JP2012240095A - Warm forming method of high-strength steel sheet - Google Patents

Warm forming method of high-strength steel sheet Download PDF

Info

Publication number
JP2012240095A
JP2012240095A JP2011113957A JP2011113957A JP2012240095A JP 2012240095 A JP2012240095 A JP 2012240095A JP 2011113957 A JP2011113957 A JP 2011113957A JP 2011113957 A JP2011113957 A JP 2011113957A JP 2012240095 A JP2012240095 A JP 2012240095A
Authority
JP
Japan
Prior art keywords
steel sheet
strength steel
less
temperature
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011113957A
Other languages
Japanese (ja)
Inventor
Hideo Hatake
英雄 畠
Toshio Murakami
俊夫 村上
Elijah Kakiuchi
エライジャ 柿内
Tatsuya Asai
達也 浅井
Naoki Mizuta
直気 水田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011113957A priority Critical patent/JP2012240095A/en
Publication of JP2012240095A publication Critical patent/JP2012240095A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a warm forming method of a high-strength steel sheet capable of demonstrating its deep draw forming characteristic while ensuring the strength of ≥980 MPa of the high-strength steel sheet.SOLUTION: The high-strength steel sheet has the composition consisting of, by mass, C:0.05-0.3%, Si:1-3%, Mn:0.5-3%, P:≤0.1% (including 0%), S:≤0.01% (including 0%), Al:0.001-0.1%, N:0.002-0.03%, and the balance consisting of iron and impurities, and has a structure containing bainitic ferrite: 50-90%, residual austenite: 5-20%, martensite + the residual austenite: 10-50%, ferrite: ≤40% (including 0%) in terms of the area ratio to the entire structure. The residual austenite has the C concentration of 0.5-1.1 mass%, the average circle equivalent diameter of 0.4-2 μm, and the average aspect ratio (maximum diameter/minimum diameter) of <3.0. The die temperature of at least a shoulder part of a punch of a press forming die is set to be 250-350°C, and the die temperature of at least a shoulder part of the die is set to be 100-200°C.

Description

本発明は、高強度鋼板の温間成形方法、より詳しくは、高強度TRIP鋼板をプレス成形金型により温間成形する方法に関する。なお、本発明方法に使用する高強度鋼板としては、冷延鋼板、溶融亜鉛めっき鋼板、および、合金化溶融亜鉛めっき鋼板が含まれる。   The present invention relates to a method for warm-forming a high-strength steel plate, and more particularly to a method for warm-forming a high-strength TRIP steel plate using a press molding die. In addition, as a high strength steel plate used for this invention method, a cold-rolled steel plate, a hot dip galvanized steel plate, and an alloyed hot dip galvanized steel plate are contained.

自動車用骨格部品に供される薄鋼板は衝突安全性と燃費改善を実現するため、高強度化が求められている。そのため、鋼板強度を980MPa級以上に高強度化しつつも、プレス成形性を確保することが要求されている。980MPa級以上の高強度鋼板において、高強度化と成形性確保を両立させるにはTRIP効果を活用した鋼を用いることが有効であることが知られている(例えば、特許文献1参照)。   Thin steel plates used for automobile frame parts are required to have high strength in order to realize collision safety and fuel efficiency improvement. Therefore, it is required to ensure press formability while increasing the strength of the steel sheet to 980 MPa class or higher. It is known that in a high-strength steel sheet of 980 MPa class or higher, it is effective to use steel utilizing the TRIP effect to achieve both high strength and formability (for example, see Patent Document 1).

上記特許文献1には、ベイナイトまたはベイニティック・フェライトを主相とし、残留オーステナイト(γR)を面積率で3%以上含有する高強度鋼板が開示されている。しかしながら、この高強度鋼板は、室温での引張強度980MPa以上で伸びが20%に達しておらず、さらなる機械的特性(以下、単に「特性」ともいう。)の改善が求められる。 Patent Document 1 discloses a high-strength steel plate containing bainite or bainitic ferrite as a main phase and containing retained austenite (γ R ) in an area ratio of 3% or more. However, this high-strength steel sheet has a tensile strength at room temperature of 980 MPa or more and does not reach an elongation of 20%, and further improvement in mechanical properties (hereinafter also simply referred to as “characteristics”) is required.

一方、TRIP鋼板は、単軸引張の伸びで代表される延性以上に、深絞り性で特に優位性を持つことが知られている(例えば、非特許文献1、特許文献2参照)。すなわち、一般に鋼板の深絞り性はr値が支配すると考えられているが、TRIP鋼板の場合には深絞りの縦壁部はTRIP効果発現により延性が改善される一方、縮フランジ部は逆にTRIP現象が抑制されることで硬化されにくく、材料の流入が容易になり深絞り性が改善することが知られている。   On the other hand, it is known that the TRIP steel sheet is particularly superior in deep drawability over ductility represented by uniaxial tensile elongation (see, for example, Non-Patent Document 1 and Patent Document 2). That is, it is generally considered that the r-value dominates the deep drawability of the steel sheet, but in the case of a TRIP steel sheet, the ductility of the deep wall of the deep draw is improved by the TRIP effect, while the reduced flange part is reversed. It is known that when the TRIP phenomenon is suppressed, it is difficult to be cured, the inflow of the material is facilitated, and the deep drawability is improved.

しかしながら、上記知見は780MPa級以下のTRIP鋼板には適用できるものの、980MPa級以上のTRIP鋼板にはそのまま適用できない。   However, although the above knowledge can be applied to a TRIP steel sheet of 780 MPa class or less, it cannot be applied as it is to a TRIP steel sheet of 980 MPa class or more.

そのため、自動車部品において最も重要な成形性の指標のひとつである深絞り性の改善は、980MPa級以上の超高強度鋼板を用いる際の重要なポイントとなる。   Therefore, improvement of deep drawability, which is one of the most important indexes of formability in automobile parts, is an important point when using an ultra-high strength steel sheet of 980 MPa class or higher.

一方、冷間での成形ではTRIP鋼板でも成形性に限界があることから、一層の伸び改善のため、100〜400℃で温間加工することでTRIP効果をさらに有効に発現させて伸びを高める技術が提案されている(非特許文献2、特許文献3参照)。   On the other hand, since there is a limit to the formability of TRIP steel sheet in cold forming, the TRIP effect is further effectively expressed by increasing the elongation by warm working at 100 to 400 ° C for further improvement of elongation. Techniques have been proposed (see Non-Patent Document 2 and Patent Document 3).

上記特許文献3の表2に示すように、ベイニティック・フェライト主体の組織に炭素濃度1質量%以上のγRを存在させることで、200℃付近での伸びを1200MPa級で23%まで改善できている。しかしながら、これらの鋼板は、炭素濃度を1質量%以上としてγRを安定化させすぎているため、200℃付近のようにγRの安定性がさらに高まる条件下では、TRIP効果の発現が不十分になると考えられる。さらに、同表に示すように、これらの鋼板には、アスペクト比が大きな細長いγRが多く含まれているため、深絞り成形特性については、その評価はなされていないものの、不十分と想定される。 As shown in Table 2 of Patent Document 3 above, the presence of γ R having a carbon concentration of 1% by mass or more in the structure mainly composed of bainitic ferrite improves the elongation at around 200 ° C. to 23% in the 1200 MPa class. is made of. However, since these steel sheets have overstabilized γ R by setting the carbon concentration to 1% by mass or more, the TRIP effect does not appear under conditions where the stability of γ R is further increased, such as around 200 ° C. It will be enough. Furthermore, as shown in the table, these steel sheets contain a lot of elongated γ R with a large aspect ratio, so the deep-drawing properties have not been evaluated, but are considered insufficient. The

そこで、980MPa級以上の強度を確保しつつ、深絞り成形特性を兼備する高強度鋼板およびそれを用いた温間加工方法を提供すべく、本出願人は、上記従来技術と同様の、転位密度の高い下部組織(マトリックス)を有するベイニティック・フェライトと残留オーステナイト(γR)を含有するTRIP鋼板に着目し、強度を確保しつつ、深絞り成形特性を一層向上させるべく、さらに検討を重ねてきた。その結果、(1)組織中にマルテンサイトを一部導入することで、強度を確保したうえで、(2)炭素濃度0.5〜1.2質量%のγRを面積率で5%以上含有させることで、TRIP効果により伸びを高め、(3)さらに、γRの形態を平均円相当直径で0.2〜2μm、アスペクト比で3.0未満とすることで、加工誘起マルテンサイト変態時にγRの周囲に与える歪量を大きくすることにより、縮フランジ成形のような圧縮が加わる際の加工誘起マルテンサイトへの変態の進行を抑制する効果を大きくすることによって、縦壁部の延性確保と、フランジ部からの材料の流入を促進することにより、深絞り性を高めることができることを見出し、該知見に基づき完成した発明(以下、「先行発明」と総称し、該先行発明に係る高強度鋼板を「先行発明鋼板」と呼ぶ。)につき、既に特許出願を行った(特願2010−258151号)。 Therefore, in order to provide a high-strength steel sheet having a deep drawing property and a warm working method using the same while ensuring a strength of 980 MPa class or higher, the applicant of the present invention has the same dislocation density as in the above prior art. Focusing on TRIP steel sheets containing bainitic ferrite with a high substructure (matrix) and retained austenite (γ R ), further investigations have been made to further improve deep drawing properties while ensuring strength I came. As a result, (1) after ensuring the strength by partially introducing martensite into the structure, (2) γ R having a carbon concentration of 0.5 to 1.2% by mass is 5% or more by area ratio. Inclusion increases the elongation due to the TRIP effect. (3) Further, the form of γ R is 0.2 to 2 μm in average circle equivalent diameter and the aspect ratio is less than 3.0, so that the processing-induced martensitic transformation is achieved. The ductility of the vertical wall is increased by increasing the amount of strain that is sometimes applied to the periphery of γ R , thereby increasing the effect of suppressing the progression of transformation to work-induced martensite when compression is applied, such as compression flange molding. Finding that deep drawability can be enhanced by securing and promoting the inflow of material from the flange portion, and the invention completed based on this finding (hereinafter collectively referred to as “prior invention”) High strength steel plate Called a row invention steel ".) Portion of this resin was already filed a patent application (Japanese Patent Application No. 2010-258151).

上記先行発明鋼板は、質量%で、
C :0.05〜0.3%、
Si:1〜3%、
Mn:0.2〜3%、
P :0.1%以下(0%を含む)、
S :0.01%以下(0%を含む)、
Al:0.001〜0.1%、
N :0.002〜0.03%
を含み、残部が鉄および不純物からなる成分組成を有し、
全組織に対する面積率で、
ベイニティック・フェライト:50〜90%、
残留オーステナイト:5〜20%、
マルテンサイト+上記残留オーステナイト:10〜50%、
フェライト:40%以下(0%を含む)
を含む組織を有し、
上記残留オーステナイトは、そのC濃度(Cγ)が0.5〜1.2質量%、その平均円相当直径が0.2〜2μm、その平均アスペクト比(最大径/最小径)が3.0未満を満足するものである高強度鋼板である。
The prior invention steel sheet is in mass%,
C: 0.05 to 0.3%
Si: 1-3%
Mn: 0.2-3%,
P: 0.1% or less (including 0%),
S: 0.01% or less (including 0%),
Al: 0.001 to 0.1%,
N: 0.002 to 0.03%
And the balance has a component composition consisting of iron and impurities,
The area ratio for all tissues
Bainitic ferrite: 50-90%
Retained austenite: 5-20%,
Martensite + the above retained austenite: 10 to 50%,
Ferrite: 40% or less (including 0%)
Having an organization including
The residual austenite has a C concentration (Cγ R ) of 0.5 to 1.2% by mass, an average equivalent circle diameter of 0.2 to 2 μm, and an average aspect ratio (maximum diameter / minimum diameter) of 3.0. It is a high-strength steel sheet that satisfies the following requirements.

さらに、上記先行発明鋼板は、γRの安定度が適正になる温度条件下で、γRの分解が起る前に加工することにより、伸びおよび深絞り成形特性を向上させることができることを見出し、該知見に基づき、上記先行発明鋼板を200〜400℃の間の適正な温度に均一加熱した後に加工する温間成形方法(以下、「先行発明方法」と呼ぶ。)を提案した。 Furthermore, the prior invention steel sheet has been found to be able to improve elongation and deep drawing properties by being processed before decomposition of γ R occurs under a temperature condition where the stability of γ R is appropriate. Based on this finding, a warm forming method (hereinafter referred to as “prior invention method”) was proposed in which the steel plate of the prior invention was uniformly heated to an appropriate temperature of 200 to 400 ° C. and then processed.

ところが、その後の本発明者らのさらなる検討の結果、上記先行発明方法のように単に鋼板を均一加熱して温間成形するのではなく、プレス成形金型のパンチの少なくとも肩部の金型温度を250〜350℃、ダイの少なくとも肩部の金型温度を100〜200℃に制御して加工部位により温度条件を変えて温間成形することで、より深絞り成形特性を向上しうる可能性があることがわかった。   However, as a result of further studies by the present inventors after that, the mold temperature of at least the shoulder of the punch of the press mold is not simply warm-heated by simply uniformly heating the steel sheet as in the above-described prior invention method. Of deep die forming characteristics by controlling the mold temperature at 250-350 ° C. and the mold temperature of at least the shoulder of the die to 100-200 ° C. I found out that

ここで、特許文献4には、残留オーステナイト変態誘起塑性を有する高強度鋼板(TRIP鋼板)をプレス成形するに際し、プレス成形金型のダイの少なくとも肩部の金型温度を150〜200℃、パンチの少なくとも肩部の金型温度を−30〜0℃の温度範囲に制御して加工部位により温度条件を変えてプレス成形する方法が提案されている。   Here, in Patent Document 4, when press-molding a high-strength steel plate (TRIP steel plate) having residual austenite transformation-induced plasticity, the die temperature of at least the shoulder portion of the die of the press-molding die is set to 150 to 200 ° C., punch There has been proposed a method in which the mold temperature of at least the shoulder portion is controlled in a temperature range of −30 to 0 ° C. and the temperature condition is changed depending on the processing site to perform press molding.

しかしながら、この方法は、ダイの肩部を加熱する一方、パンチの肩部を0℃以下に冷却してプレス成形を行う必要があり、このように0℃以下に冷却することは工業的に容易でない。   However, in this method, it is necessary to heat the die shoulder and cool the punch shoulder to 0 ° C. or lower to perform press molding, and it is industrially easy to cool to 0 ° C. or lower in this way. Not.

これに対し、本発明方法は、ダイの肩部、パンチの肩部とも、異なる温度範囲ではあるものの、いずれも加熱してプレス成形するものであることから、工業的には容易であり、特許文献4に記載の方法と本発明方法とは、技術的思想を全く異にするものである。   On the other hand, the method of the present invention is industrially easy because both the shoulder portion of the die and the shoulder portion of the punch are in different temperature ranges, but both are heated and press-molded. The method described in Document 4 and the method of the present invention are completely different in technical idea.

特開2003−19319号公報JP 2003-19319 A WO95/29268号パンフレットWO95 / 29268 pamphlet 特開2004−190050号公報JP 2004-190050 A 特開2007−111765号公報JP 2007-1111765 A

高橋学,「自動車用高強度鋼板の開発」,新日鉄技報,2003年,第378号,p.2−6Manabu Takahashi, “Development of high-strength steel sheets for automobiles”, Nippon Steel Engineering Reports, 2003, No. 378, p. 2-6 杉本公一,宋星武,坂口淳也,長坂明彦,鹿島高弘,「超高強度低合金TRIP型ベイニティックフェライト鋼板の温間成形性」,鉄と鋼,2005年,第91巻、第2号,p.34−40Koichi Sugimoto, Takeshi Hoshi, Takeya Sakaguchi, Akihiko Nagasaka, Takahiro Kashima, “Warm Formability of Ultra High Strength Low Alloy TRIP Type Bainitic Ferritic Steel”, Iron and Steel, 2005, Vol. 91, No. 2, p. 34-40

本発明は上記事情に着目してなされたものであり、その目的は、高強度鋼板に980MPa級以上の室温強度を確保させつつ、その深絞り成形特性を最大限に発揮させうる高強度鋼板の温間成形方法を提供することにある。   The present invention has been made paying attention to the above circumstances, and the purpose of the present invention is to provide a high-strength steel sheet capable of maximizing its deep-drawing properties while ensuring a high-strength steel sheet having room temperature strength of 980 MPa or higher. It is to provide a warm forming method.

請求項1に記載の発明は、
高強度鋼板をプレス成形金型により温間成形する方法であって、
前記高強度鋼板は、質量%で(以下、化学成分について同じ。)、
C :0.05〜0.3%、
Si:1〜3%、
Mn:0.5〜3%、
P :0.1%以下(0%を含む)、
S :0.01%以下(0%を含む)、
Al:0.001〜0.1%、
N :0.002〜0.03%
を含み、残部が鉄および不純物からなる成分組成を有し、
全組織に対する面積率で(以下、組織について同じ。)、
ベイニティック・フェライト:50〜90%、
残留オーステナイト:5〜20%、
マルテンサイト+前記残留オーステナイト:10〜50%、
フェライト:40%以下(0%を含む)
を含む組織を有し、
前記残留オーステナイトは、そのC濃度(Cγ)が0.5〜1.1質量%、その平均円相当直径が0.4〜2μm、その平均アスペクト比(最大径/最小径)が3.0未満を満足するものであるとともに、
前記プレス成形金型のパンチの少なくとも肩部の金型温度を250〜350℃、ダイの少なくとも肩部の金型温度を100〜200℃とすることを特徴とする高強度鋼板の温間成形方法である。
The invention described in claim 1
A method of warm-forming a high-strength steel sheet with a press mold,
The high-strength steel plate is in mass% (hereinafter the same for chemical components).
C: 0.05 to 0.3%
Si: 1-3%
Mn: 0.5-3%,
P: 0.1% or less (including 0%),
S: 0.01% or less (including 0%),
Al: 0.001 to 0.1%,
N: 0.002 to 0.03%
And the balance has a component composition consisting of iron and impurities,
The area ratio for all tissues (hereinafter the same for tissues)
Bainitic ferrite: 50-90%
Retained austenite: 5-20%,
Martensite + said retained austenite: 10-50%,
Ferrite: 40% or less (including 0%)
Having an organization including
The retained austenite has a C concentration (Cγ R ) of 0.5 to 1.1 mass%, an average equivalent circle diameter of 0.4 to 2 μm, and an average aspect ratio (maximum diameter / minimum diameter) of 3.0. Less than, and
Warm forming method of high strength steel sheet, characterized in that mold temperature of at least shoulder portion of punch of said press mold is 250-350 ° C and mold temperature of at least shoulder portion of die is 100-200 ° C. It is.

請求項2に記載の発明は、
前記高強度鋼板の成分組成が、さらに、
Cr:0.01〜3%
Mo:0.01〜1%、
Cu:0.01〜2%、
Ni:0.01〜2%、
B :0.00001〜0.01%の1種または2種以上
を含むものである請求項1に記載の高強度鋼板の温間成形方法である。
The invention described in claim 2
The component composition of the high-strength steel plate is further
Cr: 0.01 to 3%
Mo: 0.01 to 1%,
Cu: 0.01-2%,
Ni: 0.01-2%,
B: The method of warm forming a high-strength steel sheet according to claim 1, comprising one or more of 0.00001 to 0.01%.

請求項3に記載の発明は、
前記高強度鋼板の成分組成が、さらに、
Ti:0.01〜0.1%、
V :0.01〜0.1%、
Zr:0.01〜0.1%の1種または2種以上
を含むものである請求項1または2に記載の高強度鋼板の温間成形方法である。
The invention according to claim 3
The component composition of the high-strength steel plate is further
Ti: 0.01 to 0.1%,
V: 0.01-0.1%
The method for warm forming a high-strength steel sheet according to claim 1 or 2, comprising one or more of Zr: 0.01 to 0.1%.

請求項4に記載の発明は、
前記高強度鋼板の成分組成が、さらに、
Ca :0.0005〜0.01%、
Mg :0.0005〜0.01%、
REM:0.0001〜0.01%の1種または2種以上
を含むものである請求項1〜3のいずれか1項に記載の高強度鋼板の温間成形方法である。
The invention according to claim 4
The component composition of the high-strength steel plate is further
Ca: 0.0005 to 0.01%,
Mg: 0.0005 to 0.01%,
The warm forming method for a high-strength steel sheet according to any one of claims 1 to 3, wherein the REM contains one or more of 0.0001 to 0.01%.

本発明によれば、高強度鋼板として、全組織に対する面積率で、ベイニティック・フェライト:50〜90%、残留オーステナイト:5〜20%、マルテンサイト+上記残留オーステナイト:10〜50%、フェライト:40%以下(0%を含む)を含む組織を有し、上記残留オーステナイトは、そのC濃度(Cγ)が0.5〜1.1質量%、その平均円相当直径が0.4〜2μm、その平均アスペクト比(最大径/最小径)が3.0未満を満足するものを用い、この高強度鋼板をプレス成形金型により温間成形するに際し、前記プレス成形金型のパンチの少なくとも肩部の温度を250〜350℃、ダイの少なくとも肩部の温度を100〜200℃とすることで、高強度鋼板に980MPa級以上の室温強度を確保させつつ、深絞り成形特性を最大限に発揮させうる高強度鋼板の温間成形方法を提供できるようになった。 According to the present invention, as a high-strength steel sheet, bainitic ferrite: 50 to 90%, retained austenite: 5 to 20%, martensite + retained austenite: 10 to 50%, ferrite in terms of area ratio to the entire structure : Having a structure containing 40% or less (including 0%), the residual austenite has a C concentration (Cγ R ) of 0.5 to 1.1% by mass and an average equivalent circle diameter of 0.4 to When using a steel sheet satisfying an average aspect ratio (maximum diameter / minimum diameter) of less than 3.0 using 2 μm and warm-forming this high-strength steel sheet with a press mold, at least one of the punches of the press mold Deep draw forming while ensuring a room temperature strength of 980 MPa or higher in a high-strength steel sheet by setting the temperature of the shoulder to 250 to 350 ° C. and the temperature of at least the shoulder of the die to 100 to 200 ° C. Sex and it becomes possible to provide the warm molding method of the high strength steel sheet that may be exhibited to the maximum.

TRIP鋼板における、引張温度(成形温度)と引張強度TSとの関係を示すグラフ図である。It is a graph which shows the relationship between the tensile temperature (forming temperature) and tensile strength TS in a TRIP steel plate. TRIP鋼板における、引張温度(成形温度)と全伸びELとの関係を示すグラフ図である。It is a graph which shows the relationship between the tensile temperature (forming temperature) and total elongation EL in a TRIP steel plate.

上述したように、本出願人は、上記従来技術と同様の、転位密度の高い下部組織(マトリックス)を有するベイニティック・フェライトと残留オーステナイト(γR)を含有するTRIP鋼板に着目し、強度を確保しつつ、伸びと深絞り性を一層向上させるべく、さらに検討を重ねてきた。 As described above, the present applicant pays attention to the TRIP steel sheet containing bainitic ferrite having a substructure (matrix) with a high dislocation density and retained austenite (γ R ), similar to the above-described prior art, Further studies have been made to further improve the elongation and deep drawability while ensuring the above.

その結果、(1)組織中にマルテンサイトを一部導入することで、強度を確保したうえで、(2)炭素濃度0.5〜1.1質量%のγRを面積率で5%以上含有させることで、TRIP効果により伸びを高め、(3)さらに、γRの形態を平均円相当直径で0.4〜2μm、アスペクト比で3.0未満とすることで、加工誘起マルテンサイト変態時にγRの周囲に与える歪量を大きくすることにより、縮フランジ成形のような圧縮が加わる際の加工誘起マルテンサイトへの変態の進行を抑制する効果を大きくすることによって、縦壁部の延性確保と、フランジ部からの材料の流入を促進することにより、深絞り性を高めることができることを見出し、該知見に基づいて本発明方法に使用する高強度鋼板(以下、「本発明方法使用鋼板」ともいう。)を特定するに至った。 As a result, (1) after securing strength by partially introducing martensite into the structure, (2) γ R having a carbon concentration of 0.5 to 1.1% by mass is 5% or more by area ratio. By adding, the elongation is increased by the TRIP effect. (3) Furthermore, the shape of γ R is 0.4-2 μm in average circle equivalent diameter and the aspect ratio is less than 3.0, so that the processing-induced martensitic transformation is achieved. The ductility of the vertical wall is increased by increasing the amount of strain that is sometimes applied to the periphery of γ R , thereby increasing the effect of suppressing the progression of transformation to work-induced martensite when compression is applied, such as compression flange molding. It has been found that the deep drawability can be enhanced by securing and promoting the inflow of the material from the flange portion. Based on this knowledge, the high-strength steel plate used in the method of the present invention (hereinafter referred to as “the steel plate using the method of the present invention”). " The led to the specific.

以下、まず本発明方法使用鋼板を特徴づける組織について説明する。   Hereinafter, the structure characterizing the steel sheet using the method of the present invention will be described first.

〔本発明方法使用鋼板の組織〕
上述したとおり、本発明方法使用鋼板は、上記従来技術と同じくTRIP鋼の組織をベースとするものであるが、特に、マルテンサイトを所定量含有するとともに、炭素濃度0.5〜1.1質量%のγRを面積率で5%以上含有し、さらに、γRの形態が平均円相当直径で0.4〜2μm、アスペクト比で3.0未満に制御されている点で、上記従来技術と相違している。
[Structure of steel sheet using the method of the present invention]
As described above, the steel sheet using the method of the present invention is based on the structure of TRIP steel as in the above-described prior art, and particularly contains a predetermined amount of martensite and a carbon concentration of 0.5 to 1.1 mass. % Γ R is contained in an area ratio of 5% or more, and the shape of γ R is controlled to an average equivalent circle diameter of 0.4 to 2 μm and an aspect ratio of less than 3.0. Is different.

<ベイニティック・フェライト:50〜90%>
本発明方法使用鋼板における「ベイニティック・フェライト」とは、ベイナイト組織が転位密度の高いラス状組織を持った下部組織を有しており、組織内に炭化物を有していない点で、ベイナイト組織とは明らかに異なり、また、転位密度がないかあるいは極めて少ない下部組織を有するポリゴナル・フェライト組織、あるいは細かいサブグレイン等の下部組織を持った準ポリゴナル・フェライト組織とも異なっている(日本鉄鋼協会 基礎研究会 発行「鋼のベイナイト写真集−1」参照)。この組織は、光学顕微鏡観察やSEM観察するとアシキュラー状を呈しており、区別が困難であるため、ベイナイト組織やポリゴナル・フェライト組織等との明確な違いを判定するには、TEM観察による下部組織の同定が必要である。
<Bainitic ferrite: 50-90%>
“Bainitic ferrite” in the steel sheet used in the method of the present invention means that the bainite structure has a substructure having a lath-like structure with a high dislocation density, and has no carbide in the structure. It is clearly different from the structure, and it is also different from the polygonal ferrite structure with a substructure with little or very little dislocation density, or with a quasi-polygonal ferrite structure with a substructure such as fine subgrains. Issued by Basic Research Society “Steel Bainite Photobook-1”). This structure exhibits an acicular shape when observed with an optical microscope or SEM, and is difficult to distinguish. Therefore, in order to determine a clear difference from a bainite structure or a polygonal / ferrite structure, the structure of the lower structure by TEM observation is determined. Identification is necessary.

このように本発明方法使用鋼板の組織は、均一微細で延性に富み、かつ、転位密度が高く強度が高いベイニティック・フェライトを母相とすることで強度と成形性のバランスを高めることができる。   As described above, the structure of the steel sheet using the method of the present invention can improve the balance between strength and formability by using bainitic ferrite, which is uniform and fine, rich in ductility, and has a high dislocation density and high strength as the parent phase. it can.

本発明方法使用鋼板では、上記ベイニティック・フェライト組織の量は、全組織に対して面積率で50〜90%(好ましくは60〜90%、より好ましくは70〜90%)であることが必要である。これにより、上記ベイニティック・フェライト組織による効果が有効に発揮されるからである。なお、上記ベイニティック・フェライト組織の量は、γRとのバランスによって定められるものであり、所望の特性を発揮し得るよう、適切に制御することが推奨される。 In the steel sheet using the method of the present invention, the amount of the bainitic ferrite structure is 50 to 90% (preferably 60 to 90%, more preferably 70 to 90%) in terms of area ratio with respect to the entire structure. is necessary. This is because the effect of the bainitic ferrite structure is effectively exhibited. Note that the amount of the bainitic ferrite structure is determined by the balance with γ R, and it is recommended that the amount be controlled appropriately so that desired characteristics can be exhibited.

<残留オーステナイト(γ)を全組織に対して面積率で5〜20%含有>
γRは全伸びの向上に有用であり、このような作用を有効に発揮させるためには、全組織に対して面積率で5%以上(好ましくは10%以上、より好ましくは15%以上)存在することが必要である。一方、多量に存在すると伸びフランジ性が劣化しすぎるので、上限を20%に定めた。
<Contains retained austenite (γ R ) in an area ratio of 5 to 20% with respect to the entire structure>
γ R is useful for improving the total elongation, and in order to effectively exhibit such action, the area ratio is 5% or more (preferably 10% or more, more preferably 15% or more) with respect to the entire structure. It is necessary to exist. On the other hand, the stretch flangeability deteriorates too much when present in large amounts, so the upper limit was set to 20%.

<マルテンサイト+前記残留オーステナイト(γ):10〜50%>
強度確保のため、組織中にマルテンサイトを一部導入するが、マルテンサイトの量が多くなりすぎると成形性が確保できなくなるので、全組織に対してマルテンサイト+γの合計面積率で10%以上(好ましくは12%以上、より好ましくは16%以上)50%以下に制限した。
<Martensite + the retained austenite (γ R ): 10 to 50%>
For securing strength, but introduces some martensite in the tissue, since the moldability amount of martensite is too large can not be secured, 10% total area fraction of martensite + gamma R for all tissues It is limited to 50% or less (preferably 12% or more, more preferably 16% or more).

<フェライト:40%以下(0%を含む)>
フェライトは軟質相であるため、高強度化には寄与しないが、延性を高めるのには有効であるため、強度が保証できる面積率40%以下の範囲で導入してもよい。
<Ferrite: 40% or less (including 0%)>
Since ferrite is a soft phase, it does not contribute to increase in strength, but is effective in increasing ductility. Therefore, it may be introduced in an area ratio of 40% or less that can guarantee strength.

<残留オーステナイト(γ)のC濃度(Cγ):0.5〜1.1質量%>
Cγは、加工時にγRがマルテンサイトに変態する安定度に影響する指標である。CγRが低すぎると、γRが不安定なため、応力付与後、塑性変形する前に加工誘起マルテンサイト変態が起るため、張り出し成形性が得られなくなる。一方、CγRが高すぎると、γRが安定になりすぎて、加工を加えても加工誘起マルテンサイト変態が起らないため、やはり張り出し成形性が得られなくなる。十分な張り出し成形性を得るためには、Cγは0.5〜1.1質量%とする必要がある。好ましくは0.6〜1.0質量%である。
<C concentration of residual austenite (γ R ) (Cγ R ): 0.5 to 1.1% by mass>
R is, γ R at the time of processing is an indicator that affects the stability of the transformation to martensite. When C gamma R is too low, gamma for R is unstable, after stressing, since the deformation-induced martensitic transformation occurs prior to plastic deformation, not bulging property can be obtained. On the other hand, when the C gamma R is too high, gamma R becomes too stable, since the addition of machining work-induced martensitic transformation does not occur, not too bulging property can be obtained. To obtain a sufficient stretch forming property, C gamma R is required to be 0.5 to 1.1 mass%. Preferably it is 0.6-1.0 mass%.

なお、上記先行発明鋼板(特願2010−258151号)では、Cγの上限は1.2質量%としていたが、加工の際により確実に加工誘起マルテンサイト変態を起こさせることを考慮して、該上限の見直しを行い、本発明方法使用鋼板では1.1質量%とした。 In the prior invention steel (Japanese Patent Application No. 2010-258151), the upper limit of the C gamma R was about to 1.2 wt%, considering that cause ensure deformation-induced martensitic transformation due during processing, The upper limit was reviewed, and the content of the steel sheet using the method of the present invention was 1.1% by mass.

<残留オーステナイト(γ)の平均円相当直径:0.4〜2μm、平均アスペクト比(最大径/最小径):3.0未満>
γを粗大化し、かつ、その形状を等軸状に近づけることで、縮フランジ変形時におけるマルテンサイト変態の抑制効果を大きくし、深絞り性を高めるためである。また、γを粗大かつ等軸状にして、室温ではやや不安定なγとしておくことで、300℃近辺の温度にて加工を受ける部位(パンチの肩部に接触する鋼板部分)に、適正な安定性が得られるγの比率を大きくしておくことで、同部位の伸びと深絞り性をともに高めることができる。
<Average equivalent circular diameter of retained austenite (γ R ): 0.4 to 2 μm, average aspect ratio (maximum diameter / minimum diameter): less than 3.0>
It coarsens the gamma R, and by close its shape equiaxed, to increase the effect of suppressing martensitic transformation during contraction flange deformation, in order to enhance the deep drawability. In addition, by making γ R coarse and equiaxed, and making γ R slightly unstable at room temperature, the part subjected to processing at a temperature around 300 ° C. (the steel plate part in contact with the shoulder of the punch) by proper stability set larger the ratio of gamma R obtained, it is possible to increase both elongation and deep drawability of the same sites.

上記γの粗大化による効果を有効に発揮させるためには、γの平均円相当直径は0.4μm以上とする必要があるが、粗大化しすぎるとγの粒子数が少なくなりすぎで、上記縮フランジ変形時におけるマルテンサイト変態の抑制効果
が得られなくなるので、上限を2μmとする。
In order to effectively exhibit the effect of coarsening of the gamma R is, gamma average circle equivalent diameter of R must be at least 0.4μm but too small number of particles coarsened excessively when gamma R Since the effect of suppressing martensitic transformation at the time of deformation of the reduced flange cannot be obtained, the upper limit is set to 2 μm.

なお、上記先行発明鋼板(特願2010−258151号)では、γの平均円相当直径の下限は0.2μmとしていたが、上記γの粗大化による効果をより確実に発揮させることを考慮して、該下限の見直しを行い、本発明方法使用鋼板では0.4μmとした。 In the prior invention steel (Japanese Patent Application No. 2010-258151), the lower limit of the average circle equivalent diameter of gamma R has had a 0.2 [mu] m, considering that to more reliably exhibit the effect of coarsening of the gamma R Then, the lower limit was reviewed, and the steel sheet using the method of the present invention was 0.4 μm.

また、上記γを等軸状にすることによる効果を有効に発揮させるためには、γの平均アスペクト比(最大径/最小径)を3.0未満にする必要がある。 In order to effectively exhibit the effect obtained by the equiaxed the gamma R, it is necessary to average aspect ratio of gamma R (the maximum diameter / minimum diameter) less than 3.0.

<その他:ベイナイト(0%を含む)>
本発明方法使用鋼板は、上記組織のみ(マルテンサイトおよび/またはベイニティック・フェライト、ポリゴナル・フェライトならびにγRの混合組織)からなっていてもよいが、本発明の作用を損なわない範囲で、他の異種組織として、ベイナイトを有していてもよい。この組織は本発明方法使用鋼板の製造過程で必然的に残存し得るものであるが、少なければ少ない程よく、全組織に対して面積率で5%以下、より好ましくは3%以下に制御することが推奨される。
<Others: Bainite (including 0%)>
The steel sheet used in the method of the present invention may consist only of the above structure (martensite and / or bainitic ferrite, polygonal ferrite and γ R mixed structure), but in a range not impairing the action of the present invention, As another heterogeneous structure, bainite may be included. This structure can inevitably remain in the manufacturing process of the steel sheet using the method of the present invention, but the smaller the better, the better the area ratio to 5% or less, more preferably 3% or less with respect to the entire structure. Is recommended.

〔各相の面積率、γのC濃度(Cγ)、ならびに、γの平均円相当直径およびアスペクト比の各測定方法〕
ここで、各相の面積率、γのC濃度(Cγ)、ならびに、γの平均円相当直径およびアスペクト比の各測定方法について説明する。
[Each phase area ratio, gamma C concentration of R (C gamma R), and each method of measuring the average circle equivalent diameter and the aspect ratio of gamma R]
Here, each phase area ratio, gamma C concentration of R (C gamma R), and will be described the method of measuring the average circle equivalent diameter and the aspect ratio of gamma R.

鋼板中組織の面積率は、鋼板をレペラー腐食し、透過型電子顕微鏡(TEM;倍率1500倍)観察により、例えば白い領域を「マルテンサイト+残留オーステナイト(γ)」と定義して組織を同定した後、光学顕微鏡観察(倍率1000倍)により組織の面積率を測定した。 The area ratio of the microstructure in the steel sheet is determined by corroding the steel sheet and observing the structure by, for example, defining a white region as “martensite + residual austenite (γ R )” by observation with a transmission electron microscope (TEM; magnification: 1500 times). After that, the area ratio of the tissue was measured by observation with an optical microscope (magnification 1000 times).

なお、γRの面積率およびγRのC濃度(Cγ)は、鋼板の1/4の厚さまで研削した後、化学研磨してからX線回折法により測定した(ISIJ Int.Vol.33,(1933),No.7,p.776)。また、フェライトの面積率は、鋼板をナイタール腐食し、走査型電子顕微鏡(SEM;倍率2000倍)観察により、黒い領域をフェライトと同定して面積率を求めた。 Incidentally, gamma C concentration area ratio and gamma R of the R (C gamma R), after grinding to 1/4 the thickness of the steel sheet was measured by X-ray diffraction method from the chemical polishing (ISIJ Int.Vol.33 (1933), No. 7, p. 776). The area ratio of ferrite was determined by corroding the steel plate with nital and identifying the black area as ferrite by observation with a scanning electron microscope (SEM; magnification 2000 times).

γの平均円相当直径は、EBSP(Electron Back Scatter diffraction Pattern)により30μm×30μm以上の領域を0.2μmステップでγ相の分布状況を測定し、γ相同士が連結した部分を1つのγ粒として測定した面積を円相当直径に換算し、各ガンマ粒の円相当直径を算術平均することにより求めた。また、γの平均アスペクト比は、上記各γ粒について、最大フェレ径、最小フェレ径を測定し、その比(最大径/最小径)をアスペクト比と定義し、各γ粒のアスペクト比を算術平均して求めた。 The average equivalent circular diameter of γ R is measured by measuring the distribution of γ phase in EBSP (Electron Back Scatter Diffraction Pattern) over 30 μm × 30 μm in 0.2 μm steps. The area measured as a grain was converted to an equivalent circle diameter, and the equivalent circle diameter of each gamma grain was determined by arithmetic averaging. The average aspect ratio of gamma R, for each gamma particle, the maximum Feret diameter, was measured minimum Feret diameter, defining the ratio (maximum diameter / minimum diameter) and the aspect ratio, the aspect ratio of each gamma particle Obtained by arithmetic averaging.

次に、本発明方法使用鋼板を構成する成分組成について説明する。以下、化学成分の単位はすべて質量%である。   Next, the component composition constituting the steel sheet using the method of the present invention will be described. Hereinafter, all the units of chemical components are mass%.

〔本発明方法使用鋼板の成分組成〕
C:0.05〜0.3%
Cは、高強度を確保しつつ、所望の主要組織(ベイニティック・フェライト+マルテンサイト+γR)を得るために必須の元素であり、このような作用を有効に発揮させるためには0.05%以上(好ましくは0.10%以上、より好ましくは0.15%以上)添加する必要がある。ただし、0.3%超では溶接に適さない。
[Component composition of steel sheet used in the method of the present invention]
C: 0.05-0.3%
C is an essential element for obtaining a desired main structure (bainitic ferrite + martensite + γ R ) while ensuring high strength, and 0. It is necessary to add 05% or more (preferably 0.10% or more, more preferably 0.15% or more). However, if it exceeds 0.3%, it is not suitable for welding.

Si:1〜3%
Siは、γRが分解して炭化物が生成するのを有効に抑制する元素である。特にSiは、固溶強化元素としても有用である。このような作用を有効に発揮させるためには、Siを1%以上添加する必要がある。好ましくは1.1%以上、より好ましくは1.2%以上である。ただし、Siを3%を超えて添加すると、ベイニティック・フェライト+マルテンサイト組織の生成が阻害される他、熱間変形抵抗が高くなって溶接部の脆化を起こしやすくなり、さらには鋼板の表面性状にも悪影響を及ぼすので、その上限を3%とする。好ましくは2.5%以下、より好ましくは2%以下である。
Si: 1-3%
Si is an element that effectively suppresses the generation of carbides by decomposition of γ R. In particular, Si is useful as a solid solution strengthening element. In order to exhibit such an action effectively, it is necessary to add Si 1% or more. Preferably it is 1.1% or more, More preferably, it is 1.2% or more. However, if Si is added in excess of 3%, the formation of bainitic ferrite + martensite structure is hindered, the hot deformation resistance is increased, and the welds are easily embrittled. It also has an adverse effect on the surface properties of the film, so the upper limit is made 3%. Preferably it is 2.5% or less, More preferably, it is 2% or less.

Mn:0.5〜3%
Mnは、固溶強化元素として有効に作用する他、変態を促進してベイニティック・フェライト+マルテンサイト組織の生成を促進する作用も発揮する。さらにはγを安定化し、所望のγRを得るために必要な元素である。このような作用を有効に発揮させるためには、0.5%以上添加することが必要である。好ましくは0.7%以上、より好ましくは1%以上である。ただし、3%を超えて添加すると、鋳片割れが生じる等の悪影響が見られる。好ましくは2.5%以下、より好ましくは2%以下である。
Mn: 0.5 to 3%
In addition to effectively acting as a solid solution strengthening element, Mn also exerts an effect of promoting transformation and promoting the formation of bainitic ferrite + martensite structure. Furthermore, it is an element necessary for stabilizing γ and obtaining a desired γ R. In order to exhibit such an action effectively, it is necessary to add 0.5% or more. Preferably it is 0.7% or more, More preferably, it is 1% or more. However, when it is added in excess of 3%, adverse effects such as slab cracking are observed. Preferably it is 2.5% or less, More preferably, it is 2% or less.

P :0.1%以下(0%を含む)
Pは不純物元素として不可避的に存在するが、所望のγRを確保するために添加してもよい元素である。ただし、0.1%を超えて添加すると二次加工性が劣化する。より好ましくは0.03%以下である。
P: 0.1% or less (including 0%)
P is inevitably present as an impurity element, but is an element that may be added to ensure desired γ R. However, when it exceeds 0.1%, secondary workability deteriorates. More preferably, it is 0.03% or less.

S :0.01%以下(0%を含む)
Sも不純物元素として不可避的に存在し、MnS等の硫化物系介在物を形成し、割れの起点となって加工性を劣化させる元素である。好ましくは0.01%以下、より好ましくは0.005%以下である。
S: 0.01% or less (including 0%)
S is also an element unavoidably present as an impurity element, forms sulfide inclusions such as MnS, and becomes a starting point of cracking and deteriorates workability. Preferably it is 0.01% or less, More preferably, it is 0.005% or less.

Al:0.001〜0.1%
Alは、脱酸剤として添加されるとともに、上記Siと相俟って、γRが分解して炭化物が生成するのを有効に抑制する元素である。このような作用を有効に発揮させるためには、Alを0.001%以上添加する必要がある。ただし、過剰に添加しても効果が飽和し経済的に無駄であるので、その上限を0.1%とする。
Al: 0.001 to 0.1%
Al is an element which is added as a deoxidizer and effectively suppresses the generation of carbides by decomposition of γ R in combination with Si. In order to exhibit such an action effectively, it is necessary to add 0.001% or more of Al. However, even if added excessively, the effect is saturated and is economically wasteful, so the upper limit is made 0.1%.

N:0.002〜0.03%
Nは、不可避的に存在する元素であるが、AlやNbなどの炭窒化物形成元素と結びつくことで析出物を形成し、強度向上や組織の微細化に寄与する。N含有量が少なすぎるとオーステナイト粒が粗大化し、その結果、伸長したラス状組織が主体になるためγのアスペクト比が大きくなる。一方、N含有量が多すぎると、本発明の材料のような低炭素鋼では鋳造が困難になるため、製造自体ができなくなる。
N: 0.002 to 0.03%
N is an unavoidable element, but forms a precipitate when combined with carbonitride-forming elements such as Al and Nb, and contributes to strength improvement and microstructure refinement. And austenite grain coarsening the N content is too low, as a result, the aspect ratio for gamma R which elongated lath structure becomes mainly increases. On the other hand, if the N content is too high, casting becomes difficult with low carbon steel such as the material of the present invention, and therefore the production itself cannot be performed.

本発明方法使用鋼板は上記成分を基本的に含有し、残部が実質的に鉄および不可避的不純物であるが、その他、本発明の作用を損なわない範囲で、以下の許容成分を添加することができる。   The steel sheet used in the method of the present invention basically contains the above components, and the balance is substantially iron and inevitable impurities, but in addition, the following allowable components may be added within the range not impairing the function of the present invention. it can.

Cr:0.01〜3%
Mo:0.01〜1%、
Cu:0.01〜2%、
Ni:0.01〜2%、
B :0.00001〜0.01%の1種または2種以上
これらの元素は、鋼の強化元素として有用であるとともに、γRの安定化や所定量の確保に有効な元素である。このような作用を有効に発揮させるためには、Mo:0.01%以上(より好ましくは0.02%以上)、Cu:0.01%以上(より好ましくは0.1%以上)、Ni:0.01%以上(より好ましくは0.1%以上)、B:0.00001%以上(より好ましくは0.0002%以上)を、それぞれ添加することが推奨される。ただし、Crは3%、Moは1%、CuおよびNiはそれぞれ2%、Bは0.01%を超えて添加しても上記効果が飽和してしまい、経済的に無駄である。より好ましくはCr:2.0%以下、Mo:0.8%以下、Cu:1.0%以下、Ni:1.0%以下、B:0.0030%以下である。
Cr: 0.01 to 3%
Mo: 0.01 to 1%,
Cu: 0.01-2%,
Ni: 0.01-2%,
B: One or more elements of 0.00001 to 0.01% These elements are useful elements for strengthening steel and are effective in stabilizing γ R and securing a predetermined amount. In order to effectively exhibit such an action, Mo: 0.01% or more (more preferably 0.02% or more), Cu: 0.01% or more (more preferably 0.1% or more), Ni : 0.01% or more (more preferably 0.1% or more) and B: 0.00001% or more (more preferably 0.0002% or more) are recommended. However, even if Cr is added in an amount of 3%, Mo is added in an amount of 1%, Cu and Ni are added in an amount of more than 2%, and B is added in an amount exceeding 0.01%, the above effect is saturated, which is economically wasteful. More preferably, Cr is 2.0% or less, Mo is 0.8% or less, Cu is 1.0% or less, Ni is 1.0% or less, and B is 0.0030% or less.

Ti:0.01〜0.1%、
V :0.01〜0.1%、
Zr:0.01〜0.1%の1種または2種以上
これらの元素は、析出強化および組織微細化効果があり、高強度化に有効な元素である。このような作用を有効に発揮させるためには、いずれの元素も0.01%以上、より好ましくは0.02%以上を、それぞれ添加することが推奨される。ただし、いずれの元素もそれぞれ0.1%を超えて添加しても上記効果が飽和してしまい、経済的に無駄である。より好ましくは、いずれの元素とも0.08%以下である。
Ti: 0.01 to 0.1%,
V: 0.01-0.1%
One or more of Zr: 0.01 to 0.1% These elements have an effect of precipitation strengthening and refinement of the structure, and are effective elements for increasing the strength. In order to effectively exhibit such an action, it is recommended that each element is added in an amount of 0.01% or more, more preferably 0.02% or more. However, even if any element is added in an amount exceeding 0.1%, the above effect is saturated, which is economically useless. More preferably, any element is 0.08% or less.

Ca :0.0005〜0.01%、
Mg :0.0005〜0.01%、
REM:0.0001〜0.01%の1種または2種以上
これらの元素は、鋼中硫化物の形態を制御し、加工性向上に有効な元素である。ここで、本発明に用いられるREM(希土類元素)としては、Sc、Y、ランタノイド等が挙げられる。上記作用を有効に発揮させるためには、CaおよびMgはそれぞれ0.0005%以上(より好ましくは0.0001%以上)、REMは0.0001%以上(より好ましくは0.0002%以上)添加することが推奨される。ただし、CaおよびMgはそれぞれ0.01%、REMは0.01%を超えて添加しても上記効果が飽和してしまい、経済的に無駄である。より好ましくはCaおよびMgは0.003%以下、REMは0.006%以下である。
Ca: 0.0005 to 0.01%,
Mg: 0.0005 to 0.01%,
REM: One or more of 0.0001 to 0.01% These elements are effective elements for controlling the form of sulfide in steel and improving workability. Here, examples of the REM (rare earth element) used in the present invention include Sc, Y, and lanthanoid. In order to effectively exhibit the above-mentioned action, Ca and Mg are each added to 0.0005% or more (more preferably 0.0001% or more), and REM is added to 0.0001% or more (more preferably 0.0002% or more). It is recommended to do. However, even if Ca and Mg are added in an amount of 0.01% and REM is added in excess of 0.01%, the above effects are saturated, which is economically wasteful. More preferably, Ca and Mg are 0.003% or less, and REM is 0.006% or less.

次に、本発明方法を特徴付ける温間成形方法について説明する。   Next, the warm forming method characterizing the method of the present invention will be described.

〔温間成形方法〕
上記本発明方法使用鋼板は、常温下にて強度および伸びに優れるものであるが、部品へのプレス成形、中でも特に加工度の大きい深絞り成形に当たり、適正な温度条件下で温間成形を行うことで、より優れた深絞り成形特性が発揮される。
(Warm forming method)
The steel sheet using the method of the present invention is excellent in strength and elongation at room temperature, but is warm-formed under appropriate temperature conditions in press forming of parts, particularly deep drawing with a high degree of workability. As a result, more excellent deep drawing characteristics are exhibited.

具体的な温度条件としては、プレス成形金型のパンチの少なくとも肩部の金型温度を250〜350℃、ダイの少なくとも肩部の金型温度を100〜200℃とする。以下、このような温度条件を定めた理由を説明する。   As specific temperature conditions, the mold temperature of at least the shoulder portion of the punch of the press mold is set to 250 to 350 ° C., and the mold temperature of at least the shoulder portion of the die is set to 100 to 200 ° C. Hereinafter, the reason for setting such temperature conditions will be described.

TRIP鋼板の深絞り成形に際して、深絞り成形特性をより向上させるためには、縮みフランジ部およびダイの肩部に接触する部位の強度をできるだけ小さくして成形荷重を低減すると同時に、縦壁部およびパンチの肩部に接触する部位の変形抵抗をできるだけ大きくして成形加重による破断を防止することが重要となる。   In order to further improve the deep drawing characteristics of the deep drawing of the TRIP steel sheet, the strength of the portion that contacts the shrink flange portion and the shoulder portion of the die is reduced as much as possible to reduce the forming load, and at the same time, the vertical wall portion and It is important to increase the deformation resistance of the portion that contacts the shoulder of the punch as much as possible to prevent breakage due to molding load.

一方、本発明者らは、既出願の特願2010−46721号において、本発明方法使用鋼板とは別のTRIP鋼板を用い、成形温度による機械的特性に及ぼす影響を調査するため、成形温度(引張温度)を室温(20℃)から350℃まで種々変化させ、引張試験により、引張強度(TS)および全伸び(EL)をそれぞれ測定し、引張温度とTSおよびELとの関係を明らかにした。これらの関係を図1および図2(特願2010−46721号の図1および図2にそれぞれ相当)に示す。なお、これらの図中における「参考発明鋼板」は、特願2010−46721号の図1および図2中では「発明鋼板」と表示していたものであるが、「本発明方法使用鋼板」との混同を避けるため、その表示を「参考発明鋼板」に変更したものである。   On the other hand, in order to investigate the influence of the forming temperature on the mechanical properties by using the TRIP steel sheet different from the steel sheet using the method of the present invention in the already filed Japanese Patent Application No. 2010-46721, the present inventors have investigated the forming temperature ( Tensile temperature was varied from room temperature (20 ° C.) to 350 ° C., and tensile strength (TS) and total elongation (EL) were measured by a tensile test, and the relationship between tensile temperature and TS and EL was clarified. . These relationships are shown in FIGS. 1 and 2 (corresponding to FIGS. 1 and 2 of Japanese Patent Application No. 2010-46721, respectively). In addition, the “reference invention steel plate” in these figures is indicated as “invention steel plate” in FIG. 1 and FIG. 2 of Japanese Patent Application No. 2010-46721. In order to avoid confusion, the display is changed to “reference invention steel plate”.

そこで、本発明者らは、TRIP鋼板の深絞り成形特性をより向上させるためには、図1より、ダイの少なくとも肩部(ダイの平坦部および肩部)の金型温度をTSが最も低くなる100〜200℃の範囲とする一方、図1および図2より、パンチの少なくとも肩部(パンチの縦壁部および肩部)の金型温度をTSとELがともに最も高くなる250〜350℃の範囲とすればよいと考えた。   Therefore, in order to further improve the deep drawing characteristics of the TRIP steel sheet, the present inventors show that the mold temperature of at least the shoulder portion (flat portion and shoulder portion of the die) of TS is the lowest in FIG. On the other hand, from FIG. 1 and FIG. 2, the mold temperature of at least the shoulder of the punch (vertical wall and shoulder of the punch) is 250 to 350 ° C. where TS and EL are the highest. I thought that it should be in the range.

そして、本発明方法使用鋼板においても、図1および図2のような傾向を示すと想定されることから、上記温度条件に決定した。   And since it is assumed that the steel sheet using the method of the present invention also shows a tendency as shown in FIGS. 1 and 2, the temperature condition was determined.

このような温度条件で温間成形することで、縮みフランジ部およびダイの肩部に接触する部位の変形抵抗(TS)をできるだけ小さくすることにより成形荷重を低減できると同時に、縦壁部およびパンチの肩部に接触する部位の変形抵抗(TS)および全伸び(EL)をできるだけ大きくすることにより成形加重による破断を防止しつつ成形深さを大きくでき、深絞り成形特性がより改善される。   By performing warm forming under such temperature conditions, it is possible to reduce the forming load by minimizing the deformation resistance (TS) of the portion that contacts the shrink flange portion and the shoulder portion of the die, and at the same time, the vertical wall portion and the punch By increasing the deformation resistance (TS) and the total elongation (EL) of the portion in contact with the shoulder of the sheet as much as possible, the molding depth can be increased while preventing breakage due to the molding load, and the deep drawing characteristics are further improved.

なお、上記特許文献4に記載のプレス成形方法では、ダイの少なくとも肩部(ダイの平坦部および肩部)の金型温度は150〜200℃であり、本発明方法と同様にTSが最大になる温度範囲を選択しているが、パンチの少なくとも肩部(パンチの縦壁部および肩部)の金型温度は−30〜0℃であり、図1および図2より判断すると、TSは本発明方法の250〜300℃と同程度に高くなるもののELは上昇しないと想定され、本発明方法ほどの深絞り成形特性が得られないものと考えられる。   In the press molding method described in Patent Document 4, the die temperature of at least the shoulder portion (flat portion and shoulder portion of the die) of the die is 150 to 200 ° C., and TS is maximized as in the method of the present invention. Is selected, but the mold temperature of at least the shoulder (the vertical wall and shoulder of the punch) of the punch is −30 to 0 ° C., and judging from FIG. 1 and FIG. Although it becomes as high as 250-300 degreeC of an invention method, it is assumed that EL does not raise and it is thought that the deep drawing characteristic as the method of this invention cannot be obtained.

次に、上記本発明方法使用鋼板を得るための好ましい製造方法を以下に説明する。   Next, the preferable manufacturing method for obtaining the said steel plate using the method of this invention is demonstrated below.

〔本発明方法使用鋼板の好ましい製造方法〕
本発明方法使用鋼板は、上記成分組成を満足する鋼材を、熱間圧延し、ついで冷間圧延した後、熱処理を行って製造するが、γRのサイズを大きくするためには、初期組織を粗大にしておく必要がある。
[Preferred production method of steel sheet using the method of the present invention]
The steel sheet using the method of the present invention is manufactured by hot rolling a steel material satisfying the above component composition, followed by cold rolling, followed by heat treatment, but in order to increase the size of γ R , the initial structure is changed. It needs to be coarse.

[熱間圧延条件]
そのため、熱間圧延の仕上げ温度(圧延終了温度、FDT)を900〜1000℃、巻取り温度を600〜700℃と従来より高めの温度とすることで、熱延材の組織を従来より粗大にしておくことにより、その後の熱処理プロセスで形成される組織が粗大になり、結果的にγRのサイズも大きくなる。
[Hot rolling conditions]
Therefore, the hot rolling finish temperature (rolling end temperature, FDT) is set to 900 to 1000 ° C., and the coiling temperature is set to 600 to 700 ° C., which is higher than the conventional one, thereby making the structure of the hot rolled material coarser than before. By doing so, the structure formed in the subsequent heat treatment process becomes coarse, and as a result, the size of γ R also increases.

[冷間圧延条件]
また、冷間圧延の際の冷延率を10〜30%(より好ましくは10〜20%)と小さくすることで、その後の焼鈍工程での加熱時における再結晶組織を粗くし、さらに冷却時における逆変態組織が粗くなるようにする。
[Cold rolling conditions]
In addition, by reducing the cold rolling ratio during cold rolling to 10 to 30% (more preferably 10 to 20%), the recrystallized structure during heating in the subsequent annealing step is roughened and further cooled. The reverse transformation structure in is roughened.

[熱処理条件]
熱処理条件については、オーステナイト化するため(γ+α)2相域またはγ単相域のいずれかの温度域で均熱し、所定の冷却速度で急冷して過冷した後、その過冷温度で所定時間保持してオーステンパ処理することで所望の組織を得ることができる。なお、所望の組織を著しく分解させることなく、本発明の作用を損なわない範囲で、めっき、さらには合金化処理してもよい。
[Heat treatment conditions]
Regarding heat treatment conditions, soaking in austenitic (γ + α) two-phase region or γ single-phase region, soaking at a predetermined cooling rate and supercooling, followed by a predetermined time at the supercooling temperature A desired tissue can be obtained by holding and austempering. It should be noted that plating or further alloying treatment may be performed without significantly degrading the desired structure and within the range not impairing the action of the present invention.

そこで、具体的な熱処理条件として、(1)冷延鋼板を連続焼鈍ラインで製造する場合、(2)溶融亜鉛めっき鋼板(GI鋼板)を溶融亜鉛めっきラインで製造する場合、および、(3)溶融亜鉛めっき鋼板(GA鋼板)を溶融亜鉛めっきラインで製造する場合、のそれぞれに分けて説明する。   Therefore, as specific heat treatment conditions, (1) when a cold-rolled steel sheet is manufactured on a continuous annealing line, (2) when a hot-dip galvanized steel sheet (GI steel sheet) is manufactured on a hot-dip galvanizing line, and (3) When manufacturing a hot dip galvanized steel plate (GA steel plate) with a hot dip galvanizing line, it demonstrates for each.

(1)冷延鋼板を連続焼鈍ラインで製造する場合
上記冷間圧延後の冷延材を、オーステナイト化するため、(γ+α)2相域またはγ単相域である、0.6Ac1+0.4Ac3以上(好ましくは0.4Ac1+0.6Ac3以上)950℃以下(930℃以下)の温度域で1800s以下(好ましくは900s以下)の時間保持した後、3℃/s以上(好ましくは5℃/s以上、より好ましくは10℃/s以上、特に好ましくは20℃/s以上)の平均冷却速度で、380〜500℃(好ましくは390〜460℃、さらに好ましくは400〜420℃)の温度域まで急冷して過冷し、この急冷停止温度(過冷温度)で100〜1800s(好ましくは200〜800s)の時間保持してオーステンパ処理した後、常温まで冷却する。
(1) When manufacturing a cold-rolled steel sheet with a continuous annealing line In order to austenize the cold-rolled material after the cold rolling, 0.6Ac1 + 0.4Ac3 or more, which is a (γ + α) two-phase region or a γ single-phase region (Preferably 0.4 Ac1 + 0.6 Ac3 or more) After holding for 1800 s or less (preferably 900 s or less) in a temperature range of 950 ° C. or less (930 ° C. or less), 3 ° C./s or more (preferably 5 ° C./s or more, More preferably, it is rapidly cooled to a temperature range of 380 to 500 ° C. (preferably 390 to 460 ° C., more preferably 400 to 420 ° C.) at an average cooling rate of 10 ° C./s or more, particularly preferably 20 ° C./s or more. The mixture is supercooled, held at this rapid cooling stop temperature (supercooling temperature) for 100 to 1800 s (preferably 200 to 800 s) for austempering, and then cooled to room temperature.

なお、上記先行発明鋼板(特願2010−258151号)では、オーステンパ温度の下限は350℃としていたが、γRのサイズをより確実に大きくすることを考慮して、該下限の見直しを行い、本発明方法では380℃とした。 In the above-mentioned prior invention steel plate (Japanese Patent Application No. 2010-258151), the lower limit of the austempering temperature was 350 ° C., but in consideration of increasing the size of γ R more reliably, the lower limit was reviewed, In the method of the present invention, the temperature was 380 ° C.

(2)溶融亜鉛めっき鋼板(GI鋼板)を溶融亜鉛めっきラインで製造する場合
上記冷間圧延後の冷延材を、オーステナイト化するため、(γ+α)2相域またはγ単相域である、0.6Ac1+0.4Ac3以上(好ましくは0.4Ac1+0.6Ac3以上)950℃以下(930℃以下)の温度域で1800s以下(好ましくは900s以下)の時間保持した後、3℃/s以上(好ましくは5℃/s以上、より好ましくは10℃/s以上、特に好ましくは20℃/s以上)の平均冷却速度で、380〜500℃(好ましくは390〜460℃、さらに好ましくは400〜420℃)の温度域まで急冷して過冷し(ここまで上記(1)の場合と同じ熱処理条件である。)、この急冷停止温度(過冷温度)で10〜100s(好ましくは20〜60s)の時間保持してオーステンパ処理した後、常温まで冷却する。
(2) When manufacturing a hot-dip galvanized steel sheet (GI steel sheet) in a hot-dip galvanizing line, in order to austenitize the cold-rolled material after the cold rolling, it is a (γ + α) two-phase region or a γ single-phase region. 0.6Ac1 + 0.4Ac3 or more (preferably 0.4Ac1 + 0.6Ac3 or more) After holding at a temperature of 950 ° C. or less (930 ° C. or less) for 1800 s or less (preferably 900 s or less), 3 ° C./s or more (preferably 380 to 500 ° C. (preferably 390 to 460 ° C., more preferably 400 to 420 ° C.) at an average cooling rate of 5 ° C./s or more, more preferably 10 ° C./s or more, particularly preferably 20 ° C./s or more. Is rapidly cooled to a temperature range of 10 to 100 s (preferably 20 to the same heat treatment conditions as in the case of (1) above) at this quenching stop temperature (supercooling temperature). Hold for 60 s) and austemper, then cool to room temperature.

(3)溶融亜鉛めっき鋼板(GA鋼板)を溶融亜鉛めっきラインで製造する場合
上記冷間圧延後の冷延材を、オーステナイト化するため、(γ+α)2相域またはγ単相域である、0.6Ac1+0.4Ac3以上(好ましくは0.4Ac1+0.6Ac3以上)950℃以下(930℃以下)の温度域で1800s以下(好ましくは900s以下)の時間保持した後、3℃/s以上(好ましくは5℃/s以上、より好ましくは10℃/s以上、特に好ましくは20℃/s以上)の平均冷却速度で、380〜500℃(好ましくは390〜460℃、さらに好ましくは400〜420℃)の温度域まで急冷して過冷し(ここまで上記(1)の場合と同じ熱処理条件である。)、この急冷停止温度(過冷温度)で10〜100s(好ましくは20〜60s)の時間保持してオーステンパ処理した後(ここまで上記(2)の場合と同じ熱処理条件である。)、480〜600℃(好ましくは480〜550℃)の温度域で1〜100sの時間再加熱して合金化処理した後、常温まで冷却する。
(3) When manufacturing a hot-dip galvanized steel sheet (GA steel sheet) in a hot-dip galvanizing line, in order to austenitize the cold-rolled material after the cold rolling, it is a (γ + α) two-phase region or a γ single-phase region. 0.6Ac1 + 0.4Ac3 or more (preferably 0.4Ac1 + 0.6Ac3 or more) After holding at a temperature of 950 ° C. or less (930 ° C. or less) for 1800 s or less (preferably 900 s or less), 3 ° C./s or more (preferably 380 to 500 ° C. (preferably 390 to 460 ° C., more preferably 400 to 420 ° C.) at an average cooling rate of 5 ° C./s or more, more preferably 10 ° C./s or more, particularly preferably 20 ° C./s or more. Is rapidly cooled to a temperature range of 10 to 100 s (preferably 20 to the same heat treatment conditions as in the case of (1) above) at this quenching stop temperature (supercooling temperature). ˜60 s), and after austempering (the same heat treatment conditions as in the above (2)), the temperature range of 480 to 600 ° C. (preferably 480 to 550 ° C.) is 1 to 100 s. After reheating for a time and alloying, it is cooled to room temperature.

上記のように熱間圧延および冷間圧延の条件を調整することにより組織の粗大化を図る他にも、熱間圧延および冷間圧延の条件は従来と同様にしておきつつ、連続焼鈍等の熱処理の前に、その前処理として500℃〜A1点以下の温度域で1〜30hの時間保持して組織を粗大化しておいてから、連続焼鈍等の熱処理を行うことでも同様の組織を得ることができる。   In addition to the coarsening of the structure by adjusting the conditions for hot rolling and cold rolling as described above, the conditions for hot rolling and cold rolling are the same as in the prior art, such as continuous annealing. Prior to the heat treatment, the same structure can be obtained by preheating the structure in a temperature range of 500 ° C. to A1 point or lower for 1 to 30 hours to coarsen the structure and then performing a heat treatment such as continuous annealing. be able to.

まず、成分組成および製造条件を種々変化させて供試鋼板を作製した。すなわち、表1に示す各成分組成からなる供試鋼を真空溶製し、板厚30mmのスラブとした後、当該スラブを表2に示す各製造条件にて熱間圧延し、冷間圧延した後、熱処理を施した。具体的には、上記スラブを1200℃に加熱し、圧延終了温度(FDT)T1℃で板厚tmmに熱間圧延した後、巻取り温度T2℃で保持炉に入れ、空冷することで熱延板の巻取りを模擬した。その後、冷延率r%で冷間圧延して板厚12mmの冷延板とした。そして、この冷延材を、10℃/sで均熱温度T3℃まで加熱し、その温度で90s保持した後、冷却速度R4℃/sで冷却し、過冷温度T5℃でt5秒保持した後、空冷するか、もしくは、過冷温度T5℃でt5秒保持した後、さらに保持温度T6℃でt6秒保持したのち、空冷した。   First, test steel sheets were produced by changing the component composition and production conditions in various ways. That is, after vacuum-melting the test steels having the respective component compositions shown in Table 1 to form a slab having a thickness of 30 mm, the slab was hot-rolled and cold-rolled under the production conditions shown in Table 2. Thereafter, heat treatment was performed. Specifically, the slab is heated to 1200 ° C., hot-rolled to a sheet thickness tmm at a rolling finish temperature (FDT) T1 ° C., then placed in a holding furnace at a coiling temperature T2 ° C., and air-cooled. Simulated board winding. Then, it cold-rolled by the cold rolling rate r%, and was set as the cold-rolled board of plate thickness 12mm. The cold-rolled material was heated to a soaking temperature T3 ° C. at 10 ° C./s, held at that temperature for 90 s, then cooled at a cooling rate R4 ° C./s, and held at a supercooling temperature T5 ° C. for t5 seconds. Thereafter, it was cooled with air, or held at a supercooling temperature T5 ° C. for t5 seconds, and further held at a holding temperature T6 ° C. for t6 seconds, and then cooled with air.

なお、表1中のAc1およびAc3は下記式1および式2を用いて求めた(幸田成康監訳,「レスリー鉄鋼材料学」,丸善株式会社,1985年,p.273参照)。   In addition, Ac1 and Ac3 in Table 1 were calculated | required using the following formula 1 and formula 2 (translated by Shigeyasu Koda, "Leslie Steel Materials Science", Maruzen Co., 1985, p. 273).

式1:Ac1(℃)=723+29.1[Si]−10.7[Mn]+16.9[Cr]−16.9[Ni]
式2:Ac3(℃)=910−203√[C]+44.7[Si]−30[Mn]+700[P]+400[Al]+400[Ti]+104[V]−11[Cr]+31.5[Mo]−20[Cu]−15.2[Ni]
ただし、[ ]は、各元素の含有量(質量%)を示す。
Formula 1: Ac1 (degreeC) = 723 + 29.1 [Si] -10.7 [Mn] +16.9 [Cr] -16.9 [Ni]
Formula 2: Ac3 (° C.) = 910−203√ [C] +44.7 [Si] −30 [Mn] +700 [P] +400 [Al] +400 [Ti] +104 [V] −11 [Cr] +31.5 [Mo] -20 [Cu] -15.2 [Ni]
However, [] shows content (mass%) of each element.

このようにして得られた供試鋼板について、上記[発明を実施するための形態]の項で説明した測定方法により、各相の面積率、γのC濃度(Cγ)、ならびに、γの平均円相当直径およびアスペクト比を測定した。 The thus-obtained sample steel plate, by a measuring method described in the section of [Description of the Invention, each phase area ratio, C concentration of γ R (Cγ R), as well as, gamma The average equivalent circle diameter and aspect ratio of R were measured.

また、上記供試鋼板の室温における機械的特性を評価するため、引張試験によりJIS5号試験片を用いて、引張強度(TS)、および、伸び[全伸び(EL)]を測定した。なお、引張試験のひずみ速度は1mm/sとした。   In addition, in order to evaluate the mechanical properties of the test steel plate at room temperature, tensile strength (TS) and elongation [total elongation (EL)] were measured by a tensile test using a JIS No. 5 test piece. The strain rate in the tensile test was 1 mm / s.

つぎに、上記供試鋼板の温間成形時の温度条件の相違による深絞り成形特性への影響を評価するため、ダイ径:53.4mm、パンチ径:50.0mm、肩R:8mmの円筒金型を用い、ダイとパンチのそれぞれにヒータを内蔵するとともに熱電対を取り付け、ダイとパンチの各肩部近傍の金型温度を独立して温度制御することにより種々の温度条件下にて、しわ抑え圧9.8kNにて径80〜140mm試験片を深絞り成形して、深絞り成形特性[限界絞り比(LDR)]および絞り比2.1のときのパンチ最高荷重を測定した。   Next, in order to evaluate the influence on the deep drawing characteristics due to the difference in temperature conditions during the warm forming of the test steel sheet, a cylinder having a die diameter of 53.4 mm, a punch diameter of 50.0 mm, and a shoulder R of 8 mm. Under the various temperature conditions by using a die, incorporating a heater in each die and punch and attaching a thermocouple, and independently controlling the die temperature near each shoulder of the die and punch. A test piece having a diameter of 80 to 140 mm was deep-drawn at a wrinkle-reducing pressure of 9.8 kN, and the deep punching characteristics [limit drawing ratio (LDR)] and the maximum punch load when the drawing ratio was 2.1 were measured.

これらの結果を表3〜5に示す。なお、表3は供試鋼板の成分組成の影響を、表4は鋼板の製造条件の影響を、表5は深絞り成形時の温度条件の影響を、それぞれ調査したものである。   These results are shown in Tables 3-5. Table 3 shows the influence of the composition of the test steel sheet, Table 4 shows the influence of the manufacturing conditions of the steel sheet, and Table 5 shows the influence of the temperature conditions during deep drawing.

Figure 2012240095
Figure 2012240095

Figure 2012240095
Figure 2012240095

Figure 2012240095
Figure 2012240095

Figure 2012240095
Figure 2012240095

Figure 2012240095
Figure 2012240095

これらの表に示すように、試験No.100、102〜104、106〜113、122、123、129〜132はいずれも、本発明方法使用鋼板の成分組成の範囲を満足する鋼種を用い、推奨の製造条件で製造した結果、本発明方法使用鋼板の組織規定の要件を充足し、さらに本発明方法で規定する温間成形条件をも充足する本発明例であり、室温TS、深絞り成形時のパンチ最高荷重およびLDRのいずれも判定基準を満たしており、高強度鋼板に980MPa級以上の室温強度を保持させつつ、深絞り成形特性を最大限に発揮させうる高強度鋼板の温間成形方法が得られた。   As shown in these tables, Test No. 100, 102 to 104, 106 to 113, 122, 123, and 129 to 132 are all manufactured using the steel types satisfying the range of the component composition of the steel sheet used in the method of the present invention under the recommended manufacturing conditions. It is an example of the present invention that satisfies the requirements of the structure definition of the steel sheet used, and also satisfies the warm forming conditions specified by the method of the present invention. Both the room temperature TS, the punch maximum load during deep drawing and the LDR are judgment criteria. Thus, a warm forming method of a high strength steel sheet capable of maximizing the deep drawing properties while maintaining a room temperature strength of 980 MPa or higher in the high strength steel sheet was obtained.

これに対し、試験No.101、105、114〜121、124〜128、133〜136は、本発明方法使用鋼板に対して規定された成分組成および組織の要件、ならびに、本発明方法で規定する温間成形条件のうち少なくともいずれかを満足しない比較例であり、室温TS、深絞り成形時のパンチ最高荷重およびLDRの少なくともいずれかが判定基準を満たしていない。   In contrast, test no. 101, 105, 114-121, 124-128, 133-136 are at least of the requirements of the component composition and structure defined for the steel sheet used in the method of the present invention, and the warm forming conditions defined in the method of the present invention. This is a comparative example that does not satisfy any of the above, and at least one of the room temperature TS, the maximum punch load at the time of deep drawing, and the LDR does not satisfy the criterion.

例えば、試験No.101、105、114では、供試鋼板の成分組成のうちC、Mn、Siがそれぞれ少なすぎて、γRの面積率が不足し、深絞り成形時のパンチ最高荷重およびLDRの少なくともいずれかが判定基準を満たしていない。 For example, test no. In 101, 105, and 114, C, Mn, and Si are too small in the component composition of the test steel sheet, the area ratio of γ R is insufficient, and at least one of the maximum punch load and LDR at the time of deep drawing is selected. The criteria are not met.

また、試験No.116〜120、125では、供試鋼板の成分組成は本発明方法使用鋼板に対して規定された成分組成を充足するものの、その製造条件が推奨範囲を外れており、その結果得られた組織が規定範囲を外れ、室温TS、深絞り成形時のパンチ最高荷重およびLDRの少なくともいずれかが判定基準を満たしていない。   In addition, Test No. In 116-120 and 125, although the component composition of the test steel sheet satisfies the component composition defined for the steel sheet used in the method of the present invention, the manufacturing conditions are out of the recommended range, and the resulting structure is Outside the specified range, at least one of room temperature TS, punch maximum load during deep drawing and LDR does not satisfy the criteria.

また、試験No.126〜128、133〜136では、供試鋼板は本発明方法使用鋼板に対して規定された成分組成および組織の要件を充足するものの、深絞り成形時の温度条件が規定範囲を外れており、その結果深絞り成形時のパンチ最高荷重およびLDRの少なくともいずれかが判定基準を満たしていない。   In addition, Test No. In 126-128 and 133-136, the test steel plate satisfies the requirements of the component composition and the structure specified for the steel plate used in the method of the present invention, but the temperature condition during deep drawing is out of the specified range, As a result, at least one of the punch maximum load and the LDR at the time of deep drawing does not satisfy the criterion.

Claims (4)

高強度鋼板をプレス成形金型により温間成形する方法であって、
前記高強度鋼板は、質量%で(以下、化学成分について同じ。)、
C :0.05〜0.3%、
Si:1〜3%、
Mn:0.5〜3%、
P :0.1%以下(0%を含む)、
S :0.01%以下(0%を含む)、
Al:0.001〜0.1%、
N :0.002〜0.03%
を含み、残部が鉄および不純物からなる成分組成を有し、
全組織に対する面積率で(以下、組織について同じ。)、
ベイニティック・フェライト:50〜90%、
残留オーステナイト:5〜20%、
マルテンサイト+前記残留オーステナイト:10〜50%、
フェライト:40%以下(0%を含む)
を含む組織を有し、
前記残留オーステナイトは、そのC濃度(Cγ)が0.5〜1.1質量%、その平均円相当直径が0.4〜2μm、その平均アスペクト比(最大径/最小径)が3.0未満を満足するものであるとともに、
前記プレス成形金型のパンチの少なくとも肩部の金型温度を250〜350℃、ダイの少なくとも肩部の金型温度を100〜200℃とすることを特徴とする高強度鋼板の温間成形方法。
A method of warm-forming a high-strength steel sheet with a press mold,
The high-strength steel plate is in mass% (hereinafter the same for chemical components).
C: 0.05 to 0.3%
Si: 1-3%
Mn: 0.5-3%,
P: 0.1% or less (including 0%),
S: 0.01% or less (including 0%),
Al: 0.001 to 0.1%,
N: 0.002 to 0.03%
And the balance has a component composition consisting of iron and impurities,
The area ratio for all tissues (hereinafter the same for tissues)
Bainitic ferrite: 50-90%
Retained austenite: 5-20%,
Martensite + said retained austenite: 10-50%,
Ferrite: 40% or less (including 0%)
Having an organization including
The retained austenite has a C concentration (Cγ R ) of 0.5 to 1.1 mass%, an average equivalent circle diameter of 0.4 to 2 μm, and an average aspect ratio (maximum diameter / minimum diameter) of 3.0. Less than, and
Warm forming method of high strength steel sheet, characterized in that mold temperature of at least shoulder portion of punch of said press mold is 250-350 ° C and mold temperature of at least shoulder portion of die is 100-200 ° C. .
前記高強度鋼板の成分組成が、さらに、
Cr:0.01〜3%
Mo:0.01〜1%、
Cu:0.01〜2%、
Ni:0.01〜2%、
B :0.00001〜0.01%の1種または2種以上
を含むものである請求項1に記載の高強度鋼板の温間成形方法。
The component composition of the high-strength steel plate is further
Cr: 0.01 to 3%
Mo: 0.01 to 1%,
Cu: 0.01-2%,
Ni: 0.01-2%,
B: The method of warm forming a high-strength steel sheet according to claim 1, comprising one or more of 0.00001 to 0.01%.
前記高強度鋼板の成分組成が、さらに、
Ti:0.01〜0.1%、
V :0.01〜0.1%、
Zr:0.01〜0.1%の1種または2種以上
を含むものである請求項1または2に記載の高強度鋼板の温間成形方法。
The component composition of the high-strength steel plate is further
Ti: 0.01 to 0.1%,
V: 0.01-0.1%
The warm forming method for high-strength steel sheets according to claim 1 or 2, comprising one or more of Zr: 0.01 to 0.1%.
前記高強度鋼板の成分組成が、さらに、
Ca :0.0005〜0.01%、
Mg :0.0005〜0.01%、
REM:0.0001〜0.01%の1種または2種以上
を含むものである請求項1〜3のいずれか1項に記載の高強度鋼板の温間成形方法。
The component composition of the high-strength steel plate is further
Ca: 0.0005 to 0.01%,
Mg: 0.0005 to 0.01%,
The method of warm forming a high-strength steel sheet according to any one of claims 1 to 3, wherein the REM contains one or more of 0.0001 to 0.01%.
JP2011113957A 2011-05-20 2011-05-20 Warm forming method of high-strength steel sheet Pending JP2012240095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011113957A JP2012240095A (en) 2011-05-20 2011-05-20 Warm forming method of high-strength steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011113957A JP2012240095A (en) 2011-05-20 2011-05-20 Warm forming method of high-strength steel sheet

Publications (1)

Publication Number Publication Date
JP2012240095A true JP2012240095A (en) 2012-12-10

Family

ID=47462336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011113957A Pending JP2012240095A (en) 2011-05-20 2011-05-20 Warm forming method of high-strength steel sheet

Country Status (1)

Country Link
JP (1) JP2012240095A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014046027A1 (en) * 2012-09-20 2014-03-27 株式会社神戸製鋼所 High-strength, hot-dip-zinc-coated steel sheet exhibiting excellent yield strength and warm formability, and method for producing same
WO2015037059A1 (en) * 2013-09-10 2015-03-19 株式会社神戸製鋼所 Method for manufacturing press-molded article, and press-molded article
CN105074040A (en) * 2013-02-19 2015-11-18 株式会社神户制钢所 High-strength cold-rolled steel sheet having excellent bendability
WO2016001706A1 (en) * 2014-07-03 2016-01-07 Arcelormittal Method for producing a high strength steel sheet having improved strength and formability and obtained sheet
WO2016136625A1 (en) * 2015-02-27 2016-09-01 株式会社神戸製鋼所 High-strength, highly-ductile steel sheet
JP2016530403A (en) * 2013-08-22 2016-09-29 ティッセンクルップ スチール ヨーロッパ アーゲーThyssenkrupp Steel Europe Ag Method for manufacturing steel parts
JP2017527690A (en) * 2014-07-03 2017-09-21 アルセロールミタル Method for producing high strength coated steel sheet with improved strength, ductility and formability
US10907232B2 (en) 2014-07-03 2021-02-02 Arcelormittal Method for producing a high strength coated steel sheet having improved strength, formability and obtained sheet
US10954580B2 (en) 2015-12-21 2021-03-23 Arcelormittal Method for producing a high strength steel sheet having improved strength and formability, and obtained high strength steel sheet
US10995383B2 (en) 2014-07-03 2021-05-04 Arcelormittal Method for producing a high strength coated steel sheet having improved strength and ductility and obtained sheet
US11618931B2 (en) 2014-07-03 2023-04-04 Arcelormittal Method for producing a high strength steel sheet having improved strength, ductility and formability

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07155853A (en) * 1993-12-01 1995-06-20 Honda Motor Co Ltd Press forming method for metallic sheet
JP2004190050A (en) * 2002-12-06 2004-07-08 Kobe Steel Ltd High strength steel plate with excellent elongation and stretch-flangeability by warm working, warm working method, and warm-worked high strength member or part
JP2006022390A (en) * 2004-07-09 2006-01-26 Sumitomo Metal Ind Ltd High strength cold rolled steel sheet and production method therefor
JP2007321233A (en) * 2006-06-05 2007-12-13 Nippon Steel Corp High-strength and high-ductility hot dip galvanized steel sheet having excellent corrosion resistance and welding strength and method for producing the same
JP2008248341A (en) * 2007-03-30 2008-10-16 National Institute For Materials Science Ultrahigh strength steel sheet, and automobile strength component using the same
JP2009203548A (en) * 2008-01-31 2009-09-10 Jfe Steel Corp High-strength hot-dip galvanized steel sheet with excellent workability and process for producing the same
JP2009209451A (en) * 2008-02-08 2009-09-17 Jfe Steel Corp High-strength hot-dip galvanized steel sheet excellent in workability and process for production thereof
JP2010090475A (en) * 2008-09-10 2010-04-22 Jfe Steel Corp High-strength steel plate and manufacturing method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07155853A (en) * 1993-12-01 1995-06-20 Honda Motor Co Ltd Press forming method for metallic sheet
JP2004190050A (en) * 2002-12-06 2004-07-08 Kobe Steel Ltd High strength steel plate with excellent elongation and stretch-flangeability by warm working, warm working method, and warm-worked high strength member or part
JP2006022390A (en) * 2004-07-09 2006-01-26 Sumitomo Metal Ind Ltd High strength cold rolled steel sheet and production method therefor
JP2007321233A (en) * 2006-06-05 2007-12-13 Nippon Steel Corp High-strength and high-ductility hot dip galvanized steel sheet having excellent corrosion resistance and welding strength and method for producing the same
JP2008248341A (en) * 2007-03-30 2008-10-16 National Institute For Materials Science Ultrahigh strength steel sheet, and automobile strength component using the same
JP2009203548A (en) * 2008-01-31 2009-09-10 Jfe Steel Corp High-strength hot-dip galvanized steel sheet with excellent workability and process for producing the same
JP2009209451A (en) * 2008-02-08 2009-09-17 Jfe Steel Corp High-strength hot-dip galvanized steel sheet excellent in workability and process for production thereof
JP2010090475A (en) * 2008-09-10 2010-04-22 Jfe Steel Corp High-strength steel plate and manufacturing method thereof

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062286A (en) * 2012-09-20 2014-04-10 Kobe Steel Ltd High strength hot-dip galvanized steel sheet excellent in yield strength and warm formability and production method of the same
WO2014046027A1 (en) * 2012-09-20 2014-03-27 株式会社神戸製鋼所 High-strength, hot-dip-zinc-coated steel sheet exhibiting excellent yield strength and warm formability, and method for producing same
CN105074040A (en) * 2013-02-19 2015-11-18 株式会社神户制钢所 High-strength cold-rolled steel sheet having excellent bendability
JP2016530403A (en) * 2013-08-22 2016-09-29 ティッセンクルップ スチール ヨーロッパ アーゲーThyssenkrupp Steel Europe Ag Method for manufacturing steel parts
US10301700B2 (en) 2013-08-22 2019-05-28 Thyssenkrupp Steel Europe Ag Method for producing a steel component
WO2015037059A1 (en) * 2013-09-10 2015-03-19 株式会社神戸製鋼所 Method for manufacturing press-molded article, and press-molded article
JP2017527690A (en) * 2014-07-03 2017-09-21 アルセロールミタル Method for producing high strength coated steel sheet with improved strength, ductility and formability
JP2020045573A (en) * 2014-07-03 2020-03-26 アルセロールミタル Method for manufacturing high-strength coated steel sheet having improved strength, ductility and formability
US11718888B2 (en) 2014-07-03 2023-08-08 Arcelormittal Method for producing a high strength coated steel sheet having improved strength, formability and obtained sheet
CN106661701A (en) * 2014-07-03 2017-05-10 安赛乐米塔尔公司 Method for producing a high strength steel sheet having improved strength and formability and obtained sheet
WO2016001893A3 (en) * 2014-07-03 2016-03-17 Arcelormittal Method for producing a high strength steel sheet having improved strength and formability and obtained sheet
RU2689573C2 (en) * 2014-07-03 2019-05-28 Арселормиттал Method of making high-strength steel sheet, having improved strength, moldability, and obtained sheet
WO2016001706A1 (en) * 2014-07-03 2016-01-07 Arcelormittal Method for producing a high strength steel sheet having improved strength and formability and obtained sheet
US11618931B2 (en) 2014-07-03 2023-04-04 Arcelormittal Method for producing a high strength steel sheet having improved strength, ductility and formability
EP3663416A1 (en) * 2014-07-03 2020-06-10 ArcelorMittal Method for producing a high strength steel sheet having improved strength and formability and obtained sheet
US10907232B2 (en) 2014-07-03 2021-02-02 Arcelormittal Method for producing a high strength coated steel sheet having improved strength, formability and obtained sheet
US11555226B2 (en) 2014-07-03 2023-01-17 Arcelormittal Method for producing a high strength steel sheet having improved strength and formability and obtained sheet
US10995383B2 (en) 2014-07-03 2021-05-04 Arcelormittal Method for producing a high strength coated steel sheet having improved strength and ductility and obtained sheet
US11492676B2 (en) 2014-07-03 2022-11-08 Arcelormittal Method for producing a high strength coated steel sheet having improved strength, ductility and formability
JP2016160467A (en) * 2015-02-27 2016-09-05 株式会社神戸製鋼所 High strength high ductility steel sheet
WO2016136625A1 (en) * 2015-02-27 2016-09-01 株式会社神戸製鋼所 High-strength, highly-ductile steel sheet
US10954580B2 (en) 2015-12-21 2021-03-23 Arcelormittal Method for producing a high strength steel sheet having improved strength and formability, and obtained high strength steel sheet

Similar Documents

Publication Publication Date Title
JP5662902B2 (en) High-strength steel sheet with excellent formability, warm working method, and warm-worked automotive parts
JP5667472B2 (en) High-strength steel sheet excellent in deep drawability at room temperature and warm, and its warm working method
KR101606309B1 (en) High-strength steel sheet with excellent warm formability and process for manufacturing same
JP2012240095A (en) Warm forming method of high-strength steel sheet
JP5667471B2 (en) High-strength steel plate with excellent deep drawability in warm and its warm working method
JP5662903B2 (en) High-strength steel sheet with excellent formability, warm working method, and warm-worked automotive parts
JP5824283B2 (en) High strength steel plate with excellent formability at room temperature and warm temperature
KR101626233B1 (en) High strength cold rolled steel sheet with high yield ratio and method for producing the same
JP6223905B2 (en) High strength galvannealed steel sheet with excellent yield strength and workability
JP5487984B2 (en) High-strength cold-rolled steel sheet excellent in bendability and manufacturing method thereof
CA2923585A1 (en) Hot-pressing steel plate, press-molded article, and method for manufacturing press-molded article
WO2012105126A1 (en) High-strength cold-rolled steel sheet having excellent processability and high yield ratio, and method for producing same
JP5636347B2 (en) High strength steel sheet with excellent formability at room temperature and warm, and its warm forming method
US20160222483A1 (en) Method for manufacturing press-molded article, and press-molded article
JP2013227603A (en) High-strength hot-rolled steel sheet excellent in stretchability, hole expansibility and low-temperature toughness and manufacturing method therefor
JP5365758B2 (en) Steel sheet and manufacturing method thereof
JP5632759B2 (en) Method for forming high-strength steel members
JP2016113649A (en) High strength cold rolled steel sheet excellent in processability and high strength alloy molten galvanization steel sheet
JP6472692B2 (en) High-strength steel sheet with excellent formability
JP6473022B2 (en) High-strength steel sheet with excellent formability
JP2016180138A (en) High-strength steel sheet with excellent fabricability
KR20150112508A (en) High strength cold-rolled steel sheet and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141111