JP4676923B2 - High strength and high ductility hot dip galvanized steel sheet excellent in corrosion resistance and welding strength and method for producing the same - Google Patents

High strength and high ductility hot dip galvanized steel sheet excellent in corrosion resistance and welding strength and method for producing the same Download PDF

Info

Publication number
JP4676923B2
JP4676923B2 JP2006156082A JP2006156082A JP4676923B2 JP 4676923 B2 JP4676923 B2 JP 4676923B2 JP 2006156082 A JP2006156082 A JP 2006156082A JP 2006156082 A JP2006156082 A JP 2006156082A JP 4676923 B2 JP4676923 B2 JP 4676923B2
Authority
JP
Japan
Prior art keywords
strength
steel sheet
corrosion resistance
ductility
galvanized steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006156082A
Other languages
Japanese (ja)
Other versions
JP2007321233A (en
Inventor
誠司 古迫
展弘 藤田
力 岡本
俊樹 服部
直樹 松谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006156082A priority Critical patent/JP4676923B2/en
Publication of JP2007321233A publication Critical patent/JP2007321233A/en
Application granted granted Critical
Publication of JP4676923B2 publication Critical patent/JP4676923B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、自動車、電機、建材などの産業で広く利用される、延性ならびにめっき密着性・耐食性、ならびに溶接強度に優れた高強度溶融亜鉛めっき鋼板ならびにその製造方法に関する。以下では、代表的な用途として、自動車の車体に使用する場合を中心に説明する。   The present invention relates to a high-strength hot-dip galvanized steel sheet excellent in ductility, plating adhesion and corrosion resistance, and welding strength, and a method for producing the same, which are widely used in industries such as automobiles, electrical machinery, and building materials. In the following, as a typical application, description will be made focusing on the case where it is used for an automobile body.

近年、自動車の衝突安全性向上や燃費向上を両立する観点から、車体に延性に優れた高強度鋼板の利用が拡大しつつある。しかしながら一般に、鋼材の高強度化によって延性は劣化する傾向にあり、加工度の高い自動車部品に適用するためには高強度を維持しつつ延性を向上させた鋼板が必要とされている。   In recent years, the use of high-strength steel sheets having excellent ductility for vehicle bodies has been expanding from the viewpoint of achieving both improved collision safety and improved fuel efficiency. However, in general, the ductility tends to be deteriorated by increasing the strength of a steel material, and a steel sheet having improved ductility while maintaining high strength is required to be applied to automobile parts having a high degree of processing.

こうした状況のもと、強度と伸びを両立した鋼板として残留オーステナイト鋼が知られている。この鋼材は、製造過程においてオーステナイト中へCを濃化させ、室温まで安定化・残存させた鋼材であり、自動車用材料としての利用が拡大しつつある。従来の残留オーステナイト鋼ではSi添加が行われていたが、Si添加量が0.3%を超えるとAlを含んだめっき浴を用いたゼンジマー法ではめっき濡れ性が著しく低下し、不めっきが発生し、外観品質の悪化、ひいては耐食性が劣化する問題を抱えていた。この現象は、還元焼鈍時に鋼板表面にSi酸化物が濃化し、溶融亜鉛のSi酸化物への濡れ性が悪いことに起因すると考えられている。また、残留オーステナイト鋼の材質をつくり込む一般的な連続焼鈍設備においては、焼鈍・冷却後に350〜550℃の範囲の温度に保持することでオーステナイトの安定化を図っているが、連続溶融亜鉛めっき設備は一般に連続焼鈍設備で行われる等温保持が可能な設備を備えておらず、溶融めっきが施された残留オーステナイト鋼の製造は成分的および製法的にも困難とされてきた。   Under such circumstances, a retained austenitic steel is known as a steel plate having both strength and elongation. This steel material is a steel material in which C is concentrated in austenite in the manufacturing process and is stabilized and left to room temperature, and its use as an automotive material is expanding. In conventional retained austenitic steel, Si was added. However, when the Si content exceeds 0.3%, the Sendzimer method using a plating bath containing Al significantly reduces plating wettability and causes non-plating. However, it has a problem that the appearance quality is deteriorated and the corrosion resistance is deteriorated. This phenomenon is considered to be caused by the fact that Si oxide is concentrated on the surface of the steel sheet during reduction annealing, and the wettability of molten zinc to Si oxide is poor. Also, in general continuous annealing equipment that produces residual austenitic steel material, austenite is stabilized by maintaining the temperature in the range of 350 to 550 ° C. after annealing and cooling. The equipment is generally not equipped with equipment that can be kept isothermally, which is performed in a continuous annealing equipment, and it has been difficult to manufacture residual austenitic steel subjected to hot dip plating both in terms of components and manufacturing process.

こうした問題を解決する手段として、特許文献1、特許文献2、特許文献3、特許文献4、そして特許文献5等に、Si量を低減し、代替としてAl添加量を増加することで、溶融めっきを付与可能な残留オーステナイト鋼の製造方法が開示されている。また、特許文献6には、残留オーステナイト鋼のオーステナイトの形状をラス状にすることで伸びフランジ性も良好な鋼板の製造方法も開示されている。しかしながら、熱延、冷延、焼鈍冷却後における350〜550℃の範囲の温度に保持する時間が十分でないばかりか、強度・延性バランスを高度に確保するためのオーステナイト組織の規定が不十分であり、ますます高まっている成形性向上のニーズに対応するのは困難だと考えられる。   As a means for solving such a problem, Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4, and Patent Document 5, etc., reduce the Si amount, and increase the Al addition amount as an alternative. A method for producing a retained austenitic steel capable of imparting is disclosed. Patent Document 6 also discloses a method for producing a steel sheet having good stretch flangeability by making the austenite shape of retained austenitic steel into a lath shape. However, there is not enough time to maintain the temperature in the range of 350 to 550 ° C. after hot rolling, cold rolling, and annealing cooling, and the austenite structure is not sufficiently defined to ensure a high balance between strength and ductility. It is considered difficult to meet the increasing need for moldability.

また、残留オーステナイト相を安定化させるために、一般に鋼板へのC添加量が0.1質量%を超える場合が多いことに加え、強度確保のためMnも添加する。すると鋼板の焼入れ性は高くなり、溶接後の溶接金属や熱影響部(HAZ)はマルテンサイトやベイナイトといった硬化組織となる。溶接金属やHAZの硬度が高いと、溶接部の強度や靭性、疲労強度といった特性は劣化する。従来知られた鋼板では、強度・延性やめっき性は配慮されていたが、必ずしも溶接部特性まで踏み込んだものではなかった。自動車車体に用いられる該鋼板は、成形後に必ず溶接されて車体構造を成すことから、車体性能を良好にかつ長期に保つために健全な溶接部を形成することは必須な条件と言える。即ち、鋼板の延性や耐食性がどんなに優れていても、溶接部特性が不良であれば、鋼板は具備すべき要件を満足していないこととなる。
上述したような、高強度化と高延性化、Si添加の問題、耐食性向上、さらに溶接部特性を考慮した鋼板は開発されていない。
In order to stabilize the retained austenite phase, in general, the amount of C added to the steel sheet often exceeds 0.1% by mass, and Mn is also added to ensure strength. Then, the hardenability of the steel sheet is increased, and the weld metal and heat-affected zone (HAZ) after welding becomes a hardened structure such as martensite and bainite. When the hardness of the weld metal or HAZ is high, properties such as the strength, toughness, and fatigue strength of the welded portion deteriorate. Conventionally known steel sheets have been considered in terms of strength, ductility, and plating properties, but have not necessarily stepped into the weld properties. Since the steel sheet used in the automobile body is always welded after forming to form a vehicle body structure, it can be said that it is an essential condition to form a sound weld in order to keep the vehicle body performance good and for a long time. That is, no matter how excellent the ductility and corrosion resistance of the steel sheet are, if the welded part properties are poor, the steel sheet does not satisfy the requirements to be provided.
As described above, no steel sheet has been developed that takes into account the high strength and high ductility, the problem of Si addition, the corrosion resistance improvement, and the welded portion characteristics.

特開平6―145788号公報JP-A-6-145788 特開平6―145892号公報Japanese Patent Laid-Open No. 6-145892 特開平10―130776号公報JP-A-10-130776 特開平11―131145号公報JP-A-11-131145 特開2000−256788号公報JP 2000-256788 A 特開2002―309334号公報JP 2002-309334 A

本発明は、上記課題を解決し、不めっきや表面欠陥が抑制され、耐食性と高延性、さらには良好な溶接部強度を兼ね備えた高強度溶融亜鉛めっき鋼板並びにその製造方法を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems, and to provide a high-strength hot-dip galvanized steel sheet that has both corrosion resistance and high ductility, and good weld strength, as well as a method for producing the same, by preventing unplating and surface defects. And

本発明者は上記課題を解決すべく、鋭意研究し、鋼中の残留オーステナイト粒の形状制御をすることによって、鋼材の強度と伸びの両者を高度に発揮させることができ、また、溶接部の硬さを低下させることで、靭性や疲労強度といった溶接部の特性を向上させることができ、さらに、鋼中のAlやO、その他、C、Si、Mnの添加量とその量バランスを図ることで、強度・延性と溶接部特性の両方を高いレベルに維持することができること等を見出して本発明を完成した。
本発明の要旨とするところは以下の通りである。
In order to solve the above-mentioned problems, the present inventor has intensively studied, and by controlling the shape of retained austenite grains in the steel, both the strength and elongation of the steel material can be demonstrated to a high degree, By reducing the hardness, it is possible to improve the properties of the welded part such as toughness and fatigue strength, and to further balance the amount of addition of Al, O, other C, Si, Mn in the steel and its amount Thus, the present invention has been completed by finding out that both strength and ductility and weld properties can be maintained at a high level.
The gist of the present invention is as follows.

(1) 鋼成分が、質量%で、
C:0.1〜0.3%、
Si:0.001〜0.200%未満、
Mn:1.0〜3.0%、
Al:0.5〜2.0%、
P:0.001〜0.300%、
S:0.0001〜0.1000%、
O:0.0005〜0.0100%、
N:0.001〜0.010%
を含有し、残部Fe及び不可避不純物からなる溶融亜鉛めっき鋼板であって、鋼のミクロ組織が、体積分率で30〜90%のフェライト相、5%以上のベイナイト、10%以下のマルテンサイト、および5〜30%の残留オーステナイト相を含み、さらに残留オーステナイト中の炭素が質量%で1.0%以上であり、かつ、残留オーステナイト粒の平均アスペクト比(最大幅/最小幅)が2以下であることを特徴とする耐食性および溶接強度に優れた高強度高延性溶融亜鉛めっき鋼板。
(1) Steel component is mass%,
C: 0.1 to 0.3%
Si: 0.001 to less than 0.200%,
Mn: 1.0 to 3.0%
Al: 0.5 to 2.0%,
P: 0.001 to 0.300%,
S: 0.0001 to 0.1000%,
O: 0.0005 to 0.0100%,
N: 0.001 to 0.010%
A galvanized steel sheet comprising the balance Fe and unavoidable impurities, wherein the microstructure of the steel is 30 to 90% ferrite phase in volume fraction, 5% or more bainite, 10% or less martensite, And 5 to 30% of the retained austenite phase, the carbon in the retained austenite is 1.0% or more by mass%, and the average aspect ratio (maximum width / minimum width) of the retained austenite grains is 2 or less. A high strength and high ductility hot dip galvanized steel sheet having excellent corrosion resistance and welding strength.

) 鋼板のミクロ組織が、体積分率で30〜90%のフェライトを主相とし、その平均粒径が20μm以下であり、第2相として体積分率で5〜30%の残留オーステナイトをからなり、第2相の平均粒径が10μm以下であり、さらに体積分率で5%以上のベイナイトからなることを特徴とする(1)に記載の耐食性および溶接強度に優れた高強度高延性溶融亜鉛めっき鋼板。
( 2 ) The microstructure of the steel sheet is mainly composed of ferrite with a volume fraction of 30 to 90%, the average particle size is 20 μm or less, and the second phase is retained austenite with a volume fraction of 5 to 30%. The average particle size of the second phase is 10 μm or less, and further consists of bainite having a volume fraction of 5% or more. High strength and high ductility with excellent corrosion resistance and weld strength according to (1) Hot dip galvanized steel sheet.

) 鋼が、さらに質量%で、
Mo:0.001〜1.0%、
Cr:0.001〜25.000%、
Ni:0.001〜10.000%、
Cu:0.001〜5.000%、
Co:0.001〜5.000%、
W:0.001〜5.000%
の1種または2種以上を含有することを特徴とする(1)または(2)記載の耐食性および溶接強度に優れた高強度高延性溶融亜鉛めっき鋼板。
( 3 ) Steel is further mass%,
Mo: 0.001 to 1.0%,
Cr: 0.001 to 25.000%,
Ni: 0.001 to 10.000%,
Cu: 0.001 to 5.000%,
Co: 0.001 to 5.000%,
W: 0.001 to 5.000%
A high strength and high ductility hot dip galvanized steel sheet excellent in corrosion resistance and weld strength according to (1) or (2) , characterized by containing one or more of the above.

) 鋼が、さらに質量%で、Nb、Ti、V、Zr、Hf、Taの1種または2種以上を合計で0.001〜1.000%含有することを特徴とする(1)〜(3)のいずれか1項に記載の耐食性および溶接強度に優れた高強度高延性溶融亜鉛めっき鋼板。
( 4 ) The steel further contains 0.001 to 1.000% of one or more of Nb, Ti, V, Zr, Hf, Ta in total by mass% (1) A high-strength, high-ductility hot-dip galvanized steel sheet excellent in corrosion resistance and weld strength according to any one of (3) .

)鋼が、さらに質量%で、B:0.0001〜0.1000%を含有することを特徴とする(1)〜(4)のいずれか1項に記載の耐食性および溶接強度に優れた高強度高延性溶融亜鉛めっき鋼板。
( 5 ) Steel is further excellent in corrosion resistance and weld strength according to any one of (1) to (4) , characterized by containing B: 0.0001 to 0.1000% by mass%. High strength and high ductility hot dip galvanized steel sheet.

) 鋼が、さらに質量%で、Y、Rem、Ca、Mg、Ceの1種以上を0.0001〜1.0000%含有することを特徴とする(1)〜()のいずれか1項に記載の耐食性および溶接強度に優れた高強度高延性溶融亜鉛めっき鋼板。
( 6 ) Any one of (1) to ( 5 ), wherein the steel further contains 0.0001 to 1.0000% of one or more of Y, Rem, Ca, Mg, and Ce in mass%. A high-strength, high-ductility hot-dip galvanized steel sheet excellent in corrosion resistance and weld strength according to item 1.

) (1)〜(6)のいずれかの1項に記載の高強度溶融亜鉛めっき鋼板の製造において、請求項1〜の何れか1項に記載の鋼板の成分からなる鋳造スラブを鋳造ままもしくは一旦冷却した後に再度1200〜1300℃に加熱して、その後、粗熱延で全圧下率60〜99%の圧下を800〜1200℃で加え、仕上げ圧延して巻取った熱延鋼板を酸洗後、冷延し、その後、Ac(℃)以上Ac+50(℃)以下の温度域で10秒〜30分焼鈍した後に、焼鈍時の最高到達温度:Tmax(℃)とするとき、10℃/s以下の冷却速度でTmax−200℃〜Tmax−100℃の温度域に冷却し、引き続いて5℃/秒以上の冷却速度で350〜500℃の温度に冷却し、この温度範囲内で5〜900secの間保持した後、めっき浴に浸漬し、室温まで冷却することを特徴とする耐食性および溶接強度に優れた高強度高延性溶融亜鉛めっき鋼板の製造方法。
( 7 ) In the production of the high-strength hot-dip galvanized steel sheet according to any one of (1) to (6) , a cast slab made of the steel sheet component according to any one of claims 1 to 6 is used. Hot-rolled steel sheet as it is cast or once cooled to 1200-1300 ° C., then subjected to rough hot rolling at a total rolling reduction of 60-99% at 800-1200 ° C., finish-rolled and wound After pickling, cold rolling, and then annealing for 10 seconds to 30 minutes in a temperature range of Ac 1 (° C.) or more and Ac 3 +50 (° C.) or less, and then reaching the maximum temperature during annealing: Tmax (° C.) When cooling to a temperature range of Tmax-200 ° C to Tmax-100 ° C at a cooling rate of 10 ° C / s or less, and subsequently cooling to a temperature of 350-500 ° C at a cooling rate of 5 ° C / second or more. After holding for 5 to 900 seconds within the range, Immersed in Kki bath, high strength and high manufacturing method of ductility galvanized steel sheet having excellent corrosion resistance and weld strength, characterized in that cooling to room temperature.

) めっき浴浸漬後に、合金化処理を400〜550℃の温度域で行い、室温まで冷却することを特徴とする(7)記載の耐食性および溶接強度に優れた高強度高延性溶融亜鉛めっき鋼板の製造方法。
( 8 ) After immersion in the plating bath, the alloying treatment is performed in a temperature range of 400 to 550 ° C. and cooled to room temperature. (7) High strength and high ductility hot dip galvanizing excellent in corrosion resistance and welding strength A method of manufacturing a steel sheet.

) 冷延率を40〜80%の範囲とすることを特徴とする(7)に記載の耐食性および溶接強度に優れた高強度高延性溶融亜鉛めっき鋼板の製造方法。
( 9 ) The method for producing a high strength and high ductility hot dip galvanized steel sheet having excellent corrosion resistance and welding strength according to (7) , wherein the cold rolling rate is in the range of 40 to 80%.

本発明の高強度溶融亜鉛めっき鋼板は、耐食性、特に塩素含有の環境における耐食性に優れると共に加工性が優れ、さらには溶接部特性も良好なことから、建材、家電製品、自動車車体用途等に極めて有効である。   The high-strength hot-dip galvanized steel sheet of the present invention has excellent corrosion resistance, particularly corrosion resistance in a chlorine-containing environment, and excellent workability, and also has good welded part properties, so it is extremely useful for building materials, home appliances, automobile body applications, etc. It is valid.

本発明者らは、鋼板が高強度でありながら、優れた延性ならびに溶接性を保有するには、次の3つの条件を満足することが極めて重要であることを鋭意研究することで見出した。   The inventors of the present invention have found by studying earnestly that it is extremely important to satisfy the following three conditions in order to retain excellent ductility and weldability while the steel sheet has high strength.

まず、鋼材の強度と伸びの両者を高度に発揮するには、鋼中の残留オーステナイト粒の形状制御が極めて重要である。即ち、オーステナイト粒の平均アスペクト比(最大幅/最小幅)を2以下とする必要があることを明らかにした。残留オーステナイトのアスペクト比を減少させるには、鋼板成分ではAlとOの添加が特に重要な役割を果たし、また製造条件においては加熱冷却後の等温保持を十分な時間行う必要があることを明らかにした。   First, the shape control of the retained austenite grains in the steel is extremely important in order to fully exhibit both the strength and elongation of the steel material. That is, it was clarified that the average aspect ratio (maximum width / minimum width) of austenite grains needs to be 2 or less. Clearly, in order to reduce the aspect ratio of retained austenite, the addition of Al and O plays an especially important role in steel sheet components, and it is necessary to maintain the isothermal holding after heating and cooling for a sufficient time in the manufacturing conditions. did.

次に、靭性や疲労強度といった溶接部の特性を向上させるには、溶接部の硬さを低下させる必要がある。溶接部硬さ低下を実現するためにも、鋼中にAlとOの添加が必須であり、融点でも安定して存在しうるAlの酸化物が溶接部の焼入れ性を低下させ、溶接部硬さの低下が可能となる。   Next, in order to improve the characteristics of the welded part such as toughness and fatigue strength, it is necessary to reduce the hardness of the welded part. Addition of Al and O in the steel is essential in order to reduce the hardness of the weld zone, and the oxide of Al that can exist stably even at the melting point reduces the hardenability of the weld zone. It is possible to reduce the height.

さらに、強度・延性と溶接部特性の両方を高いレベルに維持するため、鋼中のAlやO、その他、C、Si、Mnの添加量とその量バランスが重要であることを見出した。即ち、次の(A)式の関係を満足することが重要であることを見出した。
0≦2(Al+Mn/2+100×O)×(2.2×Al−Mn−O)−C−Si/30 ・ ・ ・(A)
Furthermore, in order to maintain both strength and ductility and weld properties at a high level, the inventors have found that the amount of addition of Al, O, and other C, Si, and Mn in the steel and the balance of the amounts are important. That is, it was found that it is important to satisfy the relationship of the following formula (A).
0 ≦ 2 (Al + Mn / 2 + 100 × O) × (2.2 × Al—Mn—O) —C—Si / 30 (A)

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

まず、それぞれの鋼板成分の限定理由について述べる。   First, the reasons for limiting each steel plate component will be described.

C:強度(TS)を590MPa以上確保するためにC量の下限を0.1質量%とした。また、特に残留オーステナイトを充分な量と安定性を確保するのに必要な不可欠な添加元素である。一方では、溶接部特性を保持可能な上限として0.3質量%とした。   C: In order to ensure the strength (TS) of 590 MPa or more, the lower limit of the C amount was 0.1% by mass. In particular, the retained austenite is an indispensable additive element necessary to ensure a sufficient amount and stability. On the other hand, the upper limit capable of maintaining the welded portion characteristics was set to 0.3% by mass.

