JP2014019928A - High strength cold rolled steel sheet and method for producing high strength cold rolled steel sheet - Google Patents

High strength cold rolled steel sheet and method for producing high strength cold rolled steel sheet Download PDF

Info

Publication number
JP2014019928A
JP2014019928A JP2012162078A JP2012162078A JP2014019928A JP 2014019928 A JP2014019928 A JP 2014019928A JP 2012162078 A JP2012162078 A JP 2012162078A JP 2012162078 A JP2012162078 A JP 2012162078A JP 2014019928 A JP2014019928 A JP 2014019928A
Authority
JP
Japan
Prior art keywords
less
steel sheet
rolled steel
strength cold
retained austenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012162078A
Other languages
Japanese (ja)
Inventor
Kohei Hasegawa
浩平 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012162078A priority Critical patent/JP2014019928A/en
Priority to ZA2012/07927A priority patent/ZA201207927B/en
Priority to MYPI2012004701A priority patent/MY183438A/en
Priority to BR102012027286A priority patent/BR102012027286A2/en
Priority to RU2012146130/02A priority patent/RU2518852C1/en
Publication of JP2014019928A publication Critical patent/JP2014019928A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high strength cold rolled steel sheet or the like having high ductility and excellent in stretch flange properties.SOLUTION: The high strength cold rolled steel sheet as a composition comprising, by mass%, 0.06% or higher to 0.12% or lower of C, 0.4% or higher to 0.8% or lower of Si, 1.6% or higher to 2.0% or lower of Mn, 0.01% or higher to 1.0% or lower of Cr, 0.001% or higher to 0.1% or lower of V, 0.05% or lower of P, 0.01% or lower of S, 0.01% or higher to 0.5% or lower of Sol.Al and 0.005% or lower of N, and the balance iron with inevitable impurities, and further, the volume ratio of equiaxial ferrite in a metallic structure is 50% or higher, the volume ratio of martensite is 5% or higher to 15% or lower, the volume ratio of a retained austenite phase is 1% or higher to 5% or lower, the average grain size of the retained austenite phase is 10 μm or lower, the aspect ratio of the retained austenite phase is 5% or lower, and the balance structure is made of bainite and/or pearlite.

Description

本発明は、高強度冷延鋼板および高強度冷延鋼板の製造方法に関する。   The present invention relates to a high-strength cold-rolled steel sheet and a method for producing a high-strength cold-rolled steel sheet.

近年、自動車の製造分野では、地球環境保全の観点から、CO2排出量の削減に向けた燃費改善等のための自動車車体の軽量化が強く求められている。その一方で、乗員の安全確保の観点から、衝撃に対する自動車車体の強化が当然に求められる。このような自動車車体の軽量化と高強度化とを両立させるため、従来から、車体材料である鋼板の高強度化が図られるとともに、剛性が問題とならない範囲での板厚の薄肉化が図られている。 In recent years, in the automobile manufacturing field, from the viewpoint of global environmental conservation, there has been a strong demand for weight reduction of an automobile body for improving fuel efficiency for reducing CO 2 emissions. On the other hand, from the viewpoint of ensuring the safety of passengers, it is naturally required to strengthen the automobile body against impacts. In order to achieve both weight reduction and high strength of the automobile body, conventionally, the steel sheet, which is the body material, has been increased in strength, and the plate thickness has been reduced in a range where rigidity is not a problem. It has been.

ところで、一般に、高強度鋼板は、軟質鋼板と比較して延性が劣るため、プレス成形等の成形加工が困難である。このため、前述のような鋼板の高強度化、薄肉化に加え、高延性化に対する要望も高まっている。こうした要求に答えるため、これまでに、γ相(オーステナイト相)を室温で安定に残留させるようにし、この残留オーステナイト相(残留γ相とも表記する。)が塑性加工時等にマルテンサイトに変態することによって高い延性を示す変態誘起塑性(TRIP現象)を利用したいわゆるTRIP鋼が提案されている(例えば特許文献1,2を参照)。   By the way, in general, a high-strength steel plate is inferior in ductility as compared with a soft steel plate, and thus forming processing such as press forming is difficult. For this reason, in addition to increasing the strength and thickness of the steel sheet as described above, there is an increasing demand for higher ductility. In order to meet these requirements, the γ phase (austenite phase) has remained stable at room temperature so far, and this residual austenite phase (also referred to as residual γ phase) is transformed into martensite during plastic working. Therefore, so-called TRIP steel using transformation-induced plasticity (TRIP phenomenon) exhibiting high ductility has been proposed (see, for example, Patent Documents 1 and 2).

特開平1−230715号公報Japanese Patent Laid-Open No. 1-2230715 特開平1−272720号公報JP-A-1-272720

しかしながら、上記したTRIP鋼では、成形時に変態した残留オーステナイトが過度に硬化することに起因し、伸びフランジ性が劣るという問題があった。   However, the above-mentioned TRIP steel has a problem that stretch flangeability is inferior due to excessive hardening of the retained austenite transformed during molding.

本発明は、上記に鑑みてなされたものであって、高い延性を有し、伸びフランジ性に優れた高強度冷延鋼板および高強度冷延鋼板の製造方法を提供することを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at providing the manufacturing method of the high strength cold-rolled steel plate which has high ductility and was excellent in stretch flangeability, and a high-strength cold-rolled steel plate.

本発明の発明者等は、上記課題を解決するために鋭意研究を重ねた結果、鋼の成分組成を調整するとともに、等軸フェライト、マルテンサイト、残留オーステナイト相の体積率や残留オーステナイト相の形態を制御することで、延性が高く伸びフランジ性に優れた高強度冷延鋼板が得られることを知見し、以下のことを見出した。ここで、本発明において高強度冷延鋼板とは、引張強度TSが590MPa以上、全伸びElが30%以上、穴広げ率λが60%以上である鋼板のことをいう。   The inventors of the present invention have made extensive studies to solve the above problems, and as a result, adjusted the composition of the steel, the volume ratio of equiaxed ferrite, martensite, retained austenite phase and the form of retained austenite phase. By controlling the above, it was found that a high-strength cold-rolled steel sheet having high ductility and excellent stretch flangeability was obtained, and the following was found. Here, in the present invention, the high-strength cold-rolled steel sheet refers to a steel sheet having a tensile strength TS of 590 MPa or more, a total elongation El of 30% or more, and a hole expansion ratio λ of 60% or more.

すなわち、上記した課題を解決し、目的を達成するため、本発明にかかる高強度冷延鋼板は、成分組成として、質量%で、C:0.06%以上0.12%以下、Si:0.4%以上0.8%以下、Mn:1.6%以上2.0%以下、Cr:0.01%以上1.0%以下、V:0.001%以上0.1%以下、P:0.05%以下、S:0.01%以下、Sol.Al:0.01%以上0.5%以下、N:0.005%以下を含有し、残部が鉄および不可避的不純物からなる組成を有するとともに、金属組織における等軸フェライトの体積率が50%以上であり、マルテンサイトの体積率が5%以上15%以下であり、残留オーステナイト相の体積率が1%以上5%以下、残留オーステナイト相の平均粒径が10μm以下、残留オーステナイト相のアスペクト比が5以下であって、残部組織がベイナイトおよび/またはパーライトからなることを特徴とする。   That is, in order to solve the above-described problems and achieve the object, the high-strength cold-rolled steel sheet according to the present invention has a component composition of mass%, C: 0.06% or more and 0.12% or less, Si: 0. 0.4% to 0.8%, Mn: 1.6% to 2.0%, Cr: 0.01% to 1.0%, V: 0.001% to 0.1%, P : 0.05% or less, S: 0.01% or less, Sol. Al: 0.01% or more and 0.5% or less, N: 0.005% or less, the balance is composed of iron and inevitable impurities, and the volume ratio of equiaxed ferrite in the metal structure is 50% The martensite volume fraction is 5% or more and 15% or less, the volume ratio of the retained austenite phase is 1% or more and 5% or less, the average particle size of the retained austenite phase is 10 μm or less, and the aspect ratio of the retained austenite phase Is 5 or less, and the remaining structure consists of bainite and / or pearlite.

また、本発明にかかる高強度冷延鋼板は、上記発明において、成分組成として、さらに、質量%で、Ti:0.001%以上0.1%以下、Nb:0.001%以上0.1%以下、およびZr:0.001%以上0.1%以下のうちの少なくとも1種を含有することを特徴とする。   The high-strength cold-rolled steel sheet according to the present invention, in the above-described invention, further includes, as a component composition, mass%, Ti: 0.001% to 0.1%, Nb: 0.001% to 0.1%. % Or less, and Zr: 0.001% or more and 0.1% or less.

また、本発明にかかる高強度冷延鋼板は、上記発明において、成分組成として、さらに、質量%で、Mo:0.01%以上0.5%以下および/またはB:0.0001%以上0.0020%以下を含有することを特徴とする。   The high-strength cold-rolled steel sheet according to the present invention, in the above-described invention, further has a component composition of Mo: 0.01% to 0.5% and / or B: 0.0001% to 0. It is characterized by containing 0020% or less.

また、本発明にかかる高強度冷延鋼板の製造方法は、上記発明の成分組成を有する鋼素材を熱間圧延および冷間圧延した後、750℃以上870℃以下の温度域に加熱し、該温度域で10sec以上保持した後、600℃以上700℃以下の温度域まで平均冷却速度20℃/sec以下で冷却し、続けて350℃以上500℃以下の温度域まで平均冷却速度10℃/sec以上で冷却し、該温度域で10sec以上保持した後、室温まで冷却することを特徴とする。   The method for producing a high-strength cold-rolled steel sheet according to the present invention comprises hot-rolling and cold-rolling a steel material having the component composition of the above-described invention, and then heating the steel material to a temperature range of 750 ° C. to 870 ° C. After holding in the temperature range for 10 seconds or more, the temperature is cooled to a temperature range of 600 ° C. to 700 ° C. at an average cooling rate of 20 ° C./sec. Cooling is performed as described above, and the temperature is maintained in the temperature range for 10 seconds or longer, and then cooled to room temperature.

本発明によれば、高い延性を有し、伸びフランジ性に優れた高強度冷延鋼板および高強度冷延鋼板の製造方法を提供することができる。   According to the present invention, it is possible to provide a high-strength cold-rolled steel sheet having high ductility and excellent stretch flangeability and a method for producing a high-strength cold-rolled steel sheet.

以下、本発明にかかる高強度冷延鋼板および高強度冷延鋼板の製造方法をその成分組成、金属組織、および製造方法に分けて詳細に説明する。   Hereinafter, the manufacturing method of the high-strength cold-rolled steel sheet and the high-strength cold-rolled steel sheet according to the present invention will be described in detail by dividing it into its component composition, metal structure, and manufacturing method.

先ず、成分組成について説明する。なお、以下の説明において、鋼の成分元素の含有量を表す「%」は、特に明記しない限り「質量%」を意味する。   First, the component composition will be described. In the following description, “%” representing the content of the constituent elements of steel means “mass%” unless otherwise specified.

(Cの含有量)
C(炭素)は、マルテンサイト相を硬化させて鋼板の強度を高める効果や、γ相を常温で安定化させてTRIP現象を発現させる効果がある。ただし、Cの含有量が0.06%未満ではその効果が十分に得られない。一方、Cの含有量が0.12%を超えると伸びフランジ性が劣化する。これは、鋼中のC量が高いとマルテンサイト相および変態後の残留オーステナイト相の硬度が高くなり、成形時に割れの起点となるためである。したがって、Cの含有量は、0.06%以上0.12%以下の範囲内とする。より強度を安定化させるためには、Cの含有量は、0.08%以上とするのが望ましい。また、鋳造割れの抑制のためには、Cの含有量は、0.10%以下とするのが望ましい。
(C content)
C (carbon) has the effect of hardening the martensite phase to increase the strength of the steel sheet, and the effect of stabilizing the γ phase at room temperature to develop the TRIP phenomenon. However, if the C content is less than 0.06%, the effect cannot be sufficiently obtained. On the other hand, if the C content exceeds 0.12%, stretch flangeability deteriorates. This is because if the amount of C in the steel is high, the hardness of the martensite phase and the retained austenite phase after transformation becomes high, which becomes a starting point of cracking during forming. Therefore, the C content is in the range of 0.06% to 0.12%. In order to further stabilize the strength, the C content is preferably 0.08% or more. In order to suppress casting cracks, the C content is desirably 0.10% or less.

(Siの含有量)
Si(ケイ素)は、焼鈍工程において鉄炭化物の生成を抑制し、γ相中へのC濃化を高める効果がある。ただし、Siの含有量が0.4%未満ではその効果が十分に得られない。一方で、Siの含有量が0.8%を超えると、前述の効果が飽和するだけでなく、鋼板の化成処理性を劣化させる原因となる。したがって、Siの含有量は、0.4%以上0.8%以下の範囲内とする。さらに、伸びを安定的に向上させるためには、Siの含有量は、0.5%以上が望ましい。また、化成処理性の安定化のためには、Siの含有量は、0.6%以下とするのが望ましい。
(Si content)
Si (silicon) has an effect of suppressing the formation of iron carbide in the annealing step and increasing the C concentration in the γ phase. However, if the Si content is less than 0.4%, the effect cannot be sufficiently obtained. On the other hand, if the Si content exceeds 0.8%, not only the above-described effect is saturated, but also the chemical conversion property of the steel sheet is deteriorated. Therefore, the Si content is in the range of 0.4% to 0.8%. Furthermore, in order to improve the elongation stably, the Si content is desirably 0.5% or more. In order to stabilize the chemical conversion property, the Si content is desirably 0.6% or less.

(Mnの含有量)
Mn(マンガン)は、焼鈍工程においてγ相の体積率およびγ相中のC量を適正化し、鋼板の高強度化とTRIP現象の発現を促進する効果がある。ただし、Mnの含有量が1.6%未満になると、γ相が少なくなりすぎて強度が低下してしまい、所望の引張強度、具体的には、590MPa以上の引張強度TSを達成することができない。一方で、Mnの含有量が2.0%を超えるとマルテンサイトの体積率が高くなるため、引張強度が必要以上に上昇し、伸びが劣化する。したがって、Mnの含有量は、1.6%以上2.0%以下の範囲内とする。
(Mn content)
Mn (manganese) has the effect of optimizing the volume fraction of the γ phase and the amount of C in the γ phase in the annealing process, and enhancing the strength of the steel sheet and promoting the occurrence of the TRIP phenomenon. However, when the Mn content is less than 1.6%, the γ phase becomes too small and the strength decreases, and a desired tensile strength, specifically, a tensile strength TS of 590 MPa or more can be achieved. Can not. On the other hand, if the Mn content exceeds 2.0%, the volume ratio of martensite increases, so that the tensile strength rises more than necessary and the elongation deteriorates. Therefore, the content of Mn is in the range of 1.6% or more and 2.0% or less.

(Crの含有量)
Cr(クロム)は、焼鈍工程でのγ相からのα相(フェライト相)の生成速度を低下させる効果がある。特に、V(バナジウム)とともに複合添加すると、焼鈍工程での均熱保持後の冷却速度に関わらずマルテンサイトと残留オーステナイトの生成量を安定化させる効果がある。ただし、Crの含有量が0.01%未満ではその効果が十分に得られない。一方、Crの含有量が1.0%を超えると、マルテンサイトの生成量が多くなりすぎてTRIP現象の発現が抑制されてしまう。したがって、Crの含有量は、0.01%以上1.0%以下の範囲内とする。さらに上記効果を高めるためには、Crの含有量は、0.5%以上であることが望ましい。また、化成処理性の観点からは、Crの含有量は、0.7%以下が望ましい。
(Cr content)
Cr (chromium) has an effect of reducing the generation rate of the α phase (ferrite phase) from the γ phase in the annealing process. In particular, when it is added together with V (vanadium), there is an effect of stabilizing the amount of martensite and retained austenite generated regardless of the cooling rate after soaking in the annealing process. However, if the Cr content is less than 0.01%, the effect cannot be sufficiently obtained. On the other hand, if the Cr content exceeds 1.0%, the amount of martensite produced becomes too large, and the expression of the TRIP phenomenon is suppressed. Therefore, the Cr content is in the range of 0.01% to 1.0%. In order to further enhance the above effect, the Cr content is desirably 0.5% or more. Moreover, from the viewpoint of chemical conversion treatment, the Cr content is preferably 0.7% or less.

(Vの含有量)
Vは、焼入れ強化元素であり、熱延工程で炭化物を形成し、鋼を高強度化する。特に、上記したCrとともに複合添加すると、強度上昇の効果が高い。ただし、Vの含有量が0.001%未満ではその効果が十分に得られず、一方で、0.1%を超えると生成する炭化物が粗大化して伸びが劣化する。したがって、Vの含有量は、0.001%以上0.1%以下の範囲内とする。さらに上記効果を高めるためには、Vの含有量は、0.04%以上が好ましい。一方、伸びをさらに高めるためには、Vの含有量は、0.06%以下が望ましい。
(V content)
V is a quenching strengthening element, and forms carbides in the hot rolling process to increase the strength of the steel. In particular, when it is added together with the above Cr, the effect of increasing the strength is high. However, if the V content is less than 0.001%, the effect is not sufficiently obtained. On the other hand, if it exceeds 0.1%, the generated carbide becomes coarse and the elongation deteriorates. Therefore, the V content is within the range of 0.001% to 0.1%. In order to further enhance the above effect, the V content is preferably 0.04% or more. On the other hand, in order to further increase the elongation, the V content is preferably 0.06% or less.

(Pの含有量)
P(リン)は、原料から混入する不純物であり、スポット溶接強度を劣化させる原因となる。Pの含有量が0.05%を超えると、このスポット溶接強度の劣化が顕著となる。したがって、Pの含有量は、0.05%以下の範囲内とする。さらに、精錬コストの観点からは、Pの含有量は、0.005%以上が望ましい。また、スポット溶接性をより効果的に改善するためには、Pの含有量は、0.02%以下とするのが望ましい。さらに好ましくは、0.01%以下である。
(P content)
P (phosphorus) is an impurity mixed from the raw material and causes the spot welding strength to deteriorate. When the P content exceeds 0.05%, the spot weld strength is significantly deteriorated. Therefore, the content of P is set within a range of 0.05% or less. Furthermore, from the viewpoint of refining costs, the P content is preferably 0.005% or more. In order to improve spot weldability more effectively, the P content is desirably 0.02% or less. More preferably, it is 0.01% or less.

(Sの含有量)
S(硫黄)は、原料から混入する不純物であり、Pと同様にスポット溶接強度を劣化させる原因となる。Sの含有量が0.01%を超えると、このスポット溶接強度の劣化が顕著となる。したがって、Sの含有量は、0.01%以下の範囲内とする。さらに、精錬コストの観点からは、Sの含有量は、0.001%以上が望ましい。また、スポット溶接性をより効果的に改善するためには、Sの含有量は、0.005%以下とするのが望ましい。
(S content)
S (sulfur) is an impurity mixed from the raw material and causes the spot welding strength to deteriorate as in the case of P. When the S content exceeds 0.01%, the spot weld strength is significantly deteriorated. Therefore, the content of S is set within a range of 0.01% or less. Furthermore, from the viewpoint of refining costs, the content of S is preferably 0.001% or more. In order to improve spot weldability more effectively, the S content is preferably 0.005% or less.

(Sol.Alの含有量)
Al(アルミニウム)は、製鋼工程において脱酸の目的で添加される元素であるが、Sol.Al(固溶アルミニウム;soluble Al)の含有量が0.01%未満ではその効果が十分に得られない。一方、Sol.Alの含有量が0.5%を超えると、前述の効果が飽和するだけでなく製造コストの増加を招く。したがって、Sol.Alの含有量は、0.01%以上0.5%以下の範囲内とする。さらに、不純物Nの無害化のためには、Sol.Alの含有量は、0.03%以上が望ましい。また、Sol.Alの含有量が0.1%以上では連続鋳造性が劣化することが懸念されるため、Sol.Alの含有量は、0.1%未満が望ましい。
(Sol.Al content)
Al (aluminum) is an element added for the purpose of deoxidation in the steelmaking process. If the content of Al (solid aluminum) is less than 0.01%, the effect cannot be obtained sufficiently. On the other hand, Sol. When the Al content exceeds 0.5%, not only the above-described effect is saturated but also the production cost is increased. Therefore, Sol. The Al content is in the range of 0.01% to 0.5%. Furthermore, for detoxification of impurities N, Sol. The Al content is preferably 0.03% or more. Sol. If the Al content is 0.1% or more, there is a concern that the continuous castability deteriorates. The Al content is preferably less than 0.1%.

(Nの含有量)
N(窒素)は、不純物であり、伸びおよび耐時効特性を劣化させる。Nの含有量が0.005%を超えると前述の特性劣化が顕著となる。したがって、Nの含有量は、0.005%以下の範囲内とする。さらに、精錬コストの観点からは、Nの含有量は、0.001%以上が望ましい。また、伸びの安定化のためには、Nの含有量は、0.004%以下が望ましい。
(N content)
N (nitrogen) is an impurity and degrades elongation and aging resistance. When the N content exceeds 0.005%, the above-described characteristic deterioration becomes remarkable. Therefore, the N content is within a range of 0.005% or less. Furthermore, from the viewpoint of refining costs, the N content is preferably 0.001% or more. In order to stabilize the elongation, the N content is preferably 0.004% or less.

(Ti、Nb、およびZrの含有量)
Ti(チタン)、Nb(ニオブ)、およびZr(ジルコニウム)は、析出強化元素であり、熱延工程で炭化物を生成し、強度上昇の効果がある。Ti、Nb、およびZrのいずれの元素についても、その含有量が0.001%未満になるとその効果が十分に得られない。一方で、0.1%を超えて過剰に添加すると生成する炭化物が粗大化して伸びの劣化を招く。したがって、Ti、Nb、およびZrを添加する場合には、その含有量は、それぞれ0.001%以上0.1%以下の範囲内とする。さらに、強度上昇の効果を高めるためには、Ti、Nb、およびZrの含有量は、それぞれ0.01%以上が好ましい。また、伸びの低下を抑えるためには、Ti、Nb、およびZrの含有量は、それぞれ0.06%以下が望ましい。
(Contents of Ti, Nb, and Zr)
Ti (titanium), Nb (niobium), and Zr (zirconium) are precipitation strengthening elements, and generate carbides in the hot rolling process, and have an effect of increasing strength. For any element of Ti, Nb, and Zr, when the content is less than 0.001%, the effect cannot be sufficiently obtained. On the other hand, when it exceeds 0.1% and it adds excessively, the carbide | carbonized_material produced | generated will coarsen and cause deterioration of elongation. Therefore, when adding Ti, Nb, and Zr, the content is within the range of 0.001% to 0.1%, respectively. Furthermore, in order to enhance the effect of increasing the strength, the contents of Ti, Nb, and Zr are each preferably 0.01% or more. In order to suppress the decrease in elongation, the contents of Ti, Nb, and Zr are each preferably 0.06% or less.

(MoおよびBの含有量)
Mo(モリブデン)およびB(ホウ素)は、焼鈍工程でのγ相からのα相の生成速度を低下させる効果があり、焼鈍工程での均熱保持後の冷却速度に関わらずマルテンサイトと残留オーステナイトの生成量を安定化させる効果がある。ただし、Moは、その含有量が0.01%未満になるとその効果が十分に得られない。一方で、Moの含有量が0.5%を超えると、マルテンサイトの生成量が多くなりすぎてTRIP現象の発現が抑制されてしまう。また、Bの場合は、その含有量が0.0001%未満になると前述の効果が十分に得られない。一方、Bの含有量が0.0020%を超えると、マルテンサイトの生成量が多くなりすぎてTRIP現象の発現が抑制されてしまう。したがって、Moを添加する場合には、その含有量は、0.01%以上0.5%以下の範囲内とし、Bを添加する場合には、その含有量は、0.0001%以上0.0020%以下の範囲内とする。
(Mo and B contents)
Mo (molybdenum) and B (boron) have the effect of reducing the formation rate of α phase from the γ phase in the annealing process, and martensite and retained austenite regardless of the cooling rate after soaking in the annealing process. This has the effect of stabilizing the amount of the produced. However, when the content of Mo is less than 0.01%, the effect cannot be sufficiently obtained. On the other hand, if the Mo content exceeds 0.5%, the amount of martensite produced becomes too large, and the expression of the TRIP phenomenon is suppressed. In the case of B, if the content is less than 0.0001%, the above-described effects cannot be obtained sufficiently. On the other hand, if the content of B exceeds 0.0020%, the amount of martensite generated becomes too large, and the expression of the TRIP phenomenon is suppressed. Therefore, when Mo is added, the content is within a range of 0.01% to 0.5%, and when B is added, the content is 0.0001% to 0.00%. Within the range of 0020% or less.

以上に含有量を示した成分以外の残部は、鉄(Fe)および不可避的不純物からなる。なお、本発明の効果を害しない範囲であれば、上記以外の他の成分の含有を拒むものではない。   The balance other than the components having the above contents is composed of iron (Fe) and inevitable impurities. In addition, if it is a range which does not impair the effect of this invention, it does not refuse inclusion of components other than the above.

次に、金属組織について説明する。なお、本発明では、金属組織として、等軸フェライト、マルテンサイト、残留オーステナイト、ベイナイト、パーライトをそれぞれ等軸フェライト相、マルテンサイト相、残留オーステナイト相、ベイナイト相、パーライト相と称する場合もある。   Next, the metal structure will be described. In the present invention, the equiaxed ferrite, martensite, retained austenite, bainite, and pearlite may be referred to as the equiaxed ferrite phase, martensite phase, retained austenite phase, bainite phase, and pearlite phase, respectively.

(等軸フェライトの体積率)
等軸フェライトは、延性に富み、複合組織化により伸びを向上させる効果がある。ただし、その体積率が50%未満ではその効果が十分に得られない。したがって、等軸フェライトの体積率は、50%以上とする。この等軸フェライトの体積率は、鋼板の断面を鏡面研磨し、腐食した後に、例えばSEM(走査型電子顕微鏡)を用いて得た観察画像を画像処理して解析することで定量化できる。
(Volume ratio of equiaxed ferrite)
The equiaxed ferrite is rich in ductility and has an effect of improving elongation by forming a composite structure. However, if the volume ratio is less than 50%, the effect cannot be sufficiently obtained. Therefore, the volume ratio of equiaxed ferrite is set to 50% or more. The volume ratio of the equiaxed ferrite can be quantified by mirror-polishing the cross section of the steel sheet and corroding it, and then image-processing and analyzing an observation image obtained using, for example, an SEM (scanning electron microscope).

(マルテンサイトの体積率)
マルテンサイトは、強度を向上させるため重要な組織であり、その体積率が5%未満では十分な強度が得られない。一方で、マルテンサイトの体積率が15%を超えると、伸びおよび伸びフランジ性が劣化する。したがって、マルテンサイトの体積率は、5%以上15%以下とする。なお、ここでいうマルテンサイトは、焼戻しマルテンサイトを含む。
(Volume ratio of martensite)
Martensite is an important structure for improving the strength, and if the volume ratio is less than 5%, sufficient strength cannot be obtained. On the other hand, when the volume ratio of martensite exceeds 15%, elongation and stretch flangeability deteriorate. Therefore, the volume ratio of martensite is 5% or more and 15% or less. The martensite here includes tempered martensite.

(残留オーステナイト相の体積率)
残留オーステナイト相は、TRIP現象を発現するために必須である。ただし、残留オーステナイト相の体積率が1%未満ではTRIP現象の発現効果が十分に得られない。一方で、残留オーステナイト相の体積率が5%を超えると、成形時に変態した残留オーステナイトが亀裂の起点となり、伸びフランジ性を劣化させてしまう。したがって、残留オーステナイト相の体積率は、1%以上5%以下とする。この残留オーステナイト相の体積率は、鋼板の断面を鏡面研磨した後、SEM−EBSD法を用いて求めることができる。
(Volume ratio of residual austenite phase)
The residual austenite phase is essential for developing the TRIP phenomenon. However, if the volume fraction of the retained austenite phase is less than 1%, the effect of developing the TRIP phenomenon cannot be obtained sufficiently. On the other hand, if the volume fraction of the retained austenite phase exceeds 5%, the retained austenite transformed at the time of molding becomes a starting point of cracking, and the stretch flangeability is deteriorated. Therefore, the volume ratio of the retained austenite phase is 1% or more and 5% or less. The volume ratio of the retained austenite phase can be obtained using the SEM-EBSD method after mirror-polishing the cross section of the steel sheet.

(残留オーステナイト相の平均粒径)
残留オーステナイトの結晶粒径が粗大になると、成形時においてこの大きな残留オーステナイトの変態部分が亀裂の起点となり、伸びフランジ性を劣化させてしまう。したがって、残留オーステナイト相の平均粒径は、10μm以下とする。この残留オーステナイト相の平均粒径は、鋼板の断面を鏡面研磨した後、SEM−EBSD法を用いて求めることができる。
(Average particle size of retained austenite phase)
When the crystal grain size of the retained austenite becomes coarse, the large transformed portion of retained austenite becomes the starting point of cracking at the time of molding, and the stretch flangeability is deteriorated. Accordingly, the average particle size of the retained austenite phase is 10 μm or less. The average grain size of the retained austenite phase can be determined using the SEM-EBSD method after mirror-polishing the cross section of the steel sheet.

(残留オーステナイト相のアスペクト比)
残留オーステナイト相のアスペクト比が大きくなると、成形時に変態した残留オーステナイト周辺に応力集中が起こり易やすく、亀裂の起点となり得るため、伸びフランジ性を劣化させてしまう。したがって、残留オーステナイト相のアスペクト比は、5以下とする。この残留オーステナイト相のアスペクト比は、鋼板の断面を鏡面研磨した後、SEM−EBSD法を用いて求めることができる。
(Aspect ratio of residual austenite phase)
When the aspect ratio of the retained austenite phase is increased, stress concentration is likely to occur around the retained austenite transformed at the time of molding, and it may become a starting point of cracks, so that the stretch flangeability is deteriorated. Therefore, the aspect ratio of the retained austenite phase is set to 5 or less. The aspect ratio of the retained austenite phase can be determined using the SEM-EBSD method after mirror-polishing the cross section of the steel sheet.

以上に示した金属組織以外の残部組織は、ベイナイトおよび/またはパーライトからなる。ベイナイトは、ベイニティックフェライトと微細炭化物を含む組織である。パーライトは、フェライトとセメンタイトの層状組織である。   The remaining structure other than the metal structure shown above consists of bainite and / or pearlite. Bainite is a structure containing bainitic ferrite and fine carbides. Pearlite is a layered structure of ferrite and cementite.

本発明では、上記成分組成の鋼を上記金属組織に制御することで、高い延性を有し、伸びフランジ性に優れた高強度冷延鋼板を得る。次に、このような高強度冷延鋼板を得るための製造方法の一実施形態について説明する。   In the present invention, by controlling the steel having the above component composition to the above metal structure, a high-strength cold-rolled steel sheet having high ductility and excellent stretch flangeability is obtained. Next, an embodiment of a manufacturing method for obtaining such a high-strength cold-rolled steel sheet will be described.

本製造方法では、連続鋳造または造塊で溶製された上記成分組成の鋼スラブ(鋼素材)を熱間圧延し(熱間圧延工程)、巻取工程、冷間圧延工程を経て得られた鋼帯を熱処理する(焼鈍工程)。すなわち、焼鈍工程として、先ず、750℃以上870℃以下の温度域に加熱し(加熱工程)、該温度域で10sec以上保持した後(均熱工程)、600℃以上700℃以下の温度域まで平均冷却速度20℃/sec以下で冷却し(1次冷却工程)、続けて350℃以上500℃以下の温度域まで平均冷却速度10℃/sec以上で冷却し(2次冷却工程)、該温度域で10sec以上保持する(2次冷却後の保持工程)。以上の熱処理の後、室温まで冷却する。本製造方法によって、高い延性を有し、伸びフランジ性に優れた高強度冷延鋼板が得られる。   In this production method, the steel slab (steel material) having the above-described composition that was melted by continuous casting or ingot forming was hot-rolled (hot-rolling step), and obtained through a winding step and a cold-rolling step. The steel strip is heat treated (annealing process). That is, as an annealing process, first, it is heated to a temperature range of 750 ° C. or more and 870 ° C. or less (heating process), held for 10 seconds or more in this temperature range (soaking process), and then to a temperature range of 600 ° C. or more and 700 ° C. or less. Cooling at an average cooling rate of 20 ° C./sec or less (primary cooling step), followed by cooling to a temperature range of 350 ° C. or more and 500 ° C. or less at an average cooling rate of 10 ° C./sec or more (secondary cooling step), Hold for 10 sec or longer in the zone (holding step after secondary cooling). After the above heat treatment, it is cooled to room temperature. By this production method, a high-strength cold-rolled steel sheet having high ductility and excellent stretch flangeability can be obtained.

(熱間圧延工程)
熱間圧延工程では、上記成分組成の鋼スラブをそのまま熱間圧延し、あるいは一旦冷却した後に再度加熱して熱間圧延を行う。熱間圧延における最終圧延温度は、Ar3変態点以上890℃以下が望ましい。熱間圧延後の組織を微細化することによって、焼鈍段階における炭化物の溶解速度を向上させ、γ相を安定化させるためである。
(Hot rolling process)
In the hot rolling step, the steel slab having the above component composition is hot rolled as it is, or once cooled and then heated again to perform hot rolling. The final rolling temperature in the hot rolling is preferably from Ar 3 transformation point to 890 ° C. This is because by refining the structure after hot rolling, the dissolution rate of carbides in the annealing stage is improved and the γ phase is stabilized.

(巻取工程)
続く巻取工程では、得られた熱延板を冷却した後巻き取る。巻取温度は、610℃以下が望ましい。組織を微細化することによって、焼鈍段階における炭化物の溶解速度を向上させ、γ相を安定化させるためである。
(Winding process)
In the subsequent winding process, the obtained hot-rolled sheet is cooled and then wound. The coiling temperature is preferably 610 ° C. or lower. This is because by making the structure finer, the dissolution rate of carbides in the annealing stage is improved and the γ phase is stabilized.

(冷間圧延工程)
続く冷間圧延工程では、冷間圧延を行って所望の板厚とする。冷間圧延率は、40%以上が望ましい。組織を微細化することによって、焼鈍段階における炭化物の溶解速度を向上させ、γ相を安定化させるためである。また、前記巻取工程の後、冷間圧延工程の前に、鋼板表面のスケール(酸化膜)を除去するために鋼板に酸洗処理(酸洗工程)を施してもよい。
(Cold rolling process)
In the subsequent cold rolling step, cold rolling is performed to obtain a desired thickness. The cold rolling rate is preferably 40% or more. This is because by making the structure finer, the dissolution rate of carbides in the annealing stage is improved and the γ phase is stabilized. In addition, after the winding step and before the cold rolling step, the steel plate may be subjected to pickling treatment (pickling step) in order to remove scale (oxide film) on the surface of the steel plate.

(加熱工程/均熱工程)
加熱工程/均熱工程での加熱温度および均熱温度が750℃未満になると十分な量のγ相が生成せず、強度の低下を招く。一方で、加熱温度および均熱温度が870℃を超えるとγ相が単相化し、組織が粗大化するため伸びが劣化する。したがって、加熱温度および均熱温度は、750℃以上870℃以下の温度域とする。製造安定性の観点からは、800℃以上830℃以下の温度域とするのが望ましい。また、均熱工程において均熱温度に保持する時間(均熱時間)は、10sec以上とする。均熱時間が10sec未満になると十分な量のγ相が生成せず、強度の低下を招くためである。
(Heating process / Soaking process)
When the heating temperature and the soaking temperature in the heating step / soaking step are less than 750 ° C., a sufficient amount of γ phase is not generated, resulting in a decrease in strength. On the other hand, when the heating temperature and the soaking temperature exceed 870 ° C., the γ phase becomes a single phase and the structure becomes coarse, so that the elongation deteriorates. Accordingly, the heating temperature and the soaking temperature are set to a temperature range of 750 ° C. or higher and 870 ° C. or lower. From the viewpoint of production stability, it is desirable to set the temperature range from 800 ° C. to 830 ° C. Moreover, the time (soaking time) for holding at the soaking temperature in the soaking step is 10 sec or more. This is because when the soaking time is less than 10 seconds, a sufficient amount of the γ phase is not generated and the strength is lowered.

(1次冷却工程)
1次冷却工程での冷却により、α相の生成を促進し、γ相中のC量を高めてTRIP効果を促進させる。この1次冷却工程での冷却時における冷却速度(1次冷却速度)が20℃/secを超えるとその効果が十分に得られず、延性が低下する。したがって、1次冷却工程での冷却は、600℃以上700℃以下の温度域まで平均冷却速度20℃/sec以下で行う。
(Primary cooling process)
By the cooling in the primary cooling step, the generation of the α phase is promoted, the amount of C in the γ phase is increased, and the TRIP effect is promoted. If the cooling rate (primary cooling rate) at the time of cooling in the primary cooling step exceeds 20 ° C./sec, the effect cannot be sufficiently obtained and ductility is lowered. Therefore, the cooling in the primary cooling step is performed at an average cooling rate of 20 ° C./sec or less up to a temperature range of 600 ° C. to 700 ° C.

(2次冷却工程)
2次冷却工程での冷却により、パーライト相の生成を抑制する。パーライト相が生成すると、強度が低下するだけでなく、γ相の生成量が減少し、伸びが劣化する。したがって、2次冷却工程での冷却は、350℃以上500℃以下の温度域まで平均冷却速度10℃/sec以上で行う。
(Secondary cooling process)
The formation of a pearlite phase is suppressed by cooling in the secondary cooling step. When the pearlite phase is generated, not only the strength is decreased, but also the amount of γ phase generated is decreased and the elongation is deteriorated. Therefore, the cooling in the secondary cooling step is performed at an average cooling rate of 10 ° C./sec or higher up to a temperature range of 350 ° C. or higher and 500 ° C. or lower.

(2次冷却後の保持工程)
続く2次冷却後の保持工程では、ベイナイト相を生成させ、残留γ相を安定化させる。これにより、TRIP現象の発現を促進でき、鋼板の延性を高めることができる。この2次冷却後の保持工程において2次冷却工程での温度域である350℃以上500℃以下の温度域に保持する時間(保持時間)は、10sec以上とする。保持時間が10sec未満になると前述の効果が十分に得られず、伸びが劣化するためである。
(Holding process after secondary cooling)
In the subsequent holding step after the secondary cooling, a bainite phase is generated and the residual γ phase is stabilized. Thereby, the expression of the TRIP phenomenon can be promoted and the ductility of the steel sheet can be increased. In the holding step after the secondary cooling, the time (holding time) for holding in the temperature range of 350 ° C. or more and 500 ° C. or less, which is the temperature range in the secondary cooling step, is 10 seconds or more. This is because if the holding time is less than 10 seconds, the above-described effects cannot be obtained sufficiently and the elongation deteriorates.

なお、2次冷却後の保持工程の後、室温まで冷却した後で、降伏点伸びをなくすために調質圧延を行うことが望ましい。この調質圧延は、伸長率0.1%〜1.0%の範囲で行うのがよい。また、必要に応じて得られた鋼板の表面に電気めっきや溶融亜鉛めっき、または固形潤滑剤等を塗布してもよい。   In addition, after the holding process after secondary cooling, after cooling to room temperature, it is desirable to perform temper rolling in order to eliminate yield point elongation. This temper rolling is preferably performed in a range of elongation rate of 0.1% to 1.0%. Moreover, you may apply | coat electroplating, hot dip galvanization, or a solid lubricant etc. to the surface of the obtained steel plate as needed.

以下、本発明の実施例について説明する。表1に、本実施例において供試材とする本発明例および比較例の鋼の化学成分の成分組成(質量%)を示す。なお、表1中、本発明の範囲外の値には下線を付して示している。また、表1中の「tr.」は、トレースエレメント(微量元素)を意味する。

Figure 2014019928
Examples of the present invention will be described below. Table 1 shows the composition (mass%) of the chemical components of the steels of the present invention and comparative examples used as test materials in this example. In Table 1, values outside the range of the present invention are underlined. Further, “tr.” In Table 1 means a trace element (trace element).
Figure 2014019928

〔実施例1〕
実施例1では、表1に示す化学成分の成分組成を有する鋼塊を溶解、鋳造したものを先ず1250℃に加熱し、熱間圧延を行って板厚を2.8mmとした。熱間圧延における最終パス出側温度は860℃であった。続いて、20℃/secの平均冷却速度で冷却した後、600℃で巻き取りを模擬し、1時間保持してから炉冷した。続いて、酸洗、冷間圧延を行って板厚を1.2mmとし、その後連続焼鈍を模擬した熱処理を行った。この熱処理では、20℃/secの平均加熱速度で810℃まで加熱し、300sec保持した。続いて、10℃/secの平均冷却速度で700℃まで冷却し、続けて15℃/secの平均冷却速度で400℃まで冷却し、480sec保持した。そして、室温まで冷却した後、伸長率0.3%の調質圧延を行った。
[Example 1]
In Example 1, a steel ingot having a chemical component composition shown in Table 1 was melted and cast, and first heated to 1250 ° C. and hot-rolled to a thickness of 2.8 mm. The final pass outlet temperature in hot rolling was 860 ° C. Subsequently, after cooling at an average cooling rate of 20 ° C./sec, winding was simulated at 600 ° C., held for 1 hour, and then cooled in the furnace. Subsequently, pickling and cold rolling were performed to obtain a plate thickness of 1.2 mm, and then a heat treatment simulating continuous annealing was performed. In this heat treatment, the sample was heated to 810 ° C. at an average heating rate of 20 ° C./sec and held for 300 sec. Subsequently, it was cooled to 700 ° C. at an average cooling rate of 10 ° C./sec, subsequently cooled to 400 ° C. at an average cooling rate of 15 ° C./sec, and maintained for 480 seconds. And after cooling to room temperature, temper rolling with an elongation of 0.3% was performed.

そして、以上のようにして得られた各鋼板を供試材とし、等軸フェライトの体積率と、マルテンサイトの体積率と、残留オーステナイト相の体積率、平均粒径およびアスペクト比と、残部組織とを取得するとともに、その引張特性、穴広げ率、化成処理性の各特性を評価した。その結果を表2に示す。なお、表2中「残部組織」の項目において、「B」はベイナイト、「P」はパーライトを表す。また、表2中において、本発明の範囲外の値および特性が優れない値には下線を付して示している。

Figure 2014019928
And each steel plate obtained as described above was used as a test material, the volume ratio of equiaxed ferrite, the volume ratio of martensite, the volume ratio of the retained austenite phase, the average grain size and the aspect ratio, and the remaining structure. And the properties of tensile properties, hole expansion ratio, and chemical conversion properties were evaluated. The results are shown in Table 2. In Table 2, “B” represents bainite and “P” represents pearlite in the “remaining structure” item. In Table 2, values outside the range of the present invention and values that are not excellent in characteristics are shown with an underline.
Figure 2014019928

ここで、金属組織は、圧延方向と平行に切り出した断面を鏡面研磨し、3%ナイタールで腐食した後、日本電子株式会社製/SEM(JSM-840F)を用いて倍率1000倍で撮影した像から、点算法(日本金属学会報,10(1971),279.定量金属組織学/佐久間健人,西沢泰二)により、3視野平均(測定点は各視野1000点)で、等軸フェライトおよびマルテンサイトの体積率を測定した。また、同時にベイナイトおよびパーライトを同定した。残留オーステナイト相の体積率、平均粒径およびアスペクト比は、上記サンプルを日本電子株式会社製/SEM(JSM-7001FA)およびTSLソリューションズ製/EBSD装置(VE1000SIT)で得られた倍率10000倍の撮影像10視野から、付属ソフトOIM Ver.5を用いて測定した。残留オーステナイト相の体積率は、同ソフトのPhase Map機能からオーステナイトの分率を測定して得た。残留オーステナイト相の平均粒径は、同ソフトのGrain Chart機能を用いて求めた。残留オーステナイト相のアスペクト比は、同イメージから全オーステナイト結晶粒の長径と短径を測定して、長径/短径の平均値として求めた。   Here, the metal structure was mirror-polished on a cross section cut out in parallel with the rolling direction, corroded with 3% nital, and then imaged at a magnification of 1000 using JEOL Ltd./SEM (JSM-840F). From the point calculation method (Journal of the Japan Institute of Metals, 10 (1971), 279. Quantitative Metallography / Kento Sakuma, Taiji Nishizawa) The volume ratio of martensite was measured. At the same time, bainite and pearlite were identified. The volume ratio, average particle diameter, and aspect ratio of the retained austenite phase were obtained by photographing the above sample with JEOL Ltd./SEM (JSM-7001FA) and TSL Solutions / EBSD apparatus (VE1000SIT) at a magnification of 10,000 times. From 10 fields of view, attached software OIM Ver. 5 was measured. The volume fraction of the retained austenite phase was obtained by measuring the fraction of austenite from the Phase Map function of the same software. The average particle size of the retained austenite phase was determined using the Grain Chart function of the same software. The aspect ratio of the retained austenite phase was determined as an average value of the major axis / minor axis by measuring the major axis and minor axis of all austenite crystal grains from the same image.

引張特性は、引張方向が鋼板の圧延方向と直交する方向となるように採取したJIS5号試験片(JISZ2201)を用いてJISZ2241(1998年)に準拠して引張試験を行い、降伏強度YP、引張強度TS、全伸びElを測定して評価した。穴広げ率λ(%)は、伸びフランジ性の評価指標であり、ここでは、日本鉄鋼連盟規格JFST1001−1996に準拠して穴広げ試験を行い、評価した。化成処理性は、市販のアルカリ脱脂液(日本パーカライジング株式会社製/ファインクリーナーFC−E2001)で脱脂し、次に、表面調整液(日本パーカライジング株式会社製/PL−ZTH)に浸漬し、リン酸塩処理(日本パーカライジング株式会社製/パルボンドPB−L3080)を、浴温:43℃、処理時間:120秒の条件で浸漬し化成処理を行い、日本電子株式会社製/SEM(JEM−840F)によるSEM像を目視によって確認することで化成結晶粒の緻密度を評価した。ここで、化成結晶の被覆率が100%でない場合を「×」、被覆率が100%、かつ化成結晶粒が不均一で化成結晶の粒径の最大値が4μmを超えるものを「△」、被覆率が100%、かつ化成結晶粒が均一で化成結晶の粒径が4μm以下のものを「○」として3段階で評価し、「△」または「○」を良好と判断した。   Tensile properties were determined by conducting a tensile test in accordance with JISZ2241 (1998) using a JIS5 test piece (JISZ2201) collected so that the tensile direction was perpendicular to the rolling direction of the steel sheet, yield strength YP, The strength TS and total elongation El were measured and evaluated. The hole expansion rate λ (%) is an evaluation index of stretch flangeability, and here, a hole expansion test was performed and evaluated in accordance with the Japan Iron and Steel Federation standard JFST1001-1996. The chemical conversion treatment is performed by degreasing with a commercially available alkaline degreasing solution (Nihon Parkerizing Co., Ltd./Fine Cleaner FC-E2001) and then immersing in a surface conditioning solution (Nihon Parkerizing Co., Ltd./PL-ZTH). Salt treatment (Nippon Parkerizing Co., Ltd./Palbond PB-L3080) was immersed and subjected to chemical conversion treatment under conditions of bath temperature: 43 ° C. and treatment time: 120 seconds, according to JEOL Ltd./SEM (JEM-840F). The density of the chemical conversion grains was evaluated by visually checking the SEM image. Here, the case where the coverage of the conversion crystal is not 100% is “X”, the coverage is 100%, and the conversion crystal grain is non-uniform and the maximum value of the conversion crystal grain size exceeds 4 μm is “Δ”, A case where the coverage was 100%, the chemical crystal grains were uniform and the chemical crystal grain size was 4 μm or less was evaluated as “◯” in three stages, and “Δ” or “◯” was judged as good.

表2に示すように、本発明例では、引張特性および穴広げ率はともに良好な評価が得られた。具体的には、本発明例では、いずれも引張強度TSが590MPa以上、全伸びElが30%以上、穴広げ率λが60%以上であり、良好であった。また、化成処理性も良好な評価が得られた。   As shown in Table 2, in the example of the present invention, good evaluation was obtained for both the tensile properties and the hole expansion ratio. Specifically, in all of the examples of the present invention, the tensile strength TS was 590 MPa or more, the total elongation El was 30% or more, and the hole expansion ratio λ was 60% or more. Moreover, favorable evaluation was obtained also about the chemical conversion treatment property.

これに対し、比較例では、引張特性、穴広げ率および化成処理性のうちの1つ以上の特性について良好な評価が得られなかった。例えば、鋼板「1」は、引張強度TSが低く強度が低い。これは、鋼中のC量が低く、マルテンサイトの体積率が低いためと考えられる。また、鋼板「5」は、全伸びElが低く、穴広げ率λも低い。これは、鋼中のC量が高く、等軸フェライトの体積率が低く、マルテンサイトの体積率が高いためと考えられる。また、鋼板「6」は、全伸びElが低い。これは、鋼中のSi量が低く、残留オーステナイト相の体積率が低いためと考えられる。また、鋼板「9」は、穴広げ率λが低く、化成処理性も劣っている。これは、鋼中のSi量が高く、残留オーステナイト相の体積率が高いためと考えられる。また、鋼板「10」は、引張強度TSが低い。これは、鋼中のMn量やCr量が低く、マルテンサイトの体積率が低いためと考えられる。また、鋼板「13」は、全伸びElが低い。これは、鋼中のMn量が高く、等軸フェライトの体積率が低いためと考えられる。また、鋼板「15」は、引張強度TSが低い。これは、鋼中のV量が低く、マルテンサイトの体積率が低いためと考えられる。   On the other hand, in the comparative example, favorable evaluation was not obtained about one or more characteristics among the tensile characteristics, the hole expansion ratio, and the chemical conversion treatment. For example, the steel sheet “1” has a low tensile strength TS and a low strength. This is probably because the amount of C in the steel is low and the volume ratio of martensite is low. Further, the steel sheet “5” has a low total elongation El and a low hole expansion ratio λ. This is presumably because the amount of C in the steel is high, the volume ratio of equiaxed ferrite is low, and the volume ratio of martensite is high. Further, the steel sheet “6” has a low total elongation El. This is presumably because the amount of Si in the steel is low and the volume fraction of the retained austenite phase is low. Further, the steel sheet “9” has a low hole expansion ratio λ and is inferior in chemical conversion treatment. This is probably because the amount of Si in the steel is high and the volume ratio of the retained austenite phase is high. Further, the steel sheet “10” has a low tensile strength TS. This is probably because the amount of Mn and Cr in the steel is low and the volume ratio of martensite is low. Further, the steel sheet “13” has a low total elongation El. This is considered because the amount of Mn in steel is high and the volume fraction of equiaxed ferrite is low. Further, the steel sheet “15” has a low tensile strength TS. This is probably because the amount of V in the steel is low and the volume ratio of martensite is low.

〔実施例2〕
表3に実施例2における本発明例および比較例の鋼板の製造条件を示す。なお、表3中、本発明の範囲外の値には下線を付して示している。

Figure 2014019928
[Example 2]
Table 3 shows the production conditions of the steel sheet of the present invention and the comparative example in Example 2. In Table 3, values outside the range of the present invention are underlined.
Figure 2014019928

実施例2では、表1に示す化学成分の成分組成を有する鋼塊を溶解、鋳造したものを先ず1250℃に加熱し、熱間圧延を行った。熱間圧延における最終パス出側温度は870℃であった(熱延板板厚:2.8mm)。続いて、20℃/secの平均冷却速度で冷却した後、表3に示す熱延条件に従って巻き取りを模擬し、1時間保持してから炉冷した。続いて、冷間圧延を行って板厚を1.2mmとし、その後、表3に示す焼鈍条件に従って連続焼鈍を模擬した熱処理を行った。そして、室温まで冷却した後、伸長率0.3%の調質圧延を行った。   In Example 2, a steel ingot having the composition of chemical components shown in Table 1 was melted and cast, and first heated to 1250 ° C. and hot-rolled. The final pass exit temperature in hot rolling was 870 ° C. (hot rolled sheet thickness: 2.8 mm). Subsequently, after cooling at an average cooling rate of 20 ° C./sec, winding was simulated according to the hot rolling conditions shown in Table 3, held for 1 hour, and then cooled in the furnace. Subsequently, cold rolling was performed to obtain a plate thickness of 1.2 mm, and then a heat treatment simulating continuous annealing was performed according to the annealing conditions shown in Table 3. And after cooling to room temperature, temper rolling with an elongation of 0.3% was performed.

そして、以上のようにして得られた各鋼板を供試材とし、等軸フェライトの体積率と、マルテンサイトの体積率と、残留オーステナイト相の体積率、平均粒径およびアスペクト比と、残部組織とを取得するとともに、その引張特性、穴広げ率、化成処理性の各特性を実施例1と同様の方法で評価した。その結果を表4に示す。なお、表4中「残部組織」の項目において、「B」はベイナイト、「P」はパーライトを表す。また、表4中において、本発明の範囲外の値および特性が優れない値には下線を付して示している。

Figure 2014019928
And each steel plate obtained as described above was used as a test material, the volume ratio of equiaxed ferrite, the volume ratio of martensite, the volume ratio of the retained austenite phase, the average grain size and the aspect ratio, and the remaining structure. The tensile properties, the hole expansion ratio, and the chemical conversion property were evaluated in the same manner as in Example 1. The results are shown in Table 4. In Table 4, “B” represents bainite and “P” represents pearlite in the “remaining structure” item. Further, in Table 4, values outside the range of the present invention and values that are not excellent in the characteristics are shown with an underline.
Figure 2014019928

表4に示すように、本発明例では、引張特性および穴広げ率はともに良好な評価が得られた。具体的には、本発明例では、いずれも引張強度TSが590MPa以上、全伸びElが30%以上、穴広げ率λが60%以上であり、良好であった。また、化成処理性も良好な評価が得られた。   As shown in Table 4, in the examples of the present invention, good evaluation was obtained for both the tensile properties and the hole expansion ratio. Specifically, in all of the examples of the present invention, the tensile strength TS was 590 MPa or more, the total elongation El was 30% or more, and the hole expansion ratio λ was 60% or more. Moreover, favorable evaluation was obtained also about the chemical conversion treatment property.

これに対し、比較例では、引張特性、穴広げ率および化成処理性のうちの1つ以上の特性について良好な評価が得られなかった。例えば、鋼板「B」は、引張強度TSが著しく低い。これは、均熱工程での均熱温度が低すぎるためと考えられる。また、鋼板「F」は、穴広げ率λが低く、化成処理性も劣っている。これは、均熱工程での均熱温度が高すぎて残留オーステナイト相の粒径が粗大化し、そのアスペクト比も大きくなったためと考えられる。また、鋼板「G」は、マルテンサイトの体積率が低く、引張強度TSが低い。これは、均熱工程での均熱時間が短すぎるためと考えられる。また、鋼板「H」は、等軸フェライトの体積率が低く、残留オーステナイト相の体積率が高く、全伸びElおよび穴広げ率λが低い。これは、1次冷却工程での1次冷却速度が高すぎるためと考えられる。また、鋼板「I」は、マルテンサイトの体積率が低く、引張強度TSが低い。これは、2次冷却工程での冷却速度(2次冷却速度)が低すぎるためと考えられる。また、鋼板「J」は、全伸びElが低い。これは、2次冷却工程での冷却時における温度域の下限温度(2次冷却停止温度)が低すぎて残留オーステナイト相の生成量が少ないためと考えられる。また、鋼板「K」は、全伸びElが低い。これは、2次冷却工程での2次冷却停止温度が高すぎて残留オーステナイト相の生成量が少ないためと考えられる。また、鋼板「L」は、全伸びElが低い。これは、2次冷却後の保持工程での保持時間が短すぎて残留オーステナイト相の生成量が少ないためと考えられる。   On the other hand, in the comparative example, favorable evaluation was not obtained about one or more characteristics among the tensile characteristics, the hole expansion ratio, and the chemical conversion treatment. For example, the steel sheet “B” has a remarkably low tensile strength TS. This is presumably because the soaking temperature in the soaking process is too low. Further, the steel sheet “F” has a low hole expansion ratio λ and is inferior in chemical conversion treatment. This is presumably because the soaking temperature in the soaking process was too high, the grain size of the retained austenite phase was coarsened, and the aspect ratio was also increased. Further, the steel sheet “G” has a low martensite volume fraction and a low tensile strength TS. This is probably because the soaking time in the soaking process is too short. Further, the steel sheet “H” has a low volume ratio of equiaxed ferrite, a high volume ratio of retained austenite phase, and a low total elongation El and a hole expansion ratio λ. This is considered because the primary cooling rate in the primary cooling step is too high. Further, the steel sheet “I” has a low martensite volume fraction and a low tensile strength TS. This is considered because the cooling rate (secondary cooling rate) in the secondary cooling step is too low. Further, the steel sheet “J” has a low total elongation El. This is probably because the lower limit temperature (secondary cooling stop temperature) in the temperature range during cooling in the secondary cooling step is too low and the amount of residual austenite phase produced is small. Further, the steel sheet “K” has a low total elongation El. This is presumably because the secondary cooling stop temperature in the secondary cooling step is too high and the amount of residual austenite phase produced is small. Further, the steel sheet “L” has a low total elongation El. This is probably because the holding time in the holding step after the secondary cooling is too short and the amount of residual austenite phase produced is small.

以上説明したように、本発明によれば、鋼の成分組成を適正に調整し、等軸フェライトの体積率、マルテンサイトの体積率、残留オーステナイト相の体積率、残留オーステナイト相の平均粒径、残留オーステナイト相のアスペクト比等を制御することで、伸びフランジ性に優れ、且つ良好な延性を併せ持つ成形加工性の高い高強度冷延鋼板が実現できる。より具体的には、引張強度TS≧590MPa、全伸びEl≧30%、穴広げ率λ≧60%を満たしつつ、良好な化成処理性を有する高強度冷延鋼板を得ることができる。また、製造条件を適正に調整することで、前述のような高強度冷延鋼板の製造方法を安定して提供することができる。したがって、本発明によれば、高い延性を有し、伸びフランジ性に優れた高強度冷延鋼板および高強度冷延鋼板の製造方法を提供することができる。   As described above, according to the present invention, the component composition of steel is appropriately adjusted, the volume ratio of equiaxed ferrite, the volume ratio of martensite, the volume ratio of the retained austenite phase, the average particle diameter of the retained austenite phase, By controlling the aspect ratio and the like of the retained austenite phase, it is possible to realize a high-strength cold-rolled steel sheet that has excellent stretch flangeability and high formability and also has good ductility. More specifically, it is possible to obtain a high-strength cold-rolled steel sheet having good chemical conversion property while satisfying the tensile strength TS ≧ 590 MPa, the total elongation El ≧ 30%, and the hole expansion ratio λ ≧ 60%. Moreover, the manufacturing method of a high-strength cold-rolled steel sheet as described above can be stably provided by appropriately adjusting the manufacturing conditions. Therefore, according to the present invention, it is possible to provide a high-strength cold-rolled steel sheet having high ductility and excellent stretch flangeability and a method for producing a high-strength cold-rolled steel sheet.

特に、本発明の高強度冷延鋼板は、自動車車体の内板や外板等に用いる自動車用鋼板としての使途に好適であり、自動車用鋼板に適用することにより、自動車構造部材や補強部材、その他の機械構造部品の軽量化および高強度化が図れ、燃費改善による地球環境保全や乗員の安全確保に貢献できる。ただし、本発明の高強度冷延鋼板の用途は、自動車用鋼板に限定されるものではない。   In particular, the high-strength cold-rolled steel sheet of the present invention is suitable for use as an automotive steel sheet used for an inner plate or an outer plate of an automobile body, and by applying to an automotive steel plate, an automobile structural member or a reinforcing member, Other mechanical structural parts can be reduced in weight and strength, contributing to global environmental conservation and passenger safety by improving fuel efficiency. However, the use of the high-strength cold-rolled steel sheet of the present invention is not limited to automobile steel sheets.

以上、本発明の実施の形態について説明したが、本発明は、本実施の形態による本発明の開示の一部をなす記述により限定されるものではない。すなわち、本実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例および運用技術等は全て本発明の範疇に含まれる。例えば、上記した製造方法における一連の熱処理(焼鈍工程)においては、その熱処理条件さえ満足すれば、鋼板に熱処理を施す設備等は特に限定されるものではない。   As mentioned above, although embodiment of this invention was described, this invention is not limited by the description which makes a part of indication of this invention by this embodiment. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on the present embodiment are all included in the scope of the present invention. For example, in the series of heat treatment (annealing step) in the above-described manufacturing method, as long as the heat treatment conditions are satisfied, the equipment for performing the heat treatment on the steel sheet is not particularly limited.

Claims (4)

成分組成として、質量%で、C:0.06%以上0.12%以下、Si:0.4%以上0.8%以下、Mn:1.6%以上2.0%以下、Cr:0.01%以上1.0%以下、V:0.001%以上0.1%以下、P:0.05%以下、S:0.01%以下、Sol.Al:0.01%以上0.5%以下、N:0.005%以下を含有し、残部が鉄および不可避的不純物からなる組成を有するとともに、金属組織における等軸フェライトの体積率が50%以上であり、マルテンサイトの体積率が5%以上15%以下であり、残留オーステナイト相の体積率が1%以上5%以下、残留オーステナイト相の平均粒径が10μm以下、残留オーステナイト相のアスペクト比が5以下であって、残部組織がベイナイトおよび/またはパーライトからなることを特徴とする高強度冷延鋼板。   As component composition, in mass%, C: 0.06% to 0.12%, Si: 0.4% to 0.8%, Mn: 1.6% to 2.0%, Cr: 0 0.01% or more and 1.0% or less, V: 0.001% or more and 0.1% or less, P: 0.05% or less, S: 0.01% or less, Sol. Al: 0.01% or more and 0.5% or less, N: 0.005% or less, the balance is composed of iron and inevitable impurities, and the volume ratio of equiaxed ferrite in the metal structure is 50% The martensite volume fraction is 5% or more and 15% or less, the volume ratio of the retained austenite phase is 1% or more and 5% or less, the average particle size of the retained austenite phase is 10 μm or less, and the aspect ratio of the retained austenite phase Is a high-strength cold-rolled steel sheet, wherein the remaining structure is bainite and / or pearlite. 成分組成として、さらに、質量%で、Ti:0.001%以上0.1%以下、Nb:0.001%以上0.1%以下、およびZr:0.001%以上0.1%以下のうちの少なくとも1種を含有することを特徴とする請求項1に記載の高強度冷延鋼板。   As a component composition, Ti: 0.001% to 0.1%, Nb: 0.001% to 0.1%, and Zr: 0.001% to 0.1% by mass% The high-strength cold-rolled steel sheet according to claim 1, comprising at least one of them. 成分組成として、さらに、質量%で、Mo:0.01%以上0.5%以下および/またはB:0.0001%以上0.0020%以下を含有することを特徴とする請求項1または2に記載の高強度冷延鋼板。   The component composition further comprises, in mass%, Mo: 0.01% to 0.5% and / or B: 0.0001% to 0.0020%. The high-strength cold-rolled steel sheet as described in 1. 請求項1〜3のいずれか1項に記載の成分組成を有する鋼素材を熱間圧延および冷間圧延した後、750℃以上870℃以下の温度域に加熱し、該温度域で10sec以上保持した後、600℃以上700℃以下の温度域まで平均冷却速度20℃/sec以下で冷却し、続けて350℃以上500℃以下の温度域まで平均冷却速度10℃/sec以上で冷却し、該温度域で10sec以上保持した後、室温まで冷却することを特徴とする高強度冷延鋼板の製造方法。   After hot-rolling and cold-rolling a steel material having the component composition according to any one of claims 1 to 3, the steel material is heated to a temperature range of 750 ° C or higher and 870 ° C or lower, and maintained in the temperature range for 10 seconds or longer. Then, it is cooled at an average cooling rate of 20 ° C./sec or less to a temperature range of 600 ° C. or more and 700 ° C. or less, and subsequently is cooled at an average cooling rate of 10 ° C./sec or more to a temperature range of 350 ° C. or more and 500 ° C. or less, A method for producing a high-strength cold-rolled steel sheet, wherein the steel sheet is kept at a temperature range for 10 seconds or more and then cooled to room temperature.
JP2012162078A 2012-07-20 2012-07-20 High strength cold rolled steel sheet and method for producing high strength cold rolled steel sheet Pending JP2014019928A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012162078A JP2014019928A (en) 2012-07-20 2012-07-20 High strength cold rolled steel sheet and method for producing high strength cold rolled steel sheet
ZA2012/07927A ZA201207927B (en) 2012-07-20 2012-10-22 High-strength cold-rolled steel sheet and method for manufacturing the same
MYPI2012004701A MY183438A (en) 2012-07-20 2012-10-23 High-strength cold-rolled steel sheet and method for manufacturing the same
BR102012027286A BR102012027286A2 (en) 2012-07-20 2012-10-24 HIGH RESISTANCE COLD LAMINATED STEEL SHEET AND METHOD FOR PRODUCTION
RU2012146130/02A RU2518852C1 (en) 2012-07-20 2012-10-29 High-strength cold-rolled sheet steel and method of its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012162078A JP2014019928A (en) 2012-07-20 2012-07-20 High strength cold rolled steel sheet and method for producing high strength cold rolled steel sheet

Publications (1)

Publication Number Publication Date
JP2014019928A true JP2014019928A (en) 2014-02-03

Family

ID=50195178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012162078A Pending JP2014019928A (en) 2012-07-20 2012-07-20 High strength cold rolled steel sheet and method for producing high strength cold rolled steel sheet

Country Status (5)

Country Link
JP (1) JP2014019928A (en)
BR (1) BR102012027286A2 (en)
MY (1) MY183438A (en)
RU (1) RU2518852C1 (en)
ZA (1) ZA201207927B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143270A1 (en) * 2015-03-06 2016-09-15 Jfeスチール株式会社 High strength electric resistance welded steel pipe and manufacturing method therefor
CN106133155A (en) * 2014-03-25 2016-11-16 蒂森克虏伯钢铁欧洲股份公司 Through cold rolling flat product and manufacture method thereof
JP2016194136A (en) * 2015-03-31 2016-11-17 株式会社神戸製鋼所 High strength high ductility steel sheet excellent in production stability, manufacturing method thereof and cold rolled original sheet used for manufacturing high strength high ductility steel sheet
JP2018500455A (en) * 2014-09-24 2018-01-11 ザ・ナノスティール・カンパニー・インコーポレーテッド High ductility steel alloy with mixed micro-component structure
WO2020158228A1 (en) 2019-01-29 2020-08-06 Jfeスチール株式会社 High-strength steel sheet and method for producing same
US10907232B2 (en) 2014-07-03 2021-02-02 Arcelormittal Method for producing a high strength coated steel sheet having improved strength, formability and obtained sheet
US10954580B2 (en) 2015-12-21 2021-03-23 Arcelormittal Method for producing a high strength steel sheet having improved strength and formability, and obtained high strength steel sheet
US10995383B2 (en) 2014-07-03 2021-05-04 Arcelormittal Method for producing a high strength coated steel sheet having improved strength and ductility and obtained sheet
JP2022513964A (en) * 2018-12-18 2022-02-09 ポスコ Cold-rolled steel sheets with excellent workability, hot-dip galvanized steel sheets, and methods for manufacturing these.
US11492676B2 (en) 2014-07-03 2022-11-08 Arcelormittal Method for producing a high strength coated steel sheet having improved strength, ductility and formability
US11555226B2 (en) 2014-07-03 2023-01-17 Arcelormittal Method for producing a high strength steel sheet having improved strength and formability and obtained sheet
US11618931B2 (en) 2014-07-03 2023-04-04 Arcelormittal Method for producing a high strength steel sheet having improved strength, ductility and formability

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016001703A1 (en) 2014-07-03 2016-01-07 Arcelormittal Method for manufacturing a high strength steel sheet and sheet obtained by the method
EP3164516B1 (en) 2014-07-03 2019-04-24 ArcelorMittal Method for producing an ultra high strength coated or not coated steel sheet and obtained sheet
ES2774091T3 (en) 2015-12-29 2020-07-16 Arcelormittal Procedure to produce an ultra high strength galvanized and annealed steel sheet and obtained galvanized and annealed sheet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6702904B2 (en) * 2000-02-29 2004-03-09 Jfe Steel Corporation High tensile cold-rolled steel sheet having excellent strain aging hardening properties
EP1498506B1 (en) * 2000-05-26 2006-06-28 JFE Steel Corporation High tensile strength cold-rolled steel sheet having a high r-value, excellent strain age hardenability and natural aging resistance and method of producing the same
DE602004027475D1 (en) * 2003-04-10 2010-07-15 Arcelor France A PRODUCTION METHOD FOR HARD RESISTANCE STEEL PLATE WITH FIREPLATED STEEL PLATE
EP1990431A1 (en) * 2007-05-11 2008-11-12 ArcelorMittal France Method of manufacturing annealed, very high-resistance, cold-laminated steel sheets, and sheets produced thereby

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106133155A (en) * 2014-03-25 2016-11-16 蒂森克虏伯钢铁欧洲股份公司 Through cold rolling flat product and manufacture method thereof
JP2017512904A (en) * 2014-03-25 2017-05-25 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Cold rolled flat steel product and manufacturing method thereof
US10287649B2 (en) 2014-03-25 2019-05-14 Thyssenkrupp Steel Europe Ag Cold-rolled flat steel product and method for the production thereof
US10907232B2 (en) 2014-07-03 2021-02-02 Arcelormittal Method for producing a high strength coated steel sheet having improved strength, formability and obtained sheet
US11555226B2 (en) 2014-07-03 2023-01-17 Arcelormittal Method for producing a high strength steel sheet having improved strength and formability and obtained sheet
US11492676B2 (en) 2014-07-03 2022-11-08 Arcelormittal Method for producing a high strength coated steel sheet having improved strength, ductility and formability
US10995383B2 (en) 2014-07-03 2021-05-04 Arcelormittal Method for producing a high strength coated steel sheet having improved strength and ductility and obtained sheet
US11618931B2 (en) 2014-07-03 2023-04-04 Arcelormittal Method for producing a high strength steel sheet having improved strength, ductility and formability
US11718888B2 (en) 2014-07-03 2023-08-08 Arcelormittal Method for producing a high strength coated steel sheet having improved strength, formability and obtained sheet
JP2018500455A (en) * 2014-09-24 2018-01-11 ザ・ナノスティール・カンパニー・インコーポレーテッド High ductility steel alloy with mixed micro-component structure
CN107406940A (en) * 2015-03-06 2017-11-28 杰富意钢铁株式会社 High-strength electric resistance welded steel pipe and its manufacture method
WO2016143270A1 (en) * 2015-03-06 2016-09-15 Jfeスチール株式会社 High strength electric resistance welded steel pipe and manufacturing method therefor
JP6004144B1 (en) * 2015-03-06 2016-10-05 Jfeスチール株式会社 High-strength ERW steel pipe and manufacturing method thereof
JP2016194136A (en) * 2015-03-31 2016-11-17 株式会社神戸製鋼所 High strength high ductility steel sheet excellent in production stability, manufacturing method thereof and cold rolled original sheet used for manufacturing high strength high ductility steel sheet
US10954580B2 (en) 2015-12-21 2021-03-23 Arcelormittal Method for producing a high strength steel sheet having improved strength and formability, and obtained high strength steel sheet
JP2022513964A (en) * 2018-12-18 2022-02-09 ポスコ Cold-rolled steel sheets with excellent workability, hot-dip galvanized steel sheets, and methods for manufacturing these.
WO2020158228A1 (en) 2019-01-29 2020-08-06 Jfeスチール株式会社 High-strength steel sheet and method for producing same

Also Published As

Publication number Publication date
MY183438A (en) 2021-02-18
ZA201207927B (en) 2013-06-26
RU2518852C1 (en) 2014-06-10
RU2012146130A (en) 2014-05-10
BR102012027286A2 (en) 2014-10-29

Similar Documents

Publication Publication Date Title
JP6237900B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP6525114B1 (en) High strength galvanized steel sheet and method of manufacturing the same
EP2589677B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing same
JP5884714B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP2014019928A (en) High strength cold rolled steel sheet and method for producing high strength cold rolled steel sheet
JP5765092B2 (en) High yield ratio high-strength hot-dip galvanized steel sheet with excellent ductility and hole expansibility and method for producing the same
JP5359296B2 (en) High strength steel plate and manufacturing method thereof
US9657380B2 (en) High strength hot-rolled steel sheet having excellent ductility, stretch flangeability and uniformity and method of manufacturing the same
JP2017048412A (en) Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet and production methods therefor
JPWO2010137317A1 (en) High-strength steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet having excellent fatigue characteristics and elongation and impact characteristics, and methods for producing them
KR20150028366A (en) High-strength hot-dip-galvanized steel sheet having excellent moldability, and method for production thereof
JP2007009317A (en) High-strength cold-rolled steel sheet having excellent formability for extension flange, hot-dip galvanized steel sheet having the same formability, and method for manufacturing those
KR20120023129A (en) High-strength steel sheet and manufacturing method therefor
JP6388056B2 (en) Manufacturing method of hot-rolled steel sheet and manufacturing method of cold-rolled full hard steel sheet
KR20190073469A (en) High strength steel sheet and manufacturing method thereof
WO2013005670A1 (en) Hot-dip plated cold-rolled steel sheet and process for producing same
JP2008274360A (en) High-strength steel sheet having controlled elongation at yield point, and manufacturing method therefor
JP6687167B2 (en) Hot rolled steel sheet and method of manufacturing the same
JP2013241636A (en) Low yield ratio type high strength hot dip galvanized steel sheet, low yield ratio type high strength alloying hot dip galvannealed steel sheet, method for manufacturing low yield ratio type high strength hot dip galvanized steel sheet, and method for manufacturing low yield ratio type high strength alloying hot dip galvannealed steel sheet
JP2011231377A (en) High strength steel sheet
WO2020026594A1 (en) High-strength hot-rolled plated steel sheet
JP4924052B2 (en) High yield ratio high tensile cold-rolled steel sheet and method for producing the same
JP4211520B2 (en) High strength and high ductility galvanized steel sheet with excellent aging resistance and method for producing the same
JP2013181183A (en) High strength cold rolled steel sheet having low in-plane anisotropy of yield strength, and method of producing the same
WO2018030502A1 (en) High-strength steel sheet, and production method therefor