JPH08295982A - Thick steel plate excellent in toughness at low temperature and its production - Google Patents

Thick steel plate excellent in toughness at low temperature and its production

Info

Publication number
JPH08295982A
JPH08295982A JP10245995A JP10245995A JPH08295982A JP H08295982 A JPH08295982 A JP H08295982A JP 10245995 A JP10245995 A JP 10245995A JP 10245995 A JP10245995 A JP 10245995A JP H08295982 A JPH08295982 A JP H08295982A
Authority
JP
Japan
Prior art keywords
rolling
toughness
grain size
temperature
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10245995A
Other languages
Japanese (ja)
Other versions
JP3314295B2 (en
Inventor
Toshinaga Hasegawa
俊永 長谷川
Hidesato Mabuchi
秀里 間渕
Tadashi Ishikawa
忠 石川
Shuichi Jinushi
修一 地主
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10245995A priority Critical patent/JP3314295B2/en
Publication of JPH08295982A publication Critical patent/JPH08295982A/en
Application granted granted Critical
Publication of JP3314295B2 publication Critical patent/JP3314295B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: To form a structure composed of fine ferritic grains and to provide excellent toughness at low temp. by applying controlled rolling and controlled cooling to a low Si-Mn steel. CONSTITUTION: This steel has a composition consisting of, by weight ratio, 0.01-0.20% C, 0.30-1.0% Si, 0.0.-2.00% Mn, 0.005-0.1% Al, 0.001-0.1%, and the balance essentially Fe, and further, over the whole steel plate thickness, average grain size of ferrite is regulated to <=3μm. It is preferable to add Ni, Cr, Mo, V, Nb, REM, etc., to the composition, if necessary. In order to obtain this structure of fine ferritic grains, a steel slab is heated to a temp. between the Ac3 transformation point and 1200 deg.C, roughed in the austenitic region, and finish- rolled from the state of <=15μm average ferritic grain size and 50-90% ferrite ratio, and then, rolling in two-phase region at 50-90% cumulative rolling rate is finished at 650-750 deg.C and successively accelerated cooling is done at (5 to 50) deg.C/sec cooling rate down to 550-20 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は低温靱性に優れた厚鋼板
およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel plate having excellent low temperature toughness and a method for producing the steel plate.

【0002】[0002]

【従来の技術】厚鋼板は構造物として用いられるため、
構造物の安全性確保の観点から低温靱性を要求される場
合が多い。厚鋼板において、低温靱性を向上させる方法
は種々提案されているが、Niのような高価な合金元素
を用いずに、他の特性劣化を生じることなく低温靱性を
向上させる方法としては、フェライト(α)結晶粒径の
微細化が代表的である。
2. Description of the Related Art Since thick steel plates are used as structures,
From the viewpoint of ensuring the safety of structures, low temperature toughness is often required. Although various methods for improving low temperature toughness in thick steel sheets have been proposed, as a method for improving low temperature toughness without causing deterioration of other characteristics without using an expensive alloying element such as Ni, ferrite ( α) The refinement of crystal grain size is typical.

【0003】α粒径の微細化方法として、従来から種々
の方法が提案されている。代表的な方法としては、例え
ば、特公昭49−7291号公報、特公昭57−210
07号公報、特公昭59−14535号公報等に示され
ているように、オーステナイト(γ)の未再結晶温度域
において制御圧延を行い、引き続いて加速冷却を行うこ
とによるγからαへの変態時にαを微細化する方法が提
案されている。これらのような、γからαへの変態を利
用する方法では、γが粗大な場合は未再結晶域圧延の有
効活用によりγ/α変換比(変態前γ粒径/変態後α粒
径)を高めることが可能であるが、γ粒径が微細になる
と、γ/α変換比は1に近づくため、αの微細化の程度
は飽和するようになる。従って、γからαへの変態を介
したαの微細化による方法では、その程度はγの微細化
の程度に規制されるため、α粒径の飛躍的な微細化は望
めない。
Various methods have heretofore been proposed as a method for reducing the α particle size. Typical methods include, for example, Japanese Patent Publication No. 49-7291 and Japanese Patent Publication No. 57-210.
No. 07, JP-B-59-14535, etc., the transformation from γ to α by performing controlled rolling in the unrecrystallized temperature range of austenite (γ) and subsequently performing accelerated cooling. At times, a method of making α fine is proposed. In such a method utilizing the transformation from γ to α, when γ is coarse, the γ / α conversion ratio (γ grain size before transformation / α grain size after transformation) can be obtained by effectively utilizing the unrecrystallized region rolling. However, as the γ particle size becomes finer, the γ / α conversion ratio approaches 1, so that the degree of α refinement becomes saturated. Therefore, in the method of refining α through the transformation from γ to α, the degree thereof is regulated by the degree of refining of γ, and thus the drastic miniaturization of the α particle size cannot be expected.

【0004】制御圧延の温度域をγ/α二相域にまで拡
大した、いわゆる二相域圧延による強度・靱性改善技術
も提案されている。例えば、特公昭58−5967号公
報には、成分や圧下条件の工夫等により二相域圧延に特
徴的なセパレーションの発生を抑制して靱性向上を計る
技術が開示されている。しかし、従来の二相域圧延技術
ではα粒径は制御圧延で得られるα粒径と同程度であ
り、セパレーションの発生による3軸応力の低減効果を
用いて初めて大幅な靱性向上が計られる。
A technique for improving strength and toughness by so-called two-phase region rolling, which expands the temperature range of controlled rolling to the γ / α two-phase region, has also been proposed. For example, Japanese Examined Patent Publication No. 58-5967 discloses a technique for improving the toughness by suppressing the occurrence of the separation characteristic of the two-phase region rolling by devising the components and the rolling conditions. However, in the conventional two-phase region rolling technique, the α grain size is about the same as the α grain size obtained by controlled rolling, and the toughness can be significantly improved only by using the effect of reducing the triaxial stress due to the occurrence of separation.

【0005】また、圧延等の熱間加工によらずに、熱処
理によってα粒径の微細化を計る方法も示されている。
例えば、〔鉄と鋼、第77年、第1号、1991、第1
71〜178頁〕に示されているように、V、Nを通常
よりも多量に添加することによりγの微細化を計るとと
もに、変態時のγ/α変換比を増大させて、焼ならし処
理で微細なα組織とする方法が開発されている。しか
し、この方法で微細なα組織を得るためには、Vを0.
01%以上、Nも0.01%以上添加する必要があり、
到達できるα粒径も5μm程度である。
Further, a method of refining the α-grain size by heat treatment is also shown, instead of hot working such as rolling.
For example, [Iron and Steel, 1977, No. 1, 1991, No. 1
71 to 178], V and N are added in a larger amount than usual to refine γ and increase the γ / α conversion ratio during transformation to normalize. A method of making a fine α-structure by treatment has been developed. However, in order to obtain a fine α structure by this method, V is set to 0.
It is necessary to add 01% or more and N to 0.01% or more,
The reachable α particle size is about 5 μm.

【0006】さらに、〔材料とプロセス、第3年、第6
号、1990、第1796頁〕には、γ/α変態の繰り
返しを含む複雑な加工熱処理により粒径が3μm以下の
超細粒鋼を得る方法が開示されている。この方法は、制
御圧延後、加速冷却を行い、500℃程度で加速冷却を
停止した後、室温まで冷却することなく900℃に再可
熱し、所定の温度で熱間圧延を行うことにより超細粒鋼
を得るものであるが、α粒径は冷却停止温度の影響を強
く受け、冷却停止温度が500℃のごく近傍以外では粒
径が3μm以下の超細粒αは得られておらず、工業的に
安定して製造することは困難であると考えられる。
Furthermore, [Materials and Processes, Third Year, Sixth Year]
No. 1990, p. 1796], there is disclosed a method for obtaining ultrafine grain steel having a grain size of 3 μm or less by a complicated thermomechanical treatment including repeated γ / α transformation. This method performs accelerated cooling after controlled rolling, stops accelerated cooling at about 500 ° C, then reheats it to 900 ° C without cooling to room temperature, and performs hot rolling at a predetermined temperature to obtain ultra-fine rolling. Although grain steel is obtained, the α grain size is strongly influenced by the cooling stop temperature, and ultrafine grains α having a grain size of 3 μm or less have not been obtained except in the vicinity of the cooling stop temperature of 500 ° C., It is considered to be difficult to manufacture industrially stably.

【0007】従って、上記の従来方法では、いずれも生
産性の劣化や熱処理工程の増加、さらには合金元素の増
加等、コスト上昇が避けられない。また、安定して得ら
れるα粒径は一部の実験的手法を除けば10μm程度で
あり、厳密に制御された複雑な工程によっても5μm程
度が限界で、それ以上のαの微細化による大幅な靱性向
上は望めない。
Therefore, in any of the above-mentioned conventional methods, cost increase is unavoidable due to deterioration of productivity, increase of heat treatment steps, and increase of alloy elements. In addition, the α particle size that can be obtained stably is about 10 μm except for some experimental methods, and the limit is about 5 μm even by a complicated process that is strictly controlled, and it is significantly reduced by further miniaturization of α. Toughness cannot be expected.

【0008】[0008]

【発明が解決しようとする課題】本発明は、高価な合金
元素の多量の添加や、生産性の劣る工程や複雑な工程を
行わずに、生産性が高く、平均α粒径が3μm以下で混
粒度が小さい整粒の超細粒α組織を有する低温靱性の優
れた厚鋼板およびその製造方法を提供することを目的と
する。
According to the present invention, the productivity is high and the average α particle diameter is 3 μm or less without adding a large amount of expensive alloying elements, a process with poor productivity or a complicated process. An object of the present invention is to provide a thick steel sheet having an ultrafine-grained α structure with a uniform mixed grain size and excellent low-temperature toughness, and a manufacturing method thereof.

【0009】[0009]

【課題を解決するための手段】本発明者らは、従来の代
表的細粒化方法であるγ/α変態では限界があることか
ら、αの熱間加工によるαの回復・再結晶を利用する方
法に注目し、αの熱間加工挙動を詳細に調査することに
よりαの超細粒化のための手段を見出し、本発明を完成
するに至ったものである。
The inventors of the present invention utilize α recovery / recrystallization by hot working of α, because the γ / α transformation, which is a conventional typical grain refining method, has a limit. By paying attention to the method described above, and by conducting a detailed investigation of the hot working behavior of α, a means for ultrafine graining of α was found, and the present invention was completed.

【0010】すなわち、本発明の要旨とするところは、
以下に示す第1から第7の発明にある。 〔第1の発明〕重量%で、C:0.01〜0.20%、
Si:0.03〜1.0%、Mn:0.30〜2.0
%、Al:0.005〜0.1%、N:0.001〜
0.01%を含有し、残部Feおよび不可避不純物から
なり、鋼板の全厚にわたって平均フェライト粒径が3μ
m以下であることを特徴とする低温靱性に優れた厚鋼
板。
That is, the gist of the present invention is that
The invention resides in the following first to seventh inventions. [First invention] C: 0.01 to 0.20% by weight,
Si: 0.03 to 1.0%, Mn: 0.30 to 2.0
%, Al: 0.005-0.1%, N: 0.001-
0.01%, with the balance Fe and unavoidable impurities, and having an average ferrite grain size of 3μ over the entire thickness of the steel sheet.
A thick steel sheet excellent in low temperature toughness, which is characterized by being m or less.

【0011】〔第2の発明〕さらに、Cr:0.01〜
0.50%、Ni:0.01〜3.0%、Mo:0.0
1〜0.50%、Cu:0.01〜1.5%、Ti:
0.003〜0.10%、V:0.005〜0.20
%、Nb:0.003〜0.05%、B:0.0003
〜0.0020%、Ca:0.0005〜0.005
%、REM:0.0005〜0.01%の1種または2
種以上を含有することを特徴とする第1の発明記載の低
温靱性に優れた厚鋼板。
[Second invention] Further, Cr: 0.01 to
0.50%, Ni: 0.01 to 3.0%, Mo: 0.0
1 to 0.50%, Cu: 0.01 to 1.5%, Ti:
0.003-0.10%, V: 0.005-0.20
%, Nb: 0.003 to 0.05%, B: 0.0003
~ 0.0020%, Ca: 0.0005 to 0.005
%, REM: 0.0005 to 0.01% of 1 or 2
A thick steel sheet excellent in low temperature toughness according to the first invention, characterized by containing at least one kind.

【0012】〔第3の発明〕重量%で、C:0.01〜
0.20%、Si:0.03〜1.0%、Mn:0.3
0〜2.0%、Al:0.005〜0.1%、N:0.
001〜0.01%を含有し、残部Feおよび不可避不
純物からなる鋼片をAc3 変態点以上、1200℃以下
の温度に加熱し、オーステナイト域での粗圧延の後、平
均フェライト粒径が15μm以下でフェライトの割合が
50〜90%である状態から、仕上圧延として累積圧下
率が50〜90%である二相域圧延を650〜750℃
の温度で終了することを特徴とする低温靱性に優れた厚
鋼板の製造方法。
[Third invention] C: 0.01-
0.20%, Si: 0.03 to 1.0%, Mn: 0.3
0-2.0%, Al: 0.005-0.1%, N: 0.
A steel slab containing 001 to 0.01% and the balance Fe and unavoidable impurities is heated to a temperature not lower than the Ac 3 transformation point and not higher than 1200 ° C., and after rough rolling in the austenite region, the average ferrite grain size is 15 μm. From the state in which the proportion of ferrite is 50 to 90% below, 650 to 750 ° C. is performed as finish rolling in the two-phase region rolling in which the cumulative reduction is 50 to 90%.
The method for producing a thick steel sheet excellent in low temperature toughness, characterized in that the method is finished at the temperature of.

【0013】〔第4の発明〕前記粗圧延として、累積圧
下率が20〜70%の圧延を900〜800℃の温度で
終了することを特徴とする第3の発明記載の低温靱性に
優れた厚鋼板の製造方法。 〔第5の発明〕さらに、Cr:0.01〜0.50%、
Ni:0.01〜3.0%、Mo:0.01〜0.50
%、Cu:0.01〜1.5%、Ti:0.003〜
0.10%、V:0.005〜0.20%、Nb:0.
003〜0.05%、B:0.0003〜0.0020
%、Ca:0.0005〜0.005%、REM:0.
0005〜0.01%の1種または2種以上を含有する
ことを特徴とする第3または第4の発明記載の低温靱性
に優れた厚鋼板の製造方法。
[Fourth Invention] As the rough rolling, rolling having a cumulative rolling reduction of 20 to 70% is completed at a temperature of 900 to 800 ° C., which is excellent in low temperature toughness as described in the third invention. Manufacturing method of thick steel plate. [Fifth invention] Further, Cr: 0.01 to 0.50%,
Ni: 0.01 to 3.0%, Mo: 0.01 to 0.50
%, Cu: 0.01 to 1.5%, Ti: 0.003 to
0.10%, V: 0.005 to 0.20%, Nb: 0.
003 to 0.05%, B: 0.0003 to 0.0020
%, Ca: 0.0005 to 0.005%, REM: 0.
The method for producing a thick steel sheet having excellent low temperature toughness according to the third or fourth invention, characterized in that it contains one or more of 0005 to 0.01%.

【0014】〔第6の発明〕仕上圧延終了後、引き続い
て5〜50℃/秒の冷却速度で550〜20℃まで加速
冷却することを特徴とする第3〜第5の発明のいずれか
1つに記載の低温靱性に優れた厚鋼板の製造方法。 [第7の発明]仕上圧延終了後、引き続いて5〜50℃
/秒の冷却速度で550〜20℃まで加速冷却した後、
600〜400℃で焼戻すことを特徴とする第3〜第5
の発明のいずれか1つに記載の低温靱性に優れた厚鋼板
の製造方法。
[Sixth invention] Any one of the third to fifth inventions, characterized in that after finishing rolling, the accelerated cooling is continued to 550 to 20 ° C at a cooling rate of 5 to 50 ° C / sec. The method for producing a thick steel sheet excellent in low temperature toughness as described in 1. [Seventh invention] After finishing rolling, continuously 5 to 50 ° C
After accelerated cooling to 550 to 20 ° C at a cooling rate of / sec,
Third to fifth, characterized by tempering at 600 to 400 ° C
The method for manufacturing a thick steel sheet having excellent low temperature toughness according to any one of the above-mentioned inventions.

【0015】[0015]

【作用】以下に本発明について、実験結果に基づいて詳
細に説明する。本発明は、従来の達成レベルを凌駕する
αの細粒化の手段として、加工αの回復・再結晶による
方法を用いている点に特徴を有する。すなわち、γ/α
二相域で加工を加えることにより得られるαを、加工後
回復・再結晶せしめ、実質的なαの超細粒化を計る。そ
の場合、生産性を阻害せず、かつ均一な整細粒とするた
めには加工後のαの回復・再結晶は再加熱熱処理のよう
な方法ではなく、圧延後の冷却中、好ましくは圧延中あ
るいは直後に生じさせる方が有利となる。ただし、一般
的に二相域圧延を施した鋼材はαマトリクスの転位密度
が高いためにαマトリクスの靱性は劣化する。すなわ
ち、二相域圧延によるセパレーションの導入を介した靱
性向上効果と相殺しあって靱性向上には限度がある。従
って、二相域圧延を基本とした製造方法による場合はα
を超細粒化すると同時にマトリクスの転位密度の減少を
図る必要があると考えられる。しかしながら、αの直接
加工による細粒化であるが故に加工は必然的にαが主体
の組織となる温度域で行う必要があり、通常の圧延のよ
うな冷却過程でαを一定量以上生成させようとすると必
然的に温度が低下するため、圧延中あるいはその後の冷
却中に転位の大幅な減少を図ることは容易ではない。
The present invention will be described in detail below based on experimental results. The present invention is characterized in that a method by recovery / recrystallization of processed α is used as a means for refining α, which exceeds the conventional achievement level. That is, γ / α
The α obtained by processing in the two-phase region is recovered and recrystallized after the processing, and the actual ultrafine graining of α is measured. In that case, in order to obtain uniform fine grains without impairing the productivity, the recovery and recrystallization of α after processing is not a method such as reheating heat treatment, and is preferably performed during cooling after rolling, preferably during rolling. It is advantageous to generate it during or immediately after. However, in general, a steel material that has undergone two-phase rolling has a high dislocation density in the α matrix, and therefore the toughness of the α matrix deteriorates. In other words, there is a limit to the improvement in toughness because they offset each other with the effect of improving toughness through the introduction of separation by two-phase rolling. Therefore, in the case of the manufacturing method based on the two-phase rolling, α
It is considered that it is necessary to reduce the dislocation density of the matrix at the same time as making the grains ultrafine. However, since the grain size is reduced by the direct processing of α, it is inevitable that the processing be performed in a temperature range where α is the main structure, and α is generated in a certain amount or more in the cooling process such as normal rolling. If this is done, the temperature will inevitably decrease, so it is not easy to achieve a significant reduction in dislocations during rolling or subsequent cooling.

【0016】二相域圧延においてαを超細粒化するため
には、αに一定量以上の転位を導入して回復・再結晶の
駆動力を与えることが前提となる。その一方で、最終的
にはマトリクス中に残存する転位を極力低減する必要が
ある。この両方の条件を同時に満足するための手段を検
討した結果、二相域圧延前のα粒径の微細化を図ること
が最も重要な点であることを知見するに至った。すなわ
ち、加工前のα粒径が微細であると、同じ転位密度でも
回復・再結晶が容易に生じるため、残留する転位密度が
その分低減し、さらに達成されるα粒径も加工率が同じ
であれば加工前のα粒径とほぼ比例関係にあることが判
明した。従って、靱性改善に有効な、マトリクス中の転
位密度の低い超細粒α組織を得るための製造条件は、回
復・再結晶を生じさせるために必要な二相域圧延の累積
圧下率と最終的な転位密度に大きな影響を及ぼし、かつ
最終α粒径に大きな影響を及ぼす加工前のα粒径、さら
に最終組織中の二相域圧延によって形成されたαの割合
を決定する二相域圧延に入る前の割合を適正に組み合わ
せることで達成される。
In order to make α into ultrafine grains in two-phase rolling, it is premised that a certain amount or more of dislocations are introduced into α to give a driving force for recovery / recrystallization. On the other hand, finally, it is necessary to reduce dislocations remaining in the matrix as much as possible. As a result of studying means for satisfying both of these conditions at the same time, it has been found that it is the most important point to reduce the α grain size before the two-phase rolling. That is, if the α-grain size before processing is fine, recovery / recrystallization easily occurs even with the same dislocation density, and the residual dislocation density is reduced accordingly, and the achieved α-grain size has the same processing rate. In that case, it was found that the α particle size before processing was in a substantially proportional relationship. Therefore, the manufacturing conditions for obtaining an ultrafine-grained α-structure with a low dislocation density in the matrix, which is effective for improving toughness, are as follows: Of the α-grain size before processing, which has a large effect on the dislocation density and the final α-grain size, and the proportion of α formed by the two-phase zone rolling in the final structure. It is achieved by properly combining the ratios before entering.

【0017】図1は化学組成がC:0.15%、Si:
0.2%、Mn:1.2%、Nb:0.006%、T
i:0.01%、N:0.0032%の鋼を1150℃
に加熱し、γ域の圧延条件(圧下率10〜80%、圧下
温度1000〜800℃)や冷却条件(冷却速度0.1
〜5℃/秒)によって二相域圧延に入る前のα粒径を種
々変化させた場合の二相域圧延後のαの状態と二相域圧
延の累積圧下率および二相域圧延前のα粒径との関係を
調べた図である。なお、二相域圧延前のα分率は60〜
75%の範囲に制御し、二相域圧延後は冷却速度が約2
0℃/秒になるように調整して、およそ650℃から室
温まで加速冷却を行い、板厚中心部の組織を観察した。
αの形態はナイタール腐食組織を光学顕微鏡により観察
して判定し、α粒径は走査型電子顕微鏡により倍率35
00倍の写真を用いて測定した。
In FIG. 1, the chemical composition is C: 0.15%, Si:
0.2%, Mn: 1.2%, Nb: 0.006%, T
i: 0.01%, N: 0.0032% steel at 1150 ° C
And the rolling conditions (reduction rate 10 to 80%, reduction temperature 1000 to 800 ° C.) and cooling conditions (cooling rate 0.1.
The state of α after the two-phase region rolling when the α grain size before the two-phase region rolling is variously changed by 5 ℃ / sec), the cumulative rolling reduction of the two-phase region rolling and the two-phase region before the two-phase region rolling It is the figure which investigated the relationship with alpha particle size. The α fraction before rolling in the two-phase region is 60 to
It is controlled in the range of 75% and the cooling rate is about 2 after rolling in the two-phase region
The temperature was adjusted to 0 ° C./sec, accelerated cooling from about 650 ° C. to room temperature was performed, and the structure in the center of the plate thickness was observed.
The morphology of α was determined by observing the Nital corrosion structure with an optical microscope, and the α particle size was 35 times with a scanning electron microscope.
The measurement was carried out using a 00-time photograph.

【0018】図1によれば、二相域圧延開始前のα粒径
が微細になるにともなって、また二相域圧延の累積圧下
率が大きくなるにともなって、二相域圧延後の最終α組
織は均一かつ微細化する。これは二相域圧延開始前のα
粒径が微細なほど同じ累積圧下率でも回復・再結晶が容
易となるためである。別途、低温靱性との関係および電
子顕微鏡組織を調査した結果によれば、観察されるα粒
が伸長粒(展伸度1.5以上)あるいは混粒(展伸度
1.5以上の伸長粒の割合が30%以上)であると、α
マトリクス中の転位の回復が十分でないため、同じ結晶
粒径でも低温靱性の改善が明確に現れない。
According to FIG. 1, as the α grain size before the start of the two-phase region rolling becomes finer and as the cumulative reduction ratio of the two-phase region rolling increases, the final value after the two-phase region rolling is increased. The α structure becomes uniform and fine. This is α before the start of two-phase rolling
This is because the finer the particle size, the easier the recovery and recrystallization even with the same cumulative rolling reduction. Separately, according to the relationship with the low temperature toughness and the result of the examination of the electron microscopic structure, the observed α-grains are elongated grains (elongation degree 1.5 or more) or mixed grains (elongation grains with elongation degree 1.5 or more). Is 30% or more), α
Since the dislocations in the matrix are not sufficiently recovered, the improvement in low temperature toughness does not appear clearly even with the same crystal grain size.

【0019】従って、低温靱性を顕著に改善するために
はαを超細粒化すると同時に伸長粒の割合を極力低減す
る必要がある。図1から、二相域圧延後の最終αを微細
かつ伸長粒を含まない整粒組織とするためには、二相域
圧延開始前のα粒径と二相域圧延の累積圧下率の両方を
適正化する必要があることが明らかになった。累積圧下
率を大きくすれば平均的な粒径は微細化するが、累積圧
下率が70%以上でも二相域圧延前のα粒径が17μm
程度以上に粗大であると、混粒組織となり、顕著な靱性
向上は期待できない。
Therefore, in order to remarkably improve the low temperature toughness, it is necessary to make α very fine and at the same time reduce the proportion of elongated grains as much as possible. From FIG. 1, in order to make the final α after the two-phase region rolling a fine-grained grain structure that does not include elongated grains, both the α-grain size before the start of the two-phase region rolling and the cumulative rolling reduction of the two-phase region rolling are performed. It became clear that it was necessary to optimize If the cumulative reduction is increased, the average grain size becomes finer, but even if the cumulative reduction is 70% or more, the α grain size before the two-phase rolling is 17 μm.
If it is coarser than a certain degree, a mixed grain structure is formed, and significant improvement in toughness cannot be expected.

【0020】α二相域圧延前のα分率が60%以上の場
合については、図1に示すようなαの超細粒化が期待で
きるが、α分率が大幅に少ないと、大部分のαはγから
の変態によって生じるようになるため、一部のαが如何
に二相域圧延によって如何に超細粒化しても、組織全体
の均一な超細粒化は望めない。本発明は以上の研究結果
に基づいてなされたものであり、本発明により鋼板の全
厚にわたって均一に安定して平均粒径で3μm以下のα
粒径の組織とすることで、低温靱性がシャルピー衝撃試
験の破面遷移温度で−100℃以下、DWTT試験の8
5%破面遷移温度でも−90℃以下の非常に優れた低温
靱性が達成できることが明らかとなった。
In the case where the α fraction before the α two-phase rolling is 60% or more, it is expected that the α will be made into ultra-fine grains as shown in FIG. Since α of γ is generated by the transformation from γ, it is not possible to expect uniform ultrafine graining of the entire structure, no matter how part of α is ultrafine grained by two-phase rolling. The present invention has been made on the basis of the above research results, and according to the present invention, the average grain size α of 3 μm or less is uniformly stable over the entire thickness of the steel sheet.
By making the structure of the grain size, the low temperature toughness is −100 ° C. or less at the fracture surface transition temperature of the Charpy impact test and 8 of the DWTT test.
It became clear that even at a 5% fracture surface transition temperature, a very good low temperature toughness of -90 ° C or less can be achieved.

【0021】以下に、各製造条件の限定理由を詳細に述
べる。先ず、本発明においては、鋼片の加熱温度をAc
3 変態点以上、1200℃以下の範囲とした。これは加
熱温度がAc3 変態点未満では溶体化が十分行われず、
1200℃を超える高い加熱温度では加熱γ粒径が極端
に粗大になって、その後の圧延によって二相域圧延開始
前のα粒を微細化することが困難になるおそれがあるた
めである。
The reasons for limiting each manufacturing condition will be described in detail below. First, in the present invention, the heating temperature of the billet is set to Ac.
The temperature was set to 3 transformation points or more and 1200 ° C. or less. When the heating temperature is below the Ac 3 transformation point, solution treatment is not sufficiently performed,
This is because the heating γ grain size becomes extremely coarse at a high heating temperature exceeding 1200 ° C., and it may be difficult to make α grains fine before starting the two-phase region rolling by subsequent rolling.

【0022】二相域圧延に入る前のα粒径を微細化する
ことが本発明の最も重要な点のひとつである。図1に基
づいて、現実的にとり得る二相域圧下率の範囲を勘案し
て、二相域圧延開始前のα粒径としては15μm以下と
する。二相域圧延に入る前のαを微細化する手段として
は、鋼片再加熱温度の低下、γ域圧延の条件の適正化、
加速冷却、化学成分の工夫等、種々考えられるので特に
限定する必要はないが、本発明においては所望のα粒径
を達成するために累積圧下率が20〜70%の圧延を9
00〜800℃の温度で終了し、さらに必要に応じて、
粗圧延終了後、仕上圧延としての二相域圧延開始までを
冷却速度が0.1〜5℃/秒の条件で冷却することが好
ましい。これは、本発明の成分、加熱条件範囲において
はγ域での圧延を累積圧下率が20〜70%で圧延終了
温度が900〜800℃の範囲であれば、γ粒が細粒化
し、かつ未再結晶域圧延による効果も重畳し、その後の
二相域圧延温度までの冷却速度が0.1〜5℃/秒の範
囲であれば、α粒径は15μm以下になるためである。
One of the most important points of the present invention is to make the α grain size fine before starting the two-phase rolling. Based on FIG. 1, in consideration of the range of realistic reduction ratios in the two-phase region, the α grain size before starting the two-phase region rolling is set to 15 μm or less. As a means for refining α before entering the two-phase region rolling, decrease of the reheating temperature of the billet, optimization of the conditions for the γ region rolling,
There are various possibilities such as accelerated cooling and devising of chemical components, so that it is not particularly limited, but in the present invention, in order to achieve a desired α grain size, rolling with a cumulative rolling reduction of 20 to 70% is performed.
Finish at a temperature of 00 to 800 ° C., and if necessary,
After the rough rolling is finished, it is preferable to cool until the start of two-phase region rolling as finish rolling at a cooling rate of 0.1 to 5 ° C / sec. This is because the rolling reduction in the γ range in the components of the present invention, the heating condition range, the cumulative rolling reduction is 20 to 70%, and the rolling end temperature is in the range of 900 to 800 ° C. This is because the effect of rolling in the non-recrystallized region is also superimposed, and if the subsequent cooling rate up to the two-phase region rolling temperature is in the range of 0.1 to 5 ° C./second, the α particle size is 15 μm or less.

【0023】また、二相域圧延に入る段階でのα分率も
重要であるが、二相域圧延中での誘起変態も考慮する
と、圧延開始前のα分率として50%以上確保できれば
最終組織においてαを均一に超細粒化し得る。α分率の
上限は90%に規定するが、これはわずかに残存してい
る硬質のγ相がαの加工を均一化して整細粒化する上で
有効であり、その効果を発揮するためにはγは10%以
上ある方が好ましいためである。また、付随的にはαが
90%以上になるまで冷却すると実質的にはαが回復・
再結晶できる下限温度以下となってしまう。
Further, the α fraction at the stage of entering the two-phase region rolling is also important, but if the induced α transformation during the two-phase region rolling is also taken into consideration, if the α fraction before the start of rolling can be secured at 50% or more, it will be final. Α can be uniformly fine-grained in tissue. The upper limit of the α fraction is specified to 90%, but this is because the slightly remaining hard γ phase is effective in uniformizing the α processing and finely sizing, and exerts its effect. This is because γ is preferably 10% or more. Also, incidentally, when α is cooled to 90% or more, α is substantially recovered.
It will be below the lower limit temperature for recrystallization.

【0024】二相域圧延の累積圧下率については、図1
に基づいて、二相域圧延前のα粒径が15μm以下を前
提として、安定して超細粒が得られるための必要条件と
して50%以上とする。二相域圧延の場合、圧延温度は
必然的に低く、圧延中の短時間での再結晶は生じないた
め、累積圧下率のみを規定すればよく、各圧延パスの量
や組み合わせの仕方、パス間時間等は問わない。二相域
圧延の累積圧下率は大きいほど細粒化に有効ではある
が、90%を超える圧下を施しても効果が飽和するの
と、圧延時間が長くなり、仕上温度確保が実質的に困難
となるため、経済性を考慮して上限は90%とする。
The cumulative reduction ratio of the two-phase rolling is shown in FIG.
Based on the above, on the premise that the α grain size before the two-phase region rolling is 15 μm or less, the necessary condition for stably obtaining ultrafine grains is 50% or more. In the case of two-phase rolling, the rolling temperature is inevitably low and recrystallization does not occur in a short time during rolling.Therefore, it is sufficient to stipulate only the cumulative rolling reduction. It does not matter the time interval. The larger the cumulative rolling reduction of the two-phase rolling, the more effective it is for grain refinement. However, even if the rolling reduction exceeds 90%, the effect saturates and the rolling time becomes long, making it difficult to secure the finishing temperature. Therefore, the upper limit is 90% in consideration of economic efficiency.

【0025】ただし、二相域圧延の終了温度が低くすぎ
ると、如何に二相域圧延前のα粒径を微細化しても、圧
延後のαの回復・再結晶が十分進行せず、超細粒化やα
マトリクス中の転位の低減が不十分となるため、α粒径
が15μm以下でかつ累積圧下率が50%以上という条
件下で回復・再結晶が進行する下限温度として、実験温
度に基づいて、二相域圧延終了温度は650℃以上とす
る。また、二相域圧延の終了温度の上限は750℃とす
る。二相域圧延では加工発熱により圧延開始よりも終了
温度が上昇する場合がある。この場合、温度が上昇しす
ぎると得られた超細粒αが成長し、粗大かつ混粒となる
ため、これを防ぐのに十分な終了温度として、実験結果
に基づいて終了温度の上限は750℃とした。
However, if the end temperature of the two-phase region rolling is too low, no matter how the α grain size before the two-phase region rolling is refined, the recovery and recrystallization of α after the rolling will not proceed sufficiently, and the ultra-high temperature will not be exceeded. Fine grain and α
Since the reduction of dislocations in the matrix becomes insufficient, the lower limit temperature at which the recovery / recrystallization proceeds under the condition that the α grain size is 15 μm or less and the cumulative rolling reduction is 50% or more is based on the experimental temperature. The end temperature of phase rolling is 650 ° C. or higher. The upper limit of the end temperature of the two-phase region rolling is 750 ° C. In the two-phase rolling, the end temperature may be higher than the start of rolling due to heat generated during processing. In this case, if the temperature rises excessively, the obtained ultrafine particles α grow and become coarse and mixed grains. Therefore, the upper limit of the end temperature is set to 750 based on the experimental results, as the end temperature sufficient to prevent this. ℃ was made.

【0026】また、以下に述べるように、二相域圧延後
の冷却条件としては、所望の特性に応じて加速冷却する
ことも可能であるが、その際に、二相域圧延終了後から
加速冷却開始までの時間が極端に短いと、回復・再結晶
が十分進行しないことが懸念される。実際の製造結果に
よれば、実際の鋼板製造における圧延終了から加速冷却
のための冷却設備までの搬送時間内に十分に回復・再結
晶は進行する。この回復・再結晶のための時間は20秒
以上確保することが好ましい。
Further, as described below, as the cooling condition after the two-phase region rolling, it is possible to perform accelerated cooling according to the desired characteristics. If the time until the start of cooling is extremely short, there is concern that recovery and recrystallization will not proceed sufficiently. According to the actual manufacturing results, recovery and recrystallization sufficiently proceed within the transportation time from the end of rolling in the actual steel plate manufacturing to the cooling equipment for accelerated cooling. It is preferable to secure a time for this recovery / recrystallization of 20 seconds or more.

【0027】二相域圧延終了後の鋼板の熱履歴として
は、圧延終了時に生成した組織が保存される範囲内で
は、所望の機械的性質を得るために、様々な熱履歴を受
けることが可能である。すなわち、圧延後、そのまま放
冷しても、あるいは圧延後、加速冷却しても、あるいは
加速冷却後、焼戻し処理を施してもよい。ただし、加速
冷却する場合は加速冷却の効果を発揮させるために、冷
却速度は5℃/秒以上が必要である。一方、冷却速度が
50℃/秒を超えても組織制御、機械的性質の改善効果
は飽和するため、加速冷却における冷却速度の範囲は5
〜50℃/秒とする。
As for the heat history of the steel sheet after the completion of the two-phase rolling, various heat histories can be received in order to obtain desired mechanical properties within the range in which the structure generated at the end of rolling is preserved. Is. That is, after rolling, it may be allowed to cool as it is, or after rolling, it may be subjected to accelerated cooling, or after accelerated cooling, it may be subjected to tempering treatment. However, in the case of accelerated cooling, the cooling rate is required to be 5 ° C./second or more in order to exert the effect of accelerated cooling. On the other hand, even if the cooling rate exceeds 50 ° C./sec, the effect of improving the structure control and mechanical properties is saturated, so the range of the cooling rate in accelerated cooling is 5
~ 50 ° C / sec.

【0028】また、同様の理由から加速冷却は550℃
以下まで行う必要があるが、機械的性質に影響を及ぼす
冶金因子が変化するのは実質的には室温付近であるの
で、冷却停止温度の下限は20℃とする。また、加速冷
却後、強度の調整、靱性の改善等のために焼戻しを施す
場合は、圧延によって得られた超細粒組織を保存する必
要性から、焼戻し温度は600℃以下に限定する必要が
ある。ただし、本発明の成分、組織範囲においては、焼
戻しによる機械的性質の改善は400℃以上から期待さ
れるため、焼戻し温度の範囲は400〜600℃とす
る。
For the same reason, accelerated cooling is 550 ° C.
Although it is necessary to perform the following steps, the metallurgical factor that affects the mechanical properties changes substantially at room temperature, so the lower limit of the cooling stop temperature is 20 ° C. When tempering is performed after accelerated cooling for adjusting strength, improving toughness, etc., the tempering temperature needs to be limited to 600 ° C. or lower because it is necessary to preserve the ultrafine grain structure obtained by rolling. is there. However, within the components and structure range of the present invention, improvement of mechanical properties by tempering is expected from 400 ° C. or higher, so the tempering temperature range is 400 to 600 ° C.

【0029】以上が、製造条件に関する本発明の限定理
由であるが、所望の強度および低温靱性を確保するため
には製造方法だけでなく、化学成分も適正範囲内とする
必要がある。以下に、本発明における化学成分の限定理
由を述べる。先ず、Cは鋼の強度を向上させる有効な成
分として添加するもので、0.01%未満では構造用鋼
に必要な強度の確保が困難であり、また0.20%を超
える過剰の添加は靱性や耐溶接割れ性などを著しく低下
させるので、0.01〜0.20%の範囲とした。
The above are the reasons for limiting the present invention regarding the production conditions. However, in order to secure desired strength and low temperature toughness, not only the production method but also the chemical composition must be within an appropriate range. The reasons for limiting the chemical components in the present invention will be described below. First, C is added as an effective component for improving the strength of steel. If it is less than 0.01%, it is difficult to secure the strength required for structural steel, and if it is added in excess of 0.20%, Since the toughness and the weld cracking resistance are remarkably reduced, the content is set to 0.01 to 0.20%.

【0030】次に、Siは脱酸元素として、また母材の
強度確保に有効な元素である。0.03%未満の添加で
は脱酸が不十分となり、また強度確保に不利である。逆
に、1.0%を超える過剰の添加は粗大な酸化物を形成
して延性や靱性劣化を招く。このため、Siの範囲は
0.03〜1.0%とした。また、Mnは母材の強度、
靱性の確保に必要な元素であり、最低限0.30%以上
添加する必要があるが、溶接部の靱性、割れ性など材質
上許容できる範囲で上限を2.0%とした。
Next, Si is an element effective as a deoxidizing element and for ensuring the strength of the base material. Addition of less than 0.03% results in insufficient deoxidation and is disadvantageous in securing strength. On the contrary, excessive addition of more than 1.0% forms a coarse oxide and causes ductility and toughness deterioration. Therefore, the range of Si is set to 0.03 to 1.0%. Mn is the strength of the base metal,
It is an element necessary for ensuring toughness, and it is necessary to add at least 0.30% or more, but the upper limit was set to 2.0% within the allowable range of the material such as toughness and crackability of the welded portion.

【0031】Alは脱酸、γ粒径の細粒化等に有効な元
素であり、効果を発揮するためには0.005%以上含
有する必要があるが、0.1%を超えて過剰に添加する
と、粗大な酸化物を形成して延性を極端に劣化させるた
め、0.005〜0.1%の範囲に限定する必要があ
る。NはAlやTiと結びついてγ粒微細化に有効に働
くが、その効果が明確になるためには0.001%以上
含有させる必要がある。一方、過剰に添加すると固溶N
が増加して靱性に悪影響を及ぼすので、許容できる範囲
として上限を0.01%とする。
Al is an element effective in deoxidizing, refining the γ grain size, etc., and must be contained in an amount of 0.005% or more to exert the effect, but if it exceeds 0.1%, it is excessive. When added to, a coarse oxide is formed and ductility is extremely deteriorated, so it is necessary to limit the content to 0.005 to 0.1%. N works effectively in γ grain refinement in combination with Al and Ti, but it is necessary to contain N in an amount of 0.001% or more in order to clarify the effect. On the other hand, if added excessively, solid solution N
Increases and adversely affects toughness, so the upper limit is made 0.01% as an allowable range.

【0032】以上が本発明鋼の基本成分があるが、所望
の強度レベルに応じて母材強度の上昇、靱性確保の目的
から、必要に応じて、Cr、Ni、Mo、Cu、Ti、
V、Nb、B、Ca、REMの1種または2種以上を含
有することができる。先ず、CrおよびMoはいずれも
母材の強度向上に有効な元素であるが、明瞭な効果を生
じるためには0.01%以上が必要であり、一方、0.
50%を超えて添加すると、靱性が劣化する傾向を有す
るため、0.01〜0.50%の範囲とする。
The above are the basic components of the steel of the present invention, but for the purpose of increasing the strength of the base metal and ensuring toughness in accordance with the desired strength level, Cr, Ni, Mo, Cu, Ti, and
One or more of V, Nb, B, Ca and REM can be contained. First, Cr and Mo are both effective elements for improving the strength of the base material, but 0.01% or more is necessary for producing a clear effect, while 0.
If added over 50%, the toughness tends to deteriorate, so the content is made 0.01 to 0.50%.

【0033】また、Niは母材の強度と靱性を同時に向
上でき、非常に有効な元素であるが、効果を発揮させる
ためには0.01%以上含有させる必要がある。含有量
が多くなると強度、靱性は向上するが、3.0%を超え
て添加しても効果が飽和するためと、Ar3 変態点が極
端に低下して、本発明の条件である二相域圧延前のα量
50%以上と、二相域圧延終了温度650℃以上を同時
に満足することができなくなるため、経済性も考慮し
て、上限を3.0%とする。
Ni is a very effective element because it can improve the strength and toughness of the base material at the same time, but it is necessary to contain Ni in an amount of 0.01% or more in order to exert the effect. Although the strength and toughness are improved when the content is increased, the effect is saturated even if the content exceeds 3.0%, and the Ar 3 transformation point is extremely lowered. Since it becomes impossible to simultaneously satisfy the α amount of 50% or more before zone rolling and the two-phase zone rolling end temperature of 650 ° C. or more at the same time, the upper limit is set to 3.0% in consideration of economic efficiency.

【0034】次に、CuもほぼNiと同様の効果を有す
るが、1.5%超の添加では熱間加工性に問題を生じる
ため、0.01〜1.5%の範囲に限定する。Tiは析
出強化により母材強度向上に寄与するとともに、TiN
の形成によりγ粒微細化にも有効な元素であるが、効果
を発揮させるためには0.003%以上の添加が必要で
ある。一方、0.10%を超えると、Alと同様、粗大
な酸化物を形成して靱性や延性を劣化させるため、上限
を0.10%とする。
Next, Cu has almost the same effect as Ni, but if added over 1.5%, problems occur in hot workability, so the range is limited to 0.01 to 1.5%. Ti contributes to the improvement of the base metal strength by precipitation strengthening, and TiN
Although it is an element which is also effective for making the γ grains fine by the formation of γ, it is necessary to add 0.003% or more in order to exert the effect. On the other hand, if it exceeds 0.10%, similarly to Al, a coarse oxide is formed to deteriorate toughness and ductility, so the upper limit is made 0.10%.

【0035】VおよびNbはいずれも主として析出強化
により母材の強度向上に寄与するが、過剰に添加すると
靱性を劣化させる。従って、靱性の劣化を招かずに、効
果を発揮できる範囲として、Vは0.005〜0.20
%、Nbは0.003〜0.05%とする。Bは0.0
003%以上のごく微量添加で鋼材の焼入れ性を高めて
強度上昇に非常に有効であるが、過剰に添加するとBN
を形成して、逆に焼入れ性を落としたり、靱性を大きく
劣化させるため、上限を0.0020%とする。
Both V and Nb mainly contribute to improving the strength of the base material by precipitation strengthening, but if added in excess, they deteriorate toughness. Therefore, V is 0.005 to 0.20 as a range in which the effect can be exhibited without deteriorating the toughness.
% And Nb are 0.003 to 0.05%. B is 0.0
Addition of a very small amount of 003% or more is very effective in increasing the hardenability of steel materials and increasing the strength, but if added in excess, BN
On the contrary, the hardenability is deteriorated and the toughness is greatly deteriorated, so the upper limit is made 0.0020%.

【0036】CaおよびREMはいずれも機械的性質の
異方性改善や耐ラメラティア特性改善に有効な元素であ
る。Caの場合は、0.0005%未満では効果が明確
ではなく、0.005%超では介在物が粗大となって靱
性、延性に悪影響を及ぼすおそれがあるため、0.00
05〜0.005%の範囲とする。REMの場合は、
0.0005%未満では効果が明確ではなく、0.01
%超ではCaと同様、介在物が粗大となって靱性、延性
に悪影響を及ぼすおそれがあるため、0.0005〜
0.01%の範囲とする。
Both Ca and REM are effective elements for improving the anisotropy of mechanical properties and improving the lamella tear resistance. In the case of Ca, if the content is less than 0.0005%, the effect is not clear, and if it exceeds 0.005%, inclusions become coarse and the toughness and ductility may be adversely affected.
The range is from 05 to 0.005%. In the case of REM,
If less than 0.0005%, the effect is not clear and 0.01
%, As with Ca, inclusions may become coarse and adversely affect toughness and ductility.
The range is 0.01%.

【0037】次に、本発明の効果を実施例によってさら
に具体的に述べる。
Next, the effects of the present invention will be described more specifically by way of examples.

【0038】[0038]

【実施例】実施例に用いた供試鋼の化学成分を表1に示
す。各供試鋼は造塊後、分塊圧延により、あるいは連続
鋳造により鋼片となした。表1の内、鋼番1〜15は本
発明の化学成分範囲を満足しており、鋼番16〜18は
本発明の化学成分範囲を外れている。
[Examples] Table 1 shows the chemical composition of the test steels used in the examples. Each of the test steels was made into a billet by slab rolling or continuous casting after ingot casting. In Table 1, Steel Nos. 1 to 15 satisfy the chemical composition range of the present invention, and Steel Nos. 16 to 18 are outside the chemical composition range of the present invention.

【0039】表1の化学成分の鋼片を表2、表3(表2
のつづき−1)、表4(表2のつづき−2)に示す条件
により鋼板に製造し、強度、シャルピー衝撃特性、DW
TT特性を調査した。試験片は全て板厚中心部から圧延
方向に直角(C方向)に採取した。シャルピー衝撃特性
は50%破面遷移温度(vTrs)で、またDWTT特
性は85%延性破面遷移温度(85%FATT)でそれ
ぞれ評価した。強度、靱性の試験結果も表2〜表4に示
す。
Steel pieces having the chemical composition shown in Table 1 are shown in Tables 2 and 3 (Table 2).
No. 1), a steel plate was manufactured under the conditions shown in Table 4 (No. 2 of Table 2), and the strength, Charpy impact characteristics, and DW were measured.
The TT characteristics were investigated. All the test pieces were sampled at right angles to the rolling direction (C direction) from the center of the plate thickness. The Charpy impact property was evaluated at 50% fracture transition temperature (vTrs), and the DWTT property was evaluated at 85% ductile fracture transition temperature (85% FATT). The test results of strength and toughness are also shown in Tables 2 to 4.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【表3】 [Table 3]

【0043】[0043]

【表4】 [Table 4]

【0044】表2〜表4において、試験No.A1〜A
20はいずれも本発明に従って製造した鋼板であり、全
て最終的に得られたα組織は整粒でかつ平均粒径は2.
5μm以下となっており、安定して平均粒径3μm以下
の超細粒組織が得られている。靱性値はvTrsで−1
10℃以下、DWTT試験の80%FATTで−90℃
以下が達成されている。
In Tables 2 to 4, the test No. A1-A
All of 20 are steel sheets produced according to the present invention, and all α structures finally obtained are sized and the average grain size is 2.
It is 5 μm or less, and an ultrafine grain structure having an average grain size of 3 μm or less is stably obtained. Toughness value is vTrs -1
10 ° C or less, -90 ° C in 80% FATT of DWTT test
The following have been achieved:

【0045】一方、試験No.B1〜B7は比較例であ
り、いずれかの条件が本発明の限定範囲を外れているた
め、本発明例に比べてシャルピー衝撃特性、DWTT特
性ともにはるかに劣る。すなわち、試験No.B1は鋼
片の加熱温度が高すぎ、二相域圧延前のα粒径が粗大な
ため、十分な超細粒化が計れていない。
On the other hand, the test No. B1 to B7 are comparative examples, and any one of the conditions is out of the limited range of the present invention, and thus both the Charpy impact characteristic and the DWTT characteristic are far inferior to the examples of the present invention. That is, the test No. In B1, the heating temperature of the steel slab is too high, and the α grain size before the two-phase region rolling is coarse, so that sufficient ultrafine graining cannot be achieved.

【0046】試験No.B2も二相域圧延前のフェライ
ト粒径が粗大なため、十分な超細粒化が計られておら
ず、靱性が劣る。試験No.B3は二相域加工前のα分
率が小さいため、γから変態するαの比率が多くなり、
超細粒化が計れていない。試験No.B4は二相域圧延
の累積圧下率が小さいため、αの回復・再結晶が十分で
なく、靱性も改善されない。
Test No. B2 also has a coarse ferrite grain size before rolling in the two-phase region, so sufficient ultrafine graining has not been achieved and the toughness is poor. Test No. Since B3 has a small α fraction before processing in the two-phase region, the ratio of α transformed from γ increases,
Ultra-fine grain is not measured. Test No. Since B4 has a small cumulative rolling reduction in two-phase rolling, α is not sufficiently recovered and recrystallized, and the toughness is not improved.

【0047】試験No.B5〜B7は化学成分が本発明
の範囲を外れているため、超細粒化が達成されなかった
り、他の靱性劣化要因のために低温靱性が劣る。以上の
実施例からも、本発明により安定して超細粒組織が達成
され、それにより非常に良好な低温靱性が得られること
が明白である。
Test No. Since the chemical components of B5 to B7 are out of the range of the present invention, ultra-fine graining cannot be achieved, or the low temperature toughness is poor due to other toughness deterioration factors. From the above examples, it is clear that the present invention stably achieves an ultrafine grain structure, thereby obtaining a very good low temperature toughness.

【0048】[0048]

【発明の効果】本発明は、高価な合金元素を用いたり、
複雑な熱履歴により生産性を低下させることなく、低温
靱性の良好な厚鋼板を製造できる画期的な方法であり、
製造コストの低減、構造物としての安全性の向上等、産
業上の効果は極めて大きい。
INDUSTRIAL APPLICABILITY The present invention uses expensive alloy elements,
It is an epoch-making method that can produce thick steel plate with good low temperature toughness without reducing productivity due to complicated heat history.
Industrial effects such as reduction of manufacturing cost and improvement of safety as a structure are extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】二相域圧延条件とαの形態、粒径との関係を示
す図である。
FIG. 1 is a diagram showing a relationship between a two-phase region rolling condition, a form of α, and a grain size.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 地主 修一 大分市大字西ノ洲1番地 新日本製鐵株式 会社大分製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shuichi Shuichi Oita City 1st Nishinosu Oita City Nippon Steel Stock Company Oita Works

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.01〜0.20%、 Si:0.03〜1.0%、 Mn:0.30〜2.0%、 Al:0.005〜0.1%、 N:0.001〜0.01%を含有し、残部Feおよび
不可避不純物からなり、鋼板の全厚にわたって平均フェ
ライト粒径が3μm以下であることを特徴とする低温靱
性に優れた厚鋼板。
1. By weight%, C: 0.01 to 0.20%, Si: 0.03 to 1.0%, Mn: 0.30 to 2.0%, Al: 0.005 to 0. 1%, N: 0.001 to 0.01%, balance Fe and unavoidable impurities, and an average ferrite grain size of 3 μm or less over the entire thickness of the steel sheet. steel sheet.
【請求項2】 さらに、 Cr:0.01〜0.50%、 Ni:0.01〜3.0%、 Mo:0.01〜0.50%、 Cu:0.01〜1.5%、 Ti:0.003〜0.10%、 V:0.005〜0.20%、 Nb:0.003〜0.05%、 B:0.0003〜0.0020%、 Ca:0.0005〜0.005%、 REM:0.0005〜0.01%の1種または2種以
上を含有することを特徴とする請求項1記載の低温靱性
に優れた厚鋼板。
2. Cr: 0.01 to 0.50%, Ni: 0.01 to 3.0%, Mo: 0.01 to 0.50%, Cu: 0.01 to 1.5% , Ti: 0.003 to 0.10%, V: 0.005 to 0.20%, Nb: 0.003 to 0.05%, B: 0.0003 to 0.0020%, Ca: 0.0005 . 0.005%, REM: 0.0005 to 0.01%, and one or more kinds are contained, and the thick steel sheet excellent in low temperature toughness according to claim 1.
【請求項3】 重量%で、 C:0.01〜0.20%、 Si:0.03〜1.0%、 Mn:0.30〜2.0%、 Al:0.005〜0.1%、 N:0.001〜0.01%を含有し、残部Feおよび
不可避不純物からなる鋼片をAc3 変態点以上、120
0℃以下の温度に加熱し、オーステナイト域での粗圧延
の後、平均フェライト粒径が15μm以下でフェライト
の割合が50〜90%である状態から、仕上圧延として
累積圧下率が50〜90%である二相域圧延を650〜
750℃の温度で終了することを特徴とする低温靱性に
優れた厚鋼板の製造方法。
3. By weight%, C: 0.01 to 0.20%, Si: 0.03 to 1.0%, Mn: 0.30 to 2.0%, Al: 0.005 to 0. 1%, N: 0.001-0.01% is contained, and a steel slab composed of the balance Fe and unavoidable impurities is converted to an Ac 3 transformation point or more, 120
After heating to a temperature of 0 ° C. or lower and rough rolling in the austenite region, from the state where the average ferrite grain size is 15 μm or less and the proportion of ferrite is 50 to 90%, the cumulative rolling reduction as finish rolling is 50 to 90%. The two-phase region rolling is 650
A method for producing a thick steel sheet excellent in low-temperature toughness, which is characterized by ending at a temperature of 750 ° C.
【請求項4】 前記粗圧延として、累積圧下率が20〜
70%の圧延を900〜800℃の温度で終了すること
を特徴とする請求項3記載の低温靱性に優れた厚鋼板の
製造方法。
4. The rough rolling has a cumulative rolling reduction of 20 to 20.
The method for producing a thick steel sheet excellent in low temperature toughness according to claim 3, wherein 70% rolling is finished at a temperature of 900 to 800 ° C.
【請求項5】 さらに、 Cr:0.01〜0.50%、 Ni:0.01〜3.0%、 Mo:0.01〜0.50%、 Cu:0.01〜1.5%、 Ti:0.003〜0.10%、 V:0.005〜0.20%、 Nb:0.003〜0.05%、 B:0.0003〜0.0020%、 Ca:0.0005〜0.005%、 REM:0.0005〜0.01%の1種または2種以
上を含有することを特徴とする請求項3または4記載の
低温靱性に優れた厚鋼板の製造方法。
5. Further, Cr: 0.01 to 0.50%, Ni: 0.01 to 3.0%, Mo: 0.01 to 0.50%, Cu: 0.01 to 1.5%. , Ti: 0.003 to 0.10%, V: 0.005 to 0.20%, Nb: 0.003 to 0.05%, B: 0.0003 to 0.0020%, Ca: 0.0005 ~ 0.005%, REM: 0.0005-0.01% of 1 type or 2 types or more are contained, The manufacturing method of the thick steel plate excellent in the low temperature toughness of Claim 3 or 4 characterized by the above-mentioned.
【請求項6】 仕上圧延終了後、引き続いて5〜50℃
/秒の冷却速度で550〜20℃まで加速冷却すること
を特徴とする請求項3〜5のいずれか1項に記載の低温
靱性に優れた厚鋼板の製造方法。
6. After finishing rolling is completed, the temperature is continuously 5 to 50 ° C.
The method for producing a thick steel sheet having excellent low-temperature toughness according to any one of claims 3 to 5, wherein accelerated cooling is performed at a cooling rate of / sec to 550 to 20 ° C.
【請求項7】 仕上圧延終了後、引き続いて5〜50℃
/秒の冷却速度で550〜20℃まで加速冷却した後、
600〜400℃で焼戻すことを特徴とする請求項3〜
5のいずれか1項に記載の低温靱性に優れた厚鋼板の製
造方法。
7. After finishing rolling, 5 to 50 ° C. continuously.
After accelerated cooling to 550 to 20 ° C at a cooling rate of / sec,
It tempers at 600-400 degreeC, It is characterized by the above-mentioned.
5. The method for producing a thick steel sheet having excellent low temperature toughness according to any one of 5 above.
JP10245995A 1995-04-26 1995-04-26 Method of manufacturing thick steel plate with excellent low temperature toughness Expired - Fee Related JP3314295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10245995A JP3314295B2 (en) 1995-04-26 1995-04-26 Method of manufacturing thick steel plate with excellent low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10245995A JP3314295B2 (en) 1995-04-26 1995-04-26 Method of manufacturing thick steel plate with excellent low temperature toughness

Publications (2)

Publication Number Publication Date
JPH08295982A true JPH08295982A (en) 1996-11-12
JP3314295B2 JP3314295B2 (en) 2002-08-12

Family

ID=14328057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10245995A Expired - Fee Related JP3314295B2 (en) 1995-04-26 1995-04-26 Method of manufacturing thick steel plate with excellent low temperature toughness

Country Status (1)