Si:製造性および材質上強度を確保するため0.001%以上とし、また、めっき性を劣化させることから上限を0.200%未満とした。これを超える添加はスケール傷が多発して、めっき外観の劣化や鋼板の歩留まり低下にもつながる。また、SiもC同様、焼入れ性を高める元素であり、溶接部特性を劣化させる。他方、Siは溶融金属の濡れ性を良好とし、溶接金属の止端形状を改善する効果を持つことから、0.030%以上添加することが望ましい。   Si: 0.001% or more to ensure manufacturability and strength on material, and the upper limit is made less than 0.200% because the plating property is deteriorated. Addition exceeding this often causes scale damage, leading to deterioration of the plating appearance and reduction of the yield of the steel sheet. Si, like C, is an element that enhances hardenability and degrades weld properties. On the other hand, since Si has the effect of improving the wettability of the molten metal and improving the toe shape of the weld metal, it is desirable to add 0.030% or more.

Mn:1.0〜3.0質量%の範囲としたのは、1.0質量%以上とすることでTSを590MPa以上を確保可能であり、3.0質量%を上限としたのは、これを上回る添加は伸びに悪影響を及ぼすためである。また、Mnは単独では焼き入れ性を高め溶接部特性を劣化させるが、鋼中でMnOを形成しAlと複合することで溶接冷却中のフェライト生成核となりうるため焼き入れ性を低下できると考えられる。 Mn: The range of 1.0 to 3.0% by mass can secure TS of 590 MPa or more by setting 1.0% by mass or more, and the upper limit of 3.0% by mass is This is because addition exceeding the above has an adverse effect on elongation. Mn alone enhances hardenability and degrades weld properties, but it lowers hardenability by forming MnO in steel and combining with Al 2 O 3 to form ferrite nuclei during welding cooling. It is considered possible.

Al:Alは溶接性と強度・延性バランスを向上するために特に重要な元素である。Alを0.5〜2.0質量%の範囲としたのは、低Siであるがゆえに脱酸の目的および炭化物の生成を抑制し残留オーステナイトを安定化させる目的から0.5質量%以上とした。後述するように、Alの一部は鋼板中でAlを形成しており、溶接部の焼入れ性を低下させ、溶接部特性を改善可能となる。一方、過剰添加はめっき濡れ性、製造性に悪影響を及ぼすため2.0%を上限とした。めっき密着性の観点からは1.7%以下とすることが望ましい。 Al: Al is an especially important element for improving the weldability and the balance between strength and ductility. The reason why Al is in the range of 0.5 to 2.0% by mass is 0.5% by mass or more for the purpose of deoxidation and suppressing the formation of carbides and stabilizing retained austenite because of low Si. did. As will be described later, a part of Al forms Al 2 O 3 in the steel sheet, which can reduce the hardenability of the weld and improve weld properties. On the other hand, excessive addition adversely affects plating wettability and manufacturability, so 2.0% was made the upper limit. From the viewpoint of plating adhesion, it is desirable that the content be 1.7% or less.

O:Oも本発明では重要な元素である。O量は0.0005〜0.0100質量%とした。O量が0.0005%以上とすることで溶接部の焼き入れ性は低下し溶接部硬さを低下でき、また極低化が経済的にも不利なことから、これを下限とした。特に溶接部特性を良好にするには、0.0008%以上とすることが望ましい。一方、0.0100%を超えた鋼板の製造は、過多に生成する酸化物が精錬や鋳造の時のノズルづまりを引き起こすなど技術的に困難な点があり、さらにAlの析出量が多くなりAl添加の効果が低下してしまうため、これを上限とした。精錬や鋳造における製造し易さの観点からは、0.0080%以下が望ましい。 O: O is also an important element in the present invention. The amount of O was 0.0005 to 0.0100% by mass. By setting the amount of O to 0.0005% or more, the hardenability of the welded portion is lowered and the hardness of the welded portion can be lowered, and since extremely low is also economically disadvantageous, this is set as the lower limit. In particular, in order to improve the welded portion characteristics, it is desirable to set it to 0.0008% or more. On the other hand, the production of steel sheets exceeding 0.0100% has technical difficulties such as excessively generated oxides causing nozzle clogging during refining and casting, and the precipitation amount of Al 2 O 3 is large. Since the effect of Al addition is reduced, this is set as the upper limit. From the viewpoint of ease of manufacture in refining and casting, 0.0080% or less is desirable.

さらにAlとOの両者の添加による溶接部特性の改善効果について述べる。本発明鋼を含む残留オーステナイト鋼は、室温で安定な残留γ相を確保するためC量が高く(0.1%以上)、また強度確保のためMnも高い(1.0%以上)。CやMn等は鋼材の焼き入れ性を高める元素であり、これら元素が増加するほど溶接部(ここでは、溶接金属と熱影響部(HAZ))は硬化する。溶接部の組織や硬さは溶接加熱後の冷却速度にも依存し、冷却速度が高いと溶接部は硬質なマルテンサイトやベイナイトとなり硬さが高く、一方、冷却速度が低いと軟質なフェライトやパーライトが変態生成して硬さが低下する。溶接部が硬化するほど、溶接部の靭性や疲労強度といった特性が劣化することとなる。上記範囲のAlおよびOを添加することにより、鋼中に適量のAlが形成されるAlは融点が高く、溶接加熱時でも溶解せず、安定して存在する。Alは溶接冷却時に溶接金属中のオーステナイト粒の成長を妨げ、そのため変態前のオーステナイト粒は細粒となる。細粒化は焼き入れ性の低下をもたらす。さらに、Alが溶接部でフェライト生成の核になるため、溶接部の焼き入れ性が低下し、即ち、溶接部硬さを低下できる。但し、AlにMnOが複合した酸化物が溶接冷却中において溶接部のフェライト生成核になると言われており、本発明でもAl・MnOが形成されている可能性がある。一方、Siの酸化物あるいはSiとMnが複合した酸化物では焼き入れ性を低下できないことが知られており、この事実からもSi代替でAlを添加することが特に重要な意味を有する。 Furthermore, the effect of improving the weld properties by adding both Al and O will be described. The retained austenitic steel including the steel of the present invention has a high C content (0.1% or more) in order to secure a stable residual γ phase at room temperature, and a high Mn (1.0% or more) in order to ensure strength. C, Mn, and the like are elements that enhance the hardenability of the steel material, and the welded portions (here, the weld metal and the heat affected zone (HAZ)) are hardened as these elements increase. The structure and hardness of the welded part also depends on the cooling rate after welding heating. When the cooling rate is high, the welded part becomes hard martensite and bainite, and the hardness is high, while when the cooling rate is low, soft ferrite and Perlite is transformed and hardness decreases. As the welded portion is hardened, characteristics such as toughness and fatigue strength of the welded portion deteriorate. By adding Al and O in the above range, Al 2 O 3 which is an appropriate amount of Al 2 O 3 is formed in the steel has a high melting point, does not dissolve even when welding heat, stably exist. Al 2 O 3 hinders the growth of austenite grains in the weld metal during welding cooling, so that the austenite grains before transformation become fine grains. Fine graining causes a decrease in hardenability. Furthermore, since Al 2 O 3 becomes a nucleus for generating ferrite in the welded portion, the hardenability of the welded portion is lowered, that is, the welded portion hardness can be lowered. However, it is said that an oxide in which MnO is combined with Al 2 O 3 becomes a ferrite-forming nucleus of the weld during cooling of the weld, and Al 2 O 3 .MnO may also be formed in the present invention. On the other hand, it is known that the hardenability cannot be lowered with an oxide of Si or an oxide of Si and Mn. From this fact, it is particularly important to add Al instead of Si.

さらに本発明者らは、AlやOを本発明範囲内で添加することで、残留オーステナイトのアスペクト比を広い製造条件範囲に渡って2以下とできる事実を見出した。この理由として、AlだけでなくAlなどの酸化物が製造中のフェライト変態やベイナイト変態を促進し、さらに残留オーステナイトの形状にも好ましい影響を及ぼしたと推定している。 Furthermore, the present inventors have found that the aspect ratio of retained austenite can be reduced to 2 or less over a wide range of production conditions by adding Al or O within the scope of the present invention. The reason for this is presumed that not only Al but also oxides such as Al 2 O 3 promoted ferrite transformation and bainite transformation during production, and also had a favorable influence on the shape of retained austenite.

ところで、溶鋼に固溶するO量はAlが約0.5質量%まではAl量と共に減少する。これは、精錬時、即ち鋼材が溶融している高温においてAlとOの親和力が強く、溶鋼中でAlが形成されるためである。粗大化したAlは溶鋼表面に浮上し、その他の酸化物とスラグを形成し排除される。従って、最終製品となった鋼板中のO量も低いレベルにとどまる。ところが、Al量が約0.5%を超えると、溶鋼が固溶できるO量をAl量増加に伴い増加させることが可能となる。即ち、最終製品のO量も増加させることが可能となる。しかし、通常の製法ではAl量を0.5%以上としても溶接部特性を改善可能なレベルまでO量を増加することは困難である。また従来、O量を増加し酸化物を母材中に形成させることは、母材の延性や靭性を劣化させるため回避されてきた。しかし、本発明では、延性や靭性を劣化させない範囲で溶接部特性を改善できる条件を見出した点に新規性がある。本発明で規定したO量を母材で確保するには、Alを0.5%以上添加することに加え、例えば精錬時にOを溶鋼に吹き込むなどといった製法上の工夫が必要である。 By the way, the amount of O dissolved in the molten steel decreases with the amount of Al up to about 0.5 mass% of Al. This is because the affinity between Al and O is strong during refining, that is, at a high temperature at which the steel material is melted, and Al 2 O 3 is formed in the molten steel. The coarsened Al 2 O 3 floats on the surface of the molten steel and forms slag with other oxides and is eliminated. Therefore, the amount of O in the steel plate that is the final product also remains at a low level. However, when the Al amount exceeds about 0.5%, it becomes possible to increase the amount of O in which molten steel can be dissolved as the Al amount increases. That is, it is possible to increase the amount of O of the final product. However, it is difficult to increase the amount of O to a level at which the weld characteristics can be improved even if the amount of Al is 0.5% or more in a normal manufacturing method. Conventionally, increasing the amount of O to form an oxide in the base material has been avoided because it deteriorates the ductility and toughness of the base material. However, the present invention is novel in that it has found out conditions that can improve the welded portion characteristics within a range in which ductility and toughness are not deteriorated. In order to secure the amount of O specified in the present invention with the base material, in addition to adding 0.5% or more of Al, it is necessary to devise a manufacturing method such as blowing O into molten steel during refining.

他の元素の限定理由を述べる。   The reasons for limiting other elements will be described.

N量は0.001〜0.010質量%とした。N量を0.001%以上とすると、鋼板中のAlN形成により溶接時、熱影響部(HAZ)の焼入れ性を低下させ、溶接部特性向上の効果が現れることや極低化が経済的にも不利なことから、これを下限とした。一方、0.010%を超えるとAlNの析出量が多くなり、Al添加の効果が低下してしまうため、これを上限とした。なお、AlNは溶鋼中で溶解し、一般的な溶接冷却過程では再析出することは無い。従って、Alとは異なり、溶接金属の焼き入れ性低下には寄与しない。しかし、HAZはその領域内で最高到達温度が溶融温度以下であり、冷却速度が高い溶接法、例えばレーザ溶接やスポット溶接においてはHAZのAlNが完全に溶解することはないので、HAZの結晶粒粗大化を抑制し、HAZの焼き入れ性を低下できる。 The amount of N was 0.001 to 0.010% by mass. When the N content is 0.001% or more, the hardenability of the heat affected zone (HAZ) is lowered during welding due to the formation of AlN in the steel sheet, and the effect of improving the weld zone characteristics appears and the extreme reduction is economical. This is also a disadvantage, so this is the lower limit. On the other hand, if it exceeds 0.010%, the amount of precipitated AlN increases, and the effect of Al addition decreases, so this was made the upper limit. In addition, AlN melts in the molten steel and does not reprecipitate in a general welding cooling process. Therefore, unlike Al 2 O 3 , it does not contribute to a decrease in the hardenability of the weld metal. However, since HAZ has a maximum temperature within the region below the melting temperature and a cooling method with a high cooling rate, for example, laser welding or spot welding, HAZ AlN is not completely dissolved. The coarsening can be suppressed and the hardenability of the HAZ can be lowered.

P量を0.001〜0.300質量%の範囲としたのは、0.001質量%以上で強化効果が現れることや極低化は経済的にも不利であることに加えて、母材の耐食性向上の一因となることから、これを下限とした。一方、0.300質量%を上限としたのは、これを超える量の添加では、溶接性や鋳造時や熱延時の製造性に悪影響を及ぼすためである。   The amount of P in the range of 0.001 to 0.300% by mass is that the strengthening effect appears at 0.001% by mass or more and the extremely low is economically disadvantageous. This is considered as the lower limit because it contributes to the improvement of corrosion resistance. On the other hand, the upper limit of 0.300% by mass is because addition exceeding this amount adversely affects weldability, manufacturability during casting and hot rolling.

S量を0.0001〜0.1000質量%の範囲としたのは、極低化は経済的にも不利であることから、0.0001質量%を下限とし、また、0.1000質量%を上限としたのは、これを超える量の添加では、溶接性や鋳造時や熱延時の製造性に悪影響を及ぼすためである。   The reason for setting the amount of S in the range of 0.0001 to 0.1000% by mass is that the extremely low reduction is economically disadvantageous, so 0.0001% by mass is set as the lower limit, and 0.1000% by mass is set. The upper limit is because addition of an amount exceeding this adversely affects weldability, manufacturability during casting and hot rolling.

さらに、本発明が対象とする鋼は、強度のさらなる向上を目的としてMo、Cr、Ni、Cu、Co、Wの1種または2種以上を含有できる。   Furthermore, the steel targeted by the present invention can contain one or more of Mo, Cr, Ni, Cu, Co, and W for the purpose of further improving the strength.

Mo:耐食性向上および強化を可能なことから添加しても良い。低Siであるため、強度延性バランスに悪影響を及ぼすパーライトや炭化物析出をSiの変わりに抑制することに加えて、母材の耐食性向上に有効であるため、0.001%以上を下限とした。一方、過剰添加は延性低下をもたらすため上限を1.0%とした。ただし、強度延性バランスを高度に確保するには0.200%以下の添加が望ましい。   Mo: It may be added because corrosion resistance can be improved and strengthened. Since it is low Si, in addition to suppressing pearlite and carbide precipitation adversely affecting the strength ductility balance instead of Si, it is effective for improving the corrosion resistance of the base material, so 0.001% or more was made the lower limit. On the other hand, excessive addition causes a decrease in ductility, so the upper limit was made 1.0%. However, addition of 0.200% or less is desirable in order to secure a high strength ductility balance.

Cr量を0.001〜25.000質量%の範囲としたのは、0.001質量%以上で強化効果が現れること、25.000質量%を上限としたのは、これを超える量の添加では、加工性に悪影響を及ぼすためである。   The Cr content in the range of 0.001 to 25.000% by mass means that a strengthening effect appears at 0.001% by mass or more, and that the upper limit is 25.000% by mass. This is because the processability is adversely affected.

Ni量を0.001〜10.000質量%の範囲としたのは、0.001%以上で強化効果が現れること、10.000質量%を上限としたのは、これを超える量の添加では、加工性に悪影響を及ぼすためである。   The reason why the amount of Ni is in the range of 0.001 to 10.000% by mass is that the strengthening effect appears at 0.001% or more, and the upper limit of 10.000% by mass is the addition of an amount exceeding this. This is because it adversely affects workability.

Cu量を0.001〜5.000質量%の範囲としたのは、0.001質量%以上で強化効果および耐食性向上効果が現れること、5.000質量%を上限としたのは、これを超える量の添加では、加工性および製造性に悪影響を及ぼすためである。   The amount of Cu in the range of 0.001 to 5.000 mass% is that the strengthening effect and the corrosion resistance improving effect appear at 0.001 mass% or more, and the upper limit of 5.000 mass% is this This is because addition of an excessive amount adversely affects processability and manufacturability.

Co量を0.001〜5.000質量%の範囲としたのは、0.001質量%以上で強化効果が現れること、5.000質量%を上限としたのは、これを超える量の添加では、加工性に悪影響を及ぼすためである。   The amount of Co in the range of 0.001 to 5.000% by mass is that the strengthening effect appears at 0.001% by mass or more, and the upper limit is 5.000% by mass. This is because the processability is adversely affected.

W量を0.001〜5.000質量%の範囲としたのは、0.001質量%以上で強化効果が現れること、5.000質量%を上限としたのは、これを超える量の添加では、加工性に悪影響を及ぼすためである。   The amount of W is in the range of 0.001 to 5.000% by mass because the strengthening effect appears at 0.001% by mass or more, and the upper limit is 5.000% by mass. This is because the processability is adversely affected.

さらに、本発明が対象とする鋼は、強度のさらなる向上を目的として強炭化物形成元素であるNb,Ti,V,Zr,Hf,Taの1種または2種以上を含有できる。   Furthermore, the steel targeted by the present invention can contain one or more of Nb, Ti, V, Zr, Hf, and Ta, which are strong carbide forming elements, for the purpose of further improving the strength.

これらの元素は、微細な炭化物、窒化物または炭窒化物を形成して、鋼板を強化するのに極めて有効であるため、必要に応じて1種または2種以上を合計で0.001質量%以上の添加とした。一方で、延性劣化や残留オーステナイト中へのCの濃化を阻害することから、1種または2種以上の合計添加量の上限として1質量%ととした。   These elements are extremely effective in forming fine carbides, nitrides or carbonitrides and strengthening the steel sheet, so that one or two or more of these elements may be added in a total amount of 0.001% by mass as necessary. The above addition was made. On the other hand, since it inhibits ductility deterioration and concentration of C in retained austenite, the upper limit of the total amount of one or more types is set to 1% by mass.

Bもまた、必要に応じて添加できる。Bは、0.0001%以上の添加で粒界の強化や鋼材の高強度化に有効ではあるが、その添加量が0.1質量%を超えるとその効果が飽和するばかりでなく、必要以上に鋼板強度を上昇させ、加工性が低下する上、さらに溶接部の焼き入れ性も向上させるため、上限を0.1質量%とした。   B can also be added as needed. B is effective for strengthening grain boundaries and increasing the strength of steel by adding 0.0001% or more, but when the amount of addition exceeds 0.1% by mass, the effect is saturated and more than necessary. In order to increase the strength of the steel sheet and lower the workability, and further improve the hardenability of the welded portion, the upper limit was made 0.1 mass%.

Y、Rem、Ca、Mg:めっきの濡れ性を劣化させるSi系の内部粒界酸化相生成を抑制する目的で添加する。Si系の酸化物のように粒界酸化物が形成するのではなく、比較的微細な酸化物を分散して形成させることができる。ここでRemとは、元素番号が21、39、あるいは57〜71の元素を指す。元素群中から1種または2種以上の元素をあわせて0.0001%以上の添加とした。また一方で過剰添加は鋳造性や熱間加工性などの製造性および鋼板製品の延性を低下させるため1.0質量%を上限とした。   Y, Rem, Ca, Mg: Added for the purpose of suppressing the formation of Si-based internal grain boundary oxidation phases that degrade the wettability of plating. Grain boundary oxides are not formed like Si-based oxides, but relatively fine oxides can be dispersed and formed. Here, Rem refers to an element having an element number of 21, 39, or 57-71. One or two or more elements from the element group were added in an amount of 0.0001% or more. On the other hand, excessive addition lowers the manufacturability such as castability and hot workability and the ductility of the steel sheet product, so 1.0 mass% was made the upper limit.

続いて、鋼板の特に強度・延性バランスを確保・改善するのに好ましいミクロ組織について述べる。   Next, a preferred microstructure for securing and improving the strength / ductility balance of the steel sheet will be described.

加工性を十分に確保するためには主組織を体積分率で30%以上,好ましくは40%以上のフェライト相とするのが望ましい。フェライトの体積分率の増加は延性を高めるが強度低下に結びつくため、上限は90%とする。   In order to sufficiently ensure the workability, it is desirable that the main structure is a ferrite phase having a volume fraction of 30% or more, preferably 40% or more. An increase in the volume fraction of ferrite increases the ductility but leads to a decrease in strength, so the upper limit is made 90%.

高強度化やオーステナイトの安定化を考慮するとベイナイトを5%以上含むことが望ましく、強度・延性バランスを高度に確保するため10%以上含むことが望ましい。上限は特に定めないが、過多に含むと延性低下を招くため50%以下が望ましい。   Considering high strength and stabilization of austenite, it is desirable to contain 5% or more of bainite, and it is desirable to contain 10% or more in order to ensure a high strength / ductility balance. The upper limit is not particularly defined, but if it is excessively contained, the ductility is lowered, so 50% or less is desirable.

また、高強度と高延性を両立させるため、残留オーステナイト相を含む複合組織とする。高強度と高延性を両立するために、残留オーステナイト相は体積率で5%以上、好ましくは10%以上含むことが望ましい。上限を30%以下としたのは、体積率の増加に伴いオーステナイト中の炭素濃度が低下し、延性が劣化するからである。残留オーステナイト中の炭素濃度はオーステナイトの安定化の指標であり、質量%で1.0%以上を超えると温度や加工に対して安定であり、優れた強度・延性バランスを発揮するので下限とした。上限は特に定めないが、オーステナイト相の体積率や他相の炭素濃度とのバランスで決定される。   Further, in order to achieve both high strength and high ductility, a composite structure including a retained austenite phase is used. In order to achieve both high strength and high ductility, the retained austenite phase is desirably contained in a volume ratio of 5% or more, preferably 10% or more. The upper limit is set to 30% or less because the carbon concentration in the austenite decreases as the volume ratio increases, and the ductility deteriorates. The carbon concentration in the retained austenite is an index for stabilizing austenite, and if it exceeds 1.0% by mass, it is stable to temperature and processing, and exhibits an excellent balance between strength and ductility. . There is no particular upper limit, but it is determined by the balance between the volume fraction of the austenite phase and the carbon concentration of the other phase.

さらに高強度化のためマルテンサイトを含んでもよいが、高延性を確保するために上限を10%以下とした。   Further, martensite may be included for higher strength, but the upper limit is made 10% or less in order to ensure high ductility.

次に、相の平均粒径について述べる。   Next, the average particle size of the phase will be described.

残留オーステナイト鋼が高強度でありながら高延性を発揮するために極めて重要な因子となる残留オーステナイト粒の形状について述べる。該鋼板が高強度・高延性を達成するには、残留オーステナイト粒の形状を制御する必要がある。即ち、鋼材の断面組織において、オーステナイト粒の平均アスペクト比(最大幅/最小幅)が2以下であれば高強度・高延性を発揮できることを鋭意検討することにより見出した。一方、平均アスペクト比が2を越える場合、延性向上の効果が小さいので、2以下と規定した。平均アスペクト比が2以下で高延性となる理由は必ずしも明らかでないが、円形に近いオーステナイト相がフェライト粒の周辺に一定以上の間隔を保って分散することが重要であると考えている。本発明鋼に一軸引張試験や絞り成形などの変形を加えると、変形初期には主に組織中のフェライトが歪を負担して加工硬化が進行し、変形中期からは残留オーステナイトからマルテンサイトへの変態が増加し、硬質なマルテンサイトが生成することで周囲のより軟質な相に歪が分散する、つまり優れた延性が達成されると推定している。しかし、残留オーステナイトの平均アスペクト比が2を超える場合、即ち、残留オーステナイトがフェライト粒の周囲を取り囲むように存在すると、変形初期からオーステナイトとフェライト間で応力が伝達することによってオーステナイトからマルテンサイトの変態が促進され、変形中期からの歪分散効果が小さい、即ち、延性が低いレベルにとどまると考えられる。なお、特許文献6でも、残留オーステナイトの形状に着目し、形状をラス状とし、延性と伸びフランジ性が良好な鋼板の製造方法も開示されているが、伸びを高度に発揮することは困難と思われる。   The shape of the retained austenite grains, which is a very important factor for the retained austenitic steel to exhibit high ductility while having high strength, is described. In order for the steel sheet to achieve high strength and high ductility, it is necessary to control the shape of retained austenite grains. That is, it has been found by intensive investigation that high strength and high ductility can be exhibited when the average aspect ratio (maximum width / minimum width) of austenite grains is 2 or less in the cross-sectional structure of the steel material. On the other hand, when the average aspect ratio exceeds 2, the effect of improving ductility is small, so it is defined as 2 or less. The reason for high ductility when the average aspect ratio is 2 or less is not necessarily clear, but it is considered important that the austenite phase close to a circle is dispersed around the ferrite grains with a certain interval or more. When deformation such as uniaxial tensile test or draw forming is applied to the steel of the present invention, ferrite in the structure bears strain mainly at the initial stage of deformation, and work hardening proceeds, and from the middle stage of deformation, from the retained austenite to martensite. It is presumed that the transformation is increased and hard martensite is produced, whereby the strain is dispersed in the surrounding softer phase, that is, excellent ductility is achieved. However, when the average aspect ratio of retained austenite exceeds 2, that is, when retained austenite exists so as to surround the periphery of ferrite grains, the transformation of austenite to martensite is caused by the transfer of stress between austenite and ferrite from the early stage of deformation. It is considered that the strain dispersion effect from the middle stage of deformation is small, that is, the ductility remains at a low level. Patent Document 6 also discloses a method of manufacturing a steel sheet that focuses on the shape of retained austenite and makes the shape lath and has good ductility and stretch flangeability, but it is difficult to exhibit high elongation. Seem.

また、鋼板の高延性を確保するために、フェライトの平均粒径を20μm以下とし、第2相であるオーステナイトの平均粒径は10μm以下と規定する。フェライト粒径が増加すると残留オーステナイト平均粒径も増加する。残留オーステナイト平均粒径が10μmを超えると、加工に対し著しく安定化し延性が劣化してしまうので、10μmを上限とした。また、残留オーステナイト平均粒径を微小化するために、フェライトの平均粒径は20μmを上限とした。20μmを超えると、残留オーステナイト粒径がフェイラト粒径の増加関数にあるため、残留オーステナイト平均粒径を10μm以下とすることが製造上困難となる。   Moreover, in order to ensure the high ductility of a steel plate, the average particle diameter of a ferrite is 20 micrometers or less, and the average particle diameter of the austenite which is a 2nd phase is prescribed | regulated as 10 micrometers or less. As the ferrite grain size increases, the retained austenite average grain size also increases. If the residual austenite average particle size exceeds 10 μm, the processing is remarkably stabilized and the ductility deteriorates, so 10 μm was set as the upper limit. In order to reduce the average retained austenite particle size, the upper limit of the average particle size of ferrite is 20 μm. If it exceeds 20 μm, the residual austenite particle size is in an increasing function of the Feyrat particle size, so that it is difficult to produce a residual austenite average particle size of 10 μm or less.

なお、上記の他にミクロ組織の残部組織として、炭化物、窒化物、硫化物、酸化物の1又は2種以上を含有する場合も本発明の鋼板の範疇であるが、これらの1種又は2種以上は体積分率で1.0%以下であることが好ましい。なお、上記ミクロ組織のフェライト、オーステナイト、ベイナイト、マルテンサイトおよび残部組織の同定、存在位置の観察、平均粒径(平均円相当径、下記の方法により20視野観察以上した結果に基づいて、JISにより求めた値と定義する)や平均アスペクト比、そして占有率の測定はナイタール試薬やレペラー試薬、および特開昭59−219473号公報に開示された試薬を用いて鋼板圧延方向断面または圧延方向と直角な断面を腐食して500倍〜1000倍の光学顕微鏡観察により定量化が可能である。ただし、オーステナイトに限って、占有率の測定は、MoKα線によりフェライトの(200)面および(211)面の積分強度とオーステナイトの(200)面、(220)面、(311)面の積分強度を測定し算出した。また、オーステナイト中の炭素濃度は、CuのKα線によりオーステナイトの(111)面、(200)面、(220)面の反射角度から格子常数を求め、格子常数とオーステナイト中の炭素濃度の関係式(R.C.Ruhlらの論文、Trans.AIME、245頁、(1969)241)から算出した。   In addition to the above, the case of containing one or more of carbides, nitrides, sulfides, and oxides as the remaining structure of the microstructure is also within the category of the steel sheet of the present invention. The seeds or more are preferably 1.0% or less in volume fraction. In addition, based on the results of the above-mentioned microstructure, including ferrite, austenite, bainite, martensite, and remaining structure, observation of existing positions, average particle diameter (average equivalent circle diameter, 20 field observations or more by the following method, according to JIS The average aspect ratio and the occupancy ratio are measured using a Nital reagent, a repeller reagent, and a reagent disclosed in Japanese Patent Application Laid-Open No. 59-219473. It is possible to quantify by observing an optical microscope of 500 to 1000 times by corroding a simple cross section. However, in the case of austenite only, the occupancy ratio is measured by the integrated intensity of ferrite (200) plane and (211) plane and the austenite (200) plane, (220) plane, and (311) plane by MoKα ray. Was measured and calculated. The carbon concentration in austenite is obtained by calculating the lattice constant from the reflection angles of the (111), (200), and (220) surfaces of austenite with Cu Kα rays, and the relational expression between the lattice constant and the carbon concentration in the austenite. (R. C. Ruhl et al., Trans. AIME, page 245, (1969) 241).

次に、下記(A)式について述べる。鋼材の強度・延性を高度に確保し、かつ溶接部硬さを低減し、溶接部の靭性や疲労強度を良好とするには次の(A)式の関係を満たす組成とすることが好ましいことが判った。
0≦2(Al+Mn/2+100×O)×(2.2×Al−Mn−O)−C−Si/30 ・ ・ ・(A)
Next, the following formula (A) will be described. In order to ensure the strength and ductility of the steel material at a high level, reduce the hardness of the welded portion, and improve the toughness and fatigue strength of the welded portion, it is preferable that the composition satisfy the relationship of the following formula (A): I understood.
0 ≦ 2 (Al + Mn / 2 + 100 × O) × (2.2 × Al—Mn—O) —C—Si / 30 (A)

溶接部の靭性や疲労強度を良好とするためには、0℃における溶接部のシャルピー試験にて衝撃吸収エネルギで100J/cm以上ないと割れやクラックが容易に進展するため継手性能として十分となる。発明者らは鋭意検討の結果、後述の実施例1の鋼種を用いて試験した結果、図1に示すように、HAZ硬さが試験荷重500gfの条件下で板厚中心の融合線を狙った場合のビッカース硬さで350以下の時に前記衝撃吸収エネルギが100J/cm以上を確保できることがわかり、HAZ硬さで350以下を確保するためには、図2に示すように前記成分バランス式(A)式が0以上必要なことが判明した。これは成分バランス式(A)におけるAl、Mn、Oによる酸化物形成やC、Siが焼入れ性に影響を及ぼすためと推定され、AlやMn、Oは酸化物を形成し溶接部の焼き入れ性を低下する反面、Alに対し相対的にMnやOが過多になるとAl添加による延性向上の効果が減じてしまうため第1項にまとめ、一方、CやSiは焼き入れ性を高めるため、負の項とし、影響代から係数を決定した。 In order to improve the toughness and fatigue strength of the welded part, the joint performance is sufficient because cracks and cracks easily develop unless the shock absorption energy is 100 J / cm 2 or more in the Charpy test of the welded part at 0 ° C. Become. As a result of intensive studies, the inventors tested using a steel type of Example 1 to be described later. As shown in FIG. 1, the inventors aimed at a fusion line centered on the plate thickness under the condition that the HAZ hardness was a test load of 500 gf. It can be seen that when the Vickers hardness is 350 or less, the impact absorption energy can be secured at 100 J / cm 2 or more. In order to ensure the HAZ hardness at 350 or less, as shown in FIG. A) It has been found that the equation requires zero or more. This is presumed to be because oxide formation by Al, Mn, and O in the component balance equation (A) and C and Si affect the hardenability, and Al, Mn, and O form oxides and quench the weld. On the other hand, if Mn and O are excessive relative to Al, the effect of ductility improvement due to Al addition is reduced, so C and Si increase the hardenability. A negative term was used, and the coefficient was determined from the influence margin.

尚、溶接HAZ部の試験評価は、鋼板をTIGアークで溶融凝固させ、溶接の再現とし、板厚方向に貫通溶接ができるよう、溶接電流は150A、溶接速度は0.9m/minを選定した。この時のHAZ硬さが実際の溶接部靭性と良い相関が得られたので、溶接部特性の指標として用いている。   For the test evaluation of the welded HAZ part, a welding current of 150 A and a welding speed of 0.9 m / min were selected so that the steel sheet was melted and solidified with a TIG arc to reproduce the welding, and through welding could be performed in the thickness direction. . Since the HAZ hardness at this time has a good correlation with the actual weld zone toughness, it is used as an index of weld zone characteristics.

以上のような成分および組織を有する高強度溶融亜鉛めっき鋼板の製造方法について以下説明する。
熱延後、冷延・焼鈍して本発明鋼を製造する場合、所定の成分に調整されたスラブを鋳造まま、もしくは一旦冷却した後1200〜1300℃に再加熱し、Mo等の偏析を軽減する。一方、1300℃超の加熱では局部的な酸化が著しく促進される可能性があるため、これを加熱温度の上限とした。
A method for producing a high-strength hot-dip galvanized steel sheet having the above components and structure will be described below.
When producing the invention steel by cold rolling and annealing after hot rolling, the slab adjusted to the specified components is cast or re-heated to 1200-1300 ° C after cooling to reduce segregation of Mo, etc. To do. On the other hand, when heating above 1300 ° C., local oxidation may be remarkably accelerated, so this was set as the upper limit of the heating temperature.

その後、粗熱延で全圧下率60%以上の圧下を800〜1200℃の温度範囲で加え、仕上げ圧延して酸洗し、冷延後、めっき工程を含む焼鈍を施すことで最終製品とする。全圧下率は高い方が望ましいが、設備制約上99%以下とした。また、熱延の仕上げ温度は鋼板の化学成分で定まるAr変態温度以上で行うことが望ましく、この場合、熱延後の再結晶が促進され優れた強度・延性バランスが得られる。 After that, a hot reduction of 60% or more is applied by rough hot rolling in a temperature range of 800 to 1200 ° C., finish rolling and pickling, and after cold rolling, annealing is performed including a plating step to obtain a final product. . Although it is desirable that the total rolling reduction is high, it is set to 99% or less due to equipment constraints. Moreover, it is desirable that the finishing temperature of hot rolling is not less than the Ar 3 transformation temperature determined by the chemical composition of the steel sheet. In this case, recrystallization after hot rolling is promoted and an excellent balance between strength and ductility is obtained.

さらに、熱延冷却後の巻取温度は鋼材の化学成分によって決まるベイナイト変態開始温度以上とすることで冷延時の荷重を軽減できるが、冷延の全圧下率が小さい場合には巻取温度を特に考慮する必要はない。一方、冷延の全圧下率は、最終板厚と冷延荷重の関係から設定されるが、40%以上であれば最終的な鋼板の特性を劣化させない。冷延の全圧下率は高い方が望ましいが、設備制約上80%以下とした。   Furthermore, the coiling temperature after hot rolling cooling can be reduced by reducing the load during cold rolling by setting the bainite transformation start temperature determined by the chemical composition of the steel material, but when the total rolling reduction of cold rolling is small, the coiling temperature is reduced. There is no particular need to consider. On the other hand, the total rolling reduction ratio of the cold rolling is set based on the relationship between the final sheet thickness and the cold rolling load, but if it is 40% or more, the final steel sheet characteristics are not deteriorated. Although it is desirable that the total rolling reduction of the cold rolling is high, it is set to 80% or less due to equipment constraints.

冷延後に焼鈍する際、焼鈍(最高)温度は鋼の化学成分によって決まる温度AcおよびAcの温度で、即ちAc(℃)以上Ac+50(℃)以下の温度域で10秒〜30分焼鈍する。Ac(℃)未満では、焼鈍中に生成するオーステナイト量が全く無い、あるいは少ないので、最終的に鋼板中にオーステナイト相を十分に残すことができないことから、これを焼鈍温度の下限とした。また、焼鈍温度がAc+50(℃)を超えても何ら鋼板の特性を改善することができず製造コストの上昇をまねくために、焼鈍温度の上限をAc+50(℃)とした。この温度での焼鈍時間は鋼板の温度均一化とオーステナイトの確保のために10秒以上が必要である。しかし、30分超では、効果が飽和するばかりでなくコストの上昇を招くのでこれを上限とした。なお、Ac(℃)やAc(℃)は例えば以下の式で計算可能であることが知られている。
Ac =723−10.7×Mn%+29.1×Si%、
Ac =910−203×(C%)0.5%+44.7×Si%+31.5×Mo%
−30×Mn%−11×Cr%+400×Al%
When annealing after cold rolling, the annealing (maximum) temperature is the temperature Ac 1 and Ac 3 determined by the chemical composition of the steel, that is, from 10 seconds in the temperature range of Ac 1 (° C.) to Ac 3 +50 (° C.). Annealing for 30 minutes. If it is less than Ac 1 (° C.), the amount of austenite generated during annealing is not at all or small, so that a sufficient austenite phase cannot be left in the steel sheet finally, so this was made the lower limit of the annealing temperature. Moreover, even if the annealing temperature exceeded Ac 3 +50 (° C.), the upper limit of the annealing temperature was set to Ac 3 +50 (° C.) in order to improve the manufacturing cost without improving the properties of the steel sheet. The annealing time at this temperature requires 10 seconds or more to make the temperature of the steel plate uniform and to secure austenite. However, if it exceeds 30 minutes, the effect is not only saturated but also the cost is increased. It is known that Ac 1 (° C.) and Ac 3 (° C.) can be calculated by, for example, the following equations.
Ac 1 = 723-10.7 × Mn% + 29.1 × Si%,
Ac 3 = 910-203 × (C%) 0.5 % + 44.7 × Si% + 31.5 × Mo%
−30 × Mn% −11 × Cr% + 400 × Al%

続く一次冷却によって、オーステナイト相からフェライト相への変態を促進し、未変態のオーステナイト相中にCを濃化させることで、オーステナイト相を安定化させる。このときの冷却速度は10℃/s以下とする。冷却速度が10℃/sを超える場合にはフェライト変態が十分に起こらず、最終的な鋼板中の残留オーステナイト相確保が困難となったり、マルテンサイトなどの硬質相が多量になったりするため、これを上限とした。下限は特に設けないが、1℃/s未満とすることは必要な生産ライン長の拡大につながるほか、生産速度を著しく低下させるといった製造上のデメリットを生じるので、1℃/s以上が望ましい。   By the subsequent primary cooling, the transformation from the austenite phase to the ferrite phase is promoted, and C is concentrated in the untransformed austenite phase, thereby stabilizing the austenite phase. The cooling rate at this time shall be 10 degrees C / s or less. When the cooling rate exceeds 10 ° C./s, ferrite transformation does not occur sufficiently, and it becomes difficult to secure the retained austenite phase in the final steel sheet, or the hard phase such as martensite becomes large, This was the upper limit. Although there is no particular lower limit, setting it to less than 1 ° C./s leads to an increase in the required production line length and causes manufacturing disadvantages such as a significant reduction in production speed.

この一次冷却での到達温度が、焼鈍時の最高温度をTmax(℃)としたとき、Tmax−300℃未満まで行われると冷却中にパーライトが生成し延性が劣化するため、これを下限とした。一方、一次冷却がTmax−100℃より高温で停止するとフェライト変態の進行が十分ではないのでこれを上限とした。   When the ultimate temperature in the primary cooling is Tmax (° C.) when the maximum temperature during annealing is set to less than Tmax−300 ° C., pearlite is generated during cooling and the ductility deteriorates. . On the other hand, if the primary cooling is stopped at a temperature higher than Tmax-100 ° C., the ferrite transformation does not proceed sufficiently, so this was made the upper limit.

続く二次冷却の急速冷却は、冷却中にパーライト変態や鉄炭化物の析出などを抑制するため、冷却速度として5℃/秒以上が必要となる。但し、この冷却速度を100℃/秒超にすることは設備能力上困難であることから、5〜100℃/秒を二次冷却速度の範囲とした。引き続き、5〜100℃/秒以上の冷却速度で350〜500℃の範囲の温度に冷却し、保持する。この保持は、鋼板中に残留しているオーステナイト相を室温で安定化させるために必須であり、オーステナイト相の一部をベイナイトへ変態させ、オーステナイト中の炭素濃度を更に高めることが必須である。二次冷却の冷却停止温度が350℃未満でも500℃超であっても、ベイナイト変態の反応が極端に低速となる、あるいは全く起こらないので、上記温度範囲を設定した。上記温度範囲に5〜900秒、望ましくは150sec以上保持することでベイナイト変態を進行させることが可能となり、優れた強度・延性バランスを発揮することを見出した。尚、5秒未満の保持ではベイナイト変態が進展せず、900秒超では炭化物が生成し延性が劣化してしまうため、これ以上延長しても効果がない。   The subsequent rapid cooling of the secondary cooling requires a cooling rate of 5 ° C./second or more in order to suppress pearlite transformation and precipitation of iron carbide during cooling. However, since it is difficult to make the cooling rate over 100 ° C./second in terms of equipment capacity, 5-100 ° C./second was set as the range of the secondary cooling rate. Then, it cools and hold | maintains to the temperature of the range of 350-500 degreeC with the cooling rate of 5-100 degreeC / second or more. This holding is essential to stabilize the austenite phase remaining in the steel sheet at room temperature, and it is essential to further increase the carbon concentration in the austenite by transforming a part of the austenite phase into bainite. Even if the cooling stop temperature of the secondary cooling is less than 350 ° C. or more than 500 ° C., the reaction of bainite transformation becomes extremely slow or does not occur at all, so the above temperature range was set. It has been found that maintaining the above temperature range for 5 to 900 seconds, desirably 150 seconds or more, allows the bainite transformation to proceed and exhibits an excellent balance between strength and ductility. If the holding time is less than 5 seconds, the bainite transformation does not progress, and if it exceeds 900 seconds, carbides are generated and the ductility deteriorates.

さらに、本発明鋼は上記温度範囲保持の後にめっき浴に浸漬され、合金化処理される。めっき浴温度は通常420〜480℃の範囲である。めっき浴に浸漬される直前の鋼板温度、即ち、上記保持温度がめっき浴温度に比較し30℃以上低いと、鋼板のめっき浴進入時にめっき浴温度の低下につながり操業上大きな問題となる。ただし、めっき浴の直前に加熱装置を設置し、めっき浴浸漬前に加熱することにより、めっき浴温度低下の問題は解消される。なお、鋼板のめっき浴中の浸漬時間は通常30秒以内であり、この浸漬時間を上記保持時間;5〜900sに含めても何ら差し支えない。   Further, the steel of the present invention is immersed in a plating bath after being maintained in the above temperature range, and alloyed. The plating bath temperature is usually in the range of 420 to 480 ° C. If the temperature of the steel plate immediately before being immersed in the plating bath, that is, the holding temperature is lower by 30 ° C. or more than the temperature of the plating bath, the temperature of the plating bath is lowered when entering the plating bath of the steel plate, resulting in a large operational problem. However, the problem of lowering the plating bath temperature can be solved by installing a heating device immediately before the plating bath and heating it before immersion in the plating bath. In addition, the immersion time in the plating bath of a steel plate is usually within 30 seconds, and this immersion time may be included in the above holding time; 5 to 900 s.

続く合金化処理において、処理温度が550℃を超えると炭化物が生成し、十分な残留オーステナイト相を残すことが困難となり、強度・延性バランスが劣化する。従って、2次冷却後の十分な合金化処理を行うためにも合金化処理の温度は400℃〜550℃の温度域とすることが好ましい。   In the subsequent alloying treatment, if the treatment temperature exceeds 550 ° C., carbides are generated, and it becomes difficult to leave a sufficient residual austenite phase, and the strength / ductility balance deteriorates. Therefore, in order to perform sufficient alloying treatment after secondary cooling, the alloying treatment temperature is preferably in a temperature range of 400 ° C to 550 ° C.

めっき付着量については、特に制約は設けないが、耐食性の観点から片面付着量で5g/m以上であることが望ましい。本発明の溶融Znめっき鋼板上に塗装性、溶接性を改善する目的で上層めっきを施すことや、各種の処理、例えば、クロメート処理、りん酸塩処理、潤滑性向上処理、溶接性向上処理等を施しても、本発明を逸脱するものではない。 The plating adhesion amount is not particularly limited, but is preferably 5 g / m 2 or more in terms of one-side adhesion amount from the viewpoint of corrosion resistance. For the purpose of improving the paintability and weldability on the hot-dip Zn plated steel sheet of the present invention, various treatments such as chromate treatment, phosphate treatment, lubricity improvement treatment, weldability improvement treatment, etc. However, the present invention does not depart from the present invention.

以下、実施例によって本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

表1−1及び表1−2に示すような組成の鋼板を1200〜1300℃に加熱し、その後、900℃以上で全圧下率60%以上の圧下を施し仕上げ圧延を完了し、巻取った熱延鋼板を酸洗後、冷延して2.0mm厚とした。Ac(℃)以上Ac+50(℃))に10%H−N雰囲気中で昇温・保定したのち、焼鈍時の最高到達温度:Tmax(℃)とするとき、10℃/s以下の冷却速度でTmax−200℃〜Tmax−100℃の温度域に冷却し、引き続いて5℃/秒以上の冷却速度で350〜500℃の温度に冷却し、この温度範囲内で、5〜900secの間保持した後、めっき浴に浸漬され、Fe−Zn合金化処理として、めっき後の鋼板を400〜550℃の温度域で15秒〜20分保持した。 The steel sheets having the compositions shown in Table 1-1 and Table 1-2 were heated to 1200 to 1300 ° C., and thereafter, rolling was performed at 900 ° C. or higher and the total rolling reduction was 60% or more to complete the finish rolling and wound up. The hot rolled steel sheet was pickled and then cold rolled to a thickness of 2.0 mm. Ac 1 (° C.) or higher Ac 3 +50 (° C.) after heating and holding in a 10% H 2 -N 2 atmosphere, when reaching the maximum temperature during annealing: Tmax (° C.), 10 ° C./s It is cooled to a temperature range of Tmax-200 ° C. to Tmax-100 ° C. at the following cooling rate, and subsequently cooled to a temperature of 350 to 500 ° C. at a cooling rate of 5 ° C./second or more. After being held for 900 seconds, it was immersed in a plating bath, and the plated steel sheet was held at a temperature range of 400 to 550 ° C. for 15 seconds to 20 minutes as an Fe—Zn alloying treatment.

さらに一部鋼板を用い、表1−1及び表1−2に示す板厚、強度の鋼板をTIGアークで溶融凝固させ、溶接の再現とした。このとき、溶接電流は150A、溶接速度は0.9m/minとした。継手作製後、板厚中心の融合線を狙った硬さをHAZ硬さと定義し、これを溶接部の靭性を推定する指標として比較した。HAZ硬さがビッカース硬さで350以下の場合を「OK」(良好)、それ以上のものを「NG」(不良)とした。試験条件および結果を表2および表3に示す。   Furthermore, some steel plates were used, and steel plates having thicknesses and strengths shown in Table 1-1 and Table 1-2 were melted and solidified with a TIG arc to reproduce welding. At this time, the welding current was 150 A, and the welding speed was 0.9 m / min. After producing the joint, the hardness aimed at the fusion line at the center of the plate thickness was defined as the HAZ hardness, and this was compared as an index for estimating the toughness of the weld. The case where the HAZ hardness was Vickers hardness of 350 or less was determined as “OK” (good), and the case where the HAZ hardness was higher than “NG” (defective). Test conditions and results are shown in Tables 2 and 3.

表2および表3より、本発明鋼は、溶接部(HAZ)軟化効果、耐食性、強度・延性バランスに優れる。   From Tables 2 and 3, the steel of the present invention is excellent in the weld zone (HAZ) softening effect, corrosion resistance, and strength / ductility balance.

一方、本発明の範囲を満たさない比較例は、HAZ硬さが高い上、いずれも外観評点が低く、溶接部強度・伸びバランスに劣る。また、本願発明の請求項の範囲で製造した鋼板は、ミクロ組織も上述した組織になっており外観及び強度・伸びバランスにも優れている。   On the other hand, the comparative examples that do not satisfy the scope of the present invention have high HAZ hardness, low appearance scores, and poor weld strength / elongation balance. Further, the steel sheet produced in the scope of the claims of the present invention has the microstructure described above, and is excellent in appearance, strength and elongation balance.

Figure 0004676923
Figure 0004676923

Figure 0004676923
Figure 0004676923

Figure 0004676923
Figure 0004676923

Figure 0004676923
Figure 0004676923

衝撃吸収エネルギ(J/cm)とHAZ硬さ(ビッカース硬さHv)との関係を示す図である。It is a figure which shows the relationship between impact absorption energy (J / cm < 2 >) and HAZ hardness (Vickers hardness Hv). HAZ硬さ(ビッカース硬さHv)と(A)式の値との関係を示す図である。It is a figure which shows the relationship between HAZ hardness (Vickers hardness Hv) and the value of (A) Formula.

Claims (9)

鋼成分が、質量%で、
C:0.1〜0.3%、
Si:0.001〜0.200%未満、
Mn:1.0〜3.0%、
Al:0.5〜2.0%、
P:0.001〜0.300%、
S:0.0001〜0.1000%、
O:0.0005〜0.0100%、
N:0.001〜0.010%
を含有し、残部Fe及び不可避不純物からなる溶融亜鉛めっき鋼板であって、鋼のミクロ組織が、体積分率で30〜90%のフェライト相、5%以上のベイナイト、10%以下のマルテンサイト、および5〜30%の残留オーステナイト相を含み、さらに残留オーステナイト中の炭素が質量%で1.0%以上であり、かつ、残留オーステナイト粒の平均アスペクト比(最大幅/最小幅)が2以下であることを特徴とする耐食性および溶接強度に優れた高強度高延性溶融亜鉛めっき鋼板。
Steel component is mass%,
C: 0.1 to 0.3%
Si: 0.001 to less than 0.200%,
Mn: 1.0 to 3.0%
Al: 0.5 to 2.0%,
P: 0.001 to 0.300%,
S: 0.0001 to 0.1000%,
O: 0.0005 to 0.0100%,
N: 0.001 to 0.010%
A galvanized steel sheet comprising the balance Fe and unavoidable impurities, wherein the microstructure of the steel is 30 to 90% ferrite phase in volume fraction, 5% or more bainite, 10% or less martensite, And 5 to 30% of the retained austenite phase, the carbon in the retained austenite is 1.0% or more by mass%, and the average aspect ratio (maximum width / minimum width) of the retained austenite grains is 2 or less. A high strength and high ductility hot dip galvanized steel sheet having excellent corrosion resistance and welding strength.
鋼板のミクロ組織が、体積分率で30〜90%のフェライトを主相とし、その平均粒径が20μm以下であり、第2相として体積分率で5〜30%の残留オーステナイトをからなり、第2相の平均粒径が10μm以下であり、さらに体積分率で5%以上のベイナイトからなることを特徴とする請求項1に記載の耐食性および溶接強度に優れた高強度高延性溶融亜鉛めっき鋼板。 The microstructure of the steel sheet is composed of ferrite with a volume fraction of 30 to 90% as a main phase, the average particle diameter is 20 μm or less, and the second phase consists of retained austenite with a volume fraction of 5 to 30%, 2. The high-strength and high-ductility hot-dip galvanized steel excellent in corrosion resistance and weld strength according to claim 1, wherein the second phase has an average particle size of 10 μm or less and further comprises bainite having a volume fraction of 5% or more. steel sheet. 鋼が、さらに質量%で、
Mo:0.001〜1.0%、
Cr:0.001〜25.000%、
Ni:0.001〜10.000%、
Cu:0.001〜5.000%、
Co:0.001〜5.000%、
W:0.001〜5.000%
の1種または2種以上を含有することを特徴とする請求項1または2記載の耐食性および溶接強度に優れた高強度高延性溶融亜鉛めっき鋼板。
Steel is more mass%,
Mo: 0.001 to 1.0%,
Cr: 0.001 to 25.000%,
Ni: 0.001 to 10.000%,
Cu: 0.001 to 5.000%,
Co: 0.001 to 5.000%,
W: 0.001 to 5.000%
The high strength and high ductility hot dip galvanized steel sheet excellent in corrosion resistance and weld strength according to claim 1 or 2 , characterized by containing at least one of the following.
鋼が、さらに質量%で、Nb、Ti、V、Zr、Hf、Taの1種または2種以上を合計で0.001〜1.000%含有することを特徴とする請求項1〜のいずれか1項に記載の耐食性および溶接強度に優れた高強度高延性溶融亜鉛めっき鋼板。 Steel, further by mass%, Nb, Ti, V, Zr, Hf, according to claim 1 to 3, characterized in that it contains 0.001 to 1.000% in total of one or more of Ta A high-strength, high-ductility hot-dip galvanized steel sheet excellent in corrosion resistance and weld strength according to any one of the items. 鋼が、さらに質量%で、B:0.0001〜0.1000%を含有することを特徴とする請求項1〜のいずれか1項に記載の耐食性および溶接強度に優れた高強度高延性溶融亜鉛めっき鋼板。 The steel further contains, in mass%, B: 0.0001 to 0.1000%, high strength and high ductility excellent in corrosion resistance and weld strength according to any one of claims 1 to 4. Hot dip galvanized steel sheet. 鋼が、さらに質量%で、Y、Rem、Ca、Mg、Ceの1種以上を0.0001〜1.0000%含有することを特徴とする請求項1〜のいずれか1項に記載の耐食性および溶接強度に優れた高強度高延性溶融亜鉛めっき鋼板。 Steel, with further mass%, Y, Rem, Ca, Mg, according to any one of claims 1 to 5, characterized in that it contains 0.0001 to 1.0000% of one or more of Ce High strength, high ductility hot dip galvanized steel sheet with excellent corrosion resistance and weld strength. 請求項1〜のいずれかの1項に記載の高強度溶融亜鉛めっき鋼板の製造において、請求項1〜の何れか1項に記載の鋼板の成分からなる鋳造スラブを鋳造ままもしくは一旦冷却した後に再度1200〜1300℃に加熱して、その後、粗熱延で全圧下率60〜99%の圧下を800〜1200℃で加え、仕上げ圧延して巻取った熱延鋼板を酸洗後、冷延し、その後、Ac(℃)以上Ac+50(℃)以下の温度域で10秒〜30分焼鈍した後に、焼鈍時の最高到達温度:Tmax(℃)とするとき、10℃/s以下の冷却速度でTmax−200℃〜Tmax−100℃の温度域に冷却し、引き続いて5℃/秒以上の冷却速度で350〜500℃の温度に冷却し、この温度範囲内で5〜900secの間保持した後、めっき浴に浸漬し、室温まで冷却することを特徴とする耐食性および溶接強度に優れた高強度高延性溶融亜鉛めっき鋼板の製造方法。 In the production of high-strength hot-dip galvanized steel sheet according to any one of claims 1 to 6, claim 1 any one component cast slab casting remain or once cooled consisting of steel sheet according to Section 6 After heating to 1200 to 1300 ° C. again, after adding a reduction of 60 to 99% of the total rolling reduction by rough hot rolling at 800 to 1200 ° C., pickling the hot rolled steel sheet wound by finish rolling, Cold-rolled, and then annealed in a temperature range of Ac 1 (° C.) or higher and Ac 3 +50 (° C.) or lower for 10 seconds to 30 minutes, and then the maximum attained temperature during annealing: Tmax (° C.) is 10 ° C. / It is cooled to a temperature range of Tmax−200 ° C. to Tmax−100 ° C. at a cooling rate of s or less, and subsequently cooled to a temperature of 350 to 500 ° C. at a cooling rate of 5 ° C./second or more. After holding for 900 sec, in plating bath Pickles, and high strength and high manufacturing method of ductility galvanized steel sheet having excellent corrosion resistance and weld strength, characterized in that cooling to room temperature. めっき浴浸漬後に、合金化処理を400〜550℃の温度域で行い、室温まで冷却することを特徴とする請求項記載の耐食性および溶接強度に優れた高強度高延性溶融亜鉛めっき鋼板の製造方法。 8. The production of a high strength and high ductility hot dip galvanized steel sheet excellent in corrosion resistance and weld strength according to claim 7 , wherein the alloying treatment is performed in a temperature range of 400 to 550 ° C. after immersion in the plating bath and cooled to room temperature. Method. 冷延率を40〜80%の範囲とすることを特徴とする請求項に記載の耐食性および溶接強度に優れた高強度高延性溶融亜鉛めっき鋼板の製造方法。 The method for producing a high strength and high ductility hot dip galvanized steel sheet excellent in corrosion resistance and weld strength according to claim 7 , wherein the cold rolling rate is in the range of 40 to 80%.
JP2006156082A 2006-06-05 2006-06-05 High strength and high ductility hot dip galvanized steel sheet excellent in corrosion resistance and welding strength and method for producing the same Active JP4676923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006156082A JP4676923B2 (en) 2006-06-05 2006-06-05 High strength and high ductility hot dip galvanized steel sheet excellent in corrosion resistance and welding strength and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006156082A JP4676923B2 (en) 2006-06-05 2006-06-05 High strength and high ductility hot dip galvanized steel sheet excellent in corrosion resistance and welding strength and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007321233A JP2007321233A (en) 2007-12-13
JP4676923B2 true JP4676923B2 (en) 2011-04-27

Family

ID=38854303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006156082A Active JP4676923B2 (en) 2006-06-05 2006-06-05 High strength and high ductility hot dip galvanized steel sheet excellent in corrosion resistance and welding strength and method for producing the same

Country Status (1)

Country Link
JP (1) JP4676923B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101568514B1 (en) * 2013-12-24 2015-11-11 주식회사 포스코 High strength structural steel having low yield ratio and preparing method for the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4883216B2 (en) * 2010-01-22 2012-02-22 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and spot weldability and method for producing the same
CN102770571B (en) * 2010-01-29 2014-07-09 新日铁住金株式会社 Steel sheet and process for producing steel sheet
JP5141811B2 (en) * 2010-11-12 2013-02-13 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in uniform elongation and plating property and method for producing the same
JP2012240095A (en) * 2011-05-20 2012-12-10 Kobe Steel Ltd Warm forming method of high-strength steel sheet
ES2755414T3 (en) * 2011-07-29 2020-04-22 Nippon Steel Corp High strength steel sheet excellent in impact resistance and manufacturing method thereof, and high strength galvanized steel sheet and manufacturing method thereof
KR102245228B1 (en) * 2019-09-20 2021-04-28 주식회사 포스코 Steel sheet having excellent uniform elongation and strain hardening rate and method for manufacturing thereof
CN114592156B (en) * 2022-03-09 2023-08-18 广东一诺重工钢构有限公司 High-strength steel beam and processing technology thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004244665A (en) * 2003-02-12 2004-09-02 Nippon Steel Corp High-strength and high-ductility steel plate and its manufacturing method
JP2005120453A (en) * 2003-10-20 2005-05-12 Nippon Steel Corp Cold rolled steel sheet having developed {100}<011> orientation and excellent shape freezing property, and its manufacturing method
JP2005133201A (en) * 2003-08-29 2005-05-26 Kobe Steel Ltd High tensile strength steel sheet having excellent processibility and process for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004244665A (en) * 2003-02-12 2004-09-02 Nippon Steel Corp High-strength and high-ductility steel plate and its manufacturing method
JP2005133201A (en) * 2003-08-29 2005-05-26 Kobe Steel Ltd High tensile strength steel sheet having excellent processibility and process for manufacturing the same
JP2005120453A (en) * 2003-10-20 2005-05-12 Nippon Steel Corp Cold rolled steel sheet having developed {100}<011> orientation and excellent shape freezing property, and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101568514B1 (en) * 2013-12-24 2015-11-11 주식회사 포스코 High strength structural steel having low yield ratio and preparing method for the same

Also Published As

Publication number Publication date
JP2007321233A (en) 2007-12-13

Similar Documents

Publication Publication Date Title
KR101165133B1 (en) Hot-dip metal coated high-strength steel sheet for press working excellent in low-temperature toughness and process for production thereof
JP4901617B2 (en) Alloyed hot-dip galvanized high-strength steel sheet having a tensile strength of 700 MPa or more and excellent in corrosion resistance, hole expansibility and ductility, and method for producing the same
JP5765092B2 (en) High yield ratio high-strength hot-dip galvanized steel sheet with excellent ductility and hole expansibility and method for producing the same
JP5786316B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same
JP4085583B2 (en) High-strength cold-rolled galvanized steel sheet and method for producing the same
JP5194878B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and weldability and method for producing the same
JP3854506B2 (en) High strength steel plate excellent in weldability, hole expansibility and ductility, and manufacturing method thereof
JP4730056B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flange formability
JP3704306B2 (en) Hot-dip galvanized high-strength steel sheet excellent in weldability, hole expansibility and corrosion resistance, and method for producing the same
JP5574061B2 (en) Hot-dip hot-dip steel sheet for press working with excellent low-temperature toughness and corrosion resistance and its manufacturing method
JP2019504196A (en) High strength hot-dip galvanized steel sheet excellent in surface quality and spot weldability and method for producing the same
WO2010126161A1 (en) High-strength hot-dip zinc-coated steel sheet having excellent workability, weldability and fatigue properties, and process for production thereof
JP6308333B2 (en) Thin steel plate and plated steel plate, hot rolled steel plate manufacturing method, cold rolled full hard steel plate manufacturing method, heat treatment plate manufacturing method, thin steel plate manufacturing method and plated steel plate manufacturing method
JP2010275627A (en) High-strength steel sheet and high-strength hot-dip galvanized steel sheet having excellent workability, and method for producing them
JP4676923B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in corrosion resistance and welding strength and method for producing the same
JP2014019928A (en) High strength cold rolled steel sheet and method for producing high strength cold rolled steel sheet
US20130048155A1 (en) High-strength galvanized steel sheet having excellent formability and spot weldability and method for manufacturing the same
JP3881559B2 (en) High-strength hot-rolled steel sheet, high-strength cold-rolled steel sheet, and high-strength surface-treated steel sheet that have excellent formability after welding and have a tensile strength of 780 MPa or more that is difficult to soften the heat affected zone.
JP4211520B2 (en) High strength and high ductility galvanized steel sheet with excellent aging resistance and method for producing the same
JP4500197B2 (en) Manufacturing method of high-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength galvannealed steel sheet with excellent formability and weldability
JP3895986B2 (en) High-strength steel plate excellent in weldability and hole expansibility and method for producing the same
JP4692519B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP4580403B2 (en) Hot-dip hot-dip steel sheet for deep drawing and method for producing the same
JP4818710B2 (en) Deep drawing high strength cold-rolled steel sheet, deep drawing high strength hot-dip galvanized steel sheet and method for producing the same
JP5034296B2 (en) Hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4676923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350