JP4698968B2 - High-strength cold-rolled steel sheet with excellent coating film adhesion and workability - Google Patents

High-strength cold-rolled steel sheet with excellent coating film adhesion and workability Download PDF

Info

Publication number
JP4698968B2
JP4698968B2 JP2004098520A JP2004098520A JP4698968B2 JP 4698968 B2 JP4698968 B2 JP 4698968B2 JP 2004098520 A JP2004098520 A JP 2004098520A JP 2004098520 A JP2004098520 A JP 2004098520A JP 4698968 B2 JP4698968 B2 JP 4698968B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
oxide
chemical conversion
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004098520A
Other languages
Japanese (ja)
Other versions
JP2005281787A (en
Inventor
良信 大宮
伸二 上妻
学 嘉村
郁郎 橋本
正裕 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004098520A priority Critical patent/JP4698968B2/en
Publication of JP2005281787A publication Critical patent/JP2005281787A/en
Application granted granted Critical
Publication of JP4698968B2 publication Critical patent/JP4698968B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、塗膜密着性と加工性に優れた高強度冷延鋼板に関するものであり、殊に、優れた塗膜密着性を有すると共に、引張強度が550MPa以上で優れた加工性を発揮する自動車部品用鋼板等として最適な冷延鋼板(残留オーステナイト含有鋼板)に関するものである。   The present invention relates to a high-strength cold-rolled steel sheet excellent in coating film adhesion and workability, and in particular, has excellent coating film adhesion and exhibits excellent workability at a tensile strength of 550 MPa or more. The present invention relates to a cold-rolled steel sheet (residual austenite-containing steel sheet) that is optimal as a steel sheet for automobile parts.

自動車の燃費向上や軽量化を背景に鋼材の高強度化が求められており、冷延鋼板の分野でもハイテン化(高硬度化)が進んでいる。一方、冷延鋼板は部品製造時にプレス成形が施されるため、伸び等の延性を十分確保することが前提となる。高強度化を図るには合金元素の添加が有効であるが、該合金元素量の増加に伴い、延性は低下する傾向にある。   Higher strength of steel materials is demanded against the background of improving fuel economy and weight reduction of automobiles, and high tempering (hardening) is also progressing in the field of cold-rolled steel sheets. On the other hand, since cold-rolled steel sheets are press-formed at the time of component production, it is assumed that sufficient ductility such as elongation is secured. Addition of an alloy element is effective for increasing the strength, but the ductility tends to decrease as the amount of the alloy element increases.

しかし上記合金元素の中でも、Siは延性低下の比較的小さい元素であり、延性を確保しつつ高強度化を図るのに有効な元素である。ところがSi含有量が増加すると、化成処理性が劣化して塗装後の塗膜密着性が低下する。そのため化成処理性が重視される場合にはSi含有量の低減を余儀なくされていた。またSi含有量が増加すると、鋼板表面に生成するSi含有粒界酸化物を原因とするクラックが発生し易くなり、これが塗膜密着性を劣化させる要因となっていた。   However, among the above alloy elements, Si is an element having a relatively small ductility reduction, and is an element effective for achieving high strength while ensuring ductility. However, when the Si content is increased, the chemical conversion processability is deteriorated and the coating film adhesion after coating is lowered. For this reason, when the chemical conversion treatment is important, the Si content has to be reduced. Moreover, when Si content increased, it became easy to generate | occur | produce the crack resulting from the Si containing grain-boundary oxide produced | generated on the steel plate surface, and this became a factor which deteriorates coating-film adhesiveness.

これまで機械的特性と化成処理性を両立させる技術としては、クラッド材を鋼板表面に被覆し、鋼板表面に低Si濃度層を設けることで化成処理性を高め、内部の高Si濃度層で機械的特性を確保する技術がある(例えば特許文献1)。しかしクラッド構造としなければならないため、製造工程が複雑になりコストアップにつながるという問題点がある。   Until now, as a technology to achieve both mechanical properties and chemical conversion treatment, the steel sheet surface is coated with a clad material, and a low Si concentration layer is provided on the steel sheet surface to improve chemical conversion treatment. There is a technique for ensuring the target characteristics (for example, Patent Document 1). However, since the clad structure is required, there is a problem that the manufacturing process is complicated and the cost is increased.

また、化成処理性を阻害するSiが表面に濃化しないよう特殊な合金元素を添加する従来技術もある(例えば特許文献2や特許文献3)。この方法では、NiやCuを添加することで鋼板表層へのSi濃化を抑制し、化成処理性を確保している。しかし該方法では、高価なNiやCuを使用するためコストアップを招くという問題がある。   In addition, there is a conventional technique in which a special alloy element is added so that Si that inhibits chemical conversion treatment does not concentrate on the surface (for example, Patent Document 2 and Patent Document 3). In this method, by adding Ni or Cu, concentration of Si on the steel sheet surface layer is suppressed, and chemical conversion processability is ensured. However, this method has a problem that the cost is increased because expensive Ni or Cu is used.

またこれらの方法で用いられている鋼材は、C含有量が0.005%以下と低濃度であり、再結晶温度を規定して集合組織を制御することによって、深絞り性の向上を図ったいわゆるIF鋼板に関するものであるが、この様にC量の非常に少ないIF鋼板で、本発明が意図する様な高強度を達成することは難しい。   Moreover, the steel materials used in these methods have a low C content of 0.005% or less, and the redrawing temperature is regulated to control the texture to improve the deep drawability. Although it relates to a so-called IF steel sheet, it is difficult to achieve a high strength as intended by the present invention with an IF steel sheet having a very small amount of C.

特許文献4では、NbCを析出させ、これをりん酸亜鉛結晶の核生成サイトとして活用することで化成処理性を確保している。しかしこの技術も、0.02%以下の低C濃度域で集合組織を制御することで深絞り性を確保した技術であり、上記IF鋼に比べると若干C濃度は高いものの、強度不足は否めない。   In Patent Document 4, NbC is precipitated, and this is used as a nucleation site for zinc phosphate crystals to ensure chemical conversion treatment. However, this technique is also a technique that secures deep drawability by controlling the texture in a low C concentration range of 0.02% or less. Although the C concentration is slightly higher than the IF steel, the strength is insufficient. Absent.

特許文献5では、表層のSiO/MnSiO比率を規定することで化成処理性を確保した残留オーステナイト含有鋼板が提案されている。この技術では、表層酸化物を制御したりSi/Feの元素比率を制御するため、連続焼鈍後の表面を酸洗またはブラシ処理してSi酸化物を除去するか、またはAc変態点以上の温度で露点を−30℃以上に調整し、Si酸化物の生成量を抑える必要がある。 Patent Document 5 proposes a retained austenite-containing steel sheet that ensures chemical conversion processability by defining the SiO 2 / Mn 2 SiO 4 ratio of the surface layer. In this technique, in order to control the surface layer oxide or to control the element ratio of Si / Fe, the surface after continuous annealing is pickled or brushed to remove the Si oxide, or the Ac 1 transformation point or higher. It is necessary to adjust the dew point to −30 ° C. or higher with temperature to suppress the amount of Si oxide produced.

しかし上記酸洗やブラシ処理を行うと、工程数の増大により製造コストの上昇を招く。また露点制御は、連続焼鈍炉内で行われるが、文献に示された実施例を見る限り、該露点を制御したとしても最表層におけるSiO/MnSiO比率は1.0程度であり、化成処理皮膜結晶の生成を阻害するSiOがMnSiOと同程度生じていることから、化成処理性が十分に改善されているとは言い難い。 However, when the pickling or brush treatment is performed, the manufacturing cost increases due to an increase in the number of steps. Although the dew point control is performed in a continuous annealing furnace, as long as the examples shown in the literature are seen, even if the dew point is controlled, the SiO 2 / Mn 2 SiO 4 ratio in the outermost layer is about 1.0. Further, since SiO 2 that inhibits the formation of the chemical conversion film is generated to the same extent as Mn 2 SiO 4 , it is difficult to say that the chemical conversion property is sufficiently improved.

特許文献6では、XPSで鋼板表面を観察し、酸化物を構成するSiとMnの比(Si/Mn)を1以下に抑えて化成処理性を高める技術が提案されている。   Patent Document 6 proposes a technique for observing the surface of a steel sheet by XPS and suppressing the ratio of Si to Mn (Si / Mn) constituting the oxide to 1 or less to improve chemical conversion property.

Si/Mn比が1以下である鋼として、例えばSi量がほぼゼロの軟鋼やSi量が0.1%以下の鋼板が化成処理性に優れていることは一般に知られている。しかし上述の通り、強度と延性を共に高めるにはSiをある程度含有させる必要があり、Si量を低減してSi/Mn比を1以下にするには限界がある。また適量のSi量を確保しつつMn量を制御してSi/Mn比を1以下にした場合でも、良好な化成処理性を発揮する鋼板が安定して得られるとは限らない。   As steel having a Si / Mn ratio of 1 or less, it is generally known that, for example, mild steel with almost no Si content or steel sheet with an Si content of 0.1% or less has excellent chemical conversion properties. However, as described above, in order to increase both strength and ductility, it is necessary to contain Si to some extent, and there is a limit in reducing the Si amount and making the Si / Mn ratio 1 or less. Even when the Si / Mn ratio is controlled to 1 or less by controlling the amount of Mn while securing an appropriate amount of Si, a steel sheet exhibiting good chemical conversion properties is not always stably obtained.

ところで強度と延性の両特性を同時に高め得る鋼板として、組織中に残留オーステナイト(γ)を生成させ、加工変形中にγが誘起変態(歪み誘起変態:TRIP)することで延性が向上する残留オーステナイト鋼板が知られており、この残留オーステナイトを室温で安定的に存在させる一般的な方法として、Siを約1〜2%含有させる方法と、Siの代わりにAlを約1〜2%含有させる方法がある。 By the way, as a steel sheet capable of simultaneously improving both strength and ductility, the retained austenite (γ R ) is generated in the structure, and γ R undergoes an induced transformation (strain-induced transformation: TRIP) during work deformation, thereby improving the ductility. Residual austenitic steel sheet is known, and as a general method for stably presenting this retained austenite at room temperature, a method of containing about 1-2% of Si and about 1-2% of Al instead of Si There is a way to make it.

上記Siを積極的に含有させる方法では、強度と延性を同時に高めることができるが、鋼板表面にSi系酸化皮膜が生成し易いため化成処理性に劣る。一方、Alを積極的に含有させる方法では、化成処理性の比較的良好な鋼板が得られるが、強度や延性は前記Si含有鋼に劣る。また、Alは強化能を有する元素でないため、強度を高めるにはC、Mnなどの強化元素を多量に添加する必要があり、溶接性等が劣化する原因となる。   In the method of positively containing Si, the strength and ductility can be increased at the same time, but since the Si-based oxide film is easily generated on the steel sheet surface, the chemical conversion treatment property is inferior. On the other hand, in the method of positively containing Al, a steel sheet having relatively good chemical conversion treatment properties can be obtained, but the strength and ductility are inferior to those of the Si-containing steel. Further, since Al is not an element having strengthening ability, it is necessary to add a large amount of strengthening elements such as C and Mn in order to increase the strength, which causes deterioration of weldability and the like.

また機械的特性を向上させる観点から、SiとAlをどちらも積極的に添加した残留オーステナイト含有鋼板が提案されている(例えば特許文献7)。しかし該鋼板も、多量に添加されたSiに起因して鋼板表面にSi系酸化皮膜が生成し易く、化成処理性に劣るものと考えられる。
特開平5−78752号公報 特許第2951480号公報 特許第3266328号公報 特許第3049147号公報 特開2003−201538号公報 特開平4−276060号公報 特開平5−117761号公報
Further, from the viewpoint of improving mechanical properties, a retained austenite-containing steel sheet in which both Si and Al are positively added has been proposed (for example, Patent Document 7). However, this steel plate is also considered to be inferior in chemical conversion treatment property because a Si-based oxide film is easily generated on the surface of the steel plate due to Si added in a large amount.
Japanese Patent Laid-Open No. 5-78752 Japanese Patent No. 2951480 Japanese Patent No. 3266328 Japanese Patent No. 3049147 JP 2003-201538 A JP-A-4-276060 Japanese Patent Laid-Open No. 5-117761

本発明は上記事情に鑑みてなされたものであって、その目的は、優れた塗膜密着性を有すると共に、引張強度が550MPa以上で優れた加工性を発揮する冷延鋼板を提供することにある。   The present invention has been made in view of the above circumstances, and its object is to provide a cold-rolled steel sheet having excellent coating film adhesion and exhibiting excellent workability at a tensile strength of 550 MPa or more. is there.

本発明に係る高強度冷延鋼板とは、質量%で(化学成分について以下同じ)、C:1%以下(0%を含まない)、Si:0.1〜2%、Al:0.01〜3%、Si+Al:1〜4%、Mn:1〜6%、Si/Mn≦0.4を満たし、
金属組織が、占積率で(金属組織について以下同じ)、フェライトとベイナイトの合計量:75%以上、フェライト:5〜80%、ベイナイト:5〜80%、残留オーステナイト:5%以上を満たす複合組織鋼板であって、
引張強度が550MPa以上で、かつ引張強度(TS:単位MPa)と伸び(El:単位%)が上記式(1)を満たすと共に、
(I)鋼板表面(平面視する場合をいう)において、MnとSiの原子比(Mn/Si)が0.5以上である長径0.01μm以上5μm以下のMn−Si複合酸化物が10個/100μm以上存在し、かつSiを主体とする酸化物の鋼板表面被覆率が10%以下であるところに特徴を有する(以下「本発明鋼板1」ということがある)。
TS×El≧19000 …(1)
尚、上記Siを主体とする酸化物とは、酸化物を構成する酸素以外の元素のうちSiが原子比で67%超を占めるものをいう。また当該酸化物は、分析の結果、非晶質であると考えられる。
The high-strength cold-rolled steel sheet according to the present invention is expressed by mass% (the same applies to chemical components below), C: 1% or less (not including 0%), Si: 0.1 to 2%, Al: 0.01 -3%, Si + Al: 1-4%, Mn: 1-6%, satisfying Si / Mn ≦ 0.4,
Composite in which the metal structure satisfies the space factor (the same applies to the metal structure hereinafter), the total amount of ferrite and bainite: 75% or more, ferrite: 5-80%, bainite: 5-80%, residual austenite: 5% or more A structured steel plate,
The tensile strength is 550 MPa or more, and the tensile strength (TS: unit MPa) and elongation (El: unit%) satisfy the above formula (1),
(I) 10 Mn—Si composite oxides having a major axis of 0.01 μm or more and 5 μm or less with an atomic ratio (Mn / Si) of Mn and Si of 0.5 or more on the surface of the steel sheet (when viewed in plan) / 100 μm 2 or more, and the feature is that the steel sheet surface coverage of the oxide mainly composed of Si is 10% or less (hereinafter sometimes referred to as “the steel sheet 1 of the present invention”).
TS × El ≧ 19000 (1)
The oxide mainly composed of Si refers to an element other than oxygen constituting the oxide in which Si accounts for more than 67% by atomic ratio. Further, the oxide is considered to be amorphous as a result of analysis.

Siを主体とする酸化物の鋼板表面被覆率は、後述する実施例で示す通り、抽出レプリカ法で処理したサンプルをTEM(transmission electron microscope)で観察し、EDX(Energy Dispersive X-ray)分析でSi、O(酸素)、Mn、Feのマッピングおよび定量分析を行い、このデータを用いて画像解析法により求めた。尚、抽出レプリカのTEM観察が煩雑であれば、AES(auger electron spectroscopy)を用いて倍率:2000〜5000倍でSi、O、MnおよびFeについて表面マッピングを行い、そのデータを画像解析してもよい。   As shown in the examples to be described later, the surface coverage of the oxide mainly composed of Si is obtained by observing a sample processed by the extraction replica method with a transmission electron microscope (TEM) and analyzing with an EDX (Energy Dispersive X-ray) analysis. Mapping and quantitative analysis of Si, O (oxygen), Mn, and Fe were performed, and the data was obtained by an image analysis method. If TEM observation of the extracted replica is complicated, surface mapping is performed on Si, O, Mn, and Fe at a magnification of 2000 to 5000 using AES (auger electron spectroscopy), and the data is subjected to image analysis. Good.

上記課題を解決し得た本発明の別の鋼板は、C:1%以下(0%を含まない)、
Si:0.1〜2%、Al:0.01〜3%、Si+Al:1〜4%、Mn:1〜6%を満たし、
金属組織が、フェライトとベイナイトの合計量:75%以上、フェライト:5〜80%、ベイナイト:5〜80%、残留オーステナイト:5%以上を満たす複合組織鋼板であって、
引張強度が550MPa以上で、かつ引張強度(TS:単位MPa)と伸び(El:単位%)が上記式(1)を満たすと共に、
(II)SEM(scanning electron microscope)を用いて2000倍で鋼板表面近傍の断面を観察したときに、任意の10視野において幅3μm以下で深さ5μm以上のクラックが存在しないところに特徴を有している(以下「本発明鋼板2」ということがある)。
Another steel plate of the present invention that has solved the above problems is C: 1% or less (excluding 0%),
Si: 0.1 to 2%, Al: 0.01 to 3%, Si + Al: 1 to 4%, Mn: 1 to 6%,
A metallographic structure steel sheet satisfying a total amount of ferrite and bainite: 75% or more, ferrite: 5 to 80%, bainite: 5 to 80%, residual austenite: 5% or more,
The tensile strength is 550 MPa or more, and the tensile strength (TS: unit MPa) and elongation (El: unit%) satisfy the above formula (1),
(II) When a cross section near the surface of the steel sheet is observed at a magnification of 2000 using a scanning electron microscope (SEM), it is characterized in that there are no cracks with a width of 3 μm or less and a depth of 5 μm or more in any 10 fields of view. (Hereinafter sometimes referred to as “the present steel plate 2”).

尚、上記クラックの幅および深さとは、SEM(日立製作所製 S−4500)を用いて2000倍で鋼板断面の表面近傍を観察したときの、図1(鋼板断面概略図)に示す部分をいうものとする。   The width and depth of the cracks refer to the portion shown in FIG. 1 (schematic cross section of steel plate) when the vicinity of the surface of the steel plate cross section is observed at 2000 times using SEM (S-4500 manufactured by Hitachi, Ltd.). Shall.

上記課題を解決し得た本発明の更に別の鋼板は、C:1%以下(0%を含まない)、Si:0.1〜2%、Al:0.01〜3%、Si+Al:1〜4%、Mn:1〜6%、Si/Mn≦0.4を満たし、
金属組織が、フェライトとベイナイトの合計量:75%以上、フェライト:5〜80%、ベイナイト:5〜80%、残留オーステナイト:5%以上を満たす複合組織鋼板であって、
引張強度が550MPa以上で、かつ引張強度(TS:単位MPa)と伸び(El:単位%)が上記式(1)を満たすと共に、上記要件(I)および(II)を満たすところに特徴を有している(以下「本発明鋼板3」ということがある)。
Still another steel sheet of the present invention that can solve the above problems is C: 1% or less (not including 0%), Si: 0.1-2%, Al: 0.01-3%, Si + Al: 1 -4%, Mn: 1-6%, satisfying Si / Mn ≦ 0.4,
A metallographic structure steel sheet satisfying a total amount of ferrite and bainite: 75% or more, ferrite: 5 to 80%, bainite: 5 to 80%, residual austenite: 5% or more,
It is characterized in that the tensile strength is 550 MPa or more, and the tensile strength (TS: unit MPa) and elongation (El: unit%) satisfy the above formula (1) and the above requirements (I) and (II). (Hereinafter sometimes referred to as “the present steel plate 3”).

本発明によれば、優れた塗膜密着性を発揮すると共に、引張強度が550MPa以上で優れた加工性を発揮する自動車用に最適な鋼板を、クラッドを構成したり高価な元素を添加することなく効率良く実現できる。   According to the present invention, a steel plate optimal for automobiles exhibiting excellent coating film adhesion and exhibiting excellent workability at a tensile strength of 550 MPa or more is constituted by a cladding or adding an expensive element. Can be realized efficiently.

塗膜密着性と加工性に優れた引張強度が550MPa以上の鋼板を得るべく検討したところ、特に、優れた塗膜密着性を確保するには、下記要件(I)および/または(II)を満足させればよいことを見出し本発明に想到した。更にこれらの要件を満足させると共に、550MPa以上の引張強度において優れた加工性を確保するための成分組成や製造条件についても検討を行った。   In order to obtain a steel sheet having an excellent coating film adhesion and workability and a tensile strength of 550 MPa or more, the following requirements (I) and / or (II) are particularly required to ensure excellent coating film adhesion: The present inventors have found that it should be satisfied and have come up with the present invention. Furthermore, while satisfying these requirements, the component composition and manufacturing conditions for ensuring excellent workability at a tensile strength of 550 MPa or more were also examined.

(I)鋼板表面(平面視する場合をいう)において、
(i)MnとSiの原子比(Mn/Si)が0.5以上である長径0.01μm以上5μm以下のMn−Si複合酸化物を10個/100μm以上存在させ、かつ
(ii)Siを主体とする酸化物(酸化物を構成する酸素以外の元素のうちSiが原子比で67%超を占める酸化物)の鋼板表面被覆率を10%以下とする。
(II)SEMを用いて2000倍で鋼板表面近傍の断面を観察したときに、任意の10視野において、幅3μm以下で深さ5μm以上のクラックが存在しないようにする。
(I) On the steel plate surface (when viewed in plan)
(i) Mn—Si composite oxide having a major axis of 0.01 μm or more and 5 μm or less having an atomic ratio (Mn / Si) of Mn to Si of 0.5 or more is present at 10 pieces / 100 μm 2 or more, and
(ii) The steel sheet surface coverage of an oxide mainly composed of Si (an oxide other than oxygen constituting the oxide in which Si accounts for more than 67% by atomic ratio) is set to 10% or less.
(II) When observing a cross section in the vicinity of the steel sheet surface at a magnification of 2000 using an SEM, no cracks having a width of 3 μm or less and a depth of 5 μm or more are present in any 10 visual fields.

以下、まず上記要件(I),(II)を規定した理由について詳述する。   The reason why the requirements (I) and (II) are specified will be described in detail below.

<鋼板表面におけるMnとSiの原子比(Mn/Si)が0.5以上である長径0.01〜5μmのMn−Si複合酸化物:10個/100μm以上>
本発明者らは、塗膜密着性に優れた高強度鋼板を得るべく以前から研究を進めており、Siを比較的多く含む鋼板の化成処理性向上技術について、既に提案している(特願2003−106152号)。この技術は、焼鈍雰囲気を制御することで、化成処理性に悪影響を及ぼす非晶質のSi酸化物を細かく分散させることにより化成処理性の向上を図ったものである。しかしSi濃度の比較的低い領域では、主な酸化物として、非晶質のSi酸化物ではなくMn−Si複合酸化物が生成する。この複合酸化物も、非晶質のSi酸化物と同様に塗膜密着性を低下させると考えられる。そこで、該Mn−Si複合酸化物を化成処理性の向上に積極的に活用することはできないかと考え、その線に沿って研究を進めてきた。
<Mn-Si composite oxide having a major axis of 0.01 to 5 μm with an atomic ratio of Mn to Si (Mn / Si) of 0.5 or more on the steel sheet surface: 10/100 μm 2 or more>
The present inventors have been researching for a long time to obtain a high-strength steel sheet excellent in coating film adhesion, and have already proposed a chemical conversion treatment improving technique for a steel sheet containing a relatively large amount of Si (Japanese Patent Application). 2003-106152). This technique aims to improve chemical conversion treatment by finely dispersing amorphous Si oxide that adversely affects chemical conversion treatment by controlling the annealing atmosphere. However, in the region where the Si concentration is relatively low, not the amorphous Si oxide but the Mn—Si composite oxide is generated as the main oxide. This composite oxide is also considered to reduce the adhesion of the coating film in the same manner as the amorphous Si oxide. Therefore, the Mn—Si composite oxide is considered to be actively used for improving chemical conversion treatment, and research has been advanced along that line.

その結果、鋼板表層部に形成される鉄系酸化物基地中に、該Mn−Si複合酸化物を微細分散させて、後述する通り、りん酸亜鉛結晶の核生成サイトとして作用する「酸化物界面の電気化学的不均一場」を形成することで、化成処理性を高めることができた。本発明で規定するMn−Si複合酸化物が、りん酸亜鉛結晶の生成核に有効である理由は明確ではないが、次の様に考えられる。   As a result, the Mn-Si composite oxide is finely dispersed in the iron-based oxide matrix formed on the surface layer portion of the steel sheet, and as described later, the “oxide interface that acts as a nucleation site for zinc phosphate crystals. The chemical conversion processability could be improved by forming an "electrochemical heterogeneous field". The reason why the Mn—Si composite oxide defined in the present invention is effective for the nuclei of zinc phosphate crystals is not clear, but is considered as follows.

化成処理工程において、りん酸亜鉛結晶は、例えば結晶粒界や予め表面調整処理時に鋼板表面に付着させたTiコロイド周辺などに形成される「電気化学的不均一場」に生成し易いことが知られている。そして本発明においても、Mn−Si複合酸化物の周辺に電気化学的な不均一場が形成されることで、化成処理時にりん酸亜鉛結晶が付着しやすくなり良好な化成処理性が発揮されるものと考えられる。   In the chemical conversion treatment process, it is known that zinc phosphate crystals are likely to be generated in the “electrochemical inhomogeneous field” formed around the grain boundaries and around the Ti colloid previously deposited on the steel plate surface during the surface conditioning treatment. It has been. Also in the present invention, an electrochemical heterogeneous field is formed around the Mn-Si composite oxide, so that zinc phosphate crystals are easily attached during chemical conversion treatment, and good chemical conversion treatment performance is exhibited. It is considered a thing.

化成処理後のりん酸亜鉛結晶は、塗膜密着性の観点から数μm以下であることが好ましいとされている。よって上述の電気化学的不均一場も、数μmオーダーまたはそれ以下であることが望ましいと考えられる。そこでMnとSiの原子比(Mn/Si)が0.5以上である長径0.01μm以上5μm以下のMn−Si複合酸化物を100μmに10個以上存在させて(平均して10μmに1個以上存在させて)、該複合酸化物粒子の平均粒子間隔が数μmとなるようにし、上記サイズの電気化学的不均一場が形成されやすい状態とした。 It is said that the zinc phosphate crystal after the chemical conversion treatment is preferably several μm or less from the viewpoint of coating film adhesion. Therefore, it is considered that the above-mentioned electrochemical non-uniform field is desirably on the order of several μm or less. Therefore, 10 or more Mn—Si composite oxides having a major axis of 0.01 μm or more and 5 μm or less having an atomic ratio of Mn to Si (Mn / Si) of 0.5 or more are present in 100 μm 2 (on average 10 μm 2) . One or more particles were present), and the average particle spacing of the composite oxide particles was set to several μm so that an electrochemical heterogeneous field having the above size was easily formed.

尚、存在する全てのMn−Si複合酸化物において、電気化学的不均一場が有効に形成されるとは限らないので、好ましくは100μmあたり50個以上、より好ましくは100個以上、さらに好ましくは150個以上の上記Mn−Si複合酸化物を存在させるのがよい。該Mn−Si複合酸化物としては、例えばMnSiOが挙げられ、鋼中Al含有量が高い場合には、Alを含むMn−Si−Al複合酸化物の形態を取る場合もある。また観察できるMn−Si複合酸化物のサイズは、50nm程度が限界であると思われる。 Note that, in all the Mn—Si composite oxides present, the electrochemical heterogeneous field is not necessarily formed effectively, so preferably 50 or more per 100 μm 2 , more preferably 100 or more, even more preferably. It is preferable that 150 or more of the above Mn—Si composite oxide exist. Examples of the Mn—Si composite oxide include Mn 2 SiO 4. When the Al content in the steel is high, the Mn—Si composite oxide may take the form of a Mn—Si—Al composite oxide containing Al. The size of the Mn—Si composite oxide that can be observed seems to be about 50 nm.

<Siを主体とする酸化物の鋼板表面被覆率:10%以下>
りん酸亜鉛結晶の生成核として有効なMn−Si複合酸化物を適量存在させても、化成処理を阻害するその他の物質が存在すれば、優れた化成処理性は発揮されず、結果として塗膜密着性に劣るものとなる。
<Stainless steel sheet surface coverage of oxide mainly composed of Si: 10% or less>
Even if an appropriate amount of a Mn-Si composite oxide effective as a zinc phosphate crystal nucleus is present, if there is another substance that inhibits the chemical conversion treatment, the excellent chemical conversion treatment performance will not be exhibited. It becomes inferior to adhesiveness.

上述した様に、Siを主体とする酸化物(酸化物を構成する酸素以外の元素のうちSiが原子比で67%超を占める酸化物)が鋼板表面に存在すると、当該部位には、りん酸亜鉛結晶が生成せず化成処理性が著しく低下する。そこで、Siを主体とする酸化物の鋼板表面被覆率を10%以下とした。   As described above, when an oxide mainly composed of Si (an oxide other than oxygen constituting the oxide in which Si accounts for more than 67% by atomic ratio) is present on the surface of the steel sheet, the region contains phosphorus. Zinc acid crystals are not formed, and the chemical conversion treatment performance is significantly reduced. Therefore, the steel sheet surface coverage of the oxide mainly composed of Si is set to 10% or less.

尚、本発明者らは、上述の通りSiを主体とする酸化物を細かく分散させて化成処理性を高める技術を提案しているが、Mn−Si複合酸化物の前記作用を活用する本発明においては、Siを主体とする酸化物を極力存在させない方が好ましいことがわかった。よってSiを主体とする酸化物の鋼板表面被覆率は、5%以下に抑えることがより好ましく、最も好ましくは0%である。   The inventors of the present invention have proposed a technique for finely dispersing an oxide mainly composed of Si as described above to improve the chemical conversion treatment property. However, the present invention utilizes the above-described action of the Mn—Si composite oxide. In the above, it was found that it is preferable that an oxide mainly composed of Si is not present as much as possible. Therefore, the steel sheet surface coverage of the oxide mainly composed of Si is more preferably suppressed to 5% or less, and most preferably 0%.

<SEMを用いて2000倍で鋼板表面近傍の断面を観察したときに、任意の10視野において、幅3μm以下で深さ5μm以上のクラックが存在しないこと>
鋼板表面に鋭利なクラックが存在すると、化成処理時に当該部位にりん酸亜鉛結晶が付着せず、その結果、当該部位の腐食が進行しやすくなり、塗膜密着性が低下すると考えられる。つまり塗膜密着性を高めるには、りん酸亜鉛結晶の付着しない鋭利なクラックを極力抑制することが重要となる。
<When observing a cross section near the steel sheet surface at 2000 times using SEM, there should be no cracks with a width of 3 μm or less and a depth of 5 μm or more in any 10 fields of view>
If sharp cracks are present on the surface of the steel plate, it is considered that zinc phosphate crystals do not adhere to the site during the chemical conversion treatment, and as a result, corrosion of the site is likely to proceed, resulting in a decrease in coating film adhesion. That is, in order to improve the adhesion of the coating film, it is important to suppress as much as possible sharp cracks to which zinc phosphate crystals do not adhere.

本発明者らは、既に、Siと酸素を含む線状化合物(幅300nm以下)の存在深さを10μm以下にすることで塗膜密着性を高める技術を提案している。該技術では、連続焼鈍後に酸洗を施さないことを前提としているが、鋼板にはむしろ連続焼鈍後に酸洗を施す場合の方が多く、その場合には、線状酸化物が除去されてクラックが生じる。   The present inventors have already proposed a technique for improving the adhesion of a coating film by setting the existing depth of a linear compound (width: 300 nm or less) containing Si and oxygen to 10 μm or less. In this technique, it is assumed that pickling is not performed after continuous annealing, but the steel sheet is more often subjected to pickling after continuous annealing, in which case, the linear oxide is removed and cracks occur. Occurs.

クラック深さと線状酸化物の定量的な関係は明確でないが、線状酸化物が、上記の通り酸溶解されるか、又は機械的に脱落してクラックが生じると考えられ、上記線状酸化物が除去されたあとも、酸等によりクラック部分の溶解が進むので、線状酸化物の存在深さよりも該酸化物の除去後に形成されるクラックの方が深いと考えられる。   Although the quantitative relationship between the crack depth and the linear oxide is not clear, it is considered that the linear oxide is dissolved in the acid as described above, or mechanically dropped to cause cracks, and the linear oxidation described above. It is considered that cracks formed after removal of the oxide are deeper than the existence depth of the linear oxide because dissolution of the crack portion proceeds by acid or the like even after the material is removed.

そこで本発明では、上記提案済の技術のように線状酸化物の存在深さを規定するよりも、クラックを制御する方が塗膜密着性をより確実に高めることができると考え、制御すべきクラックの形態について調べたところ、クラックの幅が、りん酸亜鉛結晶粒径と同程度かそれ以下であると、該クラックにりん酸亜鉛結晶が付着し難く、また、特に深さが5μm以上のクラックにはりん酸亜鉛結晶が付着し難いことから、幅3μm以下でかつ深さが5μm以上のクラックを抑制の対象とした。   Therefore, in the present invention, it is considered that controlling the cracks can more reliably improve the adhesion of the coating film than controlling the depth of existence of the linear oxide as in the proposed technique. When the shape of the power crack was examined, if the crack width was the same as or smaller than the zinc phosphate crystal grain size, it was difficult for the zinc phosphate crystal to adhere to the crack, and the depth was particularly 5 μm or more. Since zinc phosphate crystals are difficult to adhere to the cracks, cracks having a width of 3 μm or less and a depth of 5 μm or more were targeted for suppression.

そして上記クラックが、SEMを用いて2000倍で鋼板表面近傍の断面を観察したときに、任意の10視野において存在しないことを要件とした。   And when the said crack observed the cross section near the steel plate surface by 2000 times using SEM, it made it a requirement that it did not exist in arbitrary 10 visual fields.

本発明では、上記Mn−Si複合酸化物を効率良く析出させると共に規定するクラックを抑制し、また高強度鋼板としての特性を備えるため化学成分を下記の通り規定した。   In the present invention, the chemical components are defined as follows in order to efficiently precipitate the Mn—Si composite oxide and to suppress the specified cracks and to provide the characteristics as a high-strength steel sheet.

<Si(質量%)/Mn(質量%)≦0.4>
上述の通り、Siを主体とする酸化物は、化成処理性に悪影響を及ぼすため、該酸化物を細かく分散させるよりも極力抑制する方が好ましい。そこで本発明者らは、鋼中Si含有量(質量%)と鋼中Mn含有量の比率(Si/Mn)を0.4以下とすることで、Siを主体とする酸化物を抑制し、化成処理性を高めることとした。Si/Mnは好ましくは0.3以下である。
<Si (mass%) / Mn (mass%) ≦ 0.4>
As described above, since an oxide mainly composed of Si adversely affects chemical conversion properties, it is preferable to suppress it as much as possible rather than finely dispersing the oxide. Therefore, the inventors suppress the oxide mainly composed of Si by setting the ratio of Si content (mass%) in steel to Mn content in steel (Si / Mn) to 0.4 or less, The chemical conversion processability was improved. Si / Mn is preferably 0.3 or less.

<C:1%以下(0%を含まない)>
Cは強度確保に必要な元素であり、0.05%以上含有させるのが好ましいが、過剰に存在すると溶接性が低下する。よってC含有量は1%以下に抑える。好ましくは0.23%以下、更に好ましくは0.18%以下である。
<C: 1% or less (excluding 0%)>
C is an element necessary for ensuring the strength, and is preferably contained in an amount of 0.05% or more, but if it exists in excess, weldability is lowered. Therefore, C content is suppressed to 1% or less. Preferably it is 0.23% or less, More preferably, it is 0.18% or less.

<Si:0.1〜2%>
Siは、オーステナイトへのC濃縮を促進させ、室温でオーステナイトを残留させて優れた強度−延性バランスを確保するのに有効な元素である。この様な効果を十分に発揮させるには、Siを0.1%以上、好ましくは0.5%以上含有させる。一方、Si含有量が過剰になると、固溶強化作用が過大となって圧延負荷が増大するため2%以下に抑える。好ましくは1.5%以下である。
<Si: 0.1 to 2%>
Si is an element effective to promote C concentration to austenite and to retain austenite at room temperature to ensure an excellent strength-ductility balance. In order to sufficiently exhibit such an effect, Si is contained in an amount of 0.1% or more, preferably 0.5% or more. On the other hand, if the Si content is excessive, the solid solution strengthening action becomes excessive and the rolling load increases, so the content is suppressed to 2% or less. Preferably it is 1.5% or less.

<Al:0.01〜3%>
Alは、脱酸作用を有する元素であり、Al脱酸を行う場合にAl含有量が0.01%未満だと溶鋼段階で十分な脱酸ができず、余剰の酸素が、MnO、SiO等の酸化物系介在物として鋼中に多量に存在し、局部的な加工性の低下を引き起こす可能性がある。またAlは、Siと同様にオーステナイトへのC濃縮を促進させ、室温でオーステナイトを残留させて、優れた強度−延性バランスを確保するのに有効な元素であり、この様な効果を発揮させる観点からも0.01%以上のAlを含有させるのがよい。好ましくは0.2%以上である。一方、Al含有量が過剰になると、残留オーステナイト確保の効果が飽和するだけでなく、鋼の脆化やコストアップを招くので、3%以下(好ましくは2%以下)に抑える。
<Al: 0.01 to 3%>
Al is an element having a deoxidizing action. When Al deoxidation is performed, if the Al content is less than 0.01%, sufficient deoxidation cannot be performed at the molten steel stage, and excess oxygen is added to MnO, SiO 2. As oxide inclusions such as these, they are present in large amounts in steel and may cause local workability degradation. In addition, Al is an element effective for promoting C concentration to austenite and retaining austenite at room temperature to ensure an excellent strength-ductility balance, similar to Si. Therefore, it is preferable to contain 0.01% or more of Al. Preferably it is 0.2% or more. On the other hand, when the Al content is excessive, not only the effect of securing retained austenite is saturated, but also the steel becomes brittle and the cost is increased, so it is suppressed to 3% or less (preferably 2% or less).

<Si+Al:1〜4%>
残留オーステナイトを十分に確保して優れた加工性を安定的に発揮させるには、SiとAlを合計で1%以上(好ましくは合計で1.2%以上)含有させるのがよい。しかしSiとAlが過剰に存在しても、鋼自体が脆化しやすくなるので合計で4%以下(好ましくは3%以下)に抑える。
<Si + Al: 1-4%>
In order to sufficiently secure the retained austenite and exhibit excellent workability stably, it is preferable to contain Si and Al in total of 1% or more (preferably 1.2% or more in total). However, even if Si and Al are present in excess, the steel itself is likely to become brittle, so the total is suppressed to 4% or less (preferably 3% or less).

<Mn:1〜6%>
Mnは強度確保に必要な元素であり、また残留オーステナイトを確保して加工性を高めるのにも有効な元素である。このような効果を発揮させるため1%以上、好ましくは1.3%以上含有させる。しかし過剰になると延性と溶接性が共に劣化するため、6%以下、好ましくは3%以下に抑える。
<Mn: 1 to 6%>
Mn is an element necessary for securing strength, and is also an element effective for securing retained austenite and improving workability. In order to exhibit such an effect, it is contained 1% or more, preferably 1.3% or more. However, if it is excessive, both ductility and weldability deteriorate, so it is limited to 6% or less, preferably 3% or less.

本発明で規定する含有元素は上記の通りであり、残部成分は実質的にFeであるが、鋼中に、原料、資材、製造設備等の状況によって持ち込まれる元素として0.01%以下のN(窒素)、0.01%以下のO(酸素)等の不可避不純物が含まれることが許容されるのは勿論のこと、前記本発明の作用に悪影響を与えない範囲で、更に他の元素としてCr、Mo、Ti、Nb、V、P、Bを積極的に含有させることも可能である。   The contained elements specified in the present invention are as described above, and the remaining component is substantially Fe, but N is 0.01% or less as an element to be brought into the steel depending on the situation of raw materials, materials, manufacturing equipment, etc. (Nitrogen), and inevitable impurities such as O (oxygen) of 0.01% or less are allowed to be included, as well as other elements as long as they do not adversely affect the operation of the present invention. It is also possible to positively contain Cr, Mo, Ti, Nb, V, P, and B.

即ちCr、Mo、Ti、Nb、V、P、Bは、鋼板の強度を高める観点から添加してもよく、それぞれCr:0.01%以上、Mo:0.01%以上、Ti:0.005%以上、Nb:0.005%以上、V:0.0005%以上、P:0.005%以上、B:0.0003%以上含有させてもよいが、過剰に添加すると加工性の低下を招くため、Cr、Moはそれぞれ1%以下、Ti、Nb、P、Vはそれぞれ0.1%以下、Bは0.01%以下に抑えることが好ましい。   That is, Cr, Mo, Ti, Nb, V, P, and B may be added from the viewpoint of increasing the strength of the steel sheet, and Cr: 0.01% or more, Mo: 0.01% or more, Ti: 0.0. 005% or more, Nb: 0.005% or more, V: 0.0005% or more, P: 0.005% or more, B: 0.0003% or more. Therefore, Cr and Mo are preferably 1% or less, Ti, Nb, P and V are each 0.1% or less, and B is preferably 0.01% or less.

本発明は、鋼板の母相組織がフェライトとベイナイトであり、かつ該組織中に残留オーステナイト(γ)が存在し、加工変形中に該γが誘起変態(歪み誘起変態:TRIP)することで、優れた延性を示す所謂TRIP鋼板を対象とするものである。 In the present invention, the parent phase structure of the steel sheet is ferrite and bainite, and retained austenite (γ R ) exists in the structure, and the γ R undergoes an induced transformation (strain-induced transformation: TRIP) during work deformation. Thus, it is intended for a so-called TRIP steel sheet exhibiting excellent ductility.

フェライトとベイナイトの合計量は75%以上であり、好ましくは80%以上であるが、その上限は、後記する残留オーステナイト量とのバランスによって制御され、所望の高い加工性が得られる様、適切に調整することが推奨される。尚、本発明における「フェライト」とは、ポリゴナルフェライト、即ち、転位密度の少ないフェライトを意味する。上記母相組織のうち、フェライトは延性確保に寄与する組織であり、またベイナイトは強度確保に寄与する組織であり、強度と延性の観点からこれらを適切な面積比率に保つ必要があり、いずれかが多過ぎても少な過ぎても好ましくない。よって、フェライトおよびベイナイトはそれぞれ5〜80%の範囲内とする。好ましくはフェライトを30%以上とするのがよく、またベイナイトの上限を50%とすることが好ましい。   The total amount of ferrite and bainite is 75% or more, preferably 80% or more, but the upper limit is controlled by a balance with the amount of retained austenite to be described later, so that the desired high workability can be obtained. It is recommended to adjust. The “ferrite” in the present invention means polygonal ferrite, that is, ferrite having a low dislocation density. Of the above matrix structure, ferrite is a structure that contributes to securing ductility, and bainite is a structure that contributes to securing strength, and it is necessary to maintain these in an appropriate area ratio from the viewpoint of strength and ductility. Too much or too little is not preferable. Accordingly, ferrite and bainite are each in the range of 5 to 80%. Preferably, ferrite should be 30% or more, and the upper limit of bainite is preferably 50%.

また上述の通り、本発明の鋼板は、優れた延性を発揮させるべく残留オーステナイトを5%以上、好ましくは7%以上含むものである。一方、残留オーステナイトが過剰に存在すると、遅れ破壊などに代表される水素脆性に対する感受性が高くなるので、25%以下に抑えるのが好ましい。   Further, as described above, the steel sheet of the present invention contains 5% or more, preferably 7% or more of retained austenite in order to exhibit excellent ductility. On the other hand, when the residual austenite is excessively present, the sensitivity to hydrogen embrittlement represented by delayed fracture increases, so it is preferable to keep it to 25% or less.

上記組織のみ(即ち、フェライト、ベイナイトおよび残留オーステナイト)からなるものの他、本発明の製造過程で必然的に残存し得るマルテンサイトが、本発明の作用を損なわない範囲で含まれる場合もある。しかし、該マルテンサイトは占積率で5%以下に抑えるのがよい。   In addition to the above-described structure (that is, ferrite, bainite, and retained austenite), martensite that may inevitably remain in the production process of the present invention may be included within a range that does not impair the function of the present invention. However, the martensite is preferably suppressed to 5% or less in terms of space factor.

本発明の鋼板は、前記基本成分を満たす鋼板であって、前記金属組織を有し、かつ特性として、
・引張強度が550MPa以上(特に、590MPa以上)でかつ、
・引張強度(TS:単位MPa)と伸び(El:単位%)が下記式(1)を満足する。下記式(1)の右辺が特に21000以上であるものは、強度と加工性のバランスに優れており好ましい。
TS×El≧ 19000 …(1)
化成処理性を高めるべく、上記要件(I)として規定する通り鋼板表面に析出する酸化物の形態を制御するには、成分組成を満足させる他、製造工程において、熱間圧延後に、液温が70〜90℃で5〜16質量%の塩酸に40秒間以上(好ましくは60秒間以上)浸漬し、かつ連続焼鈍時の露点を−40℃以下(好ましくは−45℃以下)に抑えることが有効である。尚、塩酸への浸漬時間は、塩酸浴が複数設置され、断続的に浸漬する場合には、浸漬時間の合計が40秒間以上であればよい。
The steel plate of the present invention is a steel plate satisfying the basic components, has the metal structure, and as a characteristic,
-Tensile strength is 550 MPa or more (particularly 590 MPa or more), and
-Tensile strength (TS: unit MPa) and elongation (El: unit%) satisfy the following formula (1). Those in which the right side of the following formula (1) is 21,000 or more are particularly preferable because of excellent balance between strength and workability.
TS × El ≧ 19000 (1)
In order to enhance the chemical conversion treatment property, in order to control the form of the oxide deposited on the steel sheet surface as specified in the above requirement (I), in addition to satisfying the component composition, in the production process, after the hot rolling, the liquid temperature is It is effective to immerse in 5 to 16 mass% hydrochloric acid at 70 to 90 ° C. for 40 seconds or more (preferably 60 seconds or more) and to suppress the dew point during continuous annealing to −40 ° C. or less (preferably −45 ° C. or less). It is. In addition, as for the immersion time in hydrochloric acid, when a plurality of hydrochloric acid baths are installed and intermittent immersion is performed, the total immersion time may be 40 seconds or more.

また上記要件(II)として規定する通り、クラックを発生させないようにするには、成分組成を満足させる他、製造工程において、熱間圧延の巻き取り温度を500℃以下(好ましくは480℃以下)とし、かつ熱間圧延後、液温が70〜90℃で5〜16質量%の塩酸に40秒間以上(好ましくは60秒間以上)浸漬し、かつ連続焼鈍時の露点を−40℃以下(好ましくは−45℃以下)とし、更に連続焼鈍時の冷却方法として、水を使用しないGJ(ガス吹き付けによる冷却)かRQ(水冷ロール抜熱による冷却)を採用するか、ミスト冷却の場合には、鋼板温度が550℃以下(好ましくは450℃以下)である状態から、該ミスト冷却を行うようにすることが有効である。   Further, as specified in the above requirement (II), in order not to generate cracks, in addition to satisfying the component composition, in the manufacturing process, the hot rolling coiling temperature is 500 ° C. or lower (preferably 480 ° C. or lower). And after hot rolling, the liquid temperature is 70-90 ° C. and immersed in 5-16 mass% hydrochloric acid for 40 seconds or more (preferably 60 seconds or more), and the dew point during continuous annealing is −40 ° C. or less (preferably Is -45 ° C. or lower), and further, as a cooling method during continuous annealing, GJ (cooling by gas blowing) or RQ (cooling by water cooling roll heat removal) not using water is adopted, or in the case of mist cooling, It is effective to perform the mist cooling from a state where the steel plate temperature is 550 ° C. or lower (preferably 450 ° C. or lower).

本発明は、その他の製造条件まで規定するものでなく、通常行われている通り、溶製後に鋳造し熱間圧延を行えばよい。また後述する実施例では連続焼鈍後に酸洗を行っているが、該酸洗の有無も問わない。また、焼鈍後の鋼材あるいは焼鈍後に酸洗した鋼材に、微量のNiフラッシュめっきを行えば、化成処理皮膜を微細にする効果があり有効である。   The present invention is not limited to other production conditions, and may be cast after melting and hot-rolled as usual. Moreover, in the Example mentioned later, although pickling is performed after continuous annealing, the presence or absence of this pickling is not ask | required. Further, if a small amount of Ni flash plating is performed on the steel material after annealing or the steel material pickled after annealing, there is an effect of making the chemical conversion treatment film fine and effective.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

表1に示す化学成分組成の鋼材を溶製し、鋳造して得られたスラブを用いて熱間圧延を行いその後酸洗を行った。製造条件を表2に示す。尚、酸洗は、温度が70〜90℃で濃度が10〜16質量%の塩酸水溶液を用いて行った。その後、冷間圧延を行い、1.4mm厚の鋼板を得た。そして図2に示す方法で得られた鋼板に連続焼鈍を施した。連続焼鈍における均熱・徐冷後の冷却は、汽水(ミスト)冷却、ガス吹き付けによる冷却(GJ)、水冷ロール抜熱による冷却(RQ)のいずれかの方法で行い、上記冷却後には図2に示す通り焼き戻しを行った。尚、汽水(ミスト)冷却の場合は、焼き戻し後に、液温:50℃で濃度:5質量%の塩酸に5秒間浸漬(酸洗)した。表2の加熱温度、徐冷終点温度、焼き戻し温度は図2に示す箇所での温度を示している。また露点は連続焼鈍炉の雰囲気露点である。   A steel material having the chemical composition shown in Table 1 was melted and cast using a slab obtained by casting, and then pickled. The manufacturing conditions are shown in Table 2. The pickling was performed using a hydrochloric acid aqueous solution having a temperature of 70 to 90 ° C. and a concentration of 10 to 16% by mass. Thereafter, cold rolling was performed to obtain a steel plate having a thickness of 1.4 mm. And the continuous annealing was given to the steel plate obtained by the method shown in FIG. Cooling after soaking and gradual cooling in continuous annealing is performed by any one of brackish water (mist) cooling, gas spray cooling (GJ), and water cooling roll heat removal (RQ). Tempering was performed as shown in FIG. In the case of brackish water (mist) cooling, after tempering, it was immersed (pickled) for 5 seconds in hydrochloric acid having a liquid temperature of 50 ° C. and a concentration of 5% by mass. The heating temperature, annealing end point temperature, and tempering temperature in Table 2 indicate the temperatures at the locations shown in FIG. The dew point is the atmospheric dew point of the continuous annealing furnace.

得られた鋼板の金属組織を次の様にして調べた。即ち、鋼板をレペラー腐食し、光学顕微鏡(倍率1000倍)観察により組織を同定した後、光学顕微鏡写真(倍率1000倍)におけるフェライトの面積率を算出した。残留オーステナイトの面積率はXRD(X線回折分析装置)で求めた。またベイナイトの面積率は、前記フェライトおよび残留オーステナイトの残部(マルテンサイトやその他の組織を含む)として求めた。   The metal structure of the obtained steel sheet was examined as follows. That is, the steel sheet was repeller-corroded and the structure was identified by observation with an optical microscope (magnification 1000 times), and then the ferrite area ratio in the optical micrograph (magnification 1000 times) was calculated. The area ratio of retained austenite was determined by XRD (X-ray diffraction analyzer). The area ratio of bainite was determined as the balance of ferrite and retained austenite (including martensite and other structures).

また得られた鋼板を用いて、機械的特性および塗膜密着性を評価した。機械的特性は、JIS5号試験片を採取して測定し、引張強度(TS)、El(全伸び)および降伏点(YP)を求め、引張強度(TS)が550MPa以上で、かつ引張強度と伸びの積(TS×El)が19000以上の場合を、機械的特性に優れていると評価した。   Moreover, the mechanical characteristics and coating-film adhesiveness were evaluated using the obtained steel plate. The mechanical properties are measured by taking a JIS No. 5 test piece, obtaining the tensile strength (TS), El (total elongation) and yield point (YP), the tensile strength (TS) is 550 MPa or more, and the tensile strength and A case where the product of elongation (TS × El) was 19000 or more was evaluated as excellent in mechanical properties.

塗膜密着性として、化成処理性とクラックの有無を調べた。化成処理性は、鋼板表面の酸化物の状態を下記の様にして調べ、かつ下記条件で化成処理を行って化成処理後の鋼板表面を1000倍でSEM観察し、10視野のりん酸亜鉛結晶の付着状態を調べた。そして10視野全てにおいてりん酸亜鉛結晶が均一に付着している場合を「○」、りん酸亜鉛結晶の付着していない部分が1視野でも存在する場合を「×」と評価した。その結果を表3に示す。
・化成処理液:日本パーカライジング社製 パルボンド L 3020
・化成処理工程:脱脂 → 水洗 → 表面調整 → 化成処理
Mn−Si酸化物の個数は、鋼材表面の抽出レプリカ膜を作製し、これを15000倍でTEM観察し(日立製作所製 H−800)、任意の20視野の平均個数(100μmあたり)を調べた。
As the coating film adhesion, chemical conversion property and presence of cracks were examined. For the chemical conversion treatment, the state of the oxide on the surface of the steel sheet was examined as follows, and the chemical conversion treatment was performed under the following conditions, and the steel sheet surface after the chemical conversion treatment was observed by SEM at 1000 times, and 10 phosphate crystals of zinc phosphate were observed. The adhesion state of was investigated. The case where the zinc phosphate crystals were uniformly attached in all 10 fields of view was evaluated as “◯”, and the case where the portion where no zinc phosphate crystals were adhered was present as “x”. The results are shown in Table 3.
・ Chemical conversion treatment liquid: Palbond L 3020 manufactured by Nihon Parkerizing Co., Ltd.
・ Chemical conversion treatment process: Degreasing → Washing → Surface adjustment → Chemical conversion treatment The number of Mn-Si oxides was prepared by extracting an extracted replica film on the surface of the steel material, and TEM observation was performed at 15000 times (H-800, manufactured by Hitachi, Ltd.) The average number (per 100 μm 2 ) of any 20 visual fields was examined.

Siを主体とする酸化物の鋼板表面被覆率は、抽出レプリカ法で処理したサンプルをTEMで観察し、画像解析法で被覆率を求めた。尚、抽出レプリカ法は、下記(a)〜(d)の手順に添って行った。
(a)鋼材の表面にカーボンを蒸着させる。
(b)サンプル平面上に2〜3mm角の碁盤目状の切れ目を入れる。
(c)10%アセチルアセトン−90%メタノールエッチング液で腐食させてカーボンを浮上させる。
(d)アルコール中に保存して観察に用いる。
As for the steel sheet surface coverage of the oxide mainly composed of Si, the sample treated by the extraction replica method was observed by TEM, and the coverage was determined by an image analysis method. The extraction replica method was performed according to the following procedures (a) to (d).
(A) Carbon is vapor-deposited on the surface of the steel material.
(B) A grid-like cut of 2 to 3 mm square is made on the sample plane.
(C) The carbon is levitated by being corroded with 10% acetylacetone-90% methanol etching solution.
(D) Store in alcohol and use for observation.

この様に処理したサンプルを用いてTEMにて、倍率15000倍で10視野分の写真(13cm×11cm)を撮影し、Siを主体とする酸化物(酸化物を構成する酸素以外の元素のうちSiが原子比で67%を超えるもの)の面積を測定し、Siを主体とする酸化物の被覆率を求めた。   Using the sample processed in this manner, a TEM image of 10 fields of view (13 cm × 11 cm) was taken at a magnification of 15000 times, and an oxide mainly composed of Si (among elements other than oxygen constituting the oxide) The area of Si exceeding 67% by atomic ratio) was measured, and the coverage of the oxide mainly composed of Si was determined.

またクラックの有無は、SEM(日立製作所製 S−4500)を用いて2000倍で、鋼板断面の表面近傍における任意の10視野(1視野:13cm×11cm)を観察して調べた。   The presence or absence of cracks was examined using an SEM (S-4500, manufactured by Hitachi, Ltd.) at a magnification of 2000 and by observing any 10 visual fields (1 visual field: 13 cm × 11 cm) near the surface of the cross section of the steel sheet.

Figure 0004698968
Figure 0004698968

Figure 0004698968
Figure 0004698968

Figure 0004698968
Figure 0004698968

表1〜3から、以下の様に考察できる(尚、下記No.は実験No.を示す)。即ちNo.31、33は、本発明鋼板1としての規定要件を満たしているため化成処理性に優れており、塗膜密着性に優れている。該実施例において、クラックを抑制してより優れた塗膜密着性を確保するには、製造条件として特に巻取温度や徐冷終了温度を制御するのがよいことがわかる。   From Tables 1 to 3, the following can be considered (the following No. indicates the experiment No.). That is, no. Nos. 31 and 33 satisfy the prescribed requirements as the steel sheet 1 of the present invention, and therefore have excellent chemical conversion properties and excellent coating film adhesion. In this example, it can be seen that, in order to suppress cracks and ensure better coating film adhesion, it is particularly preferable to control the coiling temperature and the annealing end temperature as production conditions.

No.21、22は、本発明鋼板2として規定する要件を満たしているため、クラックが発生しておらず、塗膜密着性に優れた鋼板が得られている。該実施例において、化成処理性を確保して塗膜密着性をより高めるには、成分組成を制御して鋼板表面に析出する酸化物の形態を規定の通りにするのがよい。   No. Since Nos. 21 and 22 satisfy the requirements defined as the steel plate 2 of the present invention, cracks are not generated, and a steel plate having excellent coating film adhesion is obtained. In this example, in order to ensure the chemical conversion treatment and further improve the adhesion of the coating film, it is preferable to control the component composition so that the form of the oxide deposited on the steel sheet surface is as specified.

またNo.1〜16、23、25、26、32は、本発明鋼板3で規定する要件(即ち、本発明鋼板1および本発明鋼板2で規定する要件)を満足しているため、優れた化成処理性を確保でき、かつクラックの発生が抑制されて優れた塗膜密着性を発揮する。   No. 1 to 16, 23, 25, 26, and 32 satisfy the requirements defined by the steel plate 3 of the present invention (that is, the requirements defined by the steel plate 1 and the steel plate 2 of the present invention), and therefore excellent chemical conversion treatment properties. And the occurrence of cracks is suppressed, and excellent coating film adhesion is exhibited.

これらに対し、No.17〜20,24,27〜30は、本発明鋼板1〜3の要件をいずれも満たしておらず、塗膜密着性に優れていないか、強度−延性バランスに優れておらず、高強度でかつ優れた加工性を発揮するものが得られていない。   In contrast, no. 17-20, 24, 27-30 do not satisfy any of the requirements of the steel sheets 1-3 of the present invention, are not excellent in coating film adhesion, or are not excellent in the strength-ductility balance, and have high strength. In addition, a material that exhibits excellent workability has not been obtained.

No.17〜20は、本発明で規定する成分組成を満足しないため、機械的特性に劣るか塗膜密着性に劣る結果となった。即ち、No.17はSi量が少なく、No.20はSiとAlの合計量が少ないため、いずれも残留オーステナイトを十分に確保できず、強度−延性バランスに劣るものとなった。またNo.18は、Si量が過剰であり、Si/Mn比も上限を超えているため、規定する鋼板表面とならず、塗膜密着性に劣る結果となった。   No. Since 17-20 did not satisfy the component composition prescribed | regulated by this invention, the result was inferior to mechanical characteristics or inferior to coating-film adhesiveness. That is, no. No. 17 has a small amount of Si. No. 20 had a small total amount of Si and Al, so that all of them could not secure sufficient retained austenite, and the strength-ductility balance was inferior. No. In No. 18, since the Si amount was excessive and the Si / Mn ratio exceeded the upper limit, the surface of the steel sheet was not defined, and the coating film adhesion was inferior.

No.19はMn量が少ないため、残留オーステナイトを十分に確保できず、強度−延性バランスに劣っており、また規定するMn−Si複合酸化物を確保できず、化成処理性にも劣る結果となった。   No. No. 19 has a small amount of Mn, so it cannot secure sufficient retained austenite, is inferior in the strength-ductility balance, cannot secure the specified Mn-Si composite oxide, and is inferior in chemical conversion treatment. .

No.24、27〜30は、推奨する条件で製造せず、本発明で規定する酸化物の形態でないため化成処理性に劣っており、またクラックも発生して塗膜密着性に劣っている。   No. Nos. 24 and 27 to 30 are not manufactured under the recommended conditions, and are not in the form of oxides defined in the present invention, so that they are inferior in chemical conversion treatment, and cracks are also generated, resulting in poor coating film adhesion.

即ち、No.24は、徐冷終点温度が比較的高い状態からミスト冷却を行っており、この様に高温で水蒸気雰囲気に曝すことで、表面と粒界のどちらにもSi主体の酸化物が多量に生成したため化成処理性に劣る結果となった。また、その後の酸洗工程で上記酸化物が溶解してクラックが発生したため塗膜密着性に著しく劣るものとなった。   That is, no. In No. 24, mist cooling is performed from a state in which the end point temperature of the annealing is relatively high, and a large amount of oxide mainly composed of Si is formed on both the surface and the grain boundary by being exposed to the water vapor atmosphere at such a high temperature. The result was inferior to chemical conversion. Moreover, since the said oxide melt | dissolved in the subsequent pickling process and the crack generate | occur | produced, it became inferior to coating-film adhesiveness significantly.

No.27、30は、巻取温度が比較的高いため熱延でのSi表面濃化が助長され、No.28は、酸洗時間が短いため濃化Si層の除去が不足し、またNo.29は露点が高いため焼鈍段階でSiの表面濃化が促進されて、いずれもSi主体の酸化物が多量に存在し、また粒界にもSi酸化物が生成して酸洗後にクラックが発生し、塗膜密着性に劣る結果となった。   No. Nos. 27 and 30 have a relatively high coiling temperature, so that Si surface concentration during hot rolling is promoted. No. 28 has a short pickling time, so that removal of the concentrated Si layer is insufficient. No. 29 has a high dew point, so that the surface concentration of Si is promoted in the annealing stage, and in each case, a large amount of Si-based oxides exist, and Si oxides are formed at the grain boundaries and cracks occur after pickling. As a result, the coating film adhesion was inferior.

参考までに、本実施例で得られた鋼板の抽出レプリカをTEM観察した顕微鏡写真、及び化成処理後の鋼板表面のSEM観察写真を示す。図3は、比較例であるNo.22の鋼板表面におけるTEM観察写真であるが、この図3から、鋼板表層領域がSiを主体とする酸化物層で覆われていることがわかる。   For reference, a micrograph obtained by TEM observation of an extracted replica of the steel sheet obtained in this example and a SEM observation photograph of the steel sheet surface after chemical conversion treatment are shown. FIG. FIG. 3 shows that the surface region of the steel sheet is covered with an oxide layer mainly composed of Si.

また図4は、上記鋼板を化成処理した後の表面をSEMで観察した顕微鏡写真である。該図4から、No.22ではりん酸亜鉛結晶は小さいが隙間が大きいことがわかる。   FIG. 4 is a photomicrograph of the surface of the steel sheet after chemical conversion treatment observed with an SEM. From FIG. 22 shows that the zinc phosphate crystal is small but the gap is large.

これに対し図5は、本発明例であるNo.2の鋼板表面におけるTEM観察写真であるが、鋼板表層領域に上記No.22の様な層は形成されておらず、代わりに粒状物が微細に分散している。つまり、図5から、No.2の鋼板表層領域には、化成処理性を低下させるSi主体の酸化物はほとんどなく、化成処理性の向上に有効なMn−Si複合酸化物が多数存在していることを確認できる。   On the other hand, FIG. 2 is a TEM observation photograph on the steel plate surface. The layer like 22 is not formed, and the granular material is finely dispersed instead. That is, from FIG. It can be confirmed that the surface area of the steel plate 2 has almost no Si-based oxides that lower the chemical conversion processability, and there are many Mn-Si composite oxides effective for improving the chemical conversion processability.

図6は、上記鋼板を化成処理した後の表面をSEMで観察した顕微鏡写真であるが、該図6から、No.2ではりん酸亜鉛結晶が小さく隙間がないことがわかる。   FIG. 6 is a photomicrograph of the surface of the steel sheet after chemical conversion treatment, which was observed with an SEM. 2 shows that the zinc phosphate crystals are small and have no gaps.

鋼板断面におけるクラックを模式的に示した図である。It is the figure which showed typically the crack in a steel plate cross section. 実施例における製造工程(一部)を示す図である。It is a figure which shows the manufacturing process (part) in an Example. 実施例におけるNo.22(比較例)のTEM観察写真(抽出レプリカ,倍率:15000倍)である。No. in the examples. 22 is a TEM observation photograph (extraction replica, magnification: 15000 times) of No. 22 (comparative example). 実施例におけるNo.22(比較例)の鋼板表面(化成処理後)のSEM観察写真である。No. in the examples. It is a SEM observation photograph of the steel plate surface (after chemical conversion treatment) of 22 (comparative example). 実施例におけるNo.2(本発明例)のTEM観察写真(抽出レプリカ,倍率:15000倍)である。No. in the examples. 2 is a TEM observation photograph (extraction replica, magnification: 15000 times) of No. 2 (example of the present invention). 実施例におけるNo.2(本発明例)の鋼板表面(化成処理後)のSEM観察写真である。No. in the examples. It is a SEM observation photograph of the steel plate surface (after chemical conversion treatment) of 2 (invention example).

Claims (3)

質量%で(化学成分について以下同じ)、
C :1%以下(0%を含まない)、
Si:0.1〜2%、
Al:0.01〜3%、
Si+Al:1〜4%、
Mn:1〜6%、
Si/Mn≦0.4
を満たし、残部が鉄および不可避不純物であり、
金属組織が、占積率で(金属組織について以下同じ)、
フェライトとベイナイトの合計量:75%以上、
フェライト:5〜80%、
ベイナイト:5〜80%、
残留オーステナイト:5%以上を満たす複合組織鋼板であって、
鋼板表面において、MnとSiの原子比(Mn/Si)が0.5以上である長径0.01μm以上5μm以下のMn−Si複合酸化物が10個/100μm2以上存在すると共に、Siを主体とする酸化物の鋼板表面被覆率が10%以下であり、
引張強度が550MPa以上で、かつ引張強度(TS:単位MPa)と伸び(El:単位
%)が下記式(1)を満たすことを特徴とする塗膜密着性と加工性に優れた高強度冷延鋼板。
TS×El≧19000 …(1)
% By mass (the same applies to chemical components)
C: 1% or less (excluding 0%),
Si: 0.1 to 2%,
Al: 0.01 to 3%,
Si + Al: 1-4%
Mn: 1 to 6%
Si / Mn ≦ 0.4
The balance is iron and inevitable impurities,
The metal structure is the space factor (the same applies to the metal structure below)
Total amount of ferrite and bainite: 75% or more,
Ferrite: 5-80%,
Bainite: 5-80%
Residual austenite: a composite structure steel plate satisfying 5% or more,
In the steel sheet surface, with the atomic ratio of Mn and Si (Mn / Si) is 5μm or less of Mn-Si composite oxide major diameter 0.01μm or more and 0.5 or more is present 10/100 [mu] m 2 or more, mainly of Si The steel sheet surface coverage of the oxide is 10% or less,
A high-strength cold excellent in coating film adhesion and workability, characterized in that the tensile strength is 550 MPa or more, and the tensile strength (TS: unit MPa) and elongation (El: unit%) satisfy the following formula (1): Rolled steel sheet.
TS × El ≧ 19000 (1)
C:1%以下(0%を含まない)、
Si:0.1〜2%、
Al:0.01〜3%、
Si+Al:1〜4%、
Mn:1〜6%、
Si/Mn≦0.4
を満たし、残部が鉄および不可避不純物であり、
金属組織が、
フェライトとベイナイトの合計量:75%以上、
フェライト:5〜80%、
ベイナイト:5〜80%、
残留オーステナイト:5%以上を満たす複合組織鋼板であって、
(I)鋼板表面において、MnとSiの原子比(Mn/Si)が0.5以上である長径
0.01μm以上5μm以下のMn−Si複合酸化物が10個/100μm2以上存在すると共に、Siを主体とする酸化物の鋼板表面被覆率が10%以下であり、かつ
(II)SEMを用いて2000倍で鋼板表面近傍の断面を観察したときに、任意の10視野において幅3μm以下で深さ5μm以上のクラックが存在せず、
引張強度が550MPa以上で、かつ引張強度(TS:単位MPa)と伸び(El:単位
%)が下記式(1)を満たすことを特徴とする塗膜密着性と加工性に優れた高強度冷延鋼板。
TS×El≧19000 …(1)
C: 1% or less (excluding 0%),
Si: 0.1 to 2%,
Al: 0.01 to 3%,
Si + Al: 1-4%
Mn: 1 to 6%
Si / Mn ≦ 0.4
The balance is iron and inevitable impurities,
The metal structure is
Total amount of ferrite and bainite: 75% or more,
Ferrite: 5-80%,
Bainite: 5-80%
Residual austenite: a composite structure steel plate satisfying 5% or more,
In (I) the steel sheet surface, with the atomic ratio of Mn and Si (Mn / Si) is 5μm or less of Mn-Si composite oxide major diameter 0.01μm or more and 0.5 or more is present 10/100 [mu] m 2 or more, The steel plate surface coverage of the oxide mainly composed of Si is 10% or less, and (II) When the cross section near the steel plate surface is observed at 2000 times using SEM, the width is 3 μm or less in any 10 fields of view. There are no cracks with a depth of 5 μm or more,
A high-strength cold excellent in coating film adhesion and workability, characterized in that the tensile strength is 550 MPa or more, and the tensile strength (TS: unit MPa) and elongation (El: unit%) satisfy the following formula (1): Rolled steel sheet.
TS × El ≧ 19000 (1)
更に他の元素として、
Cr:0.01〜1%、
Mo:0.01〜1%、
Ti:0.005〜0.1%、
Nb:0.005〜0.1%、
V:0.0005〜0.1%、
P:0.005〜0.1%、および
B:0.0003〜0.01%
よりなる群から選択される1種以上を含有する請求項1または2に記載の高強度冷延鋼板。
As other elements,
Cr: 0.01-1%,
Mo: 0.01 to 1%,
Ti: 0.005 to 0.1%,
Nb: 0.005 to 0.1%,
V: 0.0005 to 0.1%,
P: 0.005-0.1% and B: 0.0003-0.01%
The high-strength cold-rolled steel sheet according to claim 1 or 2 , containing one or more selected from the group consisting of:
JP2004098520A 2004-03-30 2004-03-30 High-strength cold-rolled steel sheet with excellent coating film adhesion and workability Expired - Fee Related JP4698968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004098520A JP4698968B2 (en) 2004-03-30 2004-03-30 High-strength cold-rolled steel sheet with excellent coating film adhesion and workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004098520A JP4698968B2 (en) 2004-03-30 2004-03-30 High-strength cold-rolled steel sheet with excellent coating film adhesion and workability

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010290850A Division JP5298114B2 (en) 2010-12-27 2010-12-27 High-strength cold-rolled steel sheet with excellent coating film adhesion and workability, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005281787A JP2005281787A (en) 2005-10-13
JP4698968B2 true JP4698968B2 (en) 2011-06-08

Family

ID=35180504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004098520A Expired - Fee Related JP4698968B2 (en) 2004-03-30 2004-03-30 High-strength cold-rolled steel sheet with excellent coating film adhesion and workability

Country Status (1)

Country Link
JP (1) JP4698968B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3748035A4 (en) * 2018-03-30 2021-04-07 JFE Steel Corporation Cold-rolled steel sheet and production method therefor, and steel sheet for annealing

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006109489A1 (en) * 2005-03-31 2006-10-19 Kabushiki Kaisha Kobe Seiko Sho High-strength cold-rolled steel sheet excellent in coating adhesion, workability and hydrogen embrittlement resistance, and steel component for automobile
JP5130701B2 (en) * 2006-08-18 2013-01-30 新日鐵住金株式会社 High tensile steel plate with excellent chemical conversion
JP5020600B2 (en) * 2006-11-09 2012-09-05 新日本製鐵株式会社 High tensile steel plate with excellent chemical conversion
JP5124865B2 (en) * 2007-07-24 2013-01-23 新日鐵住金株式会社 High tensile cold-rolled steel sheet and method for producing the same
JP5399681B2 (en) 2008-10-08 2014-01-29 Jfeスチール株式会社 High workability and high strength steel pipe excellent in chemical conversion and process for producing the same
JP5621475B2 (en) * 2010-09-29 2014-11-12 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
JP5810499B2 (en) * 2010-09-29 2015-11-11 Jfeスチール株式会社 Manufacturing method of high-strength steel sheet
JP5712541B2 (en) * 2010-09-29 2015-05-07 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
JP5712542B2 (en) * 2010-09-29 2015-05-07 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
JP5716338B2 (en) * 2010-09-29 2015-05-13 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
JP5834388B2 (en) * 2010-09-29 2015-12-24 Jfeスチール株式会社 Manufacturing method of high-strength steel sheet
EP2831292B2 (en) 2012-03-30 2022-08-10 voestalpine Stahl GmbH High strength cold rolled steel sheet and method of producing such steel sheet
CN104169444B (en) 2012-03-30 2017-03-29 奥钢联钢铁有限责任公司 The method of high strength cold rolled steel plate and this steel plate of production
JP5962541B2 (en) * 2012-07-23 2016-08-03 Jfeスチール株式会社 Manufacturing method of high-strength steel sheet
DK2895635T3 (en) * 2012-09-14 2019-05-20 Ilsenburger Grobblech Gmbh Steel alloy for low-alloy high-strength steel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11193439A (en) * 1997-12-26 1999-07-21 Nippon Steel Corp Steel plate combining good workability with high strength and having high dynamic deformation resistance, and its production
JP2000119866A (en) * 1998-10-15 2000-04-25 Kobe Steel Ltd Phosphate film, aluminum member having phosphate film and production of phosphate film
JP2001107185A (en) * 1999-10-04 2001-04-17 Nippon Steel Corp High strength steel sheet excellent in fatigue resistance and chemical convertibility
JP2002226944A (en) * 2001-02-02 2002-08-14 Kawasaki Steel Corp Hot-rolled, high-tensile steel plate having excellent chemical convertibility and corrosion resistance, and its manufacturing method
JP2003033802A (en) * 2001-07-19 2003-02-04 Sumitomo Metal Ind Ltd Production method of cold rolled steel plate with good degreasing character and chemical conversion treatability
JP2003105486A (en) * 2001-09-28 2003-04-09 Nippon Steel Corp High strength steel sheet and galvanized steel sheet having excellent formability, and production method therefor
JP2003201538A (en) * 2001-10-30 2003-07-18 Jfe Steel Kk High strength, high ductility cold rolled steel sheet having excellent salt hot water resisting secondary adhesion and production method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11193439A (en) * 1997-12-26 1999-07-21 Nippon Steel Corp Steel plate combining good workability with high strength and having high dynamic deformation resistance, and its production
JP2000119866A (en) * 1998-10-15 2000-04-25 Kobe Steel Ltd Phosphate film, aluminum member having phosphate film and production of phosphate film
JP2001107185A (en) * 1999-10-04 2001-04-17 Nippon Steel Corp High strength steel sheet excellent in fatigue resistance and chemical convertibility
JP2002226944A (en) * 2001-02-02 2002-08-14 Kawasaki Steel Corp Hot-rolled, high-tensile steel plate having excellent chemical convertibility and corrosion resistance, and its manufacturing method
JP2003033802A (en) * 2001-07-19 2003-02-04 Sumitomo Metal Ind Ltd Production method of cold rolled steel plate with good degreasing character and chemical conversion treatability
JP2003105486A (en) * 2001-09-28 2003-04-09 Nippon Steel Corp High strength steel sheet and galvanized steel sheet having excellent formability, and production method therefor
JP2003201538A (en) * 2001-10-30 2003-07-18 Jfe Steel Kk High strength, high ductility cold rolled steel sheet having excellent salt hot water resisting secondary adhesion and production method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3748035A4 (en) * 2018-03-30 2021-04-07 JFE Steel Corporation Cold-rolled steel sheet and production method therefor, and steel sheet for annealing
US12116648B2 (en) 2018-03-30 2024-10-15 Jfe Steel Corporation Cold-rolled steel sheet and method for manufacturing the same, and cold-rolled steel sheet for annealing

Also Published As

Publication number Publication date
JP2005281787A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
JP3889769B2 (en) High-strength cold-rolled steel sheet and automotive steel parts with excellent coating film adhesion, workability, and hydrogen embrittlement resistance
JP3889768B2 (en) High-strength cold-rolled steel sheets and automotive steel parts with excellent coating film adhesion and ductility
JP5298114B2 (en) High-strength cold-rolled steel sheet with excellent coating film adhesion and workability, and method for producing the same
JP3934604B2 (en) High strength cold-rolled steel sheet with excellent coating adhesion
KR100955982B1 (en) High-strength cold-rolled steel sheet excellent in coating adhesion, workability and hydrogen embrittlement resistance, and steel component for automobile
TWI467028B (en) High-strength hot-dip galvanized steel sheet with excellent impact resistance and its manufacturing method and high-strength alloyed hot-dip galvanized steel sheet and manufacturing method thereof
TWI479028B (en) High-strength galvanized steel sheet having high tensile strength at a maximum tensile strength of 980 MPa and excellent in formability, high-strength alloyed hot-dip galvanized steel sheet and method of manufacturing the same
KR101335069B1 (en) High-strength cold-rolled steel sheet having excellent workability, molten galvanized high-strength steel sheet, and method for producing the same
WO2011162412A1 (en) High-strength hot-rolled steel sheet having excellent stretch flangeability and method for producing same
JP5233346B2 (en) High-strength cold-rolled steel sheet excellent in chemical conversion treatment and post-coating corrosion resistance and method for producing the same
TWI507535B (en) Alloyed molten galvanized steel sheet
CN112805395B (en) Hot-rolled steel sheet and method for producing same
JP5510057B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP4698968B2 (en) High-strength cold-rolled steel sheet with excellent coating film adhesion and workability
KR20180133508A (en) Plated steel sheet and manufacturing method thereof
JP6274360B2 (en) High-strength galvanized steel sheet, high-strength member, and method for producing high-strength galvanized steel sheet
JP4109703B2 (en) High strength cold-rolled steel sheet with excellent chemical conversion
JP6787532B2 (en) Hot-rolled steel sheet and its manufacturing method
JP4315844B2 (en) High strength cold-rolled steel sheet with excellent coating adhesion
JP7136335B2 (en) High-strength steel plate and its manufacturing method
JP2002309358A (en) Galvannealed steel sheet with excellent workability
JP4698971B2 (en) High-strength cold-rolled steel sheet with excellent coating film adhesion and workability
JP6610788B2 (en) High strength hot rolled galvanized steel sheet
JP7136336B2 (en) High-strength steel plate and its manufacturing method
JP4698967B2 (en) High-strength cold-rolled steel sheet with excellent coating film adhesion and workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110302

R150 Certificate of patent or registration of utility model

Ref document number: 4698968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees