JP4698967B2 - High-strength cold-rolled steel sheet with excellent coating film adhesion and workability - Google Patents

High-strength cold-rolled steel sheet with excellent coating film adhesion and workability Download PDF

Info

Publication number
JP4698967B2
JP4698967B2 JP2004098431A JP2004098431A JP4698967B2 JP 4698967 B2 JP4698967 B2 JP 4698967B2 JP 2004098431 A JP2004098431 A JP 2004098431A JP 2004098431 A JP2004098431 A JP 2004098431A JP 4698967 B2 JP4698967 B2 JP 4698967B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
oxide
coating film
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004098431A
Other languages
Japanese (ja)
Other versions
JP2005281785A (en
Inventor
学 嘉村
良信 大宮
伸二 上妻
郁郎 橋本
正裕 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004098431A priority Critical patent/JP4698967B2/en
Publication of JP2005281785A publication Critical patent/JP2005281785A/en
Application granted granted Critical
Publication of JP4698967B2 publication Critical patent/JP4698967B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、塗膜密着性と加工性に優れた高強度冷延鋼板に関するものであり、殊に、優れた塗膜密着性を有すると共に、引張強度が340MPa以上で優れた加工性(特に深絞り性)を発揮する自動車部品用鋼板等として最適な冷延鋼板に関するものである。   The present invention relates to a high-strength cold-rolled steel sheet having excellent coating film adhesion and workability. In particular, the present invention has excellent coating film adhesion and excellent workability (especially deep) with a tensile strength of 340 MPa or more. The present invention relates to a cold-rolled steel sheet that is optimal as a steel sheet for automobile parts that exhibits (drawability).

自動車の燃費向上や軽量化を背景に鋼材の高強度化が求められており、冷延鋼板の分野でもハイテン化(高強度化)が進んでいる。一方、冷延鋼板は部品製造時にプレス成形が施されるため、高強度化に際しては、深絞り性等の加工性を十分確保することが前提となる。高強度化を図るには合金元素の添加が有効であるが、該合金元素量の増加に伴い、延性(加工性)は低下する傾向にある。   Steel materials are required to have high strength against the background of improving fuel economy and weight reduction, and high strength (high strength) is also progressing in the field of cold-rolled steel sheets. On the other hand, since cold-rolled steel sheets are subjected to press forming at the time of production of parts, it is assumed that sufficient workability such as deep drawability is ensured when increasing strength. Addition of an alloy element is effective for increasing the strength, but the ductility (workability) tends to decrease as the amount of the alloy element increases.

しかし上記合金元素の中でも、Siは延性低下の比較的小さい元素であり、延性を確保しつつ高強度化を図るのに有効な元素である。ところがSi含有量が増加すると、化成処理性が劣化して塗装後の塗膜密着性が低下する。そのため化成処理性が重視される場合にはSi含有量の低減を余儀なくされていた。またSi含有量が増加すると、鋼板表面に生成するSi含有粒界酸化物を原因とするクラックが発生し易くなり、これが塗膜密着性を劣化させる要因となっていた。   However, among the above alloy elements, Si is an element having a relatively small ductility reduction, and is an element effective for achieving high strength while ensuring ductility. However, when the Si content is increased, the chemical conversion processability is deteriorated and the coating film adhesion after coating is lowered. For this reason, when the chemical conversion treatment is important, the Si content has to be reduced. Moreover, when Si content increased, it became easy to generate | occur | produce the crack resulting from the Si containing grain-boundary oxide produced | generated on the steel plate surface, and this became a factor which deteriorates coating-film adhesiveness.

これまで機械的特性と化成処理性を両立させる技術としては、クラッド材を鋼板表面に被覆し、鋼板表面に低Si濃度層を設けることで化成処理性を高め、内部の高Si濃度層で機械的特性を確保する技術がある(例えば特許文献1)。しかしクラッド構造としなければならないため、製造工程が複雑になりコストアップにつながるという問題点がある。また上記クラッド材は、化成処理性の確保を優先して成分設計が行われており、機械的特性を高めたものでなく、鋼板全体が機械的特性に十分優れているとは言い難い。   Until now, as a technology to achieve both mechanical properties and chemical conversion treatment, the steel sheet surface is coated with a clad material, and a low Si concentration layer is provided on the steel sheet surface to improve chemical conversion treatment. There is a technique for ensuring the target characteristics (for example, Patent Document 1). However, since the clad structure is required, there is a problem that the manufacturing process is complicated and the cost is increased. In addition, the clad material has been designed with priority given to ensuring chemical conversion treatment, and does not have improved mechanical properties, and it is difficult to say that the entire steel plate is sufficiently excellent in mechanical properties.

化成処理性を阻害するSiが表面に濃化しないよう特殊な合金元素を添加する従来技術もある(例えば特許文献2や特許文献3)。この方法では、NiやCuを添加することで鋼板表層へのSi濃化を抑制し、化成処理性を確保している。しかし該方法では、高価なNiやCuを使用するためコストアップを招くという問題がある。   There is also a conventional technique in which a special alloy element is added so that Si that inhibits chemical conversion treatment does not concentrate on the surface (for example, Patent Document 2 and Patent Document 3). In this method, by adding Ni or Cu, concentration of Si on the steel sheet surface layer is suppressed, and chemical conversion processability is ensured. However, this method has a problem that the cost is increased because expensive Ni or Cu is used.

特許文献4では、NbCを多数析出させ、これをりん酸亜鉛結晶の核生成サイトとして活用することで化成処理性と高強度化の両立を図っている。しかしこの技術は、C濃度が0.006%以上と極低炭素鋼板としては比較的C濃度が高く、集合組織を制御することによって深絞り性は確保されているが、NbCの析出量が非常に多いためYRが高いと考えられ、成形時の寸法精度に悪影響を及ぼすという問題がある。   In Patent Document 4, a large amount of NbC is precipitated, and this is used as a nucleation site for zinc phosphate crystals to achieve both chemical conversion treatment and high strength. This technology, however, has a C concentration of 0.006% or higher, which is relatively high as an extremely low carbon steel sheet, and deep drawability is ensured by controlling the texture. However, the precipitation amount of NbC is very high. Therefore, there is a problem that YR is high and adversely affects the dimensional accuracy during molding.

特許文献5では、表層のSiO/MnSiO比率を規定することで化成処理性を確保した残留オーステナイト含有鋼板が提案されている。この技術では、表層酸化物を制御したりSi/Feの元素比率を制御するため、連続焼鈍後の表面を酸洗またはブラシ処理してSi酸化物を除去するか、またはAc変態点以上の温度で露点を−30℃以上に調整し、Si酸化物の生成量を抑える必要がある。 Patent Document 5 proposes a retained austenite-containing steel sheet that ensures chemical conversion processability by defining the SiO 2 / Mn 2 SiO 4 ratio of the surface layer. In this technique, in order to control the surface layer oxide or to control the element ratio of Si / Fe, the surface after continuous annealing is pickled or brushed to remove the Si oxide, or the Ac 1 transformation point or higher. It is necessary to adjust the dew point to −30 ° C. or higher with temperature to suppress the amount of Si oxide produced.

しかし上記酸洗やブラシ処理を行うと、工程数の増大により製造コストの上昇を招く。また露点制御は、連続焼鈍炉内で行われるが、文献に示された実施例を見る限り、該露点を制御したとしても最表層におけるSiO/MnSiO比率は1.0程度であり、化成処理皮膜結晶の生成を阻害するSiOがMnSiOと同程度生じていることから、化成処理性が十分に改善されているとは言い難い。 However, when the pickling or brush treatment is performed, the manufacturing cost increases due to an increase in the number of steps. Although the dew point control is performed in a continuous annealing furnace, as long as the examples shown in the literature are seen, even if the dew point is controlled, the SiO 2 / Mn 2 SiO 4 ratio in the outermost layer is about 1.0. Further, since SiO 2 that inhibits the formation of the chemical conversion film is generated to the same extent as Mn 2 SiO 4 , it is difficult to say that the chemical conversion property is sufficiently improved.

特許文献6では、XPSで鋼板表面を観察し、酸化物を構成するSiとMnの比(Si/Mn)を1以下に抑えて化成処理性を高める技術が提案されている。   Patent Document 6 proposes a technique for observing the surface of a steel sheet by XPS and suppressing the ratio of Si to Mn (Si / Mn) constituting the oxide to 1 or less to improve chemical conversion property.

Si/Mn比が1以下である鋼として、例えばSi量がほぼゼロの軟鋼やSi量が0.1%以下の鋼板が化成処理性に優れていることは一般に知られている。しかし上述の通り、強度と延性を共に高めるにはSiをある程度含有させる必要があり、Si量を低減してSi/Mn比を1以下にするには限界がある。また適量のSi量を確保しつつMn量を制御してSi/Mn比を1以下にした場合でも、良好な化成処理性を発揮する鋼板が安定して得られるとは限らない。
特開平5−78752号公報 特許第2951480号公報 特許第3266328号公報 特許第3049147号公報 特開2003−201538号公報 特開平4−276060号公報
As steel having a Si / Mn ratio of 1 or less, it is generally known that, for example, mild steel with almost no Si content or steel sheet with an Si content of 0.1% or less has excellent chemical conversion properties. However, as described above, in order to increase both strength and ductility, it is necessary to contain Si to some extent, and there is a limit in reducing the Si amount and making the Si / Mn ratio 1 or less. Even when the Si / Mn ratio is controlled to 1 or less by controlling the amount of Mn while securing an appropriate amount of Si, a steel sheet exhibiting good chemical conversion properties is not always stably obtained.
Japanese Patent Laid-Open No. 5-78752 Japanese Patent No. 2951480 Japanese Patent No. 3266328 Japanese Patent No. 3049147 JP 2003-201538 A JP-A-4-276060

本発明は上記事情に鑑みてなされたものであって、その目的は、優れた塗膜密着性を有すると共に、引張強度が340MPa以上で優れた加工性(特に深絞り性)を発揮する冷延鋼板を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is cold rolling that has excellent coating film adhesion and exhibits excellent workability (particularly deep drawability) at a tensile strength of 340 MPa or more. It is to provide a steel sheet.

本発明に係る高強度冷延鋼板とは、質量%で(化学成分について以下同じ)、C:0.005%以下、N:0.01%以下、S:0.01%以下に抑えられ、Mn:0.1〜4%、Si:0.2〜1%、P:0.001〜0.2%、Si/Mn≦0.4を満たすと共に、Ti:0.005〜0.1%及び/又はNb:0.005〜0.1%を含み、金属組織がフェライト単相組織の鋼板であって、
引張強度が340MPa以上で、引張強度(TS:単位MPa)と伸び(El:単位%)が下記式(1)を満たし、かつランクフォード値(r値)が1.2以上であると共に、
(I)鋼板表面(平面視する場合をいう)において、MnとSiの原子比(Mn/Si)が0.5以上である長径0.01μm以上5μm以下のMn−Si複合酸化物が10個/100μm以上存在し、かつSiを主体とする酸化物の鋼板表面被覆率が10%以下であるところに特徴を有する(以下「本発明鋼板1」ということがある)。
TS×El≧13000 …(1)
尚、上記Siを主体とする酸化物とは、酸化物を構成する酸素以外の元素のうちSiが原子比で67%超を占めるものをいう。また当該酸化物は、分析の結果、非晶質であると考えられる。
The high-strength cold-rolled steel sheet according to the present invention is suppressed by mass% (the same applies to chemical components below), C: 0.005% or less, N: 0.01% or less, and S: 0.01% or less. Mn: 0.1 to 4%, Si: 0.2 to 1%, P: 0.001 to 0.2%, Si / Mn ≦ 0.4 and Ti: 0.005 to 0.1% And / or Nb: 0.005 to 0.1%, and the metal structure is a steel sheet having a ferrite single phase structure,
The tensile strength is 340 MPa or more, the tensile strength (TS: unit MPa) and the elongation (El: unit%) satisfy the following formula (1), and the Rankford value (r value) is 1.2 or more.
(I) 10 Mn—Si composite oxides having a major axis of 0.01 μm or more and 5 μm or less with an atomic ratio (Mn / Si) of Mn and Si of 0.5 or more on the surface of the steel sheet (when viewed in plan) / 100 μm 2 or more, and the feature is that the steel sheet surface coverage of the oxide mainly composed of Si is 10% or less (hereinafter sometimes referred to as “the steel sheet 1 of the present invention”).
TS × El ≧ 13000 (1)
The oxide mainly composed of Si refers to an element other than oxygen constituting the oxide in which Si accounts for more than 67% by atomic ratio. Further, the oxide is considered to be amorphous as a result of analysis.

Siを主体とする酸化物の鋼板表面被覆率は、後述する実施例で示す通り、抽出レプリカ法で処理したサンプルをTEM(transmission electron microscope)で観察し、EDX(Energy Dispersive X-ray)分析でSi、O(酸素)、Mn、Feのマッピングおよび定量分析を行い、このデータを用いて画像解析法により求めた。尚、抽出レプリカのTEM観察が煩雑であれば、AES(auger electron spectroscopy)を用いて倍率:2000〜5000倍でSi、O、MnおよびFeについて表面マッピングを行い、そのデータを画像解析してもよい。   As shown in the examples to be described later, the surface coverage of the oxide mainly composed of Si is obtained by observing a sample processed by the extraction replica method with a transmission electron microscope (TEM) and analyzing with an EDX (Energy Dispersive X-ray) analysis. Mapping and quantitative analysis of Si, O (oxygen), Mn, and Fe were performed, and the data was obtained by an image analysis method. If TEM observation of the extracted replica is complicated, surface mapping is performed on Si, O, Mn, and Fe at a magnification of 2000 to 5000 using AES (auger electron spectroscopy), and the data is subjected to image analysis. Good.

上記課題を解決し得た本発明の別の鋼板は、C:0.005%以下、N:0.01%以下、S:0.01%以下に抑えられ、Mn:0.1〜4%、Si:0.2〜1%、P:0.001〜0.2%、Si/Mn≦0.4を満たすと共に、Ti:0.005〜0.1%及び/又はNb:0.005〜0.1%を含み、金属組織がフェライト単相組織の鋼板であって、
引張強度が340MPa以上で、引張強度(TS:単位MPa)と伸び(El:単位%)が上記式(1)を満たし、かつランクフォード値(r値)が1.2以上であると共に、
(II)SEM(scanning electron microscope)を用いて2000倍で鋼板表面近傍の断面を観察したときに、任意の10視野において幅3μm以下で深さ5μm以上のクラックが存在しないところに特徴を有している(以下「本発明鋼板2」ということがある)。
Another steel plate of the present invention that can solve the above problems is suppressed to C: 0.005% or less, N: 0.01% or less, S: 0.01% or less, Mn: 0.1 to 4% , Si: 0.2 to 1%, P: 0.001 to 0.2%, Si / Mn ≦ 0.4, and Ti: 0.005 to 0.1% and / or Nb: 0.005 Containing 0.1%, and the metal structure is a steel sheet of ferrite single phase structure,
The tensile strength is 340 MPa or more, the tensile strength (TS: unit MPa) and elongation (El: unit%) satisfy the above formula (1), and the Rankford value (r value) is 1.2 or more.
(II) When a cross section near the surface of the steel sheet is observed at a magnification of 2000 using a scanning electron microscope (SEM), it is characterized in that there are no cracks with a width of 3 μm or less and a depth of 5 μm or more in any 10 fields of view. (Hereinafter sometimes referred to as “the present steel plate 2”).

尚、上記クラックの幅および深さとは、SEM(日立製作所製 S−4500)を用いて2000倍で鋼板断面の表面近傍を観察したときの、図1(鋼板断面概略図)に示す部分をいうものとする。   The width and depth of the cracks refer to the portion shown in FIG. 1 (schematic cross section of steel plate) when the vicinity of the surface of the steel plate cross section is observed at 2000 times using SEM (S-4500 manufactured by Hitachi, Ltd.). Shall.

上記課題を解決し得た本発明の更に別の鋼板は、C:0.005%以下、N:0.01%以下、S:0.01%以下に抑えられ、Mn:0.1〜4%、Si:0.2〜1%、P:0.001〜0.2%、Si/Mn≦0.4を満たすと共に、Ti:0.005〜0.1%及び/又はNb:0.005〜0.1%を含み、金属組織がフェライト単相組織の鋼板であって、
引張強度が340MPa以上で、引張強度(TS:単位MPa)と伸び(El:単位%)が上記式(1)を満たし、かつランクフォード値(r値)が1.2以上であると共に、上記要件(I)および(II)を満たすところに特徴を有している(以下「本発明鋼板3」ということがある)。
Still another steel sheet of the present invention that can solve the above problems is suppressed to C: 0.005% or less, N: 0.01% or less, S: 0.01% or less, and Mn: 0.1 to 4 %, Si: 0.2 to 1%, P: 0.001 to 0.2%, Si / Mn ≦ 0.4, and Ti: 0.005 to 0.1% and / or Nb: 0.00. 005 to 0.1%, and the metal structure is a steel sheet having a ferrite single phase structure,
The tensile strength is 340 MPa or more, the tensile strength (TS: unit MPa) and the elongation (El: unit%) satisfy the above formula (1), and the Rankford value (r value) is 1.2 or more. It has a feature that satisfies the requirements (I) and (II) (hereinafter sometimes referred to as “the steel plate 3 of the present invention”).

上記本発明の鋼板は、更に他の元素として、B:0.005%以下(0%含まない)を含有していてもよい。   The steel sheet of the present invention may further contain B: 0.005% or less (not including 0%) as another element.

本発明によれば、優れた塗膜密着性を発揮すると共に、引張強度が340MPa以上で優れた加工性(特に深絞り性)を発揮する自動車用に最適な鋼板を、クラッドを構成したり、NiやCuといった高価な元素を添加したり、ブラシ処理などの後処理を行うことなく効率良く実現できる。   According to the present invention, a steel plate optimal for automobiles exhibiting excellent paint film adhesion and exhibiting excellent workability (particularly deep drawability) at a tensile strength of 340 MPa or more, constituting a cladding, It can be efficiently realized without adding expensive elements such as Ni and Cu, or after-treatment such as brush treatment.

塗膜密着性と加工性(特に深絞り性)に優れた引張強度が340MPa以上の鋼板を得るべく検討したところ、特に、優れた塗膜密着性を確保するには、下記要件(I)および/または(II)を満足させればよいことを見出し本発明に想到した。更にこれらの要件を満足させると共に、340MPa以上の引張強度において優れた加工性(特に深絞り性)を確保するための成分組成や製造条件についても検討を行った。   In order to obtain a steel sheet having a tensile strength of 340 MPa or more excellent in coating film adhesion and workability (particularly deep drawability), the following requirements (I) and The inventors have found that it is only necessary to satisfy // (II) and have arrived at the present invention. Furthermore, while satisfying these requirements, the component composition and manufacturing conditions for ensuring excellent workability (particularly deep drawability) at a tensile strength of 340 MPa or more were also examined.

(I)鋼板表面(平面視する場合をいう)において、
(i)MnとSiの原子比(Mn/Si)が0.5以上である長径0.01μm以上5μm以下のMn−Si複合酸化物を10個/100μm以上存在させ、かつ
(ii)Siを主体とする酸化物(酸化物を構成する酸素以外の元素のうちSiが原子比で67%超を占める酸化物)の鋼板表面被覆率を10%以下とする。
(II)SEMを用いて2000倍で鋼板表面近傍の断面を観察したときに、任意の10視野において、幅3μm以下で深さ5μm以上のクラックが存在しないようにする。
(I) On the steel plate surface (when viewed in plan)
(i) Mn—Si composite oxide having a major axis of 0.01 μm or more and 5 μm or less having an atomic ratio (Mn / Si) of Mn to Si of 0.5 or more is present at 10 pieces / 100 μm 2 or more, and
(ii) The steel sheet surface coverage of an oxide mainly composed of Si (an oxide other than oxygen constituting the oxide in which Si accounts for more than 67% by atomic ratio) is set to 10% or less.
(II) When observing a cross section in the vicinity of the steel sheet surface at a magnification of 2000 using an SEM, no cracks having a width of 3 μm or less and a depth of 5 μm or more are present in any 10 visual fields.

以下、まず上記要件(I),(II)を規定した理由について詳述する。   The reason why the requirements (I) and (II) are specified will be described in detail below.

<鋼板表面におけるMnとSiの原子比(Mn/Si)が0.5以上である長径0.01〜5μmのMn−Si複合酸化物:10個/100μm以上>
本発明者らは、塗膜密着性に優れた高強度鋼板を得るべく以前から研究を進めており、Siを比較的多く含む鋼板の化成処理性向上技術について、既に提案している(特願2003−106152号)。この技術は、焼鈍雰囲気を制御することで、化成処理性に悪影響を及ぼす非晶質のSi酸化物を細かく分散させることにより化成処理性の向上を図ったものである。しかしSi濃度の比較的低い領域では、主な酸化物として、非晶質のSi酸化物ではなくMn−Si複合酸化物が生成する。この複合酸化物も、非晶質のSi酸化物と同様に塗膜密着性を低下させると考えられる。そこで、該Mn−Si複合酸化物を化成処理性の向上に積極的に活用することはできないかと考え、その線に沿って研究を進めてきた。
<Mn-Si composite oxide having a major axis of 0.01 to 5 μm with an atomic ratio of Mn to Si (Mn / Si) of 0.5 or more on the steel sheet surface: 10/100 μm 2 or more>
The present inventors have been researching for a long time to obtain a high-strength steel sheet excellent in coating film adhesion, and have already proposed a chemical conversion treatment improving technique for a steel sheet containing a relatively large amount of Si (Japanese Patent Application). 2003-106152). This technique aims to improve chemical conversion treatment by finely dispersing amorphous Si oxide that adversely affects chemical conversion treatment by controlling the annealing atmosphere. However, in the region where the Si concentration is relatively low, not the amorphous Si oxide but the Mn—Si composite oxide is generated as the main oxide. This composite oxide is also considered to reduce the adhesion of the coating film in the same manner as the amorphous Si oxide. Therefore, the Mn—Si composite oxide is considered to be actively used for improving chemical conversion treatment, and research has been advanced along that line.

その結果、鋼板表層部に形成される鉄系酸化物基地中に、該Mn−Si複合酸化物を微細分散させて、後述する通り、りん酸亜鉛結晶の核生成サイトとして作用する「酸化物界面の電気化学的不均一場」を形成することで、化成処理性を高めることができた。本発明で規定するMn−Si複合酸化物が、りん酸亜鉛結晶の生成核に有効である理由は明確ではないが、次の様に考えられる。   As a result, the Mn-Si composite oxide is finely dispersed in the iron-based oxide matrix formed on the surface layer portion of the steel sheet, and as described later, the “oxide interface that acts as a nucleation site for zinc phosphate crystals. The chemical conversion processability could be improved by forming an "electrochemical heterogeneous field". The reason why the Mn—Si composite oxide defined in the present invention is effective for the nuclei of zinc phosphate crystals is not clear, but is considered as follows.

化成処理工程において、りん酸亜鉛結晶は、例えば結晶粒界や予め表面調整処理時に鋼板表面に付着させたTiコロイド周辺などに形成される「電気化学的不均一場」に生成し易いことが知られている。そして本発明においても、Mn−Si複合酸化物の周辺に電気化学的な不均一場が形成されることで、化成処理時にりん酸亜鉛結晶が付着しやすくなり、良好な化成処理性が発揮されるものと考えられる。   In the chemical conversion treatment process, it is known that zinc phosphate crystals are likely to be generated in the “electrochemical inhomogeneous field” formed around the grain boundaries and around the Ti colloid previously deposited on the steel plate surface during the surface conditioning treatment. It has been. Also in the present invention, an electrochemical heterogeneous field is formed around the Mn-Si composite oxide, so that zinc phosphate crystals are easily attached during chemical conversion treatment, and good chemical conversion treatment performance is exhibited. It is thought that.

化成処理後のりん酸亜鉛結晶は、塗膜密着性の観点から数μm以下であることが好ましいとされている。よって上述の電気化学的不均一場も、数μmオーダーまたはそれ以下であることが望ましいと考えられる。そこでMnとSiの原子比(Mn/Si)が0.5以上である長径0.01μm以上5μm以下のMn−Si複合酸化物を100μmに10個以上存在させて(平均して10μmに1個以上存在させて)、該複合酸化物粒子の平均粒子間隔が数μmとなるようにし、上記サイズの電気化学的不均一場が形成されやすい状態とした。 It is said that the zinc phosphate crystal after the chemical conversion treatment is preferably several μm or less from the viewpoint of coating film adhesion. Therefore, it is considered that the above-mentioned electrochemical non-uniform field is desirably on the order of several μm or less. Therefore, 10 or more Mn—Si composite oxides having a major axis of 0.01 μm or more and 5 μm or less having an atomic ratio of Mn to Si (Mn / Si) of 0.5 or more are present in 100 μm 2 (on average 10 μm 2) . One or more particles were present), and the average particle spacing of the composite oxide particles was set to several μm so that an electrochemical heterogeneous field having the above size was easily formed.

尚、存在する全てのMn−Si複合酸化物において、電気化学的不均一場が有効に形成されるとは限らないので、好ましくは100μmあたり50個以上、より好ましくは100個以上、さらに好ましくは150個以上の上記Mn−Si複合酸化物を存在させるのがよい。該Mn−Si複合酸化物としては、例えばMnSiOが挙げられる。また観察できるMn−Si複合酸化物のサイズは、50nm程度が限界であると思われる。 Note that, in all the Mn—Si composite oxides present, the electrochemical heterogeneous field is not necessarily formed effectively, so preferably 50 or more per 100 μm 2 , more preferably 100 or more, even more preferably. It is preferable that 150 or more of the above Mn—Si composite oxide exist. Examples of the Mn—Si composite oxide include Mn 2 SiO 4 . The size of the Mn—Si composite oxide that can be observed seems to be about 50 nm.

<Siを主体とする酸化物の鋼板表面被覆率:10%以下>
りん酸亜鉛結晶の生成核として有効なMn−Si複合酸化物を適量存在させても、化成処理を阻害するその他の物質が存在すれば、優れた化成処理性は発揮されず、結果として塗膜密着性に劣るものとなる。
<Stainless steel sheet surface coverage of oxide mainly composed of Si: 10% or less>
Even if an appropriate amount of a Mn-Si composite oxide effective as a zinc phosphate crystal nucleus is present, if there is another substance that inhibits the chemical conversion treatment, the excellent chemical conversion treatment performance will not be exhibited. It becomes inferior to adhesiveness.

上述した様に、Siを主体とする酸化物(酸化物を構成する酸素以外の元素のうちSiが原子比で67%超を占める酸化物)が鋼板表面に存在すると、当該部位には、りん酸亜鉛結晶が生成せず化成処理性が著しく低下する。そこで、Siを主体とする酸化物の鋼板表面被覆率を10%以下とした。   As described above, when an oxide mainly composed of Si (an oxide other than oxygen constituting the oxide in which Si accounts for more than 67% by atomic ratio) is present on the surface of the steel sheet, the region contains phosphorus. Zinc acid crystals are not formed, and the chemical conversion treatment performance is significantly reduced. Therefore, the steel sheet surface coverage of the oxide mainly composed of Si is set to 10% or less.

尚、本発明者らは、上述の通りSiを主体とする酸化物を細かく分散させて化成処理性を高める技術を提案しているが、Mn−Si複合酸化物の前記作用を活用する本発明においては、Siを主体とする酸化物を極力存在させない方が好ましいことがわかった。よってSiを主体とする酸化物の鋼板表面被覆率は、5%以下に抑えることがより好ましく、最も好ましくは0%である。   The inventors of the present invention have proposed a technique for finely dispersing an oxide mainly composed of Si as described above to improve the chemical conversion treatment property. However, the present invention utilizes the above-described action of the Mn—Si composite oxide. In the above, it was found that it is preferable that an oxide mainly composed of Si is not present as much as possible. Therefore, the steel sheet surface coverage of the oxide mainly composed of Si is more preferably suppressed to 5% or less, and most preferably 0%.

<SEMを用いて2000倍で鋼板表面近傍の断面を観察したときに、任意の10視野において、幅3μm以下で深さ5μm以上のクラックが存在しないこと>
鋼板表面に鋭利なクラックが存在すると、化成処理時に当該部位にりん酸亜鉛結晶が付着せず、その結果、当該部位の腐食が進行しやすくなり、塗膜密着性が低下すると考えられる。つまり塗膜密着性を高めるには、りん酸亜鉛結晶の付着しない鋭利なクラックを極力抑制することが重要となる。
<When observing a cross section near the steel sheet surface at 2000 times using SEM, there should be no cracks with a width of 3 μm or less and a depth of 5 μm or more in any 10 fields of view>
If sharp cracks are present on the surface of the steel plate, it is considered that zinc phosphate crystals do not adhere to the site during the chemical conversion treatment, and as a result, corrosion of the site is likely to proceed, resulting in a decrease in coating film adhesion. That is, in order to improve the adhesion of the coating film, it is important to suppress as much as possible sharp cracks to which zinc phosphate crystals do not adhere.

本発明者らは、既に、Siと酸素を含む線状化合物(幅300nm以下)の存在深さを10μm以下にすることで塗膜密着性を高める技術を提案している。該技術では、連続焼鈍後に酸洗を施さないことを前提としているが、鋼板にはむしろ連続焼鈍後に酸洗を施す場合の方が多く、その場合には、線状酸化物が除去されてクラックが生じる。   The present inventors have already proposed a technique for improving the adhesion of a coating film by setting the existing depth of a linear compound (width: 300 nm or less) containing Si and oxygen to 10 μm or less. In this technique, it is assumed that pickling is not performed after continuous annealing, but the steel sheet is more often subjected to pickling after continuous annealing, in which case, the linear oxide is removed and cracks occur. Occurs.

クラック深さと線状酸化物の定量的な関係は明確でないが、線状酸化物が、上記の通り酸溶解されるか、又は機械的に脱落してクラックが生じると考えられ、上記線状酸化物が除去されたあとも、酸等によりクラック部分の溶解が進むので、線状酸化物の存在深さよりも該酸化物の除去後に形成されるクラックの方が深いと考えられる。   Although the quantitative relationship between the crack depth and the linear oxide is not clear, it is considered that the linear oxide is dissolved in the acid as described above, or mechanically dropped to cause cracks, and the linear oxidation described above. It is considered that cracks formed after removal of the oxide are deeper than the existence depth of the linear oxide because dissolution of the crack portion proceeds by acid or the like even after the material is removed.

そこで本発明では、上記提案済の技術のように線状酸化物の存在深さを規定するよりも、クラックを制御する方が塗膜密着性をより確実に高めることができると考え、制御すべきクラックの形態について調べたところ、クラックの幅が、りん酸亜鉛結晶粒径と同程度かそれ以下であると、該クラックにりん酸亜鉛結晶が付着し難く、また、特に深さが5μm以上のクラックにりん酸亜鉛結晶が付着し難いことから、幅3μm以下でかつ深さが5μm以上のクラックを抑制の対象とした。   Therefore, in the present invention, it is considered that controlling the cracks can more reliably improve the adhesion of the coating film than controlling the depth of existence of the linear oxide as in the proposed technique. When the shape of the power crack was examined, if the crack width was the same as or smaller than the zinc phosphate crystal grain size, it was difficult for the zinc phosphate crystal to adhere to the crack, and the depth was particularly 5 μm or more. Since zinc phosphate crystals hardly adhere to the cracks, cracks having a width of 3 μm or less and a depth of 5 μm or more were targeted for suppression.

そして上記クラックが、SEMを用いて2000倍で鋼板表面近傍の断面を観察したときに、任意の10視野において存在しないことを要件とした。   And when the said crack observed the cross section near the steel plate surface by 2000 times using SEM, it made it a requirement that it did not exist in arbitrary 10 visual fields.

本発明では、上記Mn−Si複合酸化物を効率良く析出させると共に規定するクラックを抑制し、また高強度鋼板としての特性を備えるため化学成分を下記の通り規定した。   In the present invention, the chemical components are defined as follows in order to efficiently precipitate the Mn—Si composite oxide and to suppress the specified cracks and to provide the characteristics as a high-strength steel sheet.

<Si(質量%)/Mn(質量%)≦0.4>
上述の通り、Siを主体とする酸化物は、化成処理性に悪影響を及ぼすため、該酸化物を細かく分散させるよりも極力抑制する方が好ましい。そこで本発明者らは、鋼中Si含有量(質量%)と鋼中Mn含有量の比率(Si/Mn)を0.4以下とすることで、Siを主体とする酸化物を抑制し、化成処理性を高めることとした。尚、上記クラックを抑制する観点からも、Si/Mnを0.4以下とするのがよい。上記Si/Mnは好ましくは0.3以下である。
<Si (mass%) / Mn (mass%) ≦ 0.4>
As described above, since an oxide mainly composed of Si adversely affects chemical conversion properties, it is preferable to suppress it as much as possible rather than finely dispersing the oxide. Therefore, the inventors suppress the oxide mainly composed of Si by setting the ratio of Si content (mass%) in steel to Mn content in steel (Si / Mn) to 0.4 or less, The chemical conversion processability was improved. From the viewpoint of suppressing the cracks, Si / Mn is preferably set to 0.4 or less. The Si / Mn is preferably 0.3 or less.

<C:0.005%以下>
本発明の鋼板は、固溶Cを極力低減して優れた深絞り性を実現するものである。C量が0.005%を超えると、時効による悪影響が表れない程度まで固溶Cを低減させるべくTi、Nbを多量に添加する必要があり、析出物が増加して機械的特性が低下する。よってC量は0.005%以下、好ましくは0.003%以下に抑える。尚、経済性や生産性の観点からは、C量の下限を0.0003%とするのがよい。
<C: 0.005% or less>
The steel sheet of the present invention achieves excellent deep drawability by reducing solute C as much as possible. If the amount of C exceeds 0.005%, it is necessary to add a large amount of Ti and Nb to reduce the solid solution C to the extent that no adverse effects due to aging appear, and the precipitates increase and the mechanical properties decrease. . Therefore, the C content is limited to 0.005% or less, preferably 0.003% or less. From the viewpoint of economy and productivity, the lower limit of the C amount is preferably 0.0003%.

<N:0.01%以下>
本発明は、固溶Cと共に固溶Nも極力低減することによって、優れた深絞り性を発揮する鋼板を対象としており、Nが過剰に含まれると、上記Cの場合と同様に、固溶Nを低減させるべく窒化物形成元素(TiやB、Al)を多量に添加する必要があり、コストアップとなるだけでなく、析出物が増大して機械的特性への悪影響が顕著になる。よってNは、0.01%以下に抑える必要があり、好ましくは0.004%以下である。
<N: 0.01% or less>
The present invention is directed to a steel sheet that exhibits excellent deep drawability by reducing solid solution N together with solid solution C as much as possible. When N is excessively contained, In order to reduce N, it is necessary to add a large amount of nitride-forming elements (Ti, B, Al), which not only increases the cost, but also increases the precipitates, and the adverse effect on the mechanical properties becomes remarkable. Therefore, N must be suppressed to 0.01% or less, and is preferably 0.004% or less.

<S:0.01%以下>
本発明の鋼板は、上記CやNと同様に固溶Sも極力低減する。Sが過剰に含まれると、上記CやNの場合と同様に、固溶Sを低減させるべく硫化物形成元素(TiやMn)の添加量が増大し、コストアップとなるだけでなく析出物量が増大して機械的特性が顕著に低下する。よってSは0.01%以下、好ましくは0.005%以下に抑える。
<S: 0.01% or less>
The steel sheet of the present invention also reduces solute S as much as possible as in C and N above. If S is excessively contained, the amount of sulfide-forming elements (Ti and Mn) added is increased to reduce the solid solution S as in the case of C and N, which not only increases the cost but also increases the amount of precipitates. Increases and the mechanical properties are significantly reduced. Therefore, S is suppressed to 0.01% or less, preferably 0.005% or less.

<Mn:0.1〜4%>
Mnは、鋼の脆化を招くS(硫黄)をMnSとして固定するのに有効な元素であり、このような効果を発揮させるには、0.1%以上、好ましくは0.2%以上含有させる。しかしMn量が過剰になると、延性と溶接性が共に劣化するため、4%以下、好ましくは2%以下に抑える。
<Mn: 0.1 to 4%>
Mn is an element effective for fixing S (sulfur), which causes embrittlement of steel, as MnS. In order to exert such an effect, it is contained in an amount of 0.1% or more, preferably 0.2% or more. Let However, when the amount of Mn becomes excessive, both ductility and weldability deteriorate, so the content is suppressed to 4% or less, preferably 2% or less.

<Si:0.2〜1%>
Siは、優れた強度−延性バランスを確保するのに有効な元素であり、この様な効果を十分に発揮させるには、Siを0.2%以上、好ましくは0.3%以上含有させる。一方、Si含有量が過剰になると、固溶強化作用が過大となって圧延負荷が増大するため1%以下に抑える。好ましくは0.6%以下である。
<Si: 0.2 to 1%>
Si is an element effective for ensuring an excellent balance between strength and ductility. In order to sufficiently exhibit such an effect, Si is contained in an amount of 0.2% or more, preferably 0.3% or more. On the other hand, if the Si content is excessive, the solid solution strengthening action becomes excessive and the rolling load increases, so the content is suppressed to 1% or less. Preferably it is 0.6% or less.

<P:0.001〜0.2%>
Pは、強度確保に有効な元素であり、0.001%以上含んでいてもよいが、P含有量が過剰になると、鋼が脆化し易くなるので0.2%以下に抑える。好ましくは0.15%以下である。
<P: 0.001 to 0.2%>
P is an element effective for ensuring the strength, and may be contained in an amount of 0.001% or more. However, if the P content is excessive, the steel tends to become brittle, so it is suppressed to 0.2% or less. Preferably it is 0.15% or less.

<Ti:0.005〜0.1%及び/又は
Nb:0.005〜0.1%>
TiやNbは、上述した固溶Cや固溶N、固溶Sを低減すべく析出物として固定するのに有効な元素であり、この様な効果を発揮させるには、Tiを0.005%以上(好ましくは0.01%以上)及び/又はNbを0.005%以上(好ましくは0.01%以上)添加するのがよい。一方、これらの元素を過剰に添加すると、再結晶温度が上昇して機械的特性が劣化しやすくなる傾向があり、また、本発明で規定するC量やN量、S量の範囲では効果が飽和して経済的に無駄であるので、TiとNbはそれぞれ0.1%以下(好ましくは0.05%以下)の範囲で添加するのがよい。
<Ti: 0.005-0.1% and / or Nb: 0.005-0.1%>
Ti and Nb are effective elements for fixing as precipitates in order to reduce the above-mentioned solid solution C, solid solution N, and solid solution S, and in order to exert such an effect, 0.005 Ti is used. % Or more (preferably 0.01% or more) and / or Nb is added 0.005% or more (preferably 0.01% or more). On the other hand, when these elements are added excessively, the recrystallization temperature tends to increase and the mechanical properties tend to be deteriorated. In addition, the effects are effective in the range of C amount, N amount and S amount specified in the present invention. Ti and Nb are each preferably added in the range of 0.1% or less (preferably 0.05% or less) because they are saturated and economically useless.

本発明で規定する含有元素は上記の通りであり、残部成分は実質的にFeであるが、鋼中に、原料、資材、製造設備等の状況によって持ち込まれる元素として、0.01%以下のO(酸素)、0.1%以下のAl等の不可避不純物が含まれることが許容されるのは勿論のこと、前記本発明の作用に悪影響を与えない範囲で、更に他の元素としてBを積極的に含有させることも可能である。   The contained elements specified in the present invention are as described above, and the remaining component is substantially Fe, but as an element brought into the steel depending on the situation of raw materials, materials, manufacturing equipment, etc., 0.01% or less Of course, inevitable impurities such as O (oxygen) and Al of 0.1% or less are allowed to be included, and B is added as another element within a range that does not adversely affect the operation of the present invention. It is also possible to contain it positively.

Bは、粒界を強化して、二次加工脆性を抑制するのに有効な元素であり、この様な効果を発揮させるには、0.0003%以上添加させることが好ましい。しかし、過剰に含まれると深絞り性が劣化するので、0.005%以下の範囲で添加するのがよい。   B is an element effective for strengthening the grain boundary and suppressing the secondary work brittleness, and 0.0003% or more is preferably added to exert such an effect. However, since deep drawability deteriorates if contained excessively, it is preferable to add in the range of 0.005% or less.

本発明は、金属組織がフェライト単相組織の鋼板を対象とするものである。尚、本発明における「フェライト」とは、ポリゴナルフェライト、即ち、転位密度の少ないフェライトを意味する。   The present invention is directed to a steel sheet having a ferrite single phase structure. The “ferrite” in the present invention means polygonal ferrite, that is, ferrite having a low dislocation density.

本発明の鋼板は、上記フェライトの他、製造過程で必然的に残存し、本発明の作用を損なわない範囲で含まれる組織として、極微量の炭化物等を含む場合があるが、これらの組織は合計で3%以下に抑えるのがよく、好ましくは0%である。   The steel sheet of the present invention, in addition to the above ferrite, may inevitably remain in the manufacturing process, and may contain an extremely small amount of carbide, etc. as a structure included in a range not impairing the action of the present invention. The total content should be suppressed to 3% or less, and preferably 0%.

本発明の鋼板は、前記基本成分を満たす鋼板であって、前記金属組織を有し、かつ特性として、
・引張強度が340MPa以上(特に、390MPa以上)、
・引張強度(TS:単位MPa)と伸び(El:単位%)が下記式(1)を満足するものであり、下記式(1)の右辺が特に15000以上であるものは、強度と加工性のバランスに優れており好ましい。
TS×El≧13000 …(1)
・更には、r値が1.2以上と優れた深絞り性を有する。
The steel plate of the present invention is a steel plate satisfying the basic components, has the metal structure, and as a characteristic,
-Tensile strength is 340 MPa or more (particularly 390 MPa or more),
-Tensile strength (TS: unit MPa) and elongation (El: unit%) satisfy the following formula (1), and the right side of the following formula (1) is particularly 15000 or more, strength and workability This is preferable because of its excellent balance.
TS × El ≧ 13000 (1)
-Furthermore, it has excellent deep drawability with an r value of 1.2 or more.

化成処理性を高めるべく、上記要件(I)として規定する通り鋼板表面に析出する酸化物の形態を制御するには、成分組成を満足させる他、製造工程において、熱間圧延後に、液温が65〜90℃で1〜18質量%の塩酸に40秒間以上(好ましくは60秒間以上)浸漬し、かつ連続焼鈍時の露点を−40℃以下(好ましくは−45℃以下)に抑えることが有効である。尚、塩酸への浸漬時間は、塩酸浴が複数設置され、断続的に浸漬する場合には、浸漬時間の合計が40秒間以上であればよい。   In order to enhance the chemical conversion treatment property, in order to control the form of the oxide deposited on the steel sheet surface as specified in the above requirement (I), in addition to satisfying the component composition, in the production process, after the hot rolling, the liquid temperature is It is effective to immerse in 1 to 18% by mass hydrochloric acid at 65 to 90 ° C. for 40 seconds or more (preferably 60 seconds or more) and to suppress the dew point during continuous annealing to −40 ° C. or less (preferably −45 ° C. or less). It is. In addition, as for the immersion time in hydrochloric acid, when a plurality of hydrochloric acid baths are installed and intermittent immersion is performed, the total immersion time may be 40 seconds or more.

また上記要件(II)として規定する通り、クラックを発生させないようにするには、成分組成を満足させる他、製造工程において、熱間圧延の巻取温度を500℃以下(好ましくは480℃以下)とし、かつ熱間圧延後、液温が70〜90℃で1〜18質量%の塩酸に40秒間以上(好ましくは60秒間以上)浸漬し、連続焼鈍時の露点を−40℃以下(好ましくは−45℃以下)とすることが有効である。更に、連続焼鈍の冷却工程で鋼板が水蒸気雰囲気に曝される場合には、予め、鋼板温度を550℃以下(好ましくは400〜450℃)にまで徐冷しておくことが有効である。   Further, as specified in the above requirement (II), in order not to generate cracks, in addition to satisfying the component composition, in the manufacturing process, the hot rolling coiling temperature is 500 ° C. or lower (preferably 480 ° C. or lower). And after hot rolling, the liquid temperature is 70 to 90 ° C. and immersed in 1 to 18% by mass of hydrochloric acid for 40 seconds or more (preferably 60 seconds or more), and the dew point during continuous annealing is −40 ° C. or less (preferably −45 ° C. or less) is effective. Furthermore, when the steel sheet is exposed to a water vapor atmosphere in the cooling process of continuous annealing, it is effective to cool the steel sheet to 550 ° C. or lower (preferably 400 to 450 ° C.) in advance.

本発明は、その他の製造条件まで規定するものでなく、通常行われている通り、溶製後に鋳造し熱間圧延を行えばよい。また後述する実施例では連続焼鈍後に酸洗を行っているが、該酸洗の有無も問わない。   The present invention is not limited to other production conditions, and may be cast after melting and hot-rolled as usual. Moreover, in the Example mentioned later, although pickling is performed after continuous annealing, the presence or absence of this pickling is not ask | required.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

表1に示す化学成分組成の鋼材を溶製し、鋳造して得られたスラブを用いて熱間圧延を行いその後酸洗を行った。製造条件として、熱間圧延後の巻き取り温度と熱間圧延後の酸洗時間を表2に示す。尚、酸洗は、温度が70〜90℃で濃度が5〜15質量%の塩酸水溶液を用いて行った。その後、冷間圧延(冷延率:70%)を行って、金属組織がフェライト単相組織である板厚1.2mmの鋼板を得た。そして図2または図3に示す方法で得られた鋼板に連続焼鈍を施した。連続焼鈍における均熱・徐冷後の冷却が汽水(ミスト)冷却、ガス吹き付けによる冷却(GJ)、水冷ロール抜熱による冷却(RQ)の場合には図2の方法で行い、該冷却が水焼入れ(WQ)の場合には図3に示す方法で行った。該冷却後には図2または図3に示す通り焼き戻しを行った。尚、汽水(ミスト)冷却を行った場合および水焼入れ(WQ)を行った場合には、焼き戻し後に、液温:50℃で濃度:5質量%の塩酸に5秒間浸漬(酸洗)して表面スケールを除去した。表2の加熱温度、徐冷終点温度、焼戻温度は、図2,3に示す箇所での温度を示している。また露点は連続焼鈍炉の雰囲気露点である。   A steel material having the chemical composition shown in Table 1 was melted and cast using a slab obtained by casting, and then pickled. Table 2 shows the coiling temperature after hot rolling and the pickling time after hot rolling as the production conditions. In addition, pickling was performed using the hydrochloric acid aqueous solution whose temperature is 70-90 degreeC, and whose density | concentration is 5-15 mass%. Thereafter, cold rolling (cold rolling ratio: 70%) was performed to obtain a steel sheet having a thickness of 1.2 mm whose metal structure is a ferrite single phase structure. And the steel plate obtained by the method shown in FIG. 2 or FIG. 3 was subjected to continuous annealing. When cooling after soaking and slow cooling in continuous annealing is brackish water (mist) cooling, cooling by gas spraying (GJ), cooling by water cooling roll heat removal (RQ), the cooling is performed by the method of FIG. In the case of quenching (WQ), the method shown in FIG. 3 was used. After the cooling, tempering was performed as shown in FIG. In addition, when brackish water (mist) cooling and water quenching (WQ) are performed, after tempering, it is immersed (pickling) for 5 seconds in hydrochloric acid having a liquid temperature of 50 ° C. and a concentration of 5% by mass. The surface scale was removed. The heating temperature, annealing end point temperature, and tempering temperature in Table 2 indicate the temperatures at the locations shown in FIGS. The dew point is the atmospheric dew point of the continuous annealing furnace.

得られた鋼板を用いて、機械的特性および塗膜密着性を評価した。機械的特性は、JIS5号試験片を採取して測定し、引張強度(TS)、El(全伸び)、降伏点(YP)、r値を求め、引張強度(TS)が340MPa以上で、引張強度と伸びの積(TS×El)が13000以上であり、かつr値が1.2以上の場合を、機械的特性に優れていると評価した。   Mechanical properties and coating film adhesion were evaluated using the obtained steel plates. Mechanical properties were measured by taking a JIS No. 5 test piece, obtaining tensile strength (TS), El (total elongation), yield point (YP), r value, and tensile strength (TS) of 340 MPa or higher. The case where the product of strength and elongation (TS × El) was 13000 or more and the r value was 1.2 or more was evaluated as excellent in mechanical properties.

塗膜密着性として、化成処理性とクラックの有無を調べた。化成処理性は、鋼板表面の酸化物の状態を下記の様にして調べ、かつ下記条件で化成処理を行って化成処理後の鋼板表面を1000倍でSEM観察し、10視野のりん酸亜鉛結晶の付着状態を調べた。そして10視野全てにおいてりん酸亜鉛結晶が均一に付着している場合を「○」、りん酸亜鉛結晶の付着していない部分が1視野でも存在する場合を「×」と評価した。その結果を表3に示す。   As the coating film adhesion, chemical conversion property and presence of cracks were examined. For the chemical conversion treatment, the state of the oxide on the surface of the steel sheet was examined as follows, and the chemical conversion treatment was performed under the following conditions, and the steel sheet surface after the chemical conversion treatment was observed by SEM at 1000 times, and 10 phosphate crystals of zinc phosphate were observed. The adhesion state of was investigated. The case where the zinc phosphate crystals were uniformly attached in all 10 fields of view was evaluated as “◯”, and the case where the portion where no zinc phosphate crystals were adhered was present as “x”. The results are shown in Table 3.

・化成処理液:日本パーカライジング社製 パルボンド L 3020
・化成処理工程:脱脂 → 水洗 → 表面調整 → 化成処理
Mn−Si酸化物の個数は、鋼材表面の抽出レプリカ膜を作製し、これを15000倍でTEM観察し(日立製作所製 H−800)、任意の20視野の平均個数(100μmあたり)を調べた。
・ Chemical conversion treatment liquid: Palbond L 3020 manufactured by Nihon Parkerizing Co., Ltd.
・ Chemical conversion treatment process: Degreasing → Washing → Surface adjustment → Chemical conversion treatment The number of Mn-Si oxides was prepared by extracting an extracted replica film on the surface of the steel material, and TEM observation was performed at 15000 times (H-800, manufactured by Hitachi, Ltd.) The average number (per 100 μm 2 ) of any 20 visual fields was examined.

Siを主体とする酸化物の鋼板表面被覆率は、抽出レプリカ法で処理したサンプルをTEMで観察し、画像解析法で被覆率を求めた。尚、抽出レプリカ法は、下記(a)〜(d)の手順に添って行った。
(a)鋼材の表面にカーボンを蒸着させる。
(b)サンプル平面上に2〜3mm角の碁盤目状の切れ目を入れる。
(c)10%アセチルアセトン−90%メタノールエッチング液で腐食させてカーボンを浮上させる。
(d)アルコール中に保存して観察に用いる。
As for the steel sheet surface coverage of the oxide mainly composed of Si, the sample treated by the extraction replica method was observed by TEM, and the coverage was determined by an image analysis method. The extraction replica method was performed according to the following procedures (a) to (d).
(A) Carbon is vapor-deposited on the surface of the steel material.
(B) A grid-like cut of 2 to 3 mm square is made on the sample plane.
(C) The carbon is levitated by being corroded with 10% acetylacetone-90% methanol etching solution.
(D) Store in alcohol and use for observation.

この様に処理したサンプルを用いてTEMにて、倍率15000倍で10視野分の写真(13cm×11cm)を撮影し、Siを主体とする酸化物(酸化物を構成する酸素以外の元素のうちSiが原子比で67%超を占めるもの)の面積を測定し、Siを主体とする酸化物の被覆率を求めた。   Using the sample processed in this manner, a TEM image of 10 fields of view (13 cm × 11 cm) was taken at a magnification of 15000 times, and an oxide mainly composed of Si (among elements other than oxygen constituting the oxide) The area of Si (over 67% by atomic ratio) was measured, and the coverage of the oxide mainly composed of Si was determined.

またクラックの有無は、SEM(日立製作所製 S−4500)を用いて2000倍で、鋼板断面の表面近傍における任意の10視野(1視野:13cm×11cm)を観察して調べた。これらの測定結果を表3に示す。   The presence or absence of cracks was examined using an SEM (S-4500, manufactured by Hitachi, Ltd.) at a magnification of 2000 and by observing any 10 visual fields (1 visual field: 13 cm × 11 cm) near the surface of the cross section of the steel sheet. These measurement results are shown in Table 3.

Figure 0004698967
Figure 0004698967

Figure 0004698967
Figure 0004698967

Figure 0004698967
Figure 0004698967

表1〜3から、以下の様に考察できる(尚、下記No.は実験No.を示す)。即ち、No.30は、本発明鋼板1としての規定要件を満たしているため化成処理性に優れており、塗膜密着性に優れている。該実施例において、クラックを抑制してより優れた塗膜密着性を確保するには、製造条件として特に巻取温度や徐冷終了温度を制御するのがよいことがわかる。   From Tables 1 to 3, the following can be considered (the following No. indicates the experiment No.). That is, no. No. 30 satisfies the prescribed requirements as the steel sheet 1 of the present invention, and therefore has excellent chemical conversion treatment properties and excellent coating film adhesion. In this example, it can be seen that, in order to suppress cracks and ensure better coating film adhesion, it is particularly preferable to control the coiling temperature and the annealing end temperature as production conditions.

No.31は、本発明鋼板2として規定する要件を満たしているため、クラックが発生しておらず、塗膜密着性に優れた鋼板が得られている。該実施例において、化成処理性を確保して塗膜密着性をより高めるには、成分組成を制御して鋼板表面に析出する酸化物の形態を規定の通りにするのがよい。   No. Since No. 31 satisfies the requirements defined as the steel sheet 2 of the present invention, cracks are not generated, and a steel sheet having excellent coating film adhesion is obtained. In this example, in order to ensure the chemical conversion treatment and further improve the adhesion of the coating film, it is preferable to control the component composition so that the form of the oxide deposited on the steel sheet surface is as specified.

またNo.1〜13、24は、本発明鋼板3で規定する表面酸化物とクラックに関する要件(即ち、本発明鋼板1で規定する表面酸化物に関する要件、および本発明鋼板2で規定するクラックに関する要件)を満足しているため、優れた化成処理性を確保でき、かつクラックの発生が抑制されて優れた塗膜密着性を発揮する。   No. 1 to 13 and 24 are the requirements regarding the surface oxide and crack defined by the steel plate 3 of the present invention (that is, the requirements regarding the surface oxide defined by the steel plate 1 of the present invention and the requirements regarding the crack defined by the steel plate 2 of the present invention). Since it is satisfied, excellent chemical conversion processability can be secured, and the occurrence of cracks is suppressed and excellent coating film adhesion is exhibited.

これらに対し、No.14〜23、25〜29は、本発明鋼板1〜3の要件をいずれも満たしておらず、塗膜密着性に優れていないか、強度−延性バランスに優れておらず、高強度でかつ優れた加工性を発揮するものが得られていない。   In contrast, no. Nos. 14 to 23 and 25 to 29 do not satisfy any of the requirements of the steel plates 1 to 3 of the present invention, and are not excellent in coating film adhesion, or are not excellent in the strength-ductility balance, and are high in strength and excellent. No product that exhibits excellent workability has been obtained.

No.14〜20、27〜29は、本発明で規定する成分組成を満足しないため、機械的特性に劣るか塗膜密着性に劣る結果となった。即ち、No.14はSi量が少ないため、No.17はMn量が多過ぎるため、No.19はC量が上限を超えており炭化物が過度に析出して伸びが低いため、またNo.20はN量が過剰であるため、いずれも強度−延性バランスに劣るものとなった。尚、No.17はr値が小さく、深絞り性にも劣っている。   No. 14-20 and 27-29 did not satisfy the component composition prescribed | regulated by this invention, Therefore It became a result inferior to a mechanical characteristic or inferior to coating-film adhesiveness. That is, no. No. 14 has a small amount of Si. No. 17 has too much Mn. No. 19 has a C content exceeding the upper limit, carbides are excessively precipitated, and the elongation is low. No. 20 was inferior in the strength-ductility balance because the N amount was excessive. No. No. 17 has a small r value and inferior deep drawability.

No.15はSi量が過剰であり、Si/Mn比も上限を超えているため、規定する鋼板表面とならず、塗膜密着性に劣る結果となった。No.16は、Si量およびMn量はそれぞれ規定範囲内にあるが、Si/Mn比が上限を超えているため塗膜密着性に劣っている。No.18は、Si量は規定範囲内にあるがMn量が少なすぎてSi/Mn比が上限を超えているため、規定のMn−Si複合酸化物が少なく、Si主体の酸化物が多量に生成して化成処理性に劣る結果となった。また表層粒界部にクラックも認められた。   No. No. 15 has an excessive amount of Si, and the Si / Mn ratio exceeds the upper limit, so that it does not become the steel sheet surface to be defined, resulting in poor coating film adhesion. No. In No. 16, the Si amount and the Mn amount are within the specified ranges, respectively, but the Si / Mn ratio exceeds the upper limit, so that the coating film adhesion is inferior. No. No.18, the amount of Si is within the specified range, but the amount of Mn is too small and the Si / Mn ratio exceeds the upper limit. Therefore, the specified Mn-Si composite oxide is small, and a large amount of Si-based oxide is generated. As a result, the chemical conversion processability was inferior. Cracks were also observed at the surface grain boundary.

No.27はS量が過剰であるため、強度−延性バランスに劣る結果となった。またNo.28はTi量が過剰であり、No.29はNb量が過剰であるため、強度−延性バランスの好ましくないものとなった。   No. No. 27 was inferior in the strength-ductility balance because the amount of S was excessive. No. No. 28 has an excessive amount of Ti. No. 29 has an unfavorable balance between strength and ductility because the amount of Nb is excessive.

No.21〜23、25、26は、推奨する条件で製造せず、本発明で規定する酸化物の形態でないため化成処理性に劣っており、またクラックも発生して塗膜密着性に劣っている。   No. 21 to 23, 25, and 26 are not manufactured under the recommended conditions, and are not in the form of oxides defined in the present invention, so that they are inferior in chemical conversion treatment, and cracks are also generated, resulting in poor coating film adhesion. .

即ち、No.21は、熱間圧延後の巻取温度が高いため熱延でのSi表面濃化が助長され、No.22は、酸洗時間が短いため濃化Si層の除去が不足し、またNo.23は露点が高いため焼鈍段階でSiの表面濃化が促進されて、いずれもSi主体の酸化物が多量に存在しているため、化成処理性に劣っており、また粒界にSi酸化物が生成して酸洗後にクラックが発生したため、塗膜密着性に劣る結果となった。   That is, no. No. 21 has a high coiling temperature after hot rolling, which facilitates Si surface concentration in hot rolling. No. 22 has a short pickling time, so that removal of the concentrated Si layer is insufficient. Since No. 23 has a high dew point, the surface concentration of Si is promoted at the annealing stage, and in both cases, a large amount of oxide mainly composed of Si is inferior in chemical conversion treatment property. Produced and cracks occurred after pickling, resulting in poor coating adhesion.

No.25、26では、焼鈍後の冷却までの条件をより好適な範囲にコントロールすることなく、No.25では焼鈍後にミスト冷却を行い、またNo.26では焼鈍後に水冷を行って高温かつ水分の多い雰囲気に曝したため、表面と粒界のどちらにもSi主体の酸化物が多量に生成し、化成処理性に劣る結果となった。また、その後の酸洗工程で上記酸化物が溶解してクラックも発生した。   No. In Nos. 25 and 26, the conditions until the cooling after annealing were controlled to a more suitable range, In No. 25, mist cooling was performed after annealing. In No. 26, water cooling was performed after annealing to expose it to a high temperature and moisture-rich atmosphere, so a large amount of Si-based oxides were formed on both the surface and grain boundaries, resulting in poor chemical conversion properties. Moreover, the said oxide melt | dissolved in the subsequent pickling process and the crack also generate | occur | produced.

参考までに、本実施例で得られた鋼板の抽出レプリカをTEM観察した顕微鏡写真、及び化成処理後の鋼板表面のSEM観察写真を示す。図4は、比較例であるNo.15の鋼板表面におけるTEM観察写真であるが、この図4から、鋼板表層領域がSiを主体とする酸化物層で覆われていることがわかる。   For reference, a micrograph obtained by TEM observation of an extracted replica of the steel sheet obtained in this example and a SEM observation photograph of the steel sheet surface after chemical conversion treatment are shown. FIG. FIG. 4 shows that the surface area of the steel sheet is covered with an oxide layer mainly composed of Si.

また図5は、上記鋼板を化成処理した後の表面をSEMで観察した顕微鏡写真である。該図5から、No.15ではりん酸亜鉛結晶が大きく隙間も大きいことがわかる。   FIG. 5 is a photomicrograph of the surface of the steel sheet after chemical conversion treatment observed with an SEM. From FIG. 15 shows that the zinc phosphate crystal is large and the gap is large.

これに対し図6は、本発明例であるNo.6の鋼板断面におけるTEM観察写真であるが、鋼板表層領域に上記No.15の様な層は形成されておらず、代わりにMn主体のMn−Si複合酸化物が微細に分散している。つまりNo.6の鋼板表層領域には、化成処理性を低下させるSi主体の酸化物はほとんどなく、化成処理性の向上に有効なMn−Si複合酸化物が多数存在していることを確認できる。   On the other hand, FIG. 6 is a TEM observation photograph in the cross section of the steel plate of No. 6, but in the steel plate surface layer region, the above-mentioned No. 15 is not formed, and instead, Mn-based Mn—Si composite oxide is finely dispersed. That is, no. It can be confirmed that the surface layer region of the steel plate 6 has almost no Si-based oxides that lower the chemical conversion property, and there are many Mn-Si composite oxides effective for improving the chemical conversion property.

図7は、上記鋼板を化成処理した後の表面をSEMで観察した顕微鏡写真であるが、該図7から、No.6ではりん酸亜鉛結晶が小さく隙間がないことがわかる。   FIG. 7 is a photomicrograph of the surface of the steel sheet after chemical conversion treatment, which was observed with an SEM. 6 shows that the zinc phosphate crystals are small and have no gaps.

鋼板断面におけるクラックを模式的に示した図である。It is the figure which showed typically the crack in a steel plate cross section. 実施例における製造工程(一部)を示す図である。It is a figure which shows the manufacturing process (part) in an Example. 実施例における別の製造工程(一部)を示す図である。It is a figure which shows another manufacturing process (part) in an Example. 実施例におけるNo.15(比較例)のTEM観察写真(抽出レプリカ,倍率:15000倍)である。No. in the examples. 15 is a TEM observation photograph (extracted replica, magnification: 15000 times) of 15 (comparative example). 実施例におけるNo.15(比較例)の鋼板表面(化成処理後)のSEM観察写真である。No. in the examples. It is a SEM observation photograph of the steel plate surface (after chemical conversion treatment) of 15 (comparative example). 実施例におけるNo.6(本発明例)のTEM観察写真(抽出レプリカ,倍率:15000倍)である。No. in the examples. 6 is a TEM observation photograph (extraction replica, magnification: 15000 times) of No. 6 (example of the present invention). 実施例におけるNo.6(本発明例)の鋼板表面(化成処理後)のSEM観察写真である。No. in the examples. It is a SEM observation photograph of the steel plate surface (after chemical conversion treatment) of 6 (invention example).

Claims (4)

質量%で(化学成分について以下同じ)、
C :0.005%以下、
N :0.01%以下、
S :0.01%以下に抑えられ、
Mn:0.1〜4%、
Si:0.2〜1%、
P :0.001〜0.2%、
Si/Mn≦0.4を満たすと共に、
Ti:0.005〜0.1%及び/又はNb:0.005〜0.1%を含み、残部が鉄および不可避不純物であり、
金属組織がフェライト単相組織の鋼板であって、
鋼板表面において、MnとSiの原子比(Mn/Si)が0.5以上である長径0.01μm以上5μm以下のMn−Si複合酸化物が10個/100μm2以上存在すると共に、Siを主体とする酸化物の鋼板表面被覆率が10%以下であり、
引張強度が340MPa以上で、引張強度(TS:単位MPa)と伸び(El:単位%)
が下記式(1)を満たし、かつランクフォード値(r値)が1.2以上であることを特徴とする塗膜密着性と加工性に優れた高強度冷延鋼板。
TS×El≧13000 …(1)
% By mass (the same applies to chemical components)
C: 0.005% or less,
N: 0.01% or less,
S: suppressed to 0.01% or less,
Mn: 0.1-4%
Si: 0.2-1%,
P: 0.001 to 0.2%,
While satisfying Si / Mn ≦ 0.4,
Ti: 0.005 to 0.1% and / or Nb: 0.005 to 0.1%, the balance is iron and inevitable impurities,
The metal structure is a steel sheet having a ferrite single phase structure,
In the steel sheet surface, with the atomic ratio of Mn and Si (Mn / Si) is 5μm or less of Mn-Si composite oxide major diameter 0.01μm or more and 0.5 or more is present 10/100 [mu] m 2 or more, mainly of Si The steel sheet surface coverage of the oxide is 10% or less,
When tensile strength is 340 MPa or more, tensile strength (TS: unit MPa) and elongation (El: unit%)
Satisfies the following formula (1) and has a Rankford value (r value) of 1.2 or more, a high-strength cold-rolled steel sheet excellent in coating film adhesion and workability.
TS × El ≧ 13000 (1)
C:0.005%以下、
N :0.01%以下、
S :0.01%以下に抑えられ、
Mn:0.1〜4%、
Si:0.2〜1%、
P :0.001〜0.2%、
Si/Mn≦0.4を満たすと共に、
Ti:0.005〜0.1%及び/又はNb:0.005〜0.1%を含み、残部が鉄および不可避不純物であり、
金属組織がフェライト単相組織の鋼板であって、
SEMを用いて2000倍で鋼板表面近傍の断面を観察したときに、任意の10視野において幅3μm以下で深さ5μm以上のクラックが存在せず、
引張強度が340MPa以上で、引張強度(TS:単位MPa)と伸び(El:単位%)
が下記式(1)
TS×El≧13000 …(1)
を満たし、かつランクフォード値(r値)が1.2以上であり、
下記(a)〜(d)の工程を行なうことによって、前記クラックを発生させないようにすることを特徴とする塗膜密着性と加工性に優れた高強度冷延鋼板。
(a)熱間圧延の巻き取り温度を500℃以下とし、
(b)熱間圧延後、液温が70〜90℃で1〜18質量%の塩酸に40秒間以上浸漬し、
(c)連続焼鈍時の露点を−40℃以下とし、
(d)連続焼鈍時の冷却工程で鋼板が水蒸気雰囲気に曝される場合には、予め、鋼板温度を550℃以下にまで徐冷しておく。
C: 0.005% or less,
N: 0.01% or less,
S: suppressed to 0.01% or less,
Mn: 0.1-4%
Si: 0.2-1%,
P: 0.001 to 0.2%,
While satisfying Si / Mn ≦ 0.4,
Ti: 0.005 to 0.1% and / or Nb: 0.005 to 0.1%, the balance is iron and inevitable impurities,
The metal structure is a steel sheet having a ferrite single phase structure,
When observing a cross section in the vicinity of the steel sheet surface at 2000 times using SEM, there are no cracks having a width of 3 μm or less and a depth of 5 μm or more in any 10 fields of view,
When tensile strength is 340 MPa or more, tensile strength (TS: unit MPa) and elongation (El: unit%)
Is the following formula (1)
TS × El ≧ 13000 (1)
The meet, and Lankford value (r value) Ri der 1.2 or more,
A high-strength cold-rolled steel sheet excellent in coating film adhesion and workability , wherein the cracks are not generated by performing the following steps (a) to (d) .
(A) The hot rolling coiling temperature is 500 ° C. or less,
(B) After hot rolling, the liquid temperature is 70-90 ° C. and immersed in 1-18 mass% hydrochloric acid for 40 seconds or more,
(C) The dew point during continuous annealing is −40 ° C. or lower,
(D) When the steel sheet is exposed to a water vapor atmosphere in the cooling step during continuous annealing, the steel sheet temperature is gradually cooled to 550 ° C. or lower in advance.
C:0.005%以下、
N :0.01%以下、
S :0.01%以下に抑えられ、
Mn:0.1〜4%、
Si:0.2〜1%、
P :0.001〜0.2%、
Si/Mn≦0.4を満たすと共に、
Ti:0.005〜0.1%及び/又はNb:0.005〜0.1%を含み、残部が鉄および不可避不純物であり、
金属組織がフェライト単相組織の鋼板であって、
(I)鋼板表面において、MnとSiの原子比(Mn/Si)が0.5以上である長径
0.01μm以上5μm以下のMn−Si複合酸化物が10個/100μm2以上存在すると共に、Siを主体とする酸化物の鋼板表面被覆率が10%以下であり、かつ
(II)SEMを用いて2000倍で鋼板表面近傍の断面を観察したときに、任意の10視野において幅3μm以下で深さ5μm以上のクラックが存在せず、
引張強度が340MPa以上で、引張強度(TS:単位MPa)と伸び(El:単位%)
が下記式(1)を満たし、かつランクフォード値(r値)が1.2以上であることを特徴とする塗膜密着性と加工性に優れた高強度冷延鋼板。
TS×El≧13000 …(1)
C: 0.005% or less,
N: 0.01% or less,
S: suppressed to 0.01% or less,
Mn: 0.1-4%
Si: 0.2-1%,
P: 0.001 to 0.2%,
While satisfying Si / Mn ≦ 0.4,
Ti: 0.005 to 0.1% and / or Nb: 0.005 to 0.1%, the balance is iron and inevitable impurities,
The metal structure is a steel sheet having a ferrite single phase structure,
In (I) the steel sheet surface, with the atomic ratio of Mn and Si (Mn / Si) is 5μm or less of Mn-Si composite oxide major diameter 0.01μm or more and 0.5 or more is present 10/100 [mu] m 2 or more, The steel plate surface coverage of the oxide mainly composed of Si is 10% or less, and (II) When the cross section near the steel plate surface is observed at 2000 times using SEM, the width is 3 μm or less in any 10 fields of view. There are no cracks with a depth of 5 μm or more,
When tensile strength is 340 MPa or more, tensile strength (TS: unit MPa) and elongation (El: unit%)
Satisfies the following formula (1) and has a Rankford value (r value) of 1.2 or more, a high-strength cold-rolled steel sheet excellent in coating film adhesion and workability.
TS × El ≧ 13000 (1)
更に他の元素として、B:0.005%以下(0%含まない)を含有する請求項1〜のいずれかに記載の高強度冷延鋼板。 The high-strength cold-rolled steel sheet according to any one of claims 1 to 3 , further comprising B: 0.005% or less (not including 0%) as another element.
JP2004098431A 2004-03-30 2004-03-30 High-strength cold-rolled steel sheet with excellent coating film adhesion and workability Expired - Fee Related JP4698967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004098431A JP4698967B2 (en) 2004-03-30 2004-03-30 High-strength cold-rolled steel sheet with excellent coating film adhesion and workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004098431A JP4698967B2 (en) 2004-03-30 2004-03-30 High-strength cold-rolled steel sheet with excellent coating film adhesion and workability

Publications (2)

Publication Number Publication Date
JP2005281785A JP2005281785A (en) 2005-10-13
JP4698967B2 true JP4698967B2 (en) 2011-06-08

Family

ID=35180502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004098431A Expired - Fee Related JP4698967B2 (en) 2004-03-30 2004-03-30 High-strength cold-rolled steel sheet with excellent coating film adhesion and workability

Country Status (1)

Country Link
JP (1) JP4698967B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5042486B2 (en) * 2005-11-10 2012-10-03 新日本製鐵株式会社 Deep drawing high strength steel sheet and hot dipped cold-rolled steel sheet
JP5891845B2 (en) * 2012-02-24 2016-03-23 Jfeスチール株式会社 Manufacturing method of surface-treated steel sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299290A (en) * 1993-04-14 1994-10-25 Nippon Steel Corp Cold nonaging property cold rolled steel sheet having remarkably high hardenability in coating/baking
JP2000119866A (en) * 1998-10-15 2000-04-25 Kobe Steel Ltd Phosphate film, aluminum member having phosphate film and production of phosphate film
JP2001107185A (en) * 1999-10-04 2001-04-17 Nippon Steel Corp High strength steel sheet excellent in fatigue resistance and chemical convertibility
JP2002226944A (en) * 2001-02-02 2002-08-14 Kawasaki Steel Corp Hot-rolled, high-tensile steel plate having excellent chemical convertibility and corrosion resistance, and its manufacturing method
JP2003033802A (en) * 2001-07-19 2003-02-04 Sumitomo Metal Ind Ltd Production method of cold rolled steel plate with good degreasing character and chemical conversion treatability
JP2003201538A (en) * 2001-10-30 2003-07-18 Jfe Steel Kk High strength, high ductility cold rolled steel sheet having excellent salt hot water resisting secondary adhesion and production method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299290A (en) * 1993-04-14 1994-10-25 Nippon Steel Corp Cold nonaging property cold rolled steel sheet having remarkably high hardenability in coating/baking
JP2000119866A (en) * 1998-10-15 2000-04-25 Kobe Steel Ltd Phosphate film, aluminum member having phosphate film and production of phosphate film
JP2001107185A (en) * 1999-10-04 2001-04-17 Nippon Steel Corp High strength steel sheet excellent in fatigue resistance and chemical convertibility
JP2002226944A (en) * 2001-02-02 2002-08-14 Kawasaki Steel Corp Hot-rolled, high-tensile steel plate having excellent chemical convertibility and corrosion resistance, and its manufacturing method
JP2003033802A (en) * 2001-07-19 2003-02-04 Sumitomo Metal Ind Ltd Production method of cold rolled steel plate with good degreasing character and chemical conversion treatability
JP2003201538A (en) * 2001-10-30 2003-07-18 Jfe Steel Kk High strength, high ductility cold rolled steel sheet having excellent salt hot water resisting secondary adhesion and production method therefor

Also Published As

Publication number Publication date
JP2005281785A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
JP3889768B2 (en) High-strength cold-rolled steel sheets and automotive steel parts with excellent coating film adhesion and ductility
JP5298114B2 (en) High-strength cold-rolled steel sheet with excellent coating film adhesion and workability, and method for producing the same
JP3889769B2 (en) High-strength cold-rolled steel sheet and automotive steel parts with excellent coating film adhesion, workability, and hydrogen embrittlement resistance
CN109642294B (en) Steel sheet and method for producing same
JP3934604B2 (en) High strength cold-rolled steel sheet with excellent coating adhesion
KR100955982B1 (en) High-strength cold-rolled steel sheet excellent in coating adhesion, workability and hydrogen embrittlement resistance, and steel component for automobile
TWI479028B (en) High-strength galvanized steel sheet having high tensile strength at a maximum tensile strength of 980 MPa and excellent in formability, high-strength alloyed hot-dip galvanized steel sheet and method of manufacturing the same
KR101335069B1 (en) High-strength cold-rolled steel sheet having excellent workability, molten galvanized high-strength steel sheet, and method for producing the same
TWI447262B (en) Zinc coated steel sheet and manufacturing method thereof
TWI507535B (en) Alloyed molten galvanized steel sheet
JP6424967B2 (en) Plated steel sheet and method of manufacturing the same
JP4593691B2 (en) Hot-rolled steel sheet with excellent fatigue characteristics and stretch flangeability and method for producing the same
WO2011162412A1 (en) High-strength hot-rolled steel sheet having excellent stretch flangeability and method for producing same
JP5233346B2 (en) High-strength cold-rolled steel sheet excellent in chemical conversion treatment and post-coating corrosion resistance and method for producing the same
CN112805395B (en) Hot-rolled steel sheet and method for producing same
JP5636683B2 (en) High-strength galvannealed steel sheet with excellent adhesion and manufacturing method
JP2006199979A (en) Bake hardenable hot rolled steel sheet with excellent workability, and its manufacturing method
JP4698968B2 (en) High-strength cold-rolled steel sheet with excellent coating film adhesion and workability
WO2017131054A1 (en) High strength zinc plated steel sheet, high strength member, and production method for high strength zinc plated steel sheet
JP6406475B1 (en) Al-plated welded pipe for quenching, Al-plated hollow member and method for producing the same
JP4315844B2 (en) High strength cold-rolled steel sheet with excellent coating adhesion
JP5070862B2 (en) Plated steel sheet and manufacturing method thereof
JP4698971B2 (en) High-strength cold-rolled steel sheet with excellent coating film adhesion and workability
JP4720618B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP6610788B2 (en) High strength hot rolled galvanized steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110302

R150 Certificate of patent or registration of utility model

Ref document number: 4698967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees