JP3704306B2 - Hot-dip galvanized high-strength steel sheet excellent in weldability, hole expansibility and corrosion resistance, and method for producing the same - Google Patents

Hot-dip galvanized high-strength steel sheet excellent in weldability, hole expansibility and corrosion resistance, and method for producing the same Download PDF

Info

Publication number
JP3704306B2
JP3704306B2 JP2001399396A JP2001399396A JP3704306B2 JP 3704306 B2 JP3704306 B2 JP 3704306B2 JP 2001399396 A JP2001399396 A JP 2001399396A JP 2001399396 A JP2001399396 A JP 2001399396A JP 3704306 B2 JP3704306 B2 JP 3704306B2
Authority
JP
Japan
Prior art keywords
weldability
steel sheet
hot
corrosion resistance
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001399396A
Other languages
Japanese (ja)
Other versions
JP2003193190A (en
Inventor
展弘 藤田
裕一 谷口
賢一郎 松村
卓也 原
俊樹 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001399396A priority Critical patent/JP3704306B2/en
Publication of JP2003193190A publication Critical patent/JP2003193190A/en
Application granted granted Critical
Publication of JP3704306B2 publication Critical patent/JP3704306B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、建材、家電製品、自動車などに適する溶接性、穴拡げ性および耐食性に優れた溶融亜鉛めっき高強度鋼板および溶融合金化亜鉛めっき鋼板とその製造方法に関する。
【0002】
【従来の技術】
近年、特に自動車車体において燃費向上や耐久性向上の観点を目的とした加工性の良い高強度鋼板の需要が高まっている。加えて、衝突安全性やキャビンスペースの拡大のニーズから引張り強度にして800MPa級クラス以上の鋼板が、一部レインフォースなどの部材に使用されつつある。これら部材の耐久性には、溶接部や加工部分の疲労耐久性や耐食性が挙げられる。
このような高強度材を用いて部材を組みあげる時には、延性、曲げ性、穴拡げ性などが、引張り強度で590MPa程度までの高強度鋼板以上に大きな問題となるため、これらに対する対策が必要となる。
【0003】
各特性に対して、以下のような対策が各々講じられている。
たとえば、穴拡げ性については、CAMP-ISIJ vol.13 (2000) p.395にあるように、主相をベイナイトとして穴拡げ性を向上させ、さらには張り出し性成型性についても、第2相に残留オーステナイトを生成させることで現行の残留オーステナイト鋼並の張り出し性を示すことが開示されている。さらには、Ms温度以下でオーステンパ処理をすることで体積率2〜3%の残留オーステナイトを生成させると、引張り強度×穴拡率が最大となることも示されている。しかし、800 MPaを超えて顕在化する溶接性および溶接熱影響部での軟化挙動については考慮されていない。
【0004】
また、溶接性については、溶接熱影響部における軟化挙動(HAZ 軟化挙動)が問題視されるケースが多い。これに対して、例えば特開2000-87175にあるようにNbおよびMoの炭化物(Nb、Mo)Cの析出によりHAZ 軟化挙動を抑制することが示されている。しかし、この技術は、疲労強度に関して考慮されているものの穴拡げ性等の加工性について十分な考慮はない。また、HAZ 軟化挙動を抑制の効果も強度レベルが低く、800 MPa以上の極めて高強度な材料における溶接性や加工性について十分とはいえない。特に、引張り強度が800 MPa 以上になると、溶接自体が困難になり、980MPa以上で更に顕著となる。このため、スポット溶接等の従来の溶接方法に加えてレーザー溶接なども一部適用される例もある。しかし、高強度故、特に溶接部および熱影響部での材質変動が590MPa クラス以上の高強度材に比べ極めて顕著となる。
【0005】
また、高強度材の高延性化を図るために、複合組織化を積極的に活用することが一般的である。しかし、第2相にマルテンサイトや残留オーステナイトを活用した場合に、穴拡げ性が著しく低下してしまうという問題がある(例えば、CAMP-ISIJ, vol.13(2000),p.391)。また、本文献中には、主相をフェライト、第2相をマルテンサイトととし、両者の硬度差を減少させることで穴拡げ率が向上することが開示されているが、穴拡げ率で70%未満と、著しく改善されているわけではない。
さらに、これらの鋼板には、Siなどが添加されたり、溶融亜鉛めっき工程での材質の確保や、めっき性やその後の耐食性の考慮が十分でない。
【0006】
【発明が解決しようとする課題】
本発明は、前述のような従来技術の問題点を解決し、引張り強度が800 MPa以上の高強度鋼板の溶接性および穴拡げ性を改善し、溶融亜鉛めっきおよび溶融合金化亜鉛めっきを可能とした耐食性に優れた高強度鋼板およびその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、種々検討を行った結果、引張り強度を800 MPa以上の領域で、溶接性、穴拡げ性を同時に改善する手法として、ミクロ組織およびを成分範囲や(A)式による限定を行うことで、800 MPa以上の高強度を保ちつつ溶接熱影響部の軟化挙動を抑制して溶接部の疲労耐久性を向上させ、さらには、穴拡げ率:(穴拡げ試験後の穴の内径/穴拡げ試験前の穴径−1)×100が70%以上の穴拡げ性を確保できることを見出した。さらに、式(B)または(C)を満たすことでめっき性を改善し、耐食性の向上を図ることが可能なことを見出した。
【0008】
本発明は、上記知見に基づいて完成されたもので、その要旨とするところは以下の通りである。
(1) 質量%で、
C :0.01〜0.20%、
Si:1.5%以下、
Mn:0.01〜3%、
P:0.0010〜0.1%、
S:0.0010〜0.05%、
Al:0.005〜4%を含有し、さらに、
Mo:0.01〜5.0%、
Nb:0.001〜1.0%の1種または2種を下記(A)および(B)式を同時に満たす範囲で含有し、残部をFeおよび不可避的不純物とし、ミクロ組織が、ベイナイトまたはベイニティックフェライトとして面積率で70%以上含有し、引張強度が800MPa以上であり、70%以上の穴拡げ率を備えたことを特徴とする溶接性、穴拡げ性および耐食性に優れた溶融亜鉛めっき高強度鋼板。
3.0Nb+2.5Mo+Mn−5C0.5 > 0 ・・・(A)
Al+15.0Si +1.5Si-1.8 < 0 ・・・(B)
【0009】
(2) さらに、質量%で、
Cr:0.01〜5%、
Ni:0.01〜5%、
Cu:0.01〜5%、
の1種または2種以上を含有することを特徴とし、さらに式(A)および(C)を満たす(1)に記載(ただし本項では式(B)を満たす必要はない)の溶接性、穴拡げ性および耐食性に優れた溶融亜鉛めっき高強度鋼板。
3.0Nb+2.5Mo+Mn−5C0.5 > 0 ・・・(A)
Al+15.0Si2 +1.5Si +0.5Cr −(30Ni +10Cu) −1.8 < 0 ・・・(C)
【0010】
(3) さらに、質量%で、
Co:0.01〜5%、
W :0.01〜5%
の1種または2種以上を含有することを特徴とする(1)または(2)に記載の溶接性、穴拡げ性および耐食性に優れた溶融亜鉛めっき高強度鋼板。
【0011】
(4) さらに、質量%で、
Zr、Hf、Ta、Ti、Vの1種または2種以上を合計で0.001〜1%含有することを特徴とする(1)乃至(3)に記載の溶接性、穴拡げ性および耐食性に優れた溶融亜鉛めっき高強度鋼板。
【0012】
(5) さらに、質量%で、B:0.0001〜0.1%を含有することを特徴とする(1)乃至(4)に記載の溶接性、穴拡げ性および耐食性に優れた溶融亜鉛めっき高強度鋼板。
【0013】
(6) さらに、質量%で、Ca、Y、Rem の1種または2種以上を合計で0.0001〜0.5%含有することを特徴とする(1)乃至(5)に記載の溶接性、穴拡げ性および耐食性に優れた溶融亜鉛めっき高強度鋼板。
【0014】
(7) (1)乃至(6)に記載の成分からなる鋳造スラブを直接または一旦冷却した後に再度加熱し、熱延後巻取った熱延鋼板を酸洗後冷延し、その後昇温および焼鈍時の雰囲気が酸素濃度が50ppm 以下で露点が−20℃以下とし、焼鈍時の最高温度が0.3×(Ac3 −Ac1 )+Ac1 (℃)以上Ac3 +30(℃)以下で焼鈍した後に、0.1〜100℃/秒の冷却速度で亜鉛めっき浴温度−20℃〜亜鉛めっき浴温度+50℃の温度域に冷却し、引き続いて同温度域でめっき浸漬を含めて1秒〜1000秒保持を行うことを特徴とする溶接性、穴拡げ性および耐食性に優れた溶融亜鉛めっき高強度鋼板の製造方法。
【0015】
(8) (7)に記載の製造方法において、亜鉛めっき浴温度−20℃〜亜鉛めっき浴温度+50℃の温度域に冷却し、引き続いて同温度域でめっき浸漬を含めて1秒〜1000秒保持後、合金化処理を430℃〜580℃を行うことを特徴とする溶接性、穴拡げ性および耐食性に優れた溶融亜鉛めっき高強度鋼板の製造方法。
【0016】
【発明の実施の形態】
以下、本発明を詳細に説明する。
発明者らは、質量%で、C:0.01〜0.2%、Si:1.5 %以下、Mn:0.01〜3%、P:0.0010〜0.1%、S:0.0010〜0.05%、Al:0.005〜4 %を含有し、残部Feおよび不可避不純物からなる鋼板をベースに、各合金を添加した溶製し、鋳造まま又は一旦冷却した後に再度加熱し、熱延後巻取った熱延鋼板を酸洗後冷延し、その後焼鈍し、冷延焼鈍板を作成した。その鋼板について、ミクロ組織観察、鉄鋼連盟規定の穴拡げ試験、JIS に準拠した引張り試験、鋼板をつきあわせてレーザー溶接を行い、その後球頭張り出し試験を行って破断部位置を測定した。また、各溶接継ぎ手を作成して、引張り- 引張りモードの疲労試験を105 〜106 cyclesまで行い、母材との疲労強度を比較することでめっき材の溶接継ぎ手の疲労特性を比較評価した。ここで、溶接継ぎ手は、ビードオンで行い、溶接後、試験片端面および表面を研削して溶接チャンスによる継ぎ手形状のばらつき因子を極力少なくする方法を採った。また、めっき性の試験は、外観観察して5段階の評点をつけた。
評点5:不めっき等全くなく良好な外観。
評点4:めっき剥離が極めて少なく良好な外観。
評点3:不めっきやめっき剥離発生。
評点2:不めっきやめっき剥離多発。
評点1:めっき濡れず。
【0017】
また、めっき後の耐食性試験には、板厚の3倍の曲率半径で板を曲げたあとで乾湿繰り返し試験を自動車技術会の規格(JASO)のサイクル腐食試験を100 回まで行った。腐食状況は、外観および断面を光学顕微鏡にて200 〜1000倍の20視野以上を観察し、内面への腐食の進行度合いを観察することで5段階評価とした。評点は以下のようである。
評点5:発錆等全くなく良好な外観。腐食の進行度合いは、めっき相のみまたは母材への腐食深さが50μm未満。
評点4:発錆が極めて少なく良好な外観。腐食の進行度合いは、母材への腐食深さが50μm〜100 μm未満。
評点3:錆発生が明確に認められる。
評点2:錆多発。
評点1:錆多発、一部に膨れや穴あき等あり。
【0018】
その結果、最終的に得られるミクロ組織制御により、800 MPa以上の引張り強度と70%以上の穴拡げ率を得、溶接性、穴拡げ性および耐食性に優れた溶融亜鉛めっき鋼板及び溶融合金化亜鉛めっき高強度鋼板が製造可能なことを見出した。
【0019】
次に、基材鋼板の好ましいミクロ組織について述べる。
800 MPa以上の引張り強度を得、溶接性および穴拡げ性を両立させるためには、主相としてベイナイトまたはベイニティックフェライトが適している。溶接性および穴拡げ性を両立させるためには、面積率で70%以上とする。
【0020】
また、ここで言うベイナイトはラス境界に炭化物が生成している上部ベイナイトおよびラス内に微細炭化物が生成している下部ベイナイトの双方を含む。また、ベイニティックフェライトは炭化物のないベイナイトを意味し、例えばアキュラーフェライトがその1例である。
穴拡げ性向上には、炭化物が微細分散している下部ベイナイトもしくは炭化物の無いベイニティックフェライトが主相で、面積率が97%を超えることが望ましい。
【0021】
一方、溶接熱影響部での軟化防止が問題となる。これに対しては、後述するように成分を規定した(A)式を満たすことで、引張り強度が800MPa以上の高強度めっき材の溶接性および溶接後疲労強度を確保できる。
【0022】
延性確保や高強度化の観点からすると、面積率で30%未満のフェライトを含んでも良い。一方、オーステナイトおよび/またはマルテンサイトを含むことは穴拡げ加工性や溶接熱影響部の軟化挙動の点から望ましくないが、面積率3%未満程度であれば、顕著な特性劣化が認められないことから、面積率で3%未満含んでも良い。さらに、酸化物や硫化物等の介在物を不可避的に含んでも良い。
【0023】
また、式(A)を満足しない場合には、めっき材での引張り強度で800 MPa以上を確保できなかったり、溶接熱影響部分の軟化を抑制できず、溶接継ぎ手の疲労特性が劣化してしまうだけでなく、穴拡げ性の確保も困難となる。
3.0Nb+2.5Mo+Mn−5C0.5 > 0 ・・・(A)
また、上記の他にミクロ組織の残部組織として、炭化物、窒化物、硫化物、酸化物の1又は2以上を面積率1%以下で含有する場合も本発明で用いることができ、これらは主相の面積率に含めた。
【0024】
なお、上記ミクロ組織の各相、フェライト(ベイニティックフェライト)、ベイナイト、オーステナイト、マルテンサイト、界面酸化相および残部組織の同定、存在位置の観察および面積率の測定は、ナイタール試薬および特開昭59−219473号公報に開示された試薬により鋼板圧延方向断面または圧延直角方向断面を腐食して500倍〜1000倍の光学顕微鏡観察および1000〜100000倍の電子顕微鏡(走査型および透過型)により定量化が可能である。各20視野以上の観察を行い、ポイントカウント法や画像解析により各組織の面積率を求める事ができる。
【0025】
次に、本発明における鋼板成分の好適な範囲の限定理由について述べる。
Cは、良好な強度−穴拡げ性バランスを確保するための主相および第2相の率を制御する目的で添加する元素である。素地の微細均一化についても影響を与える。強度および各第2相の面積率を確保するために下限を0.01質量%(以下、同じ)とし、溶接性および穴拡げ性を保持可能な上限として0.20%とした。好ましくは、C:0.05〜0.15%とすることにより良好な強度−穴拡げ性バランスが得られる。
【0026】
Siは、強度延性バランスを劣化させる比較的粗大な炭化物の生成を抑制する目的で添加する元素であるがめっき性を著しく劣化させる。このため1.5%以下とした。一方で、極低下は製造コストの高騰を招くことから、めっき性を大きくは悪化させない0.005以上の添加とすることが望ましい。また、過剰添加は溶接性およびに悪影響を及ぼすため、上限を1.5質量%とした。好ましくは、Si:0.05%以下とすることによりさらに著しい効果が得られる。
【0027】
Mnは、高強度化の目的で添加する。また、フェライト変態を抑制して、主相をベイナイトまたはベイニティックフェライトにするのに有効である。さらに、強度低下と穴拡げ性劣化の1つの原因である炭化物析出や、パーライト生成を抑制する目的で添加する。これらのことから、0.01質量%以上とした。一方、過剰添加は、マルテンサイト生成を促進したり、延性の著しい低下を招くために3質量%を上限とした。好ましくは、Mn:1.5〜3.0%とすることにより良好な強度−穴拡げ性バランスが得られる。
【0028】
Pは、強化元素である。また、低P化は穴拡げ性を向上させるが、極低化は経済的にも不利であることから0.0010質量%を下限とした。また、多量添加では、溶接性や鋳造時や熱延時の製造性に悪影響を及ぼすため、0.1%を上限とした。
【0029】
Sは、低S化は穴拡げ性向上に有効である。一方、極低化は経済的に不利であることから、0.0010質量%を下限とし、また、0.05質量%を上限としたのは、これを超える量の添加では、溶接性や鋳造時や熱延時の製造性に悪影響を及ぼすためである。
【0030】
Alは、脱酸元素として添加する。このため、0.005質量%以上の添加とした。一方過剰添加は溶接性およびめっき濡れ性を損なうため4%を上限とした。
【0031】
Moは、強度−穴拡げ性バランスを劣化させる炭化物やパーライトの生成を抑制する。また、フェライト変態を抑制して、主相をベイナイトまたはベイニティックフェライトにするのに有効であり、良好な強度−穴拡げ性およびめっき材の溶接性や溶接後の疲労耐久性の確保の極めて良好なバランスを得るための添加元素であることから、その下限を0.01質量%とした。また、過剰添加は、延性劣化を招くことから、上限を5.0%とした。
【0032】
Nbは、微細な炭化物、窒化物または炭窒化物を形成して、鋼板の強化に極めて有効である。また、フェライト変態を遅滞させ、ベイナイトおよびベイニティックフェライトの生成を助長する。さらには、溶接熱影響部の軟化抑制にも効果的であることから、0.001質量%以上の添加とし、0.01%以上の添加が溶接性向上のためには好ましい。一方で、過剰添加は、延性や熱間加工性を劣化させることから、上限として1.0質量%とした。
【0033】
また、800 MPa以上の強度レベルで、溶接性および穴拡げ性をバランス良く、制御するためには、式(A)を満足しなければならない。
3.0Nb+2.5Mo+Mn−5C0.5 > 0 ・・・(A)
【0034】
Nb、MoおよびMnは焼入れ性を向上させ、さらにNbおよびMoは熱影響部の軟化防止に効果的で、各係数はその程度を反映するものである。一方、Cは効果に有効なものの、溶接時の軟化挙動を助長する。その機構の詳細については、明確になっていないが、NbおよびMoの軟化防止効果は溶接熱サイクル中に析出物形成やソリュウトドラッグ効果によると考えられる。一方、Cは焼入れ硬貨量が大きいうえ析出粗大化を助長することから、熱影響部の軟化を含めた溶接性を劣化させると考えられる。図1に示すように、式(A)の左辺の値がゼロ以下の領域では、たとえベイナイトまたはベイニティックフェライトの面積率が70%以上としても、疲労強度比−引張り強度−穴拡げ率:λの両立した良好な材質は得られないことがわかる(図1中×印)。また、式(A)の左辺の値がゼロ超の領域においても、製造方法の違いからベイナイトおよびベイニティックフェライトの面積率が低いものは、良好な材質が得られないこともわかる(図1中*印)。すなわち、組織および式(A)の条件を同時に満たすもののみ良好な材質が得られることがわかる。
【0035】
また、めっき性を確保して、より良好な耐食性を確保する目的から、式(B)を満たさなければならない。
Al+15.0Si2 +1.5Si-1.8 < 0 ・・・(B)
【0036】
AlおよびSiはめっきの濡れ性や合金化挙動に影響を及ぼす。特に濡れ性を劣化させ、各係数はその程度を反映するものである。その機構の詳細については、明確になっていないが、表面に形成される酸化物を形態に起因していると考えられる。図2に示すように、式(B)の左辺の値がゼロ以上の領域では、耐食性試験後の外観評点が低くく、耐食性に劣る。また、式(B)の左辺の値がゼロ未満の領域においても、製造方法の違いから耐食性に劣るものもある。
【0037】
さらに、本発明が対象とする鋼は、強度−穴拡げ性バランスのさらなる向上を目的として、Cr、Ni、Cu1種または2種以上を含有できる。
Crは、強化目的および炭化物生成の抑制とベイナイトおよびベイニティックフェライト生成の目的から添加する元素で、0.01%以上とし、5%を超える量の添加では、加工性やめっき性に悪影響を及ぼすため、これを上限とした。
Niは、焼き入れ性の向上およびめっき性向上の目的で0.01質量%以上とし、5質量%を超える量の添加では、加工性、特にマルテンサイト生成に伴うの硬度上昇寄与して悪影響を及ぼすため、これを上限とした。
Cuは、強化およびめっき性向上の目的で0.01質量%以上の添加とし、5質量%を超える量の添加では、加工性および製造性に悪影響を及ぼす。
【0038】
また、めっき性の確保に関しては、より良好な耐食性を確保する目的から、式(C)を満たさなければならない。
Al+15.0Si2 +1.5Si +0.5Cr −(30Ni +10Cu) −1.8 < 0 ・・・(C)
【0039】
上述のように、CrはAlやSiと同様、表面の酸化物形態に影響するためめっき性を劣化させる。一方、NiおよびCuはめっき性改善に有効であり、各係数はその程度を反映するものである。したがって、Cr、NiやCuを含む場合には、(B)式でなく(C)式を満たさなければならない。図3に示すように、式(C)の左辺の値がゼロ以上の領域では、めっき外観評点が低く、一方、式(C)の左辺の値がゼロ未満の領域ではすべて良好なめっき外観評点が得られる。
【0040】
さらには、Co、Wの1種または2種以上を含有できる。
Coは、ベイナイト変態制御による強度−穴拡げ性の良好なバランスのため、0.01質量%以上の添加とした。一方、添加の上限は特に設けないが、高価な元素であるため多量添加は経済性を損なうため、5質量%以下にすることが望ましい。
Wは、0.01質量%以上で強化効果が現れること、5質量%を上限としたのは、これを超える量の添加では、加工性に悪影響を及ぼすためである。
【0041】
さらに、本発明が対象とする鋼は、強度のさらなる向上を目的として強炭化物形成元素であるZr、Hf、Ta、Ti、Vの1種または2種以上を含有できる。これらの元素は、微細な炭化物、窒化物または炭窒化物を形成して、鋼板の強化に極めて有効であるため、必要に応じて1種または2種以上を合計で0.001質量%以上の添加とした。一方で、延性や熱間加工性の劣化を招くことから、1種または2種以上の合計添加量の上限として1質量%とした。
【0042】
Bもまた、必要に応じて添加できる。Bは、0.0001質量%以上の添加で粒界の強化や鋼材の高強度化に有効ではあるが、その添加量が0.1質量%を超えるとその効果が飽和するばかりでなく、加工性が低下するため、上限を0.1質量%とした。
【0043】
Ca、Y、Remは、適量添加により介在物制御、特に微細分散化に寄与することから0.0001%以上とし、一方で過剰添加は鋳造性や熱間加工性などの製造性および鋼板製品の延性を低下させるため0.5質量%を上限とした。
不可避的不純物として、例えばNやSnなどがあるがこれら元素を0.02質量%以下の範囲で含有しても本発明の効果を損なうものではない。
【0044】
このような組織を有する溶接性、穴拡げ性に優れた高強度鋼板およびの製造方法について以下に説明する。
熱延後冷延・焼鈍して本発明の鋼板を製造する場合には、所定の成分に調整されたスラブを直接もしくは一旦冷却した後再加熱して熱延を行う。
【0045】
このときの再加熱温度は1100℃以上1300℃以下とすることが望ましい。再加熱温度が高温になると粗粒化や厚い酸化スケールが形成され、一方、低温加熱では圧延抵抗が高くなってしまう。また熱延後は、高圧デスケーリング装置や酸洗することなどで表面スケール削除を行うと製品での表面清浄がよくなり、めっきを施す場合などに有利である。その後、冷延後焼鈍することで最終製品とする。また、電気めっきや溶融亜鉛めっき、溶融合金亜鉛めっきを施しても本願発明を阻害するものではない。また、熱延完了温度は鋼の化学成分によって決まるAr3 変態温度以上で行うのが一般的であるが、Ar3 から10℃程度低温までであれば最終的な鋼板の特性を劣化させない。また、冷却後の巻取温度は鋼の化学成分によって決まるベイナイト変態開始温度以上とすることで、冷延時の荷重を必要以上に高めることがさけられるが、冷延の全圧下率が小さい場合にはこの限りでなく、鋼のベイナイト変態温度以下で巻き取られても最終的な鋼板の特性を劣化させない。また、冷延の全圧下率は、最終板厚と冷延荷重の関係から設定されるが、40%以上であれば再結晶させるには十分で、最終的な鋼板の特性を劣化させない。
【0046】
冷延後焼鈍する際に、焼鈍温度が鋼の化学成分によって決まる温度Ac1 およびAc3 温度(例えば「鉄鋼材料学」:W.C.Leslie著、幸田成康監訳、丸善P273)で、表現される0.3×(Ac3 −Ac1 )+Ac1 (℃)未満の場合には、焼鈍温度で得られるオーステナイト量が少ないので、最終的な鋼板中に主にベイナイトまたはベイニティックフェライトを生成させることができない。また、焼鈍温度が高温となるほど結晶粒の粗大化や表面酸化が促進されるうえ、製造コストの上昇をまねくために、焼鈍温度の上限をAc3 +30(℃)とした。この温度域での焼鈍時間は鋼板の温度均一化とオーステナイトの確保のために10秒以上が必要である。しかし、30分超では、粒界酸化相生成が促進されるうえ、コストの上昇を招く。ここで、昇温および焼鈍時の雰囲気が酸素濃度が50ppm 以下で露点が−20℃以下とした。酸素濃度が50ppm を超えたり、露点がー20℃を超えると、鋼板のめっき性、特に濡れ性が劣化し、不めっきの原因となる。
【0047】
その後の一次冷却はオーステナイト相からフェライト相への変態をある程度抑しつつ、ベイナイトまたはベイニティックフェライト生成させるのに重要である。この冷却速度を0.1℃/秒未満にすることは、フェライトやパーライトの生成を促進して強度低下を招く懸念があることから、冷却速度の下限を0.1℃/秒とした。一方、冷却速度が100℃/秒超の場合には最終的な鋼板中のマルテンサイト相などの硬質相が多量になってしまうことや、操業上困難なため、これを上限とした。
【0048】
この後の冷却がめっき浴温度−20℃未満まで行われると、めっき浴浸入時の抜熱が大きいことなどの操業上の問題がある。また、冷却停止温度がめっき浴+50℃を超えると、操業上の問題に加え、その後の保持時に炭化物が生成してしまい、強度低下を招くため、これを上限とした。また、次にベイナイト変態の進行を促すため、この温度域での保持を行う。この停留時間が長時間になると生産性上好ましくないうえ、炭化物が生成してしまうことから1000秒以内とすることが望ましい。また、ベイナイト変態進行させるため、1秒以上保持し、好ましくは15秒から10分保持することが望ましい。めっき浴温度−20℃未満ではベイナイト変態が起こりにくく、めっき浴温度−50℃を超えると炭化物が生じて材質劣化してしまう。また、合金化処理を行う場合には、430℃以上580℃以下とした。合金化処理温度が430℃未満であると合金化の進行が遅く、生産性が悪い。また、580℃を超えると炭化物析出を伴い、材質劣化する。
また、溶接方法については、通常行われる溶接方法、たとえばアーク、TIG 、MIG 、マッシュおよびレーザー等の溶接を行っても本願の範囲とする。
【0049】
【実施例】
以下、実施例によって本発明をさらに詳細に説明する。
表1に示すような組成の鋼板を、1200℃に加熱し、Ar変態温度以上で熱延を完了し、冷却後各鋼の化学成分で決まるベイナイト変態開始温度以上で巻き取った鋼帯を酸洗後、冷延して1.2mm厚とした。
その後、各鋼の成分(質量%)から下記式にしたがってAcとAc変態温度を計算により求めた。
Ac =723−10.7×Mn%+29.1×Si%、
Ac =910−203×(C%)1/2−15.2×Ni%
+44.7×Si%+104×V%+31.5×Mo%
−30×Mn%−11×Cr%+400×Al%、
これらのAcおよびAc変態温度から計算される焼鈍温度に10%H−N雰囲気中で昇温・保定したのち、3〜150℃/秒の冷却速度で200〜450℃まで冷却し、引き続いて1〜3000秒保持した後、冷却した。なお、表3中の冷却停止温度はこの冷却工程の最終温度を示すものであるが、保持温度はこの冷却停止温度と必ずしも同一である必要はない。
【0050】
これらの鋼板からJIS 5号引張り試験片を採取して、機械的性質を測定した。さらに、鉄鋼連盟規格に準拠して穴拡げ試験を行い、穴拡げ率を求めた。溶接性については鋼板にビードオンの形で各溶接を行い、弗素系樹脂(テフロン 商品名)潤滑にて球頭張り出し試験を行い、母材に対する張り出し高さおよび破断位置を測定した。また、各溶接継ぎ手を作成して、引張り−引張りモードの疲労試験を105 〜106 cyclesまで行い、母材との疲労強度を比較することでめっき材の溶接継ぎ手の疲労特性を比較評価した。ここで、溶接継ぎ手は、ビードオンで行い、溶接後、試験片端面および表面を研削して溶接チャンスによる継ぎ手形状のばらつき因子を極力少なくする方法を採った。また、めっき性の試験は、外観観察して5段階の評点をつけた。
また、めっき後の耐食性試験には、板厚の3倍の曲率半径で板を曲げたあとで乾湿繰り返し試験を行い、その発錆の程度をやはり5段階で評価した。
【0051】
表2にミクロ組織と各材質について、また表3に各製造条件と材質について示す。本願発明の要綱を満たす発明鋼は、溶接性、延性、強度(引張り強度で800 MPa以上)、穴拡げ性に優れていることがわかる。
一方、本発明の条件から外れる比較例は、溶接部の球頭張り出加工における破断位置が溶接熱影響部となり、疲労強度も低く、穴拡げ性やめっき性や耐食性も劣勢である。
【0052】
【表1】

Figure 0003704306
【0053】
【表2】
Figure 0003704306
【0054】
【表3】
Figure 0003704306
【0055】
【発明の効果】
本発明により、引張り強度が800 MPa以上の高強度鋼板の溶接性、穴拡げ性および耐食性を同時に改善した溶融亜鉛めっき高強度鋼板およびその製造方法を得ることができる。
【図面の簡単な説明】
【図1】 疲労強度比×引張り強度×λ(穴拡げ率)と(A)式の左辺の値との関係を示すグラフである。
【図2】 乾湿繰り返し腐食試験後の外観評点と(B)式の左辺の値との関係を示すグラフである。
【図3】 めっき外観評点と(C)式の左辺の値との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot-dip galvanized high-strength steel sheet and hot-dip alloyed galvanized steel sheet excellent in weldability, hole expansibility and corrosion resistance suitable for building materials, home appliances, automobiles, and the like, and a method for producing the same.
[0002]
[Prior art]
In recent years, there has been an increasing demand for high-strength steel sheets with good workability for the purpose of improving fuel efficiency and durability particularly in automobile bodies. In addition, steel plates with a tensile strength of 800MPa class or higher are being used for some parts such as reinforcement due to the need for collision safety and expansion of cabin space. The durability of these members includes fatigue durability and corrosion resistance of welded parts and processed parts.
When assembling members using such high-strength materials, ductility, bendability, hole expansibility, etc. become a major problem over high-strength steel sheets with a tensile strength of up to about 590 MPa, so measures for these are necessary. Become.
[0003]
The following measures are taken for each characteristic.
For example, with regard to hole expansibility, as shown in CAMP-ISIJ vol.13 (2000) p.395, the main phase is bainite to improve hole expansibility, and overhang formability is also the second phase. It is disclosed that by forming the retained austenite, it shows the same stretchability as the current retained austenitic steel. Furthermore, it is also shown that when retained austenite having a volume ratio of 2 to 3% is generated by austempering at a temperature equal to or lower than the Ms temperature, the tensile strength × the hole expansion ratio is maximized. However, the weldability that manifests above 800 MPa and the softening behavior in the weld heat affected zone are not considered.
[0004]
As for weldability, softening behavior (HAZ softening behavior) in the weld heat affected zone is often regarded as a problem. On the other hand, for example, as disclosed in JP-A-2000-87175, it is shown that the HAZ softening behavior is suppressed by precipitation of carbides of Nb and Mo (Nb, Mo) C. However, although this technique is considered with respect to fatigue strength, it does not sufficiently consider workability such as hole expansibility. In addition, the effect of suppressing the HAZ softening behavior has a low strength level, and it cannot be said that the weldability and workability of an extremely high strength material of 800 MPa or more are sufficient. In particular, when the tensile strength is 800 MPa or more, welding itself becomes difficult, and becomes more remarkable at 980 MPa or more. For this reason, in addition to the conventional welding methods such as spot welding, there is an example in which laser welding or the like is partially applied. However, due to the high strength, the material fluctuation particularly in the welded portion and the heat affected zone becomes extremely remarkable as compared with a high strength material of 590 MPa class or higher.
[0005]
Further, in order to increase the ductility of a high-strength material, it is common to actively utilize composite organization. However, when martensite or retained austenite is used in the second phase, there is a problem that the hole expandability is significantly lowered (for example, CAMP-ISIJ, vol. 13 (2000), p. 391). Further, this document discloses that the hole expansion rate is improved by setting the main phase as ferrite and the second phase as martensite and reducing the hardness difference between the two, but the hole expansion rate is 70. Less than%, it is not a significant improvement.
Further, Si and the like are added to these steel plates, and securing of materials in the hot dip galvanizing process and consideration of plating properties and subsequent corrosion resistance are not sufficient.
[0006]
[Problems to be solved by the invention]
The present invention solves the problems of the prior art as described above, improves the weldability and hole expansibility of high-strength steel sheets having a tensile strength of 800 MPa or more, and enables hot dip galvanizing and hot galvannealed galvanizing. An object of the present invention is to provide a high-strength steel sheet excellent in corrosion resistance and a method for producing the same.
[0007]
[Means for Solving the Problems]
  As a result of various studies, the inventors have determined that the microstructure and the component range and the formula (A) are limited as a technique for simultaneously improving the weldability and the hole expandability in a region where the tensile strength is 800 MPa or more. By doing so, it suppresses the softening behavior of the weld heat-affected zone while maintaining a high strength of 800 MPa or more, and improves the fatigue durability of the weld zone. Furthermore, the hole expansion rate: (After hole expansion testIt has been found that a hole expandability of 70% or more can be secured when the inner diameter of the hole / the diameter of the hole before the hole expansion test-1) × 100. Further, it has been found that satisfying the formula (B) or (C) can improve the plating property and improve the corrosion resistance.
[0008]
  The present invention has been completed based on the above findings, and the gist thereof is as follows.
(1) In mass%,
        C: 0.01-0.20%,
        Si: 1.5% or less,
        Mn: 0.01 to 3%
        P: 0.0010 to 0.1%,
        S: 0.0010 to 0.05%,
        Al: 0.005 to 4%, further,
        Mo: 0.01 to 5.0%,
        Nb: One or two of 0.001 to 1.0% is contained within a range that simultaneously satisfies the following formulas (A) and (B), the balance is Fe and inevitable impurities, and the microstructure is bainite or bay Nitric ferrite contains 70% or more area ratio and has a tensile strength of 800MPa or more.With a hole expansion rate of 70% or moreHot-dip galvanized high-strength steel sheet with excellent weldability, hole expansibility and corrosion resistance.
  3.0Nb + 2.5Mo + Mn−5C0.5    > 0 (A)
  Al + 15.0Si2 + 1.5Si-1.8 <0 (B)
[0009]
(2) Furthermore, in mass%,
Cr: 0.01-5%
Ni: 0.01 to 5%,
Cu: 0.01 to 5%,
The weldability according to (1) satisfying formulas (A) and (C) (however, it is not necessary to satisfy formula (B) in this section), Hot-dip galvanized high-strength steel sheet with excellent hole expansion and corrosion resistance.
  3.0Nb + 2.5Mo + Mn−5C0.5  > 0 (A)
  Al + 15.0Si2+ 1.5Si + 0.5Cr-(30Ni + 10Cu) -1.8 <0 (C)
[0010]
(3) Furthermore, in mass%,
Co: 0.01-5%
W: 0.01 to 5%
The hot-dip galvanized high-strength steel sheet having excellent weldability, hole expansibility and corrosion resistance according to (1) or (2), characterized by containing one or more of the following.
[0011]
(4) Furthermore, in mass%,
The weldability, hole expansibility, and corrosion resistance according to (1) to (3), wherein one or more of Zr, Hf, Ta, Ti, and V are contained in a total amount of 0.001 to 1%. Hot-dip galvanized high-strength steel sheet.
[0012]
(5) The molten zinc having excellent weldability, hole expansibility and corrosion resistance according to (1) to (4), further comprising B: 0.0001 to 0.1% by mass% Plated high-strength steel sheet.
[0013]
(6) The welding according to any one of (1) to (5), further including 0.0001 to 0.5% in total of one or more of Ca, Y, and Rem in terms of mass%. Hot-dip galvanized high-strength steel sheet with excellent properties, hole expansibility and corrosion resistance.
[0014]
(7) The cast slab composed of the components described in (1) to (6) is directly or once cooled and then heated again, the hot-rolled steel sheet wound after hot rolling is pickled and cold-rolled, and then heated and The atmosphere during annealing is an oxygen concentration of 50 ppm or less and a dew point of −20 ° C. or less, and the maximum temperature during annealing is 0.3 × (AcThree-Ac1) + Ac1(℃) or more AcThreeAfter annealing at +30 (° C.) or lower, cool to a temperature range of galvanizing bath temperature −20 ° C. to zinc plating bath temperature + 50 ° C. at a cooling rate of 0.1 to 100 ° C./second, and subsequently plating in the same temperature range A method for producing a hot-dip galvanized high-strength steel sheet excellent in weldability, hole expansibility and corrosion resistance, characterized by holding for 1 second to 1000 seconds including immersion.
[0015]
(8) In the production method described in (7), the temperature is cooled to a temperature range of galvanizing bath temperature −20 ° C. to galvanizing bath temperature + 50 ° C., followed by plating immersion in the same temperature range for 1 second to 1000 seconds. A method for producing a hot-dip galvanized high-strength steel sheet excellent in weldability, hole expansibility and corrosion resistance, characterized by performing an alloying treatment at 430 ° C. to 580 ° C. after holding.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The inventors, in mass%, C: 0.01 to 0.2%, Si: 1.5% or less, Mn: 0.01 to 3%, P: 0.0010 to 0.1%, S: 0.00. 0010 ~ 0.05%, Al: 0.005 ~ 4% contained, based on the steel sheet consisting of the balance Fe and inevitable impurities, melted by adding each alloy, heated again as cast or once cooled The hot-rolled steel sheet wound after hot rolling was pickled, cold-rolled, and then annealed to create a cold-rolled annealed sheet. The steel sheet was subjected to microstructural observation, hole enlargement test stipulated by the Federation of Iron and Steel, tensile test compliant with JIS, laser welding with the steel sheet, and then the ball head overhang test was performed to determine the position of the fracture part. In addition, each weld joint is created and a fatigue test in tension-tensile mode is performed.Five~Ten6The fatigue characteristics of the plated joints were compared and evaluated by comparing the fatigue strength with the base metal. Here, the welding joint was bead-on, and after welding, the end face and the surface of the test piece were ground to reduce the joint shape variation factor due to the welding chance as much as possible. In addition, the plating test was evaluated by observing the appearance and giving a five-point score.
Score 5: Good appearance without any plating.
Score 4: Good appearance with very little plating peeling.
Score 3: Non-plating or plating peeling occurred.
Score 2: Non-plating and frequent plating peeling.
Score 1: No plating wet.
[0017]
In addition, in the corrosion resistance test after plating, the plate was bent with a radius of curvature three times the plate thickness, and then the wet and dry repeated test was conducted up to 100 times of the automobile engineering society standard (JASO) cycle corrosion test. The corrosion situation was evaluated on a five-point scale by observing the appearance and cross section of 20 or more fields of 200 to 1000 times with an optical microscope and observing the progress of corrosion on the inner surface. The score is as follows.
Score 5: Good appearance with no rusting. The degree of corrosion is less than 50 μm when only the plating phase or the depth of corrosion on the base material is reached.
Score 4: Good appearance with very little rusting. The degree of corrosion progression is that the depth of corrosion on the base metal is 50 μm to less than 100 μm.
Rating 3: Rust generation is clearly recognized.
Score 2: Rust occurs frequently.
Score 1: Frequent rusting, some blisters and holes.
[0018]
  As a result, the tensile strength of 800 MPa or more andHole expansion rate of 70% or moreIt was found that a hot-dip galvanized steel sheet and a hot-dip galvanized high-strength steel sheet excellent in weldability, hole expansibility and corrosion resistance can be produced.
[0019]
Next, a preferable microstructure of the base steel sheet will be described.
  In order to obtain a tensile strength of 800 MPa or more and achieve both weldability and hole expandability, bainite or bainitic ferrite is suitable as the main phase. In order to achieve both weldability and hole expandability, the area ratio is set to 70% or more.
[0020]
Moreover, the bainite said here contains both the upper bainite in which the carbide | carbonized_material has produced | generated in the lath boundary, and the lower bainite in which the fine carbide | carbonized_material has produced | generated in the lath. Bainitic ferrite means bainite having no carbide, and for example, acicular ferrite is one example.
In order to improve hole expansibility, it is desirable that the lower phase bainite in which carbide is finely dispersed or bainitic ferrite without carbide is the main phase and the area ratio exceeds 97%.
[0021]
On the other hand, prevention of softening in the weld heat affected zone becomes a problem. On the other hand, by satisfying the formula (A) that defines the components as described later, the weldability and post-weld fatigue strength of a high-strength plating material having a tensile strength of 800 MPa or more can be secured.
[0022]
From the viewpoint of ensuring ductility and increasing strength, ferrite with an area ratio of less than 30% may be included. On the other hand, the inclusion of austenite and / or martensite is undesirable from the viewpoint of hole expansion workability and softening behavior of the weld heat-affected zone, but if the area ratio is less than 3%, no significant deterioration in properties is observed. Therefore, the area ratio may include less than 3%. Furthermore, inclusions such as oxides and sulfides may be inevitably included.
[0023]
Further, if the formula (A) is not satisfied, the tensile strength of the plating material cannot be ensured to be 800 MPa or more, the softening of the heat affected zone cannot be suppressed, and the fatigue characteristics of the welded joint deteriorate. In addition, it is difficult to ensure hole expandability.
3.0Nb + 2.5Mo + Mn−5C0.5  > 0 (A)
In addition to the above, as the remaining microstructure of the microstructure, one or more of carbides, nitrides, sulfides, and oxides can be used in the present invention. It was included in the phase area ratio.
[0024]
In addition, each phase of the above microstructure, ferrite (bainitic ferrite), bainite, austenite, martensite, interfacial oxidation phase and remaining structure, identification of existing positions, and measurement of area ratio are performed using Nital reagent and The steel plate rolling direction cross section or the rolling perpendicular direction cross section is corroded with the reagent disclosed in Japanese Patent No. 59-219473, and quantified by observation with an optical microscope of 500 to 1000 times and an electron microscope (scanning type and transmission type) of 1000 to 100,000 times. Is possible. It is possible to obtain an area ratio of each tissue by observing 20 fields of view or more and using a point counting method or image analysis.
[0025]
Next, the reason for limiting the preferable range of the steel plate component in the present invention will be described.
C is an element added for the purpose of controlling the ratio of the main phase and the second phase to ensure a good strength-hole expansibility balance. It will also affect the fine uniformity of the substrate. In order to ensure the strength and the area ratio of each second phase, the lower limit was set to 0.01% by mass (hereinafter the same), and the upper limit capable of maintaining weldability and hole expandability was set to 0.20%. Preferably, C: 0.05 to 0.15% makes it possible to obtain a good strength-hole expansibility balance.
[0026]
Si is an element added for the purpose of suppressing the formation of relatively coarse carbides that deteriorate the strength and ductility balance, but significantly deteriorates the plating properties. For this reason, it was made 1.5% or less. On the other hand, since extreme reduction leads to an increase in manufacturing cost, it is desirable to add 0.005 or more that does not greatly deteriorate the plating property. Moreover, since excessive addition has a bad influence on weldability, the upper limit was made 1.5 mass%. Preferably, a more remarkable effect can be obtained by setting Si: 0.05% or less.
[0027]
Mn is added for the purpose of increasing the strength. Further, it is effective for suppressing the ferrite transformation and making the main phase into bainite or bainitic ferrite. Furthermore, it is added for the purpose of suppressing carbide precipitation and pearlite formation, which are one cause of strength reduction and hole expandability deterioration. From these things, it was set as 0.01 mass% or more. On the other hand, excessive addition promoted martensite formation or caused a significant decrease in ductility, so the upper limit was 3% by mass. Preferably, a good balance between strength and hole expandability can be obtained by setting Mn to 1.5 to 3.0%.
[0028]
P is a strengthening element. Moreover, although lowering P improves hole expansibility, since extremely lowering is also economically disadvantageous, 0.0010 mass% was made into the minimum. Moreover, since addition in a large amount adversely affects weldability, manufacturability at the time of casting or hot rolling, the upper limit was made 0.1%.
[0029]
As for S, lowering S is effective for improving hole expansibility. On the other hand, since extremely low is economically disadvantageous, the lower limit is set to 0.0010% by mass, and the upper limit is set to 0.05% by mass. This is because it adversely affects manufacturability during time and hot rolling.
[0030]
Al is added as a deoxidizing element. For this reason, it was set as 0.005 mass% or more addition. On the other hand, excessive addition impairs weldability and plating wettability, so 4% was made the upper limit.
[0031]
Mo suppresses the formation of carbides and pearlite that degrade the strength-hole expansibility balance. It is also effective in suppressing ferrite transformation and making the main phase into bainite or bainitic ferrite, and ensures excellent strength-hole expansibility, plating material weldability and fatigue durability after welding. Since it is an additive element for obtaining a good balance, the lower limit was set to 0.01% by mass. Further, excessive addition causes ductile deterioration, so the upper limit was made 5.0%.
[0032]
Nb forms fine carbides, nitrides or carbonitrides and is extremely effective for strengthening steel sheets. It also retards ferrite transformation and promotes the formation of bainite and bainitic ferrite. Furthermore, since it is also effective in suppressing softening of the weld heat affected zone, 0.001% by mass or more is added, and 0.01% or more is preferable for improving weldability. On the other hand, excessive addition deteriorates ductility and hot workability, so the upper limit was made 1.0 mass%.
[0033]
Further, in order to control the weldability and the hole expandability in a well-balanced manner at a strength level of 800 MPa or more, the formula (A) must be satisfied.
3.0Nb + 2.5Mo + Mn−5C0.5  > 0 (A)
[0034]
Nb, Mo and Mn improve hardenability, and Nb and Mo are effective in preventing softening of the heat affected zone, and each coefficient reflects the degree. On the other hand, although C is effective, the softening behavior during welding is promoted. Although the details of the mechanism are not clear, it is considered that the softening prevention effect of Nb and Mo is due to the formation of precipitates and the solution drag effect during the welding heat cycle. On the other hand, C is thought to deteriorate weldability including softening of the heat-affected zone because C has a large amount of hardened coins and promotes precipitation coarsening. As shown in FIG. 1, in the region where the value of the left side of the formula (A) is zero or less, even if the area ratio of bainite or bainitic ferrite is 70% or more, the fatigue strength ratio-tensile strength-hole expansion rate: It can be seen that a good material having both λ cannot be obtained (marked with x in FIG. 1). Further, even in a region where the value of the left side of the formula (A) is more than zero, it can be seen that a good material cannot be obtained if the area ratio of bainite and bainitic ferrite is low due to the difference in the manufacturing method (FIG. 1). Medium *). That is, it can be seen that only a material satisfying the conditions of the structure and the formula (A) can be obtained.
[0035]
Moreover, for the purpose of ensuring plating properties and ensuring better corrosion resistance, the formula (B) must be satisfied.
Al + 15.0Si2 + 1.5Si-1.8 <0 (B)
[0036]
Al and Si affect the wettability and alloying behavior of the plating. In particular, the wettability is deteriorated, and each coefficient reflects its degree. Although the details of the mechanism are not clear, it is considered that the oxide formed on the surface is caused by the form. As shown in FIG. 2, in the area | region where the value of the left side of Formula (B) is zero or more, the external appearance score after a corrosion resistance test is low, and it is inferior to corrosion resistance. Even in the region where the value of the left side of the formula (B) is less than zero, there are some inferior in corrosion resistance due to the difference in the manufacturing method.
[0037]
Furthermore, the steel which is the object of the present invention can contain Cr, Ni, Cu, or two or more kinds for the purpose of further improving the strength-hole expansibility balance.
Cr is an element added for the purpose of strengthening and suppressing the formation of carbides and the purpose of forming bainite and bainitic ferrite, and it is 0.01% or more, and if added in an amount exceeding 5%, workability and plating properties are adversely affected. This is the upper limit.
Ni is 0.01% by mass or more for the purpose of improving hardenability and plating properties, and if added in an amount exceeding 5% by mass, the workability, particularly the hardness increase accompanying martensite formation, has an adverse effect. This is the upper limit.
Cu is added in an amount of 0.01% by mass or more for the purpose of strengthening and improving the plating property, and if added in an amount exceeding 5% by mass, workability and manufacturability are adversely affected.
[0038]
Moreover, regarding the securing of the plating property, the formula (C) must be satisfied for the purpose of securing better corrosion resistance.
  Al + 15.0Si2+ 1.5Si + 0.5Cr-(30Ni + 10Cu) -1.8 <0 (C)
[0039]
As described above, Cr, like Al and Si, affects the oxide form on the surface and thus degrades the plating properties. On the other hand, Ni and Cu are effective for improving plating properties, and each coefficient reflects the degree. Therefore, when Cr, Ni, or Cu is included, the formula (C) must be satisfied instead of the formula (B). As shown in FIG. 3, the plating appearance score is low in the area where the value of the left side of the formula (C) is zero or more, while the plating appearance score is all good in the area where the value of the left side of the expression (C) is less than zero. Is obtained.
[0040]
Furthermore, one or more of Co and W can be contained.
Co was added in an amount of 0.01% by mass or more for a good balance between strength and hole expansibility by bainite transformation control. On the other hand, the upper limit of addition is not particularly set, but since it is an expensive element, addition of a large amount impairs economic efficiency, so it is desirable to make it 5 mass% or less.
The reinforcing effect appears when W is 0.01% by mass or more, and the reason why the upper limit is 5% by mass is that if the amount exceeds this, the workability is adversely affected.
[0041]
Furthermore, the steel targeted by the present invention can contain one or more of Zr, Hf, Ta, Ti, and V, which are strong carbide forming elements, for the purpose of further improving the strength. These elements form fine carbides, nitrides or carbonitrides, and are extremely effective for strengthening steel sheets. Therefore, if necessary, one or more elements may be added in a total amount of 0.001% by mass or more. It was set as addition. On the other hand, since it causes deterioration of ductility and hot workability, the upper limit of the total amount of one kind or two or more kinds is set to 1% by mass.
[0042]
B can also be added as needed. B is effective for strengthening grain boundaries and increasing the strength of steel by adding 0.0001% by mass or more, but when the added amount exceeds 0.1% by mass, the effect is saturated, and The upper limit was made 0.1% by mass because the properties deteriorated.
[0043]
Ca, Y, and Rem contribute to inclusion control, particularly fine dispersion, by adding appropriate amounts, so 0.0001% or more is added, while excessive addition is required for productivity such as castability and hot workability, and for steel sheet products. In order to reduce the ductility, the upper limit was made 0.5 mass%.
Inevitable impurities include, for example, N and Sn. Even if these elements are contained in the range of 0.02% by mass or less, the effect of the present invention is not impaired.
[0044]
A high-strength steel plate having such a structure and excellent in weldability and hole expandability and a method for producing the same will be described below.
When the steel sheet of the present invention is manufactured by cold rolling and annealing after hot rolling, the slab adjusted to a predetermined component is directly or once cooled and then reheated for hot rolling.
[0045]
In this case, the reheating temperature is desirably 1100 ° C. or higher and 1300 ° C. or lower. When the reheating temperature is high, coarse grains and thick oxide scales are formed. On the other hand, low temperature heating increases the rolling resistance. In addition, after hot rolling, removing the surface scale by using a high-pressure descaling device or pickling improves the surface cleanliness of the product, which is advantageous for plating. Then, it is set as a final product by annealing after cold rolling. Moreover, even if electroplating, hot dip galvanization, or hot dip galvanization is performed, the present invention is not hindered. The hot rolling completion temperature is determined by the chemical composition of the steel.ThreeGenerally, it is carried out at the transformation temperature or higher, but ArThreeIf it is from about 10 degreeC to about 10 degreeC low temperature, the characteristic of the final steel plate will not be deteriorated. In addition, the coiling temperature after cooling is higher than the bainite transformation start temperature determined by the chemical composition of the steel, so that the load during cold rolling can be increased more than necessary, but when the total rolling reduction of cold rolling is small Is not limited to this, and even if the steel sheet is wound at a temperature lower than the bainite transformation temperature of the steel, the properties of the final steel sheet are not deteriorated. The total rolling reduction of cold rolling is set based on the relationship between the final thickness and the cold rolling load, but if it is 40% or more, it is sufficient for recrystallization and does not deteriorate the properties of the final steel plate.
[0046]
Temperature Ac determined by the chemical composition of steel when annealing after cold rolling1And AcThree0.3 × (Ac expressed by temperature (for example, “steel material science”: W. C. Leslie, translated by Koyasu Naruyasu, Maruzen P273)Three-Ac1) + Ac1If it is less than (° C.), the amount of austenite obtained at the annealing temperature is small, so that bainite or bainitic ferrite cannot be produced mainly in the final steel sheet. In addition, as the annealing temperature becomes higher, the coarsening of the crystal grains and the surface oxidation are promoted, and in order to increase the manufacturing cost, the upper limit of the annealing temperature is set to Ac.Three+30 (° C). The annealing time in this temperature range requires 10 seconds or more to make the temperature of the steel plate uniform and to secure austenite. However, if it exceeds 30 minutes, the generation of a grain boundary oxidation phase is promoted and the cost is increased. Here, the atmosphere during the temperature rise and annealing was such that the oxygen concentration was 50 ppm or less and the dew point was −20 ° C. or less. If the oxygen concentration exceeds 50 ppm or the dew point exceeds −20 ° C., the plateability of the steel sheet, in particular the wettability, deteriorates and causes non-plating.
[0047]
Subsequent primary cooling is important for producing bainite or bainitic ferrite while suppressing the transformation from the austenite phase to the ferrite phase to some extent. Setting this cooling rate to less than 0.1 ° C./second may promote the formation of ferrite and pearlite and cause a decrease in strength, so the lower limit of the cooling rate was set to 0.1 ° C./second. On the other hand, when the cooling rate is higher than 100 ° C./second, the hard steel phase such as the martensite phase in the final steel sheet becomes large and operation is difficult.
[0048]
If the subsequent cooling is performed to a plating bath temperature of less than −20 ° C., there are operational problems such as a large heat removal when the plating bath enters. Further, if the cooling stop temperature exceeds the plating bath + 50 ° C., in addition to operational problems, carbides are generated during the subsequent holding, leading to a decrease in strength, so this was made the upper limit. Next, in order to promote the progress of the bainite transformation, the temperature range is maintained. If the retention time is long, it is not preferable in terms of productivity, and carbides are generated. Further, in order to cause the bainite transformation to proceed, it is desirable to hold for 1 second or longer, preferably 15 seconds to 10 minutes. If the plating bath temperature is lower than −20 ° C., the bainite transformation hardly occurs, and if the plating bath temperature exceeds −50 ° C., carbides are generated and the material is deteriorated. Moreover, when performing an alloying process, it was set as 430 degreeC or more and 580 degrees C or less. When the alloying treatment temperature is lower than 430 ° C., the progress of alloying is slow and the productivity is poor. Moreover, when it exceeds 580 degreeC, a carbide | carbonized_material precipitation will accompany and material quality will deteriorate.
The welding method is also within the scope of the present application even when a commonly used welding method, for example, arc, TIG, MIG, mash, laser, or the like is used.
[0049]
【Example】
  Hereinafter, the present invention will be described in more detail with reference to examples.
  A steel plate having a composition as shown in Table 1 was heated to 1200 ° C., and Ar3Hot rolling was completed above the transformation temperature, and after cooling, the steel strip wound up above the bainite transformation start temperature determined by the chemical composition of each steel was pickled and then cold rolled to a thickness of 1.2 mm.
  Then, according to the following formula from the component (mass%) of each steel, Ac1And Ac3The transformation temperature was determined by calculation.
Ac1  = 723-10.7 × Mn% + 29.1 × Si%,
Ac3  = 910-203 × (C%)1/2-15.2 x Ni%
          + 44.7 × Si% + 104 × V% + 31.5 × Mo%
          −30 × Mn% −11 × Cr% + 400 × Al%,
  These Ac1And Ac310% H in the annealing temperature calculated from the transformation temperature2-N2After raising the temperature and holding in the atmosphere, it was cooled to 200 to 450 ° C. at a cooling rate of 3 to 150 ° C./second, subsequently held for 1 to 3000 seconds, and then cooled.The cooling stop temperature in Table 3 indicates the final temperature of this cooling step, but the holding temperature is not necessarily the same as this cooling stop temperature.
[0050]
JIS No. 5 tensile test specimens were collected from these steel plates and measured for mechanical properties. In addition, a hole expansion test was performed in accordance with the Steel Federation standard, and the hole expansion rate was obtained. As for weldability, each weld was made in the form of a bead on a steel plate, and a ball head overhang test was conducted by lubrication with a fluorine-based resin (Teflon trade name), and the overhang height and fracture position of the base material were measured. In addition, each weld joint is created and a fatigue test in tension-tensile mode is performed.Five~Ten6The fatigue characteristics of the plated joints were compared and evaluated by comparing the fatigue strength with the base metal. Here, the welding joint was bead-on, and after welding, the end face and the surface of the test piece were ground to reduce the joint shape variation factor due to the welding chance as much as possible. In addition, the plating test was evaluated by observing the appearance and giving a five-point score.
In addition, in the corrosion resistance test after plating, the plate was bent with a radius of curvature three times the plate thickness, and then a wet and dry repeated test was performed, and the degree of rusting was also evaluated in five stages.
[0051]
Table 2 shows the microstructure and materials, and Table 3 shows the manufacturing conditions and materials. It can be seen that the invention steel satisfying the outline of the present invention is excellent in weldability, ductility, strength (tensile strength of 800 MPa or more), and hole expandability.
On the other hand, in the comparative example that deviates from the conditions of the present invention, the fracture position in the ball head overhanging process of the welded portion becomes the weld heat affected zone, the fatigue strength is low, and the hole expandability, plating property and corrosion resistance are also inferior.
[0052]
[Table 1]
Figure 0003704306
[0053]
[Table 2]
Figure 0003704306
[0054]
[Table 3]
Figure 0003704306
[0055]
【The invention's effect】
According to the present invention, it is possible to obtain a hot-dip galvanized high-strength steel sheet and a method for producing the same, in which the weldability, hole expansibility, and corrosion resistance of a high-strength steel sheet having a tensile strength of 800 MPa or more are simultaneously improved.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between fatigue strength ratio × tensile strength × λ (hole expansion rate) and the value on the left side of equation (A).
FIG. 2 is a graph showing the relationship between the appearance score after a dry and wet repeated corrosion test and the value on the left side of equation (B).
FIG. 3 is a graph showing the relationship between the plating appearance score and the value on the left side of equation (C).

Claims (8)

質量%で、
C :0.01〜0.20%、
Si:1.5%以下、
Mn:0.01〜3%、
P:0.0010〜0.1%、
S:0.0010〜0.05%、
Al:0.005〜4%を含有し、さらに、
Mo:0.01〜5.0%、
Nb:0.001〜1.0%の1種または2種を下記(A)および(B)式を同時に満たす範囲で含有し、残部をFeおよび不可避的不純物とし、ミクロ組織が、ベイナイトまたはベイニティックフェライトとして面積率で70%以上含有し、引張強度が800MPa以上であり、70%以上の穴拡げ率を備えたことを特徴とする溶接性、穴拡げ性および耐食性に優れた溶融亜鉛めっき高強度鋼板。
3.0Nb+2.5Mo+Mn −5C0.5 > 0 ・・・(A)
Al+15.0Si+1.5Si-1.8 < 0 ・・・(B)
% By mass
C: 0.01-0.20%,
Si: 1.5% or less,
Mn: 0.01 to 3%
P: 0.0010 to 0.1%,
S: 0.0010 to 0.05%,
Al: 0.005 to 4%, further,
Mo: 0.01 to 5.0%,
Nb: One or two of 0.001 to 1.0% is contained within a range that simultaneously satisfies the following formulas (A) and (B), the balance is Fe and inevitable impurities, and the microstructure is bainite or bay contained in an area ratio of 70% or more bainitic ferrite, the tensile strength of Ri der least 800 MPa, weldability, molten zinc excellent in hole expandability and corrosion resistance characterized by having a 70% or more hole expansion ratio Plated high-strength steel sheet.
3.0Nb + 2.5Mo + Mn -5C 0.5 > 0 (A)
Al + 15.0Si 2 + 1.5Si-1.8 <0 (B)
さらに、質量%で、
Cr:0.01〜5%、
Ni:0.01〜5%、
Cu:0.01〜5%、
の1種または2種以上を含有することを特徴とし、さらに式(A)および(C)を満たす請求項1に記載(ただし本項では式(B)を満たす必要はない)の溶接性、穴拡げ性および耐食性に優れた溶融亜鉛めっき高強度鋼板。
3.0Nb+2.5Mo+Mn−5C0.5 > 0 ・・・(A)
Al+15.0Si2 +1.5Si +0.5Cr −(30Ni +10Cu) −1.8 < 0 ・・・(C)
Furthermore, in mass%,
Cr: 0.01-5%
Ni: 0.01 to 5%,
Cu: 0.01 to 5%,
The weldability according to claim 1, characterized in that it contains one or more of the following, and further satisfies the formulas (A) and (C) (however, it is not necessary to satisfy the formula (B) in this section): Hot-dip galvanized high-strength steel sheet with excellent hole expansion and corrosion resistance.
3.0Nb + 2.5Mo + Mn-5C 0.5 > 0 (A)
Al + 15.0Si 2 + 1.5Si + 0.5Cr - (30Ni + 10Cu) -1.8 <0 ··· (C)
さらに、質量%で、
Co:0.01〜5%、
W :0.01〜5%
の1種または2種以上を含有することを特徴とする請求項1または請求項2に記載の溶接性、穴拡げ性および耐食性に優れた溶融亜鉛めっき高強度鋼板。
Furthermore, in mass%,
Co: 0.01-5%
W: 0.01 to 5%
The hot-dip galvanized high-strength steel sheet excellent in weldability, hole expansibility, and corrosion resistance according to claim 1 or 2, characterized by containing at least one of the following.
さらに、質量%で、
Zr、Hf、Ta、Ti、Vの1種または2種以上を合計で0.001〜1%含有することを特徴とする請求項1乃至請求項3に記載の溶接性、穴拡げ性および耐食性に優れた溶融亜鉛めっき高強度鋼板。
Furthermore, in mass%,
The weldability, hole expansibility, and corrosion resistance according to claims 1 to 3, characterized by containing one or more of Zr, Hf, Ta, Ti, and V in a total amount of 0.001 to 1%. Hot-dip galvanized high-strength steel sheet.
さらに、質量%で、B:0.0001〜0.1%を含有することを特徴とする請求項1乃至請求項4に記載の溶接性、穴拡げ性および耐食性に優れた溶融亜鉛めっき高強度鋼板。The hot dip galvanized high strength excellent in weldability, hole expansibility and corrosion resistance according to claim 1, further comprising, by mass%, B: 0.0001 to 0.1%. steel sheet. さらに、質量%で、Ca、Y、Rem の1種または2種以上を合計で0.0001〜0.5%含有することを特徴とする請求項1乃至請求項5に記載の溶接性、穴拡げ性および耐食性に優れた溶融亜鉛めっき高強度鋼板。The weldability and hole according to claim 1, further comprising 0.0001 to 0.5% in total of one or more of Ca, Y, and Rem in terms of mass%. Hot-dip galvanized high-strength steel sheet with excellent spreadability and corrosion resistance. 請求項1乃至請求項6に記載の成分からなる鋳造スラブを直接または一旦冷却した後に再度加熱し、熱延後巻取った熱延鋼板を酸洗後冷延し、その後昇温および焼鈍時の雰囲気が酸素濃度が50ppm 以下で露点が−20℃以下とし、焼鈍時の最高温度が0.3×(Ac3 −Ac1 )+Ac1 (℃)以上Ac3 +30(℃)以下で焼鈍した後に、0.1〜100℃/秒の冷却速度で亜鉛めっき浴温度−20℃〜亜鉛めっき浴温度+50℃の温度域に冷却し、引き続いて同温度域でめっき浸漬を含めて1秒〜1000秒保持を行うことを特徴とする溶接性、穴拡げ性および耐食性に優れた溶融亜鉛めっき高強度鋼板の製造方法。The cast slab composed of the components according to claim 1 to claim 6 is directly or once cooled and then heated again, the hot-rolled steel sheet wound after hot rolling is pickled, cold-rolled, and then heated and annealed. After annealing at an oxygen concentration of 50 ppm or less, a dew point of −20 ° C. or less, and a maximum temperature during annealing of 0.3 × (Ac 3 −Ac 1 ) + Ac 1 (° C.) or more and Ac 3 +30 (° C.) or less. , Cooling at a cooling rate of 0.1 to 100 ° C./second to a temperature range of galvanizing bath temperature −20 ° C. to galvanizing bath temperature + 50 ° C., followed by plating immersion in the same temperature range for 1 second to 1000 seconds A method for producing a hot-dip galvanized high-strength steel sheet excellent in weldability, hole expansibility and corrosion resistance, characterized by holding. 請求項7に記載の製造方法において、亜鉛めっき浴温度−20℃〜亜鉛めっき浴温度+50℃の温度域に冷却し、引き続いて同温度域でめっき浸漬を含めて1秒〜1000秒保持後、合金化処理を430℃〜580℃を行うことを特徴とする溶接性、穴拡げ性および耐食性に優れた溶融亜鉛めっき高強度鋼板の製造方法。In the manufacturing method according to claim 7, after cooling to a temperature range of galvanizing bath temperature -20 ° C to galvanizing bath temperature + 50 ° C, and subsequently holding the plating immersion in the same temperature range for 1 second to 1000 seconds, A method for producing a hot-dip galvanized high-strength steel sheet excellent in weldability, hole expansibility and corrosion resistance, characterized in that the alloying treatment is performed at 430 ° C to 580 ° C.
JP2001399396A 2001-12-28 2001-12-28 Hot-dip galvanized high-strength steel sheet excellent in weldability, hole expansibility and corrosion resistance, and method for producing the same Expired - Fee Related JP3704306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001399396A JP3704306B2 (en) 2001-12-28 2001-12-28 Hot-dip galvanized high-strength steel sheet excellent in weldability, hole expansibility and corrosion resistance, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001399396A JP3704306B2 (en) 2001-12-28 2001-12-28 Hot-dip galvanized high-strength steel sheet excellent in weldability, hole expansibility and corrosion resistance, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003193190A JP2003193190A (en) 2003-07-09
JP3704306B2 true JP3704306B2 (en) 2005-10-12

Family

ID=27604443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001399396A Expired - Fee Related JP3704306B2 (en) 2001-12-28 2001-12-28 Hot-dip galvanized high-strength steel sheet excellent in weldability, hole expansibility and corrosion resistance, and method for producing the same

Country Status (1)

Country Link
JP (1) JP3704306B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108677084A (en) * 2018-04-08 2018-10-19 敬业钢铁有限公司 A kind of low production method for being mingled with clean steel

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4528135B2 (en) * 2004-03-01 2010-08-18 新日本製鐵株式会社 High strength and high ductility hot dip galvanized steel sheet excellent in hole expansibility and method for producing the same
JP4500124B2 (en) * 2004-07-23 2010-07-14 新日本製鐵株式会社 Manufacturing method of hot-pressed plated steel sheet
JP4507813B2 (en) * 2004-10-12 2010-07-21 住友金属工業株式会社 Method for producing galvannealed steel sheet
JP4553372B2 (en) * 2004-12-28 2010-09-29 株式会社神戸製鋼所 Ultra high strength thin steel sheet with excellent hydrogen embrittlement resistance
JP4716358B2 (en) 2005-03-30 2011-07-06 株式会社神戸製鋼所 High-strength cold-rolled steel sheet and plated steel sheet with excellent balance between strength and workability
GB2439069B (en) * 2006-03-29 2011-11-30 Kobe Steel Ltd High Strength cold-rolled steel sheet exhibiting excellent strength-workability balance and plated steel sheet
WO2008062984A1 (en) * 2006-11-21 2008-05-29 Posco Steel excellent in resistance to corrosion by sulfuric acid and method for manufacturing the same
JP5478804B2 (en) * 2006-12-28 2014-04-23 新日鐵住金株式会社 Alloyed hot-dip galvanized steel sheet with excellent surface appearance and plating adhesion
JP5194878B2 (en) * 2007-04-13 2013-05-08 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and weldability and method for producing the same
JP5402007B2 (en) 2008-02-08 2014-01-29 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP5264234B2 (en) * 2008-03-24 2013-08-14 日新製鋼株式会社 Zn-Al-Mg-based plated steel sheet having excellent resistance to molten metal embrittlement cracking and method for producing the same
JP5213643B2 (en) * 2008-03-26 2013-06-19 株式会社神戸製鋼所 High strength cold-rolled steel sheet and high-strength galvannealed steel sheet with excellent ductility and hole expansibility
CN101805820A (en) * 2010-04-22 2010-08-18 山西太钢不锈钢股份有限公司 Prehardening treatment method of plastic mould steel
JP5686028B2 (en) * 2011-04-08 2015-03-18 新日鐵住金株式会社 Alloyed hot-dip galvanized steel sheet and method for producing the same
CA2869340C (en) 2012-04-05 2016-10-25 Tata Steel Ijmuiden B.V. Steel strip having a low si content
CN102719736B (en) * 2012-06-12 2014-07-09 武汉钢铁(集团)公司 Steel with yield ratio of 0.9 or more used for ultra-fine grain slideway and production method thereof
ES2644357T3 (en) 2012-09-26 2017-11-28 Nippon Steel & Sumitomo Metal Corporation  Dual phase steel sheet and process for its production
CN104838026B (en) 2012-12-11 2017-05-17 新日铁住金株式会社 Hot-rolled steel sheet and production method therefor
EP3330395B1 (en) 2015-07-31 2020-07-29 Nippon Steel Corporation Steel sheet with strain induced transformation type composite structure and method of manufacturing same
CN108026601A (en) * 2015-09-22 2018-05-11 现代制铁株式会社 Coated steel plate and its manufacture method
CN109642278B (en) 2016-08-18 2020-12-25 日本制铁株式会社 Hot rolled steel plate
WO2018203111A1 (en) * 2017-05-05 2018-11-08 Arcelormittal Method for producing a high strength steel sheet having high ductility, formability and weldability, and obtained steel sheet
WO2019130713A1 (en) * 2017-12-27 2019-07-04 Jfeスチール株式会社 High strength steel sheet and method for producing same
CN109280853B (en) * 2018-11-19 2020-05-08 潍坊科技学院 High-strength and high-toughness galvanized steel wire for bridge cable and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108677084A (en) * 2018-04-08 2018-10-19 敬业钢铁有限公司 A kind of low production method for being mingled with clean steel
CN108677084B (en) * 2018-04-08 2020-11-03 敬业钢铁有限公司 Production method of low-inclusion clean steel

Also Published As

Publication number Publication date
JP2003193190A (en) 2003-07-09

Similar Documents

Publication Publication Date Title
JP3704306B2 (en) Hot-dip galvanized high-strength steel sheet excellent in weldability, hole expansibility and corrosion resistance, and method for producing the same
JP3854506B2 (en) High strength steel plate excellent in weldability, hole expansibility and ductility, and manufacturing method thereof
JP4730056B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flange formability
JP4523937B2 (en) High strength hot dip galvanized steel sheet and method for producing the same
JP5418047B2 (en) High strength steel plate and manufacturing method thereof
JP5162836B2 (en) High-strength cold-rolled steel sheet excellent in hydrogen embrittlement resistance of welds and method for producing the same
JP4072090B2 (en) High-strength steel sheet with excellent stretch flangeability and manufacturing method thereof
JP4317384B2 (en) High-strength galvanized steel sheet with excellent hydrogen embrittlement resistance, weldability and hole expansibility, and its manufacturing method
JP4542515B2 (en) High strength cold-rolled steel sheet excellent in formability and weldability, high-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet, manufacturing method of high-strength cold-rolled steel sheet, and manufacturing method of high-strength hot-dip galvanized steel sheet , Manufacturing method of high strength galvannealed steel sheet
JP6388056B2 (en) Manufacturing method of hot-rolled steel sheet and manufacturing method of cold-rolled full hard steel sheet
EP2527484B1 (en) Method for manufacturing a high-strength galvanized steel sheet having excellent formability and spot weldability
WO2019003448A1 (en) Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing
JP2005105367A (en) High yield ratio and high strength cold-rolled steel plate and high yield ratio and high strength galvanized steel plate excellent in weldability and ductility, and high yield ratio and high strength alloyed galvanized steel plate and its manufacturing method
JP4528135B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in hole expansibility and method for producing the same
JP4676923B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in corrosion resistance and welding strength and method for producing the same
JP4500197B2 (en) Manufacturing method of high-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength galvannealed steel sheet with excellent formability and weldability
JP2010043360A (en) High-strength and high-ductility hot-dip galvanized steel sheet superior in hole expandability, and manufacturing method therefor
JP3895986B2 (en) High-strength steel plate excellent in weldability and hole expansibility and method for producing the same
JP5953695B2 (en) High-strength hot-dip galvanized steel sheet with excellent plating adhesion and formability and its manufacturing method
JP3924108B2 (en) Manufacturing method of high strength steel sheet with excellent hydroformability after pre-processing
JP2010235989A (en) High strength zn-al-mg based plated steel sheet excellent in liquid metal embrittlement resistant characteristics and production method therefor
JP6947334B1 (en) High-strength steel plate and its manufacturing method
JP4580403B2 (en) Hot-dip hot-dip steel sheet for deep drawing and method for producing the same
JP4580402B2 (en) Hot-dip hot-dip steel sheet for press working and manufacturing method thereof
JP4351465B2 (en) Hot-dip galvanized high-strength steel sheet excellent in hole expansibility and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050722

R151 Written notification of patent or utility model registration

Ref document number: 3704306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080729

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees