JP5124865B2 - High tensile cold-rolled steel sheet and method for producing the same - Google Patents

High tensile cold-rolled steel sheet and method for producing the same Download PDF

Info

Publication number
JP5124865B2
JP5124865B2 JP2007192321A JP2007192321A JP5124865B2 JP 5124865 B2 JP5124865 B2 JP 5124865B2 JP 2007192321 A JP2007192321 A JP 2007192321A JP 2007192321 A JP2007192321 A JP 2007192321A JP 5124865 B2 JP5124865 B2 JP 5124865B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
rolled steel
cold
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007192321A
Other languages
Japanese (ja)
Other versions
JP2009030081A (en
Inventor
一彦 岸
英樹 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007192321A priority Critical patent/JP5124865B2/en
Publication of JP2009030081A publication Critical patent/JP2009030081A/en
Application granted granted Critical
Publication of JP5124865B2 publication Critical patent/JP5124865B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、高張力冷延鋼板およびその製造方法に関する。特に、本発明は、成形性と化成処理性に優れた高張力冷延鋼板およびその製造方法に関する。   The present invention relates to a high-tensile cold-rolled steel sheet and a method for producing the same. In particular, the present invention relates to a high-tensile cold-rolled steel sheet excellent in formability and chemical conversion treatment and a method for producing the same.

近年、自動車の燃費向上、排気ガス削減のために車体の軽量化が強く求められており、一つの有力な手段として車体構成部材への高張力鋼板の適用が進められている。使用する鋼板の強度が高いほど軽量化効果が高められるので、例えばメンバー、フレーム類などの車体構成部材用途には、引張強さでいえば590MPa以上の高張力鋼板も適用されるようになってきた。しかし、一般的に鋼板の強度と加工性は相反する関係にあり、鋼板の強度が高くなるにつれて加工性が低下し、高張力鋼板の適用が困難になるという問題がある。これに対し、残留オーステナイトの加工誘起変態を利用して伸びを改善し、加工性を向上させた鋼板が提案されている。   In recent years, there has been a strong demand for weight reduction of the vehicle body in order to improve the fuel consumption of automobiles and reduce exhaust gas, and the application of high-tensile steel plates to vehicle body structural members has been promoted as one effective means. Since the weight reduction effect is enhanced as the strength of the steel sheet used is increased, a high-tensile steel sheet having a tensile strength of 590 MPa or more has been applied to vehicle body structural member applications such as members and frames. It was. However, the strength and workability of a steel sheet are generally in a contradictory relationship, and there is a problem that the workability decreases as the strength of the steel sheet increases, making it difficult to apply a high-strength steel sheet. On the other hand, steel sheets have been proposed in which the elongation is improved by utilizing the processing-induced transformation of retained austenite and the workability is improved.

例えば、下記特許文献1には、0.4〜1.8%のSi、0.2〜2.5%のMnを含む鋼板を〔フェライト+オーステナイト〕2相域に加熱した後、冷却途中の500〜350℃の温度域で30秒〜30分間保持することで前記残留オーステナイトを含有する混合組織を実現し、高延性を示す高張力鋼板とする方法が開示されている。   For example, in Patent Document 1 below, a steel sheet containing 0.4 to 1.8% Si and 0.2 to 2.5% Mn is heated to the [ferrite + austenite] two-phase region, and then in the middle of cooling. A method of realizing a mixed structure containing the retained austenite by holding in a temperature range of 500 to 350 ° C. for 30 seconds to 30 minutes to form a high-tensile steel sheet exhibiting high ductility is disclosed.

下記特許文献2には、高延性を示す高張力鋼板の製造法として、0.7〜2.0%のSiと0.5〜2.0%のMnを含有する鋼板を焼鈍過程で〔フェライト+オーステナイト〕2相域に加熱した後、冷却過程の650〜450℃間にて合計10〜50秒の定温保持を行い、マルテンサイト或いはベイナイト中に体積率で10%以上のフェライトと残留オーステナイトを含む混合組織鋼板とする方法が開示されている。   In Patent Document 2 below, as a method for producing a high-strength steel sheet exhibiting high ductility, a steel sheet containing 0.7 to 2.0% Si and 0.5 to 2.0% Mn is annealed [ferrite + Austenite] After heating to the two-phase region, hold constant temperature for 10 to 50 seconds between 650 and 450 ° C. in the cooling process, and at least 10% ferrite and residual austenite by volume in martensite or bainite. A method of making a mixed structure steel sheet is disclosed.

しかし、特許文献1、2に記載された鋼板はいずれもSiを多量に含み、十分な残留オーステナイトが存在するため、良好な延性を示すものの、化成処理性は必ずしも良好ではなく、自動車メーカーの塗装段階で数々の問題を起こしてきた。   However, since the steel sheets described in Patent Documents 1 and 2 both contain a large amount of Si and have sufficient retained austenite, they exhibit good ductility, but the chemical conversion processability is not always good, and the coating of automobile manufacturers Numerous problems have occurred at the stage.

化成処理性に関して、下記特許文献3には、鋼組成におけるSiとAlの関係が示されている。一方、下記特許文献4には残留オーステナイト鋼のSi低減方法が開示されている。
特開昭61−157625号公報 特開昭60−43430号公報 特開2003−193192号公報 特開2000−345288号公報
Regarding chemical conversion property, Patent Document 3 below shows the relationship between Si and Al in the steel composition. On the other hand, Patent Document 4 below discloses a Si reduction method for retained austenitic steel.
JP-A 61-157625 Japanese Patent Laid-Open No. 60-43430 JP 2003-193192 A JP 2000-345288 A

本発明は、成形性と化成処理性に優れた高張力鋼板およびその製造方法を提供することを課題とする。より具体的には、従来のSi含有量の高い残留オーステナイト鋼と同等の優れた延性を有しつつも、化成処理性が改善された、540MPa級から1180MPa級の引張強度を有する高張力冷延鋼板およびその製造方法を提供することを課題とする。   An object of the present invention is to provide a high-tensile steel plate excellent in formability and chemical conversion treatment and a method for producing the same. More specifically, high tensile cold rolling having a tensile strength of 540 MPa class to 1180 MPa class having improved ductility while having excellent ductility equivalent to that of conventional retained austenitic steel having a high Si content. It is an object to provide a steel plate and a method for manufacturing the steel plate.

上記特許文献3に記載された発明は、いわゆるDP鋼に関するものであり、鋼中のSi含有量のレベルが低く、もともと化成処理性が大きな問題とはならない。従って、Si含有量が高い場合における化成処理性の劣化抑制という本発明の課題およびその解決手段を示唆するものではない。   The invention described in Patent Document 3 relates to a so-called DP steel, and the level of Si content in the steel is low, so that the chemical conversion processability is not a big problem from the beginning. Therefore, it does not suggest the problem of the present invention and the means for solving the problem of suppressing deterioration of chemical conversion properties when the Si content is high.

上記特許文献4に記載された発明は、本発明と同様に残留オーステナイト鋼に関するものであるが、Alを添加することによってSi含有量をオーステナイト残留に必要な最小限の0.01〜0.1%の範囲に抑えている。そのため、化成処理性の向上は望めるものの、残留オーステナイト鋼本来の延性の向上は望めず、本発明が目標とする成形性と化成処理性の両立という課題解決手段にはなりえない。   The invention described in Patent Document 4 relates to a retained austenitic steel as in the present invention, but by adding Al, the Si content is minimized to 0.01 to 0.1 necessary for austenite residue. %. Therefore, although improvement of chemical conversion property can be expected, improvement of the original ductility of retained austenitic steel cannot be expected, and it cannot be a problem solving means of achieving both formability and chemical conversion property targeted by the present invention.

本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、鋼中のAl含有量を高めることによって鋼板表面へのSiの濃化を抑制することができ、これにより高いSi含有量を有する鋼板においても良好な化成処理性を実現できるとの新たな知見を得た。   As a result of intensive studies to achieve the above object, the present inventor can suppress the concentration of Si on the steel sheet surface by increasing the Al content in the steel, thereby increasing the Si content. The new knowledge that favorable chemical conversion property was realizable also in the steel plate which it has was acquired.

上記新知見に基づく本発明は、質量%で、C:0.08〜0.30%、Si:0.30〜1.0%、Mn:1.0〜2.8%、P:0.05%以下、S:0.01%以下、Al:0.20〜1.5%、およびN:0.01%以下を含有し、残部Feおよび不純物からなるとともに、SiとAlとの合計含有量が1.2〜1.8%である化学組成を備え、かつ残留オーステナイトを5面積%以上含有し、残部フェライトおよびベイナイトからなる鋼組織を備え、さらに鋼板表面におけるSiとAlとの質量濃度比Si/Alが0.5以下であることを特徴とする高張力冷延鋼板である。 The present invention based on the above-mentioned new knowledge is, in mass%, C: 0.08 to 0.30%, Si: 0.30 to 1.0%, Mn: 1.0 to 2.8%, P: 0.0. Containing 05% or less, S: 0.01% or less, Al: 0.20 to 1.5%, and N: 0.01% or less, the balance being Fe and impurities, and the total content of Si and Al comprising a quantity chemical composition 1.2-1.8%, and the residual austenite containing 5% or more by area, provided with a Ru steel structure name from the remainder ferrite and bainite, the mass of Si and Al in addition the surface of the steel sheet A high-tensile cold-rolled steel sheet having a concentration ratio Si / Al of 0.5 or less.

ここで、鋼板表面におけるSiとAlとの質量濃度比Si/Alとは、ESCAによって求められる鋼板表面でのSi質量濃度とAl質量濃度との比である。また、残留オーステナイトの面積率は、実施例に示すように、板厚1/4位置における鋼板断面におけるESCA測定によるオーステナイト相ピークの強度比から求めることができる。   Here, the mass concentration ratio Si / Al of Si and Al on the steel sheet surface is the ratio of the Si mass concentration and the Al mass concentration on the steel sheet surface determined by ESCA. Moreover, the area ratio of a retained austenite can be calculated | required from the intensity ratio of the austenite phase peak by the ESCA measurement in the steel plate cross section in plate | board thickness 1/4 position, as shown in an Example.

前記化学組成は、Feの一部に代えて、質量%で、下記(1)〜(3)の1または2以上の群から選ばれた元素をさらに含有していてもよい:
(1)V:0.1%以下、Ti:0.1%以下およびNb:0.1%以下からなる群から選ばれた1種または2種以上、
(2)Mo:0.5%以下、Cr:0.5%以下およびB:0.005%以下からなる群から選ばれた1種または2種以上、
(3)Ca:0.004%以下、Zr:0.05%以下、希土類元素:0.05%以下からなる群から選ばれた1種または2種以上。
The chemical composition may further contain an element selected from the group consisting of one or more of the following (1) to (3) in mass%, instead of a part of Fe:
(1) One or more selected from the group consisting of V: 0.1% or less, Ti: 0.1% or less, and Nb: 0.1% or less,
(2) One or more selected from the group consisting of Mo: 0.5% or less, Cr: 0.5% or less, and B: 0.005% or less,
(3) One or more selected from the group consisting of Ca: 0.004% or less, Zr: 0.05% or less, and rare earth elements: 0.05% or less.

本発明はまた、下記工程(A)〜(G)の工程を含むことを特徴とする高張力冷延鋼板の製造方法にも関する:
(A)上記化学組成を有する鋼塊または鋼片に粗熱間圧延を施して粗バーとする粗熱間圧延工程;
(B)前記粗バーを1050℃以上の温度域に1秒間以上保持したのちにデスケーリング処理を施す第1デスケーリング工程;
(C)デスケーリング処理が施された前記粗バーに仕上熱間圧延を施して熱延鋼板とする仕上熱間圧延工程;
(D)前記熱延鋼板を500〜680℃の温度域で巻き取る巻取工程;
(E)前記巻き取られた熱延鋼板を払い出してデスケーリング処理を施す第2デスケーリング工程;
(F)前記デスケーリング処理が施された熱延鋼板に冷間圧延を施すことにより冷延鋼板とする冷間圧延工程;および
(G)前記冷延鋼板を、Ac点以上Ac点以下の温度域で30秒間以上保持したのちに、5℃/秒以上の平均冷却速度で350〜450℃の温度域まで冷却し、前記温度域で30秒間以上保持する連続焼鈍工程。
The present invention also relates to a method for producing a high-tensile cold-rolled steel sheet comprising the following steps (A) to (G):
(A) A rough hot rolling step in which a rough bar is obtained by subjecting a steel ingot or steel slab having the above chemical composition to rough hot rolling;
(B) a first descaling step of performing a descaling process after holding the coarse bar in a temperature range of 1050 ° C. or more for 1 second or more;
(C) Finishing hot rolling step of subjecting the rough bar subjected to the descaling treatment to finish hot rolling to obtain a hot-rolled steel sheet;
(D) a winding step of winding the hot-rolled steel sheet in a temperature range of 500 to 680 ° C;
(E) a second descaling process in which the wound hot-rolled steel sheet is discharged and subjected to a descaling process;
(F) a cold rolling step in which cold rolling is performed on the hot-rolled steel sheet subjected to the descaling treatment; and (G) the cold-rolled steel sheet is Ac 1 point or more and Ac 3 points or less. A continuous annealing step in which the substrate is cooled to a temperature range of 350 to 450 ° C. at an average cooling rate of 5 ° C./second or more and held for 30 seconds or more in the temperature range.

前記工程(A)において、鋼塊または鋼片を1050℃以上としたのちに粗熱間圧延を施すことが好ましい。   In the step (A), it is preferable to carry out rough hot rolling after the steel ingot or steel slab is set to 1050 ° C. or higher.

本発明によれば、Si含有量が0.30〜1.0%と高く、残留オーステナイトを5面積%以上含有する、残留オーステナイト鋼に固有の優れた延性を示す鋼板において、鋼板表面へのSi濃化を抑制することにより、鋼板表面の特性である化成処理性を著しく改善することができる。それにより、540MPa級から1180MPa級の引張強度を有する高張力冷延鋼板に対して成形性と化成処理性の両立が実現可能となる。   According to the present invention, in a steel sheet having a high Si content of 0.30 to 1.0% and containing 5% by area or more of retained austenite and exhibiting excellent ductility inherent to retained austenitic steel, By suppressing the concentration, the chemical conversion processability, which is a characteristic of the steel sheet surface, can be remarkably improved. This makes it possible to achieve both formability and chemical conversion treatment for a high-tensile cold-rolled steel sheet having a tensile strength of 540 MPa to 1180 MPa.

本発明に係る高強度冷延鋼板および本発明の方法により製造された高強度冷延鋼板は、高度のプレス成形が可能であり、かつ化成処理後にトラブルなく塗装を施すことができるので、自動車車体構成部材への適用に適しており、それにより車体の軽量化による燃費向上、排ガス削減に寄与する。ただし、この冷延鋼板は、家電製品、建材をはじめとする他の用途にももちろん使用可能である。   The high-strength cold-rolled steel sheet according to the present invention and the high-strength cold-rolled steel sheet produced by the method of the present invention can be subjected to high-level press forming and can be coated without any trouble after chemical conversion treatment. It is suitable for application to structural members, thereby contributing to improved fuel efficiency and reduced exhaust gas by reducing the weight of the vehicle body. However, this cold-rolled steel sheet can of course be used for other applications including home appliances and building materials.

以下に本発明を詳細に説明する。まず、本発明の高張力鋼板の化学組成および鋼組織の限定理由を説明する。以下の説明において、鋼組成に関する%は質量%である。
C:0.08〜0.3%
Cは、Si、Alと共に作用して、オーステナイトを室温まで安定化させるために必要な成分である。また、強度確保の観点からも、基本元素として必須の成分である。C含有量が0.08%未満では、目的とする強度を確保することが困難となり、また残留オーステナイトを十分な延性を得ることのできる量である5面積%以上の量で確保することが困難となる。一方、C含有量が0.3%を超えると、溶接した時に溶金部の硬度が著しく上昇し、溶接性が著しく劣化するので、工業材料として適用範囲が著しく制限されてしまう。好ましいC含有量0.09〜0.20%である。
The present invention is described in detail below. First, the reasons for limiting the chemical composition and steel structure of the high-strength steel sheet of the present invention will be described. In the following description,% related to the steel composition is mass%.
C: 0.08 to 0.3%
C is a component required to act together with Si and Al to stabilize austenite to room temperature. In addition, it is an essential component as a basic element from the viewpoint of securing strength. If the C content is less than 0.08%, it is difficult to ensure the intended strength, and it is difficult to ensure the retained austenite in an amount of 5 area% or more, which is an amount capable of obtaining sufficient ductility. It becomes. On the other hand, if the C content exceeds 0.3%, the hardness of the molten metal portion is remarkably increased when welded, and the weldability is remarkably deteriorated, so that the range of application as an industrial material is remarkably limited. The C content is preferably 0.09 to 0.20%.

Mn:1.0〜2.8%
Mnは、固溶強化元素であり、目的とする強度の確保のために含有させる。Mn含有量が1.0%未満では、目的とする強度を確保することが困難となる場合がある。一方、Mn含有量が2.8%を超えると、鋼板中心部におけるMnの偏析が顕著となり、延性及び曲げ性が劣化する。さらにMnは焼き入れ作用もあるため、その含有量が2.8%を超えるとマルテンサイトが生成し、不必要な強度上昇を招き、延性が劣化する。
Mn: 1.0-2.8%
Mn is a solid solution strengthening element and is contained for securing the intended strength. If the Mn content is less than 1.0%, it may be difficult to ensure the intended strength. On the other hand, if the Mn content exceeds 2.8%, segregation of Mn at the center of the steel sheet becomes significant, and ductility and bendability deteriorate. Further, since Mn also has a quenching action, if its content exceeds 2.8%, martensite is generated, causing an unnecessary increase in strength and deteriorating ductility.

Si:0.30〜1.0%、Al:0.20〜1.5%、Si+Al:1.2〜1.8%、鋼板表面のSi/Alの質量濃度比:0.5以下
SiおよびAlは、本発明における鋼の化学組成において最も重要な元素である。
Si: 0.30 to 1.0%, Al: 0.20 to 1.5%, Si + Al: 1.2 to 1.8%, Si / Al mass concentration ratio on steel plate surface: 0.5 or less Si and Al is the most important element in the chemical composition of steel in the present invention.

Siはフェライト安定化元素であり、オーステナイトを室温まで安定化させるための必須元素である。2相域焼鈍時にフェライトの体積を増加させることにより、オーステナイト相のC濃度を高め、オーステナイト相を室温まで安定化させる。AlもSiと同様な作用を有する元素である。残留オーステナイトを生成させるために、Siは0.30%以上、Alは0.20%以上の含有が必要であり、我々の経験によれば、SiとAlとの合計含有量が1.2%以上であれば残留オーステナイト5面積%以上を確保でき、良好な延性が得られる。一方、SiとAlとの合計含有量が1.8%を超えると、溶接時の熱影響部(HAZと呼ばれる)に軟質なフェライトが形成されやすくなり、HAZ部は軟化し、溶接割れの起点になりやすくなる。従って、SiとAlとの合計含有量を1.2%以上、1.8%以下とする。   Si is a ferrite stabilizing element and is an essential element for stabilizing austenite to room temperature. By increasing the volume of ferrite during the two-phase region annealing, the C concentration of the austenite phase is increased and the austenite phase is stabilized to room temperature. Al is an element having the same action as Si. In order to produce retained austenite, it is necessary to contain Si in an amount of 0.30% or more and Al in an amount of 0.20% or more. According to our experience, the total content of Si and Al is 1.2%. If it is more than the above, 5% by area or more of retained austenite can be secured, and good ductility can be obtained. On the other hand, if the total content of Si and Al exceeds 1.8%, soft ferrite tends to be formed in the heat-affected zone during welding (called HAZ), the HAZ zone softens, and the origin of weld cracking It becomes easy to become. Therefore, the total content of Si and Al is set to 1.2% or more and 1.8% or less.

化成処理性への影響について考慮すると、Siは化成処理性を劣化させる元素である。一般に、Siは鋼板表面に濃化し、鋼板表面の酸素と容易に結合して薄いSi酸化物層を形成する。この薄いSi酸化物層は、化成処理液中の酸(主にはフッ酸)には溶けにくく、化成結晶の成長を著しく妨げる。従って、鋼中のSi含有量を低減することで化成処理性を改善することができる。しかし、上述したとおり、Siは延性向上に欠かせない元素であり、鋼中Siの低減は直ちに延性劣化、加工性の低下につながる。   Considering the influence on chemical conversion processability, Si is an element that deteriorates chemical conversion processability. In general, Si concentrates on the surface of the steel sheet and easily combines with oxygen on the surface of the steel sheet to form a thin Si oxide layer. This thin Si oxide layer hardly dissolves in the acid (mainly hydrofluoric acid) in the chemical conversion treatment solution, and remarkably hinders the growth of chemical conversion crystals. Therefore, chemical conversion processability can be improved by reducing the Si content in the steel. However, as described above, Si is an element indispensable for improving ductility, and the reduction of Si in steel immediately leads to deterioration of ductility and workability.

そこで、発明者等は、Siと同等の作用をするAlの効果について鋭意調査を行って、以下の新たな知見を得た。
Alは、Siと共に、鋼板の表層に濃縮する。Alを鋼中成分に殆ど含有せず、Si含有量が高い場合(Si:1.3%、Al:0.03%)には、Siが表層に強く濃化するのに対し(図2)、Alを多く含有する場合(Si:0.7%、Al:0.8%)にはAlの表層濃化がSiの濃化を抑制するため、表層Si質量濃度レベルは低くなる(図1)。さらに、Alの表層の含有量は板厚中心部におけるAl含有量と大差なく、Alの板厚断面方向の質量濃度変化、従って、その表層濃化の程度は、Siに比較して小さい(図1)。そのうえ、表層に濃化したAlは、Al酸化物層となっても、化成処理液中の酸(主にフッ酸系)に対してSi酸化物よりも溶けやすいので、化成結晶の成長を著しく阻害することがない。
Therefore, the inventors conducted intensive investigations on the effect of Al, which has the same action as Si, and obtained the following new knowledge.
Al is concentrated in the surface layer of the steel sheet together with Si. When Al is hardly contained in the steel components and the Si content is high (Si: 1.3%, Al: 0.03%), Si is strongly concentrated on the surface layer (FIG. 2). When a large amount of Al is contained (Si: 0.7%, Al: 0.8%), the concentration of the surface layer of Al suppresses the concentration of Si, so that the surface layer Si mass concentration level becomes low (FIG. 1). ). Furthermore, the content of the surface layer of Al is not much different from the Al content in the central portion of the plate thickness, and the change in mass concentration in the cross-sectional direction of the thickness of Al, and therefore the degree of concentration of the surface layer is small compared to Si (Fig. 1). In addition, even if the Al concentrated on the surface layer becomes an Al oxide layer, it is more soluble than the Si oxide in the acid (mainly hydrofluoric acid) in the chemical conversion treatment solution, so that the growth of chemical crystals is remarkably increased. There is no hindrance.

上述したAl添加による化成処理性の向上効果は、Si含有量が1.0%超になると、Siによる化成結晶成長を妨げる作用が打ち勝つようになって、Alを添加しても化成処理性の確保が困難になる。一方、Al含有量が0.20%未満になると、Alの表層濃縮が不十分で、上記効果が充分に得られない。一方、Al含有量が1.5%を超えると、バット溶接時にその溶接界面に酸化物を形成し、充分な溶接強度を確保することが困難となる。   As described above, the effect of improving the chemical conversion processability by adding Al is such that when the Si content exceeds 1.0%, the action of preventing chemical conversion crystal growth by Si is overcome. It becomes difficult to secure. On the other hand, when the Al content is less than 0.20%, the surface layer concentration of Al is insufficient, and the above effects cannot be obtained sufficiently. On the other hand, if the Al content exceeds 1.5%, an oxide is formed at the weld interface during butt welding, and it becomes difficult to ensure sufficient welding strength.

以上より、Si含有量は0.30%以上、1.0%以下、Al含有量は0.20%以上、1.5%以下とする。
化成結晶の大きさは数μm程度である。従って、板厚表面近傍の深さ方向の元素濃度分布において、鋼板表面のSi濃化が抑制されていればSiによる化成処理性の劣化が防止されると考えられる。この観点からさらに調査した結果、鋼板表面のSi/Alの質量濃度比が重要であることを知見した。すなわち、Si/Alの質量濃度比が0.5以下であると、良好な化成処理性が得られる。ここで、鋼板表面におけるSiとAlとの質量濃度比Si/Alとは、ESCAによって求められる鋼板表面でのSi質量濃度とAl質量濃度との比である。
From the above, the Si content is 0.30% or more and 1.0% or less, and the Al content is 0.20% or more and 1.5% or less.
The size of the conversion crystal is about several μm. Therefore, in the element concentration distribution in the depth direction in the vicinity of the surface of the plate thickness, it is considered that deterioration of chemical conversion treatment due to Si can be prevented if Si concentration on the surface of the steel plate is suppressed. As a result of further investigation from this viewpoint, it was found that the Si / Al mass concentration ratio on the steel sheet surface is important. That is, when the mass concentration ratio of Si / Al is 0.5 or less, good chemical conversion property can be obtained. Here, the mass concentration ratio Si / Al of Si and Al on the steel sheet surface is the ratio of the Si mass concentration and the Al mass concentration on the steel sheet surface determined by ESCA.

P:0.05%以下、S:0.01%以下、N:0.01%以下
これらの元素はいずれも不純物である。
Pは、粒界に偏析して延性を劣化させるので、P含有量は低いほうが好ましい。Pはまた溶接性も劣化させる。そこで、P含有量を0.05%以下とする。
P: 0.05% or less, S: 0.01% or less, N: 0.01% or less All of these elements are impurities.
Since P segregates at the grain boundaries and deteriorates ductility, it is preferable that the P content is low. P also degrades weldability. Therefore, the P content is set to 0.05% or less.

Sは、MnSを生成することで延性および溶接性を劣化させるだけでなく、オーステナイト安定化元素であるMnを消費するので、S含有量は低いほうが好ましい。従って、S含有量を0.01%以下とする。   S not only degrades ductility and weldability by generating MnS, but also consumes Mn, which is an austenite stabilizing element, so a lower S content is preferred. Therefore, the S content is set to 0.01% or less.

Nも不純物であり、その含有量は低い方が好ましい。特にN含有量が0.01%を超えるとAlNとして消費されるAlの量が多くAl添加の効果が小さくなる。従って、N含有量は0.01%以下とする。   N is also an impurity and its content is preferably low. In particular, when the N content exceeds 0.01%, the amount of Al consumed as AlN is large, and the effect of adding Al becomes small. Therefore, the N content is 0.01% or less.

V:0.1%以下、Ti:0.1%以下およびNb:0.1%以下からなる群から選ばれた1種または2種以上、
V、TiおよびNbは、いずれも析出強化作用を有する元素であり、鋼板の強度を高める効果をもたらす。従って、必要に応じて、1種または2種以上を含有させることができる。ただし、過剰な含有は延性の劣化を招くほか、経済的にも不利になるので、これらを含有させる場合の各元素の含有量の上限を0.1%とする。なお、上記効果を確実に得るには、それぞれの元素の下限を0.001%とすることが好ましい。
One or more selected from the group consisting of V: 0.1% or less, Ti: 0.1% or less, and Nb: 0.1% or less,
V, Ti and Nb are all elements having a precipitation strengthening action, and bring about an effect of increasing the strength of the steel sheet. Therefore, 1 type (s) or 2 or more types can be contained as needed. However, excessive content causes deterioration of ductility and is economically disadvantageous, so the upper limit of the content of each element in the case of containing these is set to 0.1%. In order to surely obtain the above effect, it is preferable to set the lower limit of each element to 0.001%.

Mo:0.5%以下、Cr:0.5%以下およびB:0.005%以下からなる群から選ばれた1種または2種以上、
Mo、CrおよびBは、いずれも変態強化作用を有する元素であり、鋼板の強度を高める効果をもたらす。従って、必要に応じて1種または2種以上を含有させることができる。ただし、過剰な含有は延性の劣化を招くほか、経済的にも不利になるので、これらを含有させる場合の各元素の含有量の上限を、MoおよびCrについては0.5%、Bについては0.005%とする。なお、上記効果を確実に得るには、含有量の下限を、MoおよびCrについては0.01%、Bについては0.0003%とすることが好ましい。
One or more selected from the group consisting of Mo: 0.5% or less, Cr: 0.5% or less, and B: 0.005% or less,
Mo, Cr and B are all elements having a transformation strengthening effect, and bring about an effect of increasing the strength of the steel sheet. Therefore, 1 type (s) or 2 or more types can be contained as needed. However, excessive content causes deterioration of ductility and is also economically disadvantageous. Therefore, the upper limit of the content of each element when containing these is 0.5% for Mo and Cr, and about B Set to 0.005%. In order to surely obtain the above effect, it is preferable that the lower limit of the content is 0.01% for Mo and Cr and 0.0003% for B.

Ca:0.004%以下、Zr:0.05%以下、希土類元素(REM):0.05%以下からなる群から選ばれた1種または2種以上。
Ca、ZrおよびREMは、いずれも介在物の形態制御や耐食性改善の作用を有する元素であり、延性を高めたり端面耐食性を向上させたりする効果をもたらす。従って、必要に応じて1種または2種以上を含有させることができる。ただし、過剰に含有させても効果が飽和して経済的に不利となるので、これらを含有させる場合の各元素の含有量の上限を、Caについては0.004%、Zrについては0.05%、REMについては0.005%とする。なお、上記効果を確実に得るには、含有量の下限を、Caについては0.0002%、Zrについては0.005%、REMについては0.002%とすることが好ましい。
One or more selected from the group consisting of Ca: 0.004% or less, Zr: 0.05% or less, and rare earth elements (REM): 0.05% or less.
Ca, Zr, and REM are all elements that have the effect of controlling the shape of inclusions and improving corrosion resistance, and have the effect of increasing ductility and improving end face corrosion resistance. Therefore, 1 type (s) or 2 or more types can be contained as needed. However, since the effect is saturated and economically disadvantageous even if contained in excess, the upper limit of the content of each element in the case of containing these is 0.004% for Ca and 0.05 for Zr. % And REM are set to 0.005%. In order to obtain the above-mentioned effect reliably, the lower limit of the content is preferably 0.0002% for Ca, 0.005% for Zr, and 0.002% for REM.

次に本発明に係る高張力冷延鋼板の好適な製造条件を説明する。
(粗熱間圧延工程、第1デスケーリング工程、仕上熱間圧延工程、巻取り工程)
上記化学組成を有する鋼塊または鋼片に粗熱間圧延を施して粗バーとなし、上記粗バーを1050℃以上の温度域に1秒間保持したのちに、デスケーリング処理を施し、ついで仕上熱間圧延を施して熱延鋼板とし500〜680℃の温度域で巻き取る。
Next, suitable production conditions for the high-tensile cold-rolled steel sheet according to the present invention will be described.
(Rough hot rolling process, first descaling process, finish hot rolling process, winding process)
The steel ingot or steel slab having the above chemical composition is subjected to rough hot rolling to form a rough bar. After holding the rough bar in a temperature range of 1050 ° C. or higher for 1 second, a descaling treatment is performed, and then the finish heat Hot-rolled steel sheet is formed by hot rolling in a temperature range of 500 to 680 ° C.

粗バーをデスケーリングする前に1050℃以上の温度域に1秒間以上保持することにより、鋼材表面におけるSi酸化物を含んだ鉄スケールの生成が促進され、スケール厚が増すと同時に生成スケール中のSi量が増加する。AlもSiと同様の酸化物を生成するが、Siほどはスケール生成が促進されない。そして、Siを多量に含んだ生成スケールは、次工程である第1デスケーリング処理(典型的には、高圧水スプレーによるデスケーリング処理)とその次の仕上熱間圧延という機械加工によって効果的に除去される。その結果、熱間圧延で得られた鋼板の表層部におけるSi質量濃度が減少する。この粗バーのデスケーリング処理(第1デスケーリング処理)は、研削などの機械的デスケーリング処理であってもよい。   By holding for 1 second or more in a temperature range of 1050 ° C. or higher before descaling the coarse bar, generation of an iron scale containing Si oxide on the steel surface is promoted, and at the same time as the scale thickness increases, The amount of Si increases. Al also forms an oxide similar to Si, but scale generation is not promoted as much as Si. Then, the production scale containing a large amount of Si is effectively obtained by the first process of descaling (typically descaling process by high-pressure water spray), which is the next process, and the subsequent machining such as hot rolling. Removed. As a result, the Si mass concentration in the surface layer portion of the steel sheet obtained by hot rolling decreases. The coarse bar descaling process (first descaling process) may be a mechanical descaling process such as grinding.

デスケーリング処理前の粗バーの保持温度が1050℃未満であるか、および/または保持時間が1秒間未満であると、Si酸化物を含んだ鉄スケールの生成が不十分となり、スケール厚と硬さに依存する機械加工によるスケール除去が効果的に行われず、鋼板表面におけるSiとAlとの質量濃度比Si/Alが0.5超となる場合がある。保持温度の上限は、実用上1400℃、保持時間の上限は実用上1分間である。   If the holding temperature of the coarse bar before descaling is less than 1050 ° C. and / or the holding time is less than 1 second, the generation of iron scale containing Si oxide is insufficient, and the scale thickness and hardness are reduced. In some cases, the scale removal by machining depending on the thickness is not effectively performed, and the mass concentration ratio Si / Al of Si and Al on the surface of the steel sheet exceeds 0.5. The upper limit of the holding temperature is practically 1400 ° C., and the upper limit of the holding time is practically 1 minute.

本発明において粗バーを1050℃の温度域に1秒間以上保持する方法としては、粗熱間圧延機と仕上熱間圧延機との間に誘導加熱、通電加熱、炉加熱などによる粗バー加熱装置を配して、粗バーを加熱することが例示される。温度制御性および操業性の観点からは誘導加熱による粗バー加熱が好適である。なお、粗バーを1050℃の温度域に1秒間以上保持したのちにデスケーリング処理を施せばよいので、上記方法により粗バーを加熱する場合のほか、粗熱間圧延に供する鋼塊または鋼片の温度を高温とすることにより粗熱間圧延後の粗バーが1秒間以上1050℃以上の温度となるようにして、特段加熱を施さない場合も本発明に含まれる。   In the present invention, as a method of holding the rough bar in the temperature range of 1050 ° C. for 1 second or longer, a rough bar heating apparatus using induction heating, current heating, furnace heating or the like between the rough hot rolling mill and the finishing hot rolling mill And heating the coarse bar is exemplified. From the viewpoint of temperature controllability and operability, coarse bar heating by induction heating is preferred. In addition, since it is sufficient to perform descaling after holding the rough bar in the temperature range of 1050 ° C. for 1 second or longer, in addition to heating the rough bar by the above method, a steel ingot or steel slab used for rough hot rolling The present invention also includes the case where the temperature of is set to a high temperature so that the rough bar after the rough hot rolling is at a temperature of 1050 ° C. or more for 1 second or more and no special heating is performed.

また、粗熱間圧延工程に供する鋼塊または鋼片を1050℃以上としたのちに粗熱間圧延を施すことによって、上記と同様の機構により粗バーの表面における質量濃度比Si/Alを低減することができ、これにより最終製品の鋼板表面における質量濃度比Si/Alをより一層低減できるので好ましい。鋼塊または鋼片は、1050℃未満に温度低下したものを加熱炉により1050℃以上に加熱してから粗熱間圧延に供してもよいし、連続鋳造後の鋼塊または分塊圧延後の鋼片を1050℃未満の温度に低下させることなく粗熱間圧延に供してもよい。   Also, the mass concentration ratio Si / Al on the surface of the coarse bar is reduced by the same mechanism as described above by subjecting the steel ingot or steel slab to be subjected to the coarse hot rolling process to 1050 ° C. or higher and then subjecting it to hot hot rolling. This is preferable because the mass concentration ratio Si / Al on the steel sheet surface of the final product can be further reduced. The steel ingot or steel slab may be subjected to rough hot rolling after being heated to 1050 ° C. or higher in a heating furnace after being lowered in temperature to less than 1050 ° C., or after ingot or partial rolling after continuous casting The steel slab may be subjected to rough hot rolling without lowering the temperature to less than 1050 ° C.

熱間仕上圧延により得られた熱延鋼板は500〜680℃の温度範囲で巻き取る。巻き取り段階でも上記と同様なメカニズムでSiが濃化したスケールが生成する。このスケール除去は次の酸洗工程(第2デスケーリング工程)で行われる。巻き取り温度が500℃未満と低い場合には、スケールへのSi濃化は顕著に見られず、表層Si濃度低減効果が充分に得られない。また、焼きが入り、強度が上昇して、次の冷間圧延工程における冷間圧延性を阻害する。一方、巻き取り温度が680℃超の場合は、巻取工程で過剰なスケールが発生し、表面疵の原因となり、品質上問題である。そのため、巻き取り温度を500〜680℃の範囲に定める。   The hot rolled steel sheet obtained by hot finish rolling is wound up in a temperature range of 500 to 680 ° C. In the winding stage, a Si-enriched scale is generated by the same mechanism as described above. This scale removal is performed in the next pickling process (second descaling process). When the winding temperature is as low as less than 500 ° C., Si concentration on the scale is not noticeable, and the effect of reducing the surface layer Si concentration cannot be sufficiently obtained. Moreover, baking starts and intensity | strength rises and the cold rolling property in the next cold rolling process is inhibited. On the other hand, when the coiling temperature is higher than 680 ° C., excessive scale is generated in the coiling process, which causes surface defects and is a quality problem. Therefore, the winding temperature is set in the range of 500 to 680 ° C.

(第2デスケーリング工程)
上記工程により得られた熱延鋼板にデスケーリング処理を施すことにより、巻取り中に生成したSiが濃化したスケールを除去して、鋼板の表層部におけるSiとAlとの質量濃度比Si/Alを低減させる。この熱間圧延後のデスケーリング処理(第2のデスケーリング処理)として、通常は酸洗処理(スプレーまたは浸漬)が用いられるが、研削のような機械加工であってもよい。また、酸洗前にスキンパス圧延が施されても構わない。
(Second descaling process)
By applying a descaling process to the hot-rolled steel sheet obtained by the above process, the Si-concentrated scale formed during winding is removed, and the mass concentration ratio of Si and Al in the surface layer portion of the steel sheet is Si / Reduce Al. As the descaling process after the hot rolling (second descaling process), pickling (spraying or dipping) is usually used, but machining such as grinding may be used. Skin pass rolling may be performed before pickling.

(冷間圧延工程)
上記工程により得られた熱延鋼板に冷間圧延を施して冷延鋼板とする。冷間圧延の圧下率が30%未満では、その後の焼鈍工程において完全に再結晶ができず、機械特性、低温靱性が劣化する場合がある。一方、80%を超える圧下率では圧延荷重が増加し圧延機に負荷が過大となる場合がある。このため、冷間圧延における圧下率は30〜80%とすることが好ましい。圧下率はさらに好ましくは40〜70%である。
(Cold rolling process)
The hot-rolled steel sheet obtained by the above process is cold-rolled to obtain a cold-rolled steel sheet. If the rolling reduction of cold rolling is less than 30%, recrystallization cannot be performed completely in the subsequent annealing process, and mechanical properties and low temperature toughness may deteriorate. On the other hand, when the rolling reduction exceeds 80%, the rolling load increases and the rolling mill may be overloaded. For this reason, it is preferable that the rolling reduction in cold rolling shall be 30 to 80%. The rolling reduction is more preferably 40 to 70%.

(連続焼鈍工程)
上記工程により得られた冷延鋼板に、Ac点以上Ac点以下の温度域で30秒間以上保持したのちに、5℃/秒以上の平均冷却速度で350〜450℃の温度域まで冷却し、前記温度域で30秒間以上保持する連焼鈍処理を施す。
(Continuous annealing process)
The cold-rolled steel sheet obtained by the above process is held in a temperature range of Ac 1 point or more and Ac 3 point or less for 30 seconds or more and then cooled to a temperature range of 350 to 450 ° C. at an average cooling rate of 5 ° C./second or more. Then, a continuous annealing process is performed in the temperature range for 30 seconds or more.

連続焼鈍工程では、一旦〔フェライト+オーステナイト〕の2相組織をするためにAc点以上Ac点以下の温度域で30秒間以上保持する。保持温度が低すぎると熱間圧延で生成された炭化物の再固溶が遅れ、高すぎるとオーステナイトの体積率が大きくなり過ぎて、それぞれオーステナイト中のC濃度が低下し、最終製品におけるオーステナイトの室温における安定度が低下する。上記化学組成を有する本発明の鋼では760〜850℃で焼鈍することが好ましい。 In the continuous annealing process, in order to form a two-phase structure of [ferrite + austenite] once, it is held for 30 seconds or more in a temperature range of Ac 1 point or more and Ac 3 point or less. If the holding temperature is too low, the re-solution of the carbide produced by hot rolling is delayed, and if it is too high, the volume fraction of austenite becomes too large, and the C concentration in the austenite decreases, and the room temperature of the austenite in the final product. Stability at is reduced. The steel of the present invention having the above chemical composition is preferably annealed at 760 to 850 ° C.

次いで、5℃/秒以上の平均冷却速度で350〜450℃の温度域まで冷却し、当該温度域で30秒間以上保持する。前記平均冷却速度が5℃/秒未満の場合には、オーステナイトのパーライト変態が進行して、目的とする残留オーステナイトを確保することが困難となる場合がある。フェライトを成長させオーステナイト中のC濃度を高めるためには、フェライト生成速度が最も大きくなる700℃までの平均冷却速度を10℃/秒以下とするのが望ましい。一方、700℃から350〜450℃の温度域までの冷却は、オーステナイトのパーライト変態を抑制するために、平均冷却速度は50℃/秒以上とするのが望ましい。   Subsequently, it cools to the temperature range of 350-450 degreeC with an average cooling rate of 5 degree-C / sec or more, and hold | maintains for 30 seconds or more in the said temperature range. When the average cooling rate is less than 5 ° C./sec, the pearlite transformation of austenite may progress, and it may be difficult to secure the desired retained austenite. In order to grow ferrite and increase the C concentration in austenite, it is desirable to set the average cooling rate up to 700 ° C. at which the ferrite formation rate is maximized to 10 ° C./second or less. On the other hand, the cooling from 700 ° C. to 350 to 450 ° C. is desirably performed at an average cooling rate of 50 ° C./second or more in order to suppress the pearlite transformation of austenite.

350〜450℃の温度域において30秒間以上の保持を行うことにより、オーステナイトの一部をベイナイト変態させながら、残りのオーステナイトへのCの濃縮を促進する。保持時間が30秒間未満の場合には、ベイナイト変態の進行が不十分となり、オーステナイトへのCの濃縮が困難となる場合がある。保持時間の上限は特に規定する必要はないが、保持時間を過度に長時間とすることは設備の長大化や生産性の劣化をもたらすので、保持時間を10分間以下とすることが好ましい。保持温度が450℃超の場合には、ベイナイト変態の進行が不十分となり、オーステナイトへのCの濃縮が困難となる場合がある。保持温度が350℃未満の場合には、生成するベイナイトが下部ベイナイトとなってオーステナイトへのCの濃縮が困難となる場合がある。なお、保持後の室温までの冷却速度は特に限定する必要はない。   By holding for 30 seconds or more in a temperature range of 350 to 450 ° C., the concentration of C to the remaining austenite is promoted while part of the austenite is transformed to bainite. When the holding time is less than 30 seconds, the progress of bainite transformation becomes insufficient, and it may be difficult to concentrate C to austenite. The upper limit of the holding time does not need to be specified in particular. However, if the holding time is excessively long, the length of the equipment is increased and the productivity is deteriorated. Therefore, the holding time is preferably 10 minutes or less. When the holding temperature is higher than 450 ° C., the progress of the bainite transformation becomes insufficient, and it may be difficult to concentrate C to austenite. When the holding temperature is lower than 350 ° C., the bainite to be formed becomes lower bainite, which may make it difficult to concentrate C into austenite. The cooling rate to room temperature after holding is not particularly limited.

上記方法によって、5面積%以上の残留オーステナイトを有し、かつ鋼板表面のSi/Al質量濃度比が0.5以下の高張力冷延鋼板を製造することができる。この高張力冷延鋼板は、前述したように高延性であり、成形性に優れている。さらに、化成処理性も良好であるので、プレス成形前または成形後に、化成処理を施してから塗装することによって、密着性にすぐれた塗膜を形成することができる。   By the above method, it is possible to produce a high-tensile cold-rolled steel sheet having 5% by area or more of retained austenite and having a Si / Al mass concentration ratio on the steel sheet surface of 0.5 or less. As described above, this high-tensile cold-rolled steel sheet has high ductility and excellent formability. Furthermore, since chemical conversion property is also favorable, the coating film which was excellent in adhesiveness can be formed by coating after performing chemical conversion treatment before or after press molding.

化成処理は、一般にはリン酸亜鉛、リン酸マンガンなどの周知のリン酸塩処理により行われる。塗装方法は特に制限されず、状況に応じて適当な方法を選択すればよい。例えば、電着塗装、スプレー塗装、粉体塗装、ロール塗装などが採用できる。本発明の高張力冷延鋼板は、亜鉛系めっき、アルミニウム系めっきをはじめとする各種めっき鋼板の母材として使用することもできる。   The chemical conversion treatment is generally performed by a well-known phosphate treatment such as zinc phosphate and manganese phosphate. The coating method is not particularly limited, and an appropriate method may be selected according to the situation. For example, electrodeposition coating, spray coating, powder coating, roll coating, etc. can be employed. The high-tensile cold-rolled steel sheet of the present invention can also be used as a base material for various plated steel sheets including zinc-based plating and aluminum-based plating.

表1に示す化学組成を有する試験用スラブを真空溶解炉にて製造した。前記試験用スラブを1050℃以上の温度に加熱し、試験用熱間圧延設備により、粗熱間圧延を模した圧延を施して粗バーとした。この粗バーを、同表に示す粗バー加熱温度に加熱して2秒間保持し、水スプレーにより第1のデスケーリング処理を施した後、仕上熱間圧延を模した圧延を施して熱延鋼板とした。   Test slabs having the chemical compositions shown in Table 1 were produced in a vacuum melting furnace. The test slab was heated to a temperature of 1050 ° C. or higher and subjected to rolling imitating rough hot rolling with a test hot rolling facility to obtain a rough bar. The coarse bar is heated to the coarse bar heating temperature shown in the same table and held for 2 seconds, subjected to the first descaling treatment by water spray, and then subjected to rolling imitating finish hot rolling to obtain a hot rolled steel sheet. It was.

この熱延鋼板を、600℃まで冷却し、この温度に1時間保持することで、熱延鋼板の巻取熱処理を再現した。巻取熱処理の済んだ熱延鋼板を、酸洗(第2のデスケーリング処理)によりスケールを除去し、圧下率70%の冷間圧延を施した。その後連続焼鈍シミュレータを用い、800℃×60秒の焼鈍を行い、60℃/秒の平均冷却速度で400℃まで冷却した後、鋼種Rについては10秒間、その他の鋼種については100秒間その温度で保持したあと、さらに室温まで冷却して、冷延鋼板を得た。   The hot-rolled steel sheet was cooled to 600 ° C. and held at this temperature for 1 hour to reproduce the winding heat treatment of the hot-rolled steel sheet. The hot-rolled steel sheet that had been subjected to the winding heat treatment was removed from the scale by pickling (second descaling process) and cold-rolled at a reduction rate of 70%. Then, using a continuous annealing simulator, annealing was performed at 800 ° C. for 60 seconds, and after cooling to 400 ° C. at an average cooling rate of 60 ° C./second, the temperature was 10 seconds for steel type R and 100 seconds for other steel types. After holding, it was further cooled to room temperature to obtain a cold-rolled steel sheet.

各冷延鋼板の引張特性は、JIS5号引張試験片のL方向引張により評価し、TS(MPa)とEL(%)との積が18000MPa%以上である場合を良好とした。
鋼組織は、板厚方向の断面試験片を腐食した後、光学顕微鏡で観察することにより判定した。フェライトの観察にはナイタール腐食液を、オーステナイトの観察にはレペラー腐食液を使用した。
The tensile properties of each cold-rolled steel sheet were evaluated by L-direction tension of a JIS No. 5 tensile test piece, and the case where the product of TS (MPa) and EL (%) was 18000 MPa% or more was considered good.
The steel structure was determined by observing with a light microscope after corroding the cross-sectional specimen in the plate thickness direction. Nittal corrosion solution was used for the observation of ferrite, and repeller corrosion solution was used for the observation of austenite.

表層の元素質量濃度はESCA(島津製作所製ESCA3200:管球条件:8kV、30mA)によって測定した。鋼板表面でのSi質量濃度とAl質量濃度の測定値の比をSi/Al質量濃度比として求めた。   The element mass concentration of the surface layer was measured by ESCA (ESCA3200 manufactured by Shimadzu Corporation: tube condition: 8 kV, 30 mA). The ratio of the measured values of Si mass concentration and Al mass concentration on the steel sheet surface was determined as the Si / Al mass concentration ratio.

残留γ量(残留オーステナイト面積率)は、板厚1/4位置における鋼板断面におけるESCAの強度比から算出した。
化成処理性は、通常の自動車用薬剤である、リン酸亜鉛系化成処理液(Bt3080:日本パーカーライジング社製)を用いて、標準仕様にて処理したのち、化成被膜の性状を肉眼、および走査型電子顕微鏡にて観察し、鋼板下地を緻密に被覆しているものを「○」、化成被膜に部分的に欠陥があるものを「×」とした。
The amount of residual γ (residual austenite area ratio) was calculated from the strength ratio of ESCA in the cross section of the steel sheet at the 1/4 position of the thickness.
The chemical conversion treatment is performed with standard specifications using a zinc phosphate-based chemical conversion treatment liquid (Bt3080: manufactured by Nihon Parker Rising Co., Ltd.), which is a normal automotive chemical, and then the properties of the chemical conversion film are visually and scanned. Observed with a scanning electron microscope, “○” indicates that the steel sheet substrate is densely coated, and “×” indicates that the chemical conversion film has a partial defect.

以上の結果を表1に併記する。
表1の結果から認められるように、本発明による鋼板は化成処理性が優れ、かついずれも強度・延性バランスに優れている。
The above results are also shown in Table 1.
As can be seen from the results in Table 1, the steel sheet according to the present invention has excellent chemical conversion treatment properties, and both have excellent strength / ductility balance.

Figure 0005124865
Figure 0005124865

高Si,高Alの冷延鋼板のESCAにより測定された表面付近のFe,Si,Al濃度の深さ方向の変化を示す図。The figure which shows the change of the depth direction of Fe, Si, and Al density | concentration of the surface vicinity measured by ESCA of the cold rolled steel plate of high Si and high Al. 高SiでAlをほとんど含有しない冷延鋼板のESCAにより測定された表面付近のFe,Si濃度の深さ方向の変化を示す図。The figure which shows the change of the depth direction of Fe and Si density | concentration of the surface vicinity measured by ESCA of the cold rolled steel plate which hardly contains Al at high Si.

Claims (6)

質量%で、C:0.08〜0.30%、Si:0.30〜1.0%、Mn:1.0〜2.8%、P:0.05%以下、S:0.01%以下、Al:0.20〜1.5%、およびN:0.01%以下を含有し、残部Feおよび不純物からなるとともに、SiとAlとの合計含有量が1.2〜1.8%である化学組成を備え、かつ残留オーステナイトを5面積%以上含有し、残部フェライトおよびベイナイトからなる鋼組織を備え、さらに鋼板表面におけるSiとAlとの質量濃度比Si/Alが0.5以下であることを特徴とする高張力冷延鋼板。 In mass%, C: 0.08 to 0.30%, Si: 0.30 to 1.0%, Mn: 1.0 to 2.8%, P: 0.05% or less, S: 0.01 %, Al: 0.20 to 1.5%, and N: 0.01% or less, the balance being Fe and impurities, and the total content of Si and Al is 1.2 to 1.8. % and is provided with a chemical composition, and the residual austenite containing 5% or more by area, provided with a Ru steel structure name from the remainder ferrite and bainite, the mass concentration ratio Si / Al of Si and Al in addition the surface of the steel sheet 0.5 A high-tensile cold-rolled steel sheet characterized by: 前記化学組成が、Feの一部に代えて、質量%で、V:0.1%以下、Ti:0.1%以下およびNb:0.1%以下からなる群から選ばれた1種または2種以上を含有する請求項1に記載の高張力冷延鋼板。   The chemical composition may be one selected from the group consisting of V: 0.1% or less, Ti: 0.1% or less, and Nb: 0.1% or less in mass%, instead of part of Fe. The high-tensile cold-rolled steel sheet according to claim 1, containing two or more kinds. 前記化学組成が、Feの一部に代えて、質量%で、Mo:0.5%以下、Cr:0.5%以下およびB:0.005%以下からなる群から選ばれた1種または2種以上を含有する請求項1または2に記載の高張力冷延鋼板。   The chemical composition may be one selected from the group consisting of Mo: 0.5% or less, Cr: 0.5% or less, and B: 0.005% or less in mass% instead of a part of Fe. The high-tensile cold-rolled steel sheet according to claim 1 or 2, containing two or more kinds. 前記化学組成が、Feの一部に代えて、質量%で、Ca:0.004%以下、Zr:0.05%以下、希土類元素:0.05%以下からなる群から選ばれた1種または2種以上を含有する請求項1〜3のいずれかに記載の高張力冷延鋼板。   The chemical composition is one selected from the group consisting of Ca: 0.004% or less, Zr: 0.05% or less, and rare earth elements: 0.05% or less in mass%, instead of a part of Fe. Or the high-tensile cold-rolled steel sheet according to any one of claims 1 to 3, comprising two or more kinds. 下記工程(A)〜(G)の工程を含むことを特徴とする高張力冷延鋼板の製造方法:
(A)請求項1〜4のいずれかに記載の化学組成を有する鋼塊または鋼片に粗熱間圧延を施して粗バーとする粗熱間圧延工程;
(B)前記粗バーを1050℃以上の温度域に1秒間以上保持したのちにデスケーリング処理を施す第1デスケーリング工程;
(C)デスケーリング処理が施された前記粗バーに仕上熱間圧延を施して熱延鋼板とする仕上熱間圧延工程;
(D)前記熱延鋼板を500〜680℃の温度域で巻き取る巻取工程;
(E)前記巻き取られた熱延鋼板を払い出してデスケーリング処理を施す第2デスケーリング工程;
(F)前記デスケーリング処理が施された熱延鋼板に冷間圧延を施すことにより冷延鋼板とする冷間圧延工程;および
(G)前記冷延鋼板を、Ac点以上Ac点以下の温度域で30秒間以上保持したのちに、5℃/秒以上の平均冷却速度で350〜450℃の温度域まで冷却し、前記温度域で30秒間以上保持する連続焼鈍工程。
A method for producing a high-tensile cold-rolled steel sheet comprising the following steps (A) to (G):
(A) A rough hot rolling step in which the steel ingot or steel slab having the chemical composition according to any one of claims 1 to 4 is subjected to rough hot rolling to obtain a rough bar;
(B) a first descaling step of performing a descaling process after holding the coarse bar in a temperature range of 1050 ° C. or more for 1 second or more;
(C) Finishing hot rolling step of subjecting the rough bar subjected to the descaling treatment to finish hot rolling to obtain a hot-rolled steel sheet;
(D) a winding step of winding the hot-rolled steel sheet in a temperature range of 500 to 680 ° C;
(E) a second descaling process in which the wound hot-rolled steel sheet is discharged and subjected to a descaling process;
(F) a cold rolling step in which cold rolling is performed on the hot-rolled steel sheet subjected to the descaling treatment; and (G) the cold-rolled steel sheet is Ac 1 point or more and Ac 3 points or less. A continuous annealing step in which the substrate is cooled to a temperature range of 350 to 450 ° C. at an average cooling rate of 5 ° C./second or more and held for 30 seconds or more in the temperature range.
前記工程(A)において、鋼塊または鋼片を1050℃以上としたのちに粗熱間圧延を施す請求項5に記載の高張力冷延鋼板の製造方法。   The method for producing a high-tensile cold-rolled steel sheet according to claim 5, wherein in the step (A), the steel ingot or the steel slab is heated to 1050 ° C or higher and then subjected to rough hot rolling.
JP2007192321A 2007-07-24 2007-07-24 High tensile cold-rolled steel sheet and method for producing the same Active JP5124865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007192321A JP5124865B2 (en) 2007-07-24 2007-07-24 High tensile cold-rolled steel sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007192321A JP5124865B2 (en) 2007-07-24 2007-07-24 High tensile cold-rolled steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009030081A JP2009030081A (en) 2009-02-12
JP5124865B2 true JP5124865B2 (en) 2013-01-23

Family

ID=40400902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007192321A Active JP5124865B2 (en) 2007-07-24 2007-07-24 High tensile cold-rolled steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP5124865B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101412269B1 (en) 2012-03-29 2014-06-25 현대제철 주식회사 Method for manufacturing high strength cold-rolled steel sheet
KR101828699B1 (en) 2016-09-12 2018-02-12 현대제철 주식회사 Cold-rolled steel sheet for car component and manufacturing method for the same
WO2020058748A1 (en) * 2018-09-20 2020-03-26 Arcelormittal Cold rolled and coated steel sheet and a method of manufacturing thereof
WO2021116741A1 (en) * 2019-12-13 2021-06-17 Arcelormittal Heat treated cold rolled steel sheet and a method of manufacturing thereof
JPWO2022102218A1 (en) * 2020-11-11 2022-05-19

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3317303B2 (en) * 1991-09-17 2002-08-26 住友金属工業株式会社 High tensile strength thin steel sheet with excellent local ductility and its manufacturing method
JP3551878B2 (en) * 2000-01-25 2004-08-11 住友金属工業株式会社 High-ductility, high-hole-expansion high-tensile steel sheet and method for producing the same
JP3772686B2 (en) * 2001-03-28 2006-05-10 住友金属工業株式会社 High-tensile steel plate and manufacturing method thereof
JP4698968B2 (en) * 2004-03-30 2011-06-08 株式会社神戸製鋼所 High-strength cold-rolled steel sheet with excellent coating film adhesion and workability
JP4367300B2 (en) * 2004-09-14 2009-11-18 Jfeスチール株式会社 High-strength cold-rolled steel sheet excellent in ductility and chemical conversion property and method for producing the same

Also Published As

Publication number Publication date
JP2009030081A (en) 2009-02-12

Similar Documents

Publication Publication Date Title
TWI422688B (en) High strength steel sheet having superior ductility and method for manufacturing the same
JP6525114B1 (en) High strength galvanized steel sheet and method of manufacturing the same
JP5194878B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and weldability and method for producing the same
JP4324072B2 (en) Lightweight high strength steel with excellent ductility and its manufacturing method
JP3854506B2 (en) High strength steel plate excellent in weldability, hole expansibility and ductility, and manufacturing method thereof
JP5233346B2 (en) High-strength cold-rolled steel sheet excellent in chemical conversion treatment and post-coating corrosion resistance and method for producing the same
JP3704306B2 (en) Hot-dip galvanized high-strength steel sheet excellent in weldability, hole expansibility and corrosion resistance, and method for producing the same
JP4581665B2 (en) High-strength hot-rolled steel sheet and its manufacturing method
JP2017048412A (en) Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet and production methods therefor
WO2013047760A1 (en) High-strength hot-dip galvanized steel sheet having excellent delayed fracture resistance, and method for producing same
WO2013047821A1 (en) High-strength galvannealed steel sheet of high bake hardenability, high-strength alloyed galvannealed steel sheet, and method for manufacturing same
JP2007162078A (en) High strength steel sheet and production method
KR20070061859A (en) High strength thin steel plate excellent in elongation and bore expanding characteristics and method for production thereof
JP2007009317A (en) High-strength cold-rolled steel sheet having excellent formability for extension flange, hot-dip galvanized steel sheet having the same formability, and method for manufacturing those
WO2012002566A1 (en) High-strength steel sheet with excellent processability and process for producing same
JP2014019928A (en) High strength cold rolled steel sheet and method for producing high strength cold rolled steel sheet
JP2015113504A (en) High strength hot-dip galvanized steel sheet excellent in processability and method for manufacturing the same
WO2015162849A1 (en) High-strength hot-dip galvanized steel sheet, and method for manufacturing high-strength alloyed hot-dip galvanized steel sheet
JP4910898B2 (en) High strength steel plate and manufacturing method thereof
WO2017168958A1 (en) Thin steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing thin steel sheet, and method for producing plated steel sheet
JP2013241636A (en) Low yield ratio type high strength hot dip galvanized steel sheet, low yield ratio type high strength alloying hot dip galvannealed steel sheet, method for manufacturing low yield ratio type high strength hot dip galvanized steel sheet, and method for manufacturing low yield ratio type high strength alloying hot dip galvannealed steel sheet
JP2006265607A (en) High strength cold rolled steel sheet, high strength hot dip galvanized steel sheet, high strength alloyed hot dip galvannealed steel sheet, production method of high strength cold rolled steel sheet, production method of high hot dip galvannealed steel sheet, and production method of high strength alloyed galvannealed steel sheet
JP5124865B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JP6252709B2 (en) High-strength steel sheet for warm working and manufacturing method thereof
JP2003193194A (en) High strength steel sheet having excellent weldability and hole expansibility and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121012

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5124865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350