Country Link
JP (1) JP3314295B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6047747A (en) * 1997-06-20 2000-04-11 Exxonmobil Upstream Research Company System for vehicular, land-based distribution of liquefied natural gas
US6058713A (en) * 1997-06-20 2000-05-09 Exxonmobil Upstream Research Company LNG fuel storage and delivery systems for natural gas powered vehicles
US6066212A (en) * 1997-12-19 2000-05-23 Exxonmobil Upstream Research Company Ultra-high strength dual phase steels with excellent cryogenic temperature toughness
WO2000037689A1 (en) * 1998-12-19 2000-06-29 Exxonmobil Upstream Research Company Ultra-high strength triple phase steels with excellent cryogenic temperature toughness
US6085528A (en) * 1997-06-20 2000-07-11 Exxonmobil Upstream Research Company System for processing, storing, and transporting liquefied natural gas
US6203631B1 (en) * 1997-06-20 2001-03-20 Exxonmobil Upstream Research Company Pipeline distribution network systems for transportation of liquefied natural gas
US6212891B1 (en) * 1997-12-19 2001-04-10 Exxonmobil Upstream Research Company Process components, containers, and pipes suitable for containing and transporting cryogenic temperature fluids
US6224689B1 (en) 1997-07-28 2001-05-01 Exxonmobil Upstream Research Company Ultra-high strength, weldable, essentially boron-free steels with superior toughness
US6228183B1 (en) 1997-07-28 2001-05-08 Exxonmobil Upstream Research Company Ultra-high strength, weldable, boron-containing steels with superior toughness
US6245290B1 (en) 1997-02-27 2001-06-12 Exxonmobil Upstream Research Company High-tensile-strength steel and method of manufacturing the same
US6248191B1 (en) 1997-07-28 2001-06-19 Exxonmobil Upstream Research Company Method for producing ultra-high strength, weldable steels with superior toughness
US6251198B1 (en) 1997-12-19 2001-06-26 Exxonmobil Upstream Research Company Ultra-high strength ausaged steels with excellent cryogenic temperature toughness
US6254698B1 (en) 1997-12-19 2001-07-03 Exxonmobile Upstream Research Company Ultra-high strength ausaged steels with excellent cryogenic temperature toughness and method of making thereof
US6264760B1 (en) 1997-07-28 2001-07-24 Exxonmobil Upstream Research Company Ultra-high strength, weldable steels with excellent ultra-low temperature toughness
JP2002105533A (en) * 2000-09-26 2002-04-10 National Institute For Materials Science Method for manufacturing high-tensile steel with low yield ratio
JP2008214646A (en) * 2007-02-28 2008-09-18 Jfe Steel Kk Thick steel plate for welded structure having superior resistance to fatigue crack propagation in plate thickness direction, and its manufacturing method
CN109112393A (en) * 2018-07-20 2019-01-01 首钢集团有限公司 A kind of 900MPa rank ATM machine anti-riot steel plate and its manufacturing method
JP2020537047A (en) * 2017-10-11 2020-12-17 ポスコPosco Thick steel sheet with excellent low-temperature deformation aging impact characteristics and its manufacturing method
KR20210080693A (en) * 2019-12-20 2021-07-01 주식회사 포스코 High strength steel sheet having excellent heat affected zone toughness and method for manufacturing the same
CN113667899A (en) * 2021-09-03 2021-11-19 太原理工大学 Method for producing 700MPa grade high-strength steel by finely dispersing precipitated phase particles

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245290B1 (en) 1997-02-27 2001-06-12 Exxonmobil Upstream Research Company High-tensile-strength steel and method of manufacturing the same
US6058713A (en) * 1997-06-20 2000-05-09 Exxonmobil Upstream Research Company LNG fuel storage and delivery systems for natural gas powered vehicles
US6047747A (en) * 1997-06-20 2000-04-11 Exxonmobil Upstream Research Company System for vehicular, land-based distribution of liquefied natural gas
US6085528A (en) * 1997-06-20 2000-07-11 Exxonmobil Upstream Research Company System for processing, storing, and transporting liquefied natural gas
US6203631B1 (en) * 1997-06-20 2001-03-20 Exxonmobil Upstream Research Company Pipeline distribution network systems for transportation of liquefied natural gas
US6228183B1 (en) 1997-07-28 2001-05-08 Exxonmobil Upstream Research Company Ultra-high strength, weldable, boron-containing steels with superior toughness
US6264760B1 (en) 1997-07-28 2001-07-24 Exxonmobil Upstream Research Company Ultra-high strength, weldable steels with excellent ultra-low temperature toughness
US6248191B1 (en) 1997-07-28 2001-06-19 Exxonmobil Upstream Research Company Method for producing ultra-high strength, weldable steels with superior toughness
US6224689B1 (en) 1997-07-28 2001-05-01 Exxonmobil Upstream Research Company Ultra-high strength, weldable, essentially boron-free steels with superior toughness
US6251198B1 (en) 1997-12-19 2001-06-26 Exxonmobil Upstream Research Company Ultra-high strength ausaged steels with excellent cryogenic temperature toughness
US6159312A (en) * 1997-12-19 2000-12-12 Exxonmobil Upstream Research Company Ultra-high strength triple phase steels with excellent cryogenic temperature toughness
US6254698B1 (en) 1997-12-19 2001-07-03 Exxonmobile Upstream Research Company Ultra-high strength ausaged steels with excellent cryogenic temperature toughness and method of making thereof
US6066212A (en) * 1997-12-19 2000-05-23 Exxonmobil Upstream Research Company Ultra-high strength dual phase steels with excellent cryogenic temperature toughness
US6212891B1 (en) * 1997-12-19 2001-04-10 Exxonmobil Upstream Research Company Process components, containers, and pipes suitable for containing and transporting cryogenic temperature fluids
GB2358873B (en) * 1998-12-19 2003-02-26 Exxonmobil Upstream Res Co Ultra-high strength triple phase steels with excellent cryogenic tempreature toughness
WO2000037689A1 (en) * 1998-12-19 2000-06-29 Exxonmobil Upstream Research Company Ultra-high strength triple phase steels with excellent cryogenic temperature toughness
GB2358873A (en) * 1998-12-19 2001-08-08 Exxonmobil Upstream Res Co Ultra-high strength triple phase steels with excellent cryogenic tempreature toughness
JP2002105533A (en) * 2000-09-26 2002-04-10 National Institute For Materials Science Method for manufacturing high-tensile steel with low yield ratio
JP4590532B2 (en) * 2000-09-26 2010-12-01 独立行政法人物質・材料研究機構 Production method of low yield ratio high strength steel
JP2008214646A (en) * 2007-02-28 2008-09-18 Jfe Steel Kk Thick steel plate for welded structure having superior resistance to fatigue crack propagation in plate thickness direction, and its manufacturing method
JP2020537047A (en) * 2017-10-11 2020-12-17 ポスコPosco Thick steel sheet with excellent low-temperature deformation aging impact characteristics and its manufacturing method
CN109112393A (en) * 2018-07-20 2019-01-01 首钢集团有限公司 A kind of 900MPa rank ATM machine anti-riot steel plate and its manufacturing method
KR20210080693A (en) * 2019-12-20 2021-07-01 주식회사 포스코 High strength steel sheet having excellent heat affected zone toughness and method for manufacturing the same
CN113667899A (en) * 2021-09-03 2021-11-19 太原理工大学 Method for producing 700MPa grade high-strength steel by finely dispersing precipitated phase particles
CN113667899B (en) * 2021-09-03 2022-07-19 太原理工大学 Method for producing 700MPa grade high-strength steel by finely dispersing precipitated phase particles

Also Published As

Publication number Publication date
JP3314295B2 (en) 2002-08-12

Similar Documents

Publication Publication Date Title
US7105066B2 (en) Steel plate having superior toughness in weld heat-affected zone and welded structure made therefrom
JP4022958B2 (en) High toughness thick steel plate with excellent weld heat affected zone toughness and method for producing the same
JP3314295B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
US20030131914A1 (en) Steel plate to be precipitating tinfor weleded structures, method for manufacturing the same, welding fabric using the same
JP3842836B2 (en) Method for producing high-tensile steel with excellent low-temperature toughness
JP3383148B2 (en) Manufacturing method of high strength steel with excellent toughness
JP3242303B2 (en) High-strength hot-rolled steel sheet having ultrafine grains and excellent in ductility, toughness, fatigue properties and strength-ductility balance, and method for producing the same
JP3290595B2 (en) Method for manufacturing high-tensile steel plate with excellent toughness and weldability
JP3261515B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
KR970009087B1 (en) Method for manufacturing strong and touch thick steel plate
JPH1171615A (en) Production of thick steel plate excellent in low temperature toughness
JPH07258788A (en) Production of thick steel plate excellent in brittle fracture propagation stop characteristic and low temperature toughness
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JP3246993B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JPH083635A (en) Production of steel plate excellent in toughness
JPH0629480B2 (en) Hot-rolled high-strength steel sheet excellent in strength, ductility, toughness, and fatigue characteristics, and method for producing the same
JP3635803B2 (en) Method for producing high-tensile steel with excellent toughness
JP2003034825A (en) Method for manufacturing high strength cold-rolled steel sheet
JP4116708B2 (en) Manufacturing method of fine grain structure steel
JP3348359B2 (en) Structural steel with excellent arrest performance and its manufacturing method
JP3502809B2 (en) Method of manufacturing steel with excellent toughness
JP3485737B2 (en) Manufacturing method of thick steel plate with excellent low temperature toughness
JPH05271770A (en) Manufacture of fine-grained thick steel plate
JP3863803B2 (en) High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue characteristics and method for producing the same
JP3502850B2 (en) High-efficiency manufacturing method for steel with excellent toughness

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120607

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130607

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130607

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130607

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130607

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130607

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees