圧下率:90%以下 の条件で実施すると共に、850℃以上で圧延を仕上げ
ることを特徴とする、圧延疵発生の少ない二相ステンレ
ス鋼の製造方法。
(4) C: 0.03% or less, Si: 0.1 to 1.0%, Mn:
0.3-2.0%, P: 0.035% or less, S: 0.0
020% or less, Cr: 23.5-26.5%, Ni: 6
.. 0-8.0%, Mo: 2.5-3.5%, W: 0.1
~1.0%, Ti:0.005~0.10%, B:0.
0005-0.0100%, Cu: 0.2-2.0%,
Al: 0.01-0.05%, Ca: 0.0005-0
.. 0100%, N: 0.08-0.2%, O: 0.00
A continuously cast slab containing 60% or less and also one or more of V: 0.5% or less and Nb: 0.5% or less, with the balance substantially consisting of Fe, is heated at 1200 to 1330°C. After soaking, rolling with a group of rough rolling rolls is carried out under the following conditions: rolling reduction amount per pass: 60 mm or less, rolling ratio per pass: 40% or less, and rolling with a group of finishing rolling rolls is carried out in 1 pass. The rolling reduction method is carried out under the following conditions: rolling reduction per pass: 12 mm or less, rolling reduction per pass: 35% or less, total rolling reduction: 90% or less, and finishing the rolling at 850°C or higher. A method of manufacturing less duplex stainless steel.
JP25610787A 1987-10-09 1987-10-09 Two-phase stainless steel and its production Pending JPH01100248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25610787A JPH01100248A (en) 1987-10-09 1987-10-09 Two-phase stainless steel and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25610787A JPH01100248A (en) 1987-10-09 1987-10-09 Two-phase stainless steel and its production

Publications (1)

Publication Number Publication Date
JPH01100248A true JPH01100248A (en) 1989-04-18

Family

ID=17287987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25610787A Pending JPH01100248A (en) 1987-10-09 1987-10-09 Two-phase stainless steel and its production

Country Status (1)

Country Link
JP (1) JPH01100248A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593246A (en) * 1991-09-30 1993-04-16 Sumitomo Metal Ind Ltd Highly corrosion resistant duplex stainless steel and its production
JPH0681037A (en) * 1992-08-31 1994-03-22 Sumitomo Metal Ind Ltd Production of hot rolled strip of dual phase stainless steel
JPH0841594A (en) * 1994-07-25 1996-02-13 Nippon Yakin Kogyo Co Ltd Dual phase stainless steel sheet excellent in elongation characteristic and its production
WO2008018242A1 (en) 2006-08-08 2008-02-14 Nippon Steel & Sumikin Stainless Steel Corporation Two-phase stainless steel
US9862168B2 (en) 2011-01-27 2018-01-09 Nippon Steel & Sumikin Stainless Steel Corporation Alloying element-saving hot rolled duplex stainless steel material, clad steel plate having duplex stainless steel as cladding material therefor, and production method for same
CN110042309A (en) * 2019-05-07 2019-07-23 南京钢铁股份有限公司 A kind of production method improving wide surface of thin steel sheet quality
JP2020100872A (en) * 2018-12-21 2020-07-02 日鉄ステンレス株式会社 Two-phase stainless steel and welded structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593246A (en) * 1991-09-30 1993-04-16 Sumitomo Metal Ind Ltd Highly corrosion resistant duplex stainless steel and its production
JPH0681037A (en) * 1992-08-31 1994-03-22 Sumitomo Metal Ind Ltd Production of hot rolled strip of dual phase stainless steel
JPH0841594A (en) * 1994-07-25 1996-02-13 Nippon Yakin Kogyo Co Ltd Dual phase stainless steel sheet excellent in elongation characteristic and its production
WO2008018242A1 (en) 2006-08-08 2008-02-14 Nippon Steel & Sumikin Stainless Steel Corporation Two-phase stainless steel
US8778260B2 (en) 2006-08-08 2014-07-15 Nippon Steel & Sumikin Stainless Steel Corporation Duplex stainless steel
US9862168B2 (en) 2011-01-27 2018-01-09 Nippon Steel & Sumikin Stainless Steel Corporation Alloying element-saving hot rolled duplex stainless steel material, clad steel plate having duplex stainless steel as cladding material therefor, and production method for same
JP2020100872A (en) * 2018-12-21 2020-07-02 日鉄ステンレス株式会社 Two-phase stainless steel and welded structure
CN110042309A (en) * 2019-05-07 2019-07-23 南京钢铁股份有限公司 A kind of production method improving wide surface of thin steel sheet quality

Similar Documents

Publication Publication Date Title
JP5029361B2 (en) Hot-rolled steel sheet, cold-rolled steel sheet and methods for producing them
JP5068688B2 (en) Hot-rolled steel sheet with excellent hole expansion
KR101896852B1 (en) Hot-rolled steel sheet
JP4193315B2 (en) High strength steel sheet and high strength galvanized steel sheet with excellent ductility and low yield ratio, and methods for producing them
CN107109597B (en) High-strength steel material having excellent brittle crack growth resistance and method for producing same
JP2009084687A (en) High-strength steel sheet for can manufacturing and method for manufacturing the same
JP6209175B2 (en) Manufacturing method of hot-dip Zn-Al-Mg-based plated steel sheet with excellent plating surface appearance and burring properties
JP5904310B1 (en) Ferritic stainless steel and manufacturing method thereof
JPH08295982A (en) Thick steel plate excellent in toughness at low temperature and its production
JPS6160892B2 (en)
JP2015137375A (en) Ferritic stainless cold rolled steel sheet and manufacturing method therefor
JP3379355B2 (en) High-strength steel used in an environment requiring sulfide stress cracking resistance and method of manufacturing the same
JP2007239097A (en) Method for manufacturing hot rolled steel sheet for high-strength cold rolled steel sheet
JP3842836B2 (en) Method for producing high-tensile steel with excellent low-temperature toughness
JPH09249940A (en) High strength steel excellent insulfide stress cracking resistance and its production
JP3922805B2 (en) Manufacturing method of high-tensile steel with excellent low-temperature toughness
JP5124865B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JP2765392B2 (en) Method for manufacturing hot-rolled duplex stainless steel strip
JP4697844B2 (en) Manufacturing method of steel material having fine structure
JPH01100248A (en) Two-phase stainless steel and its production
JPH1072644A (en) Cold rolled austenitic stainless steel sheet reduced in amount of springback, and its production
JPH1171615A (en) Production of thick steel plate excellent in low temperature toughness
JPH0551633A (en) Production of high si-containing austenitic stainless steel
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP3779784B2 (en) Method for producing ferritic stainless steel with excellent surface properties