JPH1171615A - Production of thick steel plate excellent in low temperature toughness - Google Patents

Production of thick steel plate excellent in low temperature toughness

Info

Publication number
JPH1171615A
JPH1171615A JP23365297A JP23365297A JPH1171615A JP H1171615 A JPH1171615 A JP H1171615A JP 23365297 A JP23365297 A JP 23365297A JP 23365297 A JP23365297 A JP 23365297A JP H1171615 A JPH1171615 A JP H1171615A
Authority
JP
Japan
Prior art keywords
rolling
temperature
range
toughness
thick steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23365297A
Other languages
Japanese (ja)
Inventor
Toshinaga Hasegawa
俊永 長谷川
Yukio Tomita
幸男 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP23365297A priority Critical patent/JPH1171615A/en
Publication of JPH1171615A publication Critical patent/JPH1171615A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a thick steel plate having a graded superfine-grained structure in which the average grain size is regulated to <= specified value and the degree of the mixing of the grains is small without requiring a complicated hot working or heat treating stage by subjecting a slab in which the chemical compsn. and the contents of P and S as impurities are specified to heating in a specified temp. range, starting finish rolling in hot rolling in a specified temp. range and executing rolling under specified conditions. SOLUTION: A slab having a chemical compsn. contg., by weight, 0.01 to 0.20% C, 0.03 to 1.0% Si, 0.30 to 2.0% Mn, 0.005 to 0.1% Al and 0.001 to 0.01% N, in which T1( deg.C) shown by formula I satisfies >=700 deg.C, the content of P is regulated to <=0.02% and that of S to <=0.01%, and the balance Fe is used. This slab is heated in the range of T2( deg.C)-100 deg.C to 1200 deg.C and at the time of hot rolling, finish rolling is started at 650 deg.C to T1( deg.C)+100 deg.C, rolling in which the draft per pass is regulated to 30 to 70% is included by one or more passes, and also, the rolling stage in which the cumulative draft is regulated to 50 to 95% is included.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低温靱性が必要と
される構造部材に用いられる厚鋼板の製造方法に関する
ものである。この方法で製造した鋼材は、例えば、海洋
構造物、圧力容器、造船、橋梁、建築物、ラインパイプ
などの溶接鋼構造物一般に用いることができるが、特
に、低温靱性を必要とする海洋構造物、造船等の構造物
用鋼板として有用である。また、その他、構造部材とし
て用いられ、低温靱性が要求される鋼管素材、あるいは
形鋼にも適用可能である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thick steel plate used for a structural member requiring low-temperature toughness. The steel material produced by this method can be used, for example, in general for welded steel structures such as offshore structures, pressure vessels, shipbuilding, bridges, buildings, and line pipes. In particular, offshore structures requiring low-temperature toughness It is useful as a steel plate for structures such as shipbuilding. In addition, the present invention is applicable to a steel pipe material or a shaped steel which is used as a structural member and requires low-temperature toughness.

【0002】[0002]

【従来の技術】厚鋼板は構造物用鋼として用いられるこ
とが多いため、構造物の安全性確保の観点から低温靱性
を要求される。厚鋼板において、低温靱性を向上させる
方法は種々提案されているが、Niのような高価な合金
元素を用いずに、他の特性劣化を生じることなく低温靱
性を向上させる方法としては、フェライト(以下αと称
す)粒径の微細化が代表的である。
2. Description of the Related Art Thick steel plates are often used as structural steels, and are required to have low-temperature toughness from the viewpoint of ensuring the safety of structures. Various methods for improving low-temperature toughness of steel plates have been proposed, but as a method of improving low-temperature toughness without using other expensive alloy elements such as Ni and causing other characteristic deterioration, ferrite ( (Hereinafter referred to as α).

【0003】α粒径の微細化方法として、従来から種々
の方法が提案されている。代表的な方法としては、例え
ば、特公昭49−7291号公報、特公昭57−210
07号公報、特公昭59−14535号公報等に開示さ
れているように、オーステナイト(以下γと称す)の未
再結晶温度域において制御圧延を行い、引き続いて加速
冷却を行うことによるγからαへの変態時にαを微細化
する方法がある。
Various methods have been conventionally proposed as a method for reducing the α particle size. Representative methods include, for example, JP-B-49-7291 and JP-B-57-210.
No. 07, JP-B-59-14535, etc., controlled rolling is performed in a non-recrystallization temperature region of austenite (hereinafter referred to as γ), and subsequently, accelerated cooling is performed to convert γ to α. There is a method of reducing α during transformation to α.

【0004】これらのような、γからαへの変態を利用
する方法では、γが粗大な場合は未再結晶域圧延の有効
活用によりγ/α変換比(変態前γ粒径/変態後α粒
径)を高めてαを微細化することが可能であるが、γ粒
径が微細な場合は、γ/α変換比は1に近づくため、α
の微細化は飽和してしまう。従って、γからαへの変態
を介したαの微細化による方法では、その程度はγの微
細化の程度に規制されるため、α粒径の飛躍的な微細化
は望めない。
In the method utilizing the transformation from γ to α as described above, when γ is coarse, the γ / α conversion ratio (γ particle size before transformation / α particle after transformation Particle size) can be increased to make α finer, but when the γ particle size is fine, the γ / α conversion ratio approaches 1, so α
The miniaturization becomes saturated. Therefore, in the method based on the refinement of α through the transformation from γ to α, the degree is controlled by the degree of refinement of γ.

【0005】これを解決するために、制御圧延の温度域
をγ/α二相域にまで拡大した、いわゆる二相域圧延に
よる強度・靱性改善技術も提案されている。例えば、特
公昭58−5967号公報では、成分や圧下条件の工夫
等により二相域圧延により靱性の向上を図る技術が提案
されている。しかし、これら従来の二相域圧延技術で
は、α粒径は制御圧延で得られるα粒径と同程度であ
り、実質的には、セパレーションと呼ばれる主として集
合組織に起因して破壊時に鋼板表面に平行に生じる層状
割れの発生による3軸応力の低減効果を用いて靱性の向
上が図られている。しかし、セパレーションはシャルピ
ー試験の破面遷移温度の低下には有効ではあるが、その
程度にも限度があり、さらに、吸収エネルギーの低下を
招くため、その利用には限界がある。
In order to solve this problem, there has been proposed a technique for improving the strength and toughness by so-called two-phase rolling, in which the temperature range of controlled rolling is expanded to a γ / α two-phase range. For example, Japanese Patent Publication No. 58-5967 proposes a technique for improving the toughness by two-phase rolling by devising components and rolling conditions. However, in these conventional two-phase rolling technologies, the α grain size is almost the same as the α grain size obtained by controlled rolling, and is substantially applied to the steel sheet surface at the time of fracture mainly due to texture called separation. Toughness is improved by using the effect of reducing triaxial stress due to the occurrence of layered cracks occurring in parallel. However, although separation is effective in lowering the fracture transition temperature in the Charpy test, it is limited in its degree, and furthermore, it causes a reduction in absorbed energy, so its use is limited.

【0006】また、圧延等の熱間加工によらずに熱処理
によってα粒径の微細化を図る方法も提案されている。
例えば、〔鉄と鋼、第77年、第1号、1991、第1
71〜178頁〕に示されているように、V、Nを通常
よりも多量に添加することによりγの微細化を図るとと
もに、変態時のγ/α変換比を増大させて、焼きならし
処理で微細なα組織とする方法が開発されている。
There has also been proposed a method of reducing the α grain size by heat treatment without using hot working such as rolling.
For example, [Iron and Steel, 77th year, No. 1, 1991, No. 1
71 to 178], V and N are added in a larger amount than usual to reduce γ and increase the γ / α conversion ratio during transformation to normalize. A method of forming a fine α-structure by processing has been developed.

【0007】さらに、〔材料とプロセス、第3年、第6
号、1990、第1796頁〕においては、γ/α変態
の繰り返しを含む複雑な加工熱処理により、粒径が3μ
m以下の超細粒鋼を得る方法が提案されている。この方
法は、制御圧延後、加速冷却を行い、500℃程度で加
速冷却を停止した後、室温まで冷却することなく900
℃に再加熱し、所定の温度で熱間圧延を行うことにより
超細粒鋼を得るものである。
Further, [Materials and Processes, 3rd year, 6th
No. 1990, pp. 1796], the particle size was 3 μm due to complicated working heat treatment including repetition of γ / α transformation.
A method for obtaining ultrafine-grained steel having a diameter of m or less has been proposed. In this method, after controlled rolling, accelerated cooling is performed, accelerated cooling is stopped at about 500 ° C., and then 900 ° C. without cooling to room temperature.
C., and hot-rolled at a predetermined temperature to obtain ultrafine-grained steel.

【0008】[0008]

【発明が解決しようとする課題】以上のように、従来か
ら、種々細粒化の試みはなされているが、〔鉄と鋼、第
77年、第1号、1991、第171〜178頁〕に示
されているような、V、Nを通常よりも多量に添加する
ことによりγの微細化を図るとともに、変態時のγ/α
変換比を増大させて、焼きならし処理で微細なα組織と
する方法で微細なα組織を得るためには、Vを0.1%
以上、Nも0.01%以上添加する必要があり、到達で
きるα粒径も5μm程度である。
As described above, various attempts have been made to reduce the grain size. [Iron and Steel, 77th year, No. 1, 1991, pp. 171-178] As shown in the above, V and N are added in larger amounts than usual to achieve a finer γ, and at the time of transformation γ / α
In order to increase the conversion ratio and obtain a fine α-structure by a normalizing process to obtain a fine α-structure, V is 0.1%
As described above, N must be added in an amount of 0.01% or more, and the attainable α particle size is about 5 μm.

【0009】あるいは、〔材料とプロセス、第3年、第
6号、1990、第1796頁〕において示されてい
る、γ/α変態の繰り返しを含む複雑な加工熱処理によ
り粒径が3μm以下の超細粒鋼を得る方法は、制御圧延
後、加速冷却を行い、500℃程度で加速冷却を停止し
た後、室温まで冷却することなく900℃に再加熱し、
所定の温度で熱間圧延を行うことにより超細粒鋼を得る
方法であり、α粒径は冷却停止温度の影響を強く受け、
冷却停止温度が500℃のごく近傍以外では粒径が3μ
m以下の超細粒αは得られておらず、工業的に安定して
製造することは困難であると考えられる。
Alternatively, a complicated working heat treatment including repetition of γ / α transformation shown in [Materials and Processes, 3rd year, No. 6, 1990, p. The method of obtaining fine-grained steel is to perform accelerated cooling after controlled rolling, stop accelerated cooling at about 500 ° C, and then reheat to 900 ° C without cooling to room temperature.
This is a method of obtaining ultra-fine grained steel by performing hot rolling at a predetermined temperature, and the α grain size is strongly affected by the cooling stop temperature,
The particle size is 3μ except when the cooling stop temperature is very close to 500 ° C.
m or less is not obtained, and it is considered that it is difficult to stably produce it industrially.

【0010】従って、上記従来方法では、いずれも生産
性の劣化や熱処理工程の増加、さらには合金元素の増加
等、コスト高が避けられない。また、安定して得られる
α粒径は一部の実験的手法を除けば10μm程度、厳密
に制御された複雑な工程によっても5μm程度が限界で
あり、5μm未満のαの微細化は工業的に実現されてい
ない。
[0010] Therefore, in the above-mentioned conventional methods, cost increases are unavoidable in all cases, such as deterioration in productivity, increase in heat treatment steps, and increase in alloy elements. Also, the α particle size that can be obtained stably is about 10 μm except for some experimental methods, and the limit is about 5 μm even by a strictly controlled complicated process. Has not been realized.

【0011】本発明は、高価な合金元素の添加や、生産
性の劣る複雑な熱間加工あるいは熱処理工程を必要とせ
ず、平均α粒径が2μm以下でかつ混粒度が小さい整粒
の超細粒α組織を有し、2mmVノッチシャルピー衝撃
特性だけでなく、脆性き裂の伝播停止特性にも優れた、
低温靱性に優れた厚鋼板の製造方法を提供することを目
的とするものである。
The present invention does not require the addition of expensive alloying elements or the complicated hot working or heat treatment steps with low productivity, and the sized ultrafine particles having an average α particle size of 2 μm or less and a small mixed particle size. It has a grain α structure and is excellent not only in 2 mm V notch Charpy impact characteristics but also in brittle crack propagation stopping characteristics,
It is an object of the present invention to provide a method for manufacturing a thick steel plate having excellent low-temperature toughness.

【0012】[0012]

【課題を解決するための手段】本発明者らは、従来の代
表的細粒化方法であるオーステナイト(γ)/フェライ
ト(α)変態では限界があることから、初めてαの熱間
加工によるαの回復・再結晶を利用する方法に注目し、
αの熱間加工挙動を詳細に調査することにより、αの超
細粒化のための手段を見出し、本発明を創案したもので
ある。本発明者らは、既に、特開平8−60239号公
報あるいは特願平8−291294号でγ域およびγ/
α二相域における加熱・熱間圧延条件の最適化によりα
の加工・再結晶粒径を超微細化する手段を開示している
が、いずれも二相域圧延に入る前の組織の一定以上の微
細化が必要であり、そのための熱処理や圧延が必須とな
るものであった。本発明は、さらにαの加工・再結晶条
件の冶金的原理の研究を進めた結果、αへの加工の加え
方により、再結晶挙動が異なり、累積圧下率だけでな
く、各圧延パスの加工条件を適正化することによって、
鋳造ままの鋼片を用いて、前組織微細化のための手段を
講じることなく、直接に二相域〜α域加工を行っても超
細粒化が可能であり、かつ一層の均一超細粒化と異方性
の減少とが図られることを見出し、発明に至ったもので
あり、その要旨とするところは、以下に示すとおりであ
る。
Means for Solving the Problems The present inventors have found that there is a limit in the austenite (γ) / ferrite (α) transformation, which is a conventional typical grain refining method, and for the first time α Focus on the method of utilizing the recovery and recrystallization of
By investigating the hot working behavior of α in detail, a means for ultrafine graining of α was found, and the present invention was devised. The present inventors have already disclosed in Japanese Patent Application Laid-Open No. 8-60239 or Japanese Patent Application No. 8-291294 a γ region and γ /
α by optimizing the heating and hot rolling conditions in the two-phase region
Means for ultra-fine processing and recrystallization grain size is disclosed, but it is necessary to refine at least a certain level of microstructure before entering the dual phase rolling, heat treatment and rolling for it is essential It was something. The present invention further researched the metallurgical principle of the processing and recrystallization conditions of α, and as a result, the recrystallization behavior was different depending on the way of processing to α, and not only the cumulative draft, but also the processing of each rolling pass By optimizing the conditions,
Using as-cast steel slabs, it is possible to achieve ultra-fine graining even if the two-phase region to α-region processing is performed directly, without taking measures for refining the pre-structure, and further uniform ultra-fine graining is possible. The present inventors have found that granulation and reduction of anisotropy can be achieved, and have reached the invention. The gist of the invention is as follows.

【0013】(1)重量%で、C:0.01〜0.20
%、Si:0.03〜1.0%、Mn:0.30〜2.
0%、Al:0.005〜0.1%、N:0.001〜
0.01%を含有し、かつ、(1)式で示されるT1
(℃)がT1(℃)≧700℃となる化学組成を有し、
不純物としてのP、Sの含有量が、P:0.02%以
下、S:0.01%以下で、残部Feおよび不可避不純
物からなる鋼片を(2)式で示されるT2(℃)−10
0℃〜1200℃の範囲に加熱し、熱間圧延により鋼板
を製造するに際して、仕上圧延として650℃〜T1
(℃)+100℃で開始し、1パスあたりの圧下率が3
0〜70%の圧延を1パス以上含み、かつ累積圧下率が
50〜95%であるような圧延工程を含むことを特徴と
する低温靱性に優れた厚鋼板の製造方法。
(1) C: 0.01 to 0.20% by weight
%, Si: 0.03-1.0%, Mn: 0.30-2.
0%, Al: 0.005 to 0.1%, N: 0.001 to
T1 containing 0.01% and represented by the formula (1)
(C) has a chemical composition such that T1 (C) ≥ 700C,
When the contents of P and S as impurities are P: 0.02% or less and S: 0.01% or less, a steel slab composed of the balance of Fe and inevitable impurities is expressed by T2 (° C.) 10
When heating to a temperature in the range of 0 ° C to 1200 ° C and producing a steel sheet by hot rolling, finish rolling is performed at 650 ° C to T1.
(° C) + 100 ° C, reduction rate per pass is 3
A method for producing a thick steel sheet having excellent low-temperature toughness, characterized by including a rolling step in which rolling of 0 to 70% is included in one or more passes and a cumulative draft is 50 to 95%.

【0014】 T1(℃)=750.8−26.6・C%+17.6・Si%−11.6・M n%−22.6・Cu%−23.0・Ni%+24.1・Cr%+22.5・M o%−39.7・V%−5.7・Ti%+232.6・Nb%−169.4・A l%−894.7・B% …… (1) T2(℃)=937.2−476.5・C%+56.0・Si%−19.7・ Mn%−16.3・Cu%−26.6・Ni%−4.9・Cr%+38.1・M o%+124.8・V%+136.3・Ti%−19.1・Nb%+198.4 ・Al%+3315.0・B% …… (2) (2)重量%で、C:0.01〜0.20%、Si:
0.03〜1.0%、Mn:0.30〜2.0%、A
l:0.005〜0.1%、N:0.001〜0.01
%を含有し、かつ、(2)式で示されるT2(℃)が9
00℃≧T2(℃)≧800℃となる化学組成を有し、
不純物としてのP、Sの含有量が、P:0.02%以
下、S:0.01%以下で、残部Feおよび不可避不純
物からなる鋼片を(2)式で示されるT2(℃)−50
℃〜1200℃の範囲に加熱し、熱間圧延により鋼板を
製造するに際して、仕上圧延としてT2(℃)−100
℃〜T2(℃)−20℃で開始し、1パスあたりの圧下
率が30〜70%の圧延を1パス以上含み、かつ累積圧
下率が50〜95%であるような圧延工程を含むことを
特徴とする低温靱性に優れた厚鋼板の製造方法。
T1 (° C.) = 750.8−26.6 · C% + 17.6 · Si% −11.6 · Mn% −22.6 · Cu% −23.0 · Ni% + 24.1 · Cr% + 22.5.Mo% -39.7.V% -5.7.Ti% + 232.6.Nb% -169.4.A1% -894.7.B% (1) T2 (° C.) = 937.2−476.5 · C% + 56.0 · Si% −19.7 · Mn% −16.3 · Cu% −26.6 · Ni% −4.9 · Cr% + 38. 1 · Mo% + 124.8 · V% + 136.3 · Ti% −19.1 · Nb% + 198.4 · Al% + 3315.0 · B% (2) (2) By weight%, C: 0.01 to 0.20%, Si:
0.03 to 1.0%, Mn: 0.30 to 2.0%, A
l: 0.005 to 0.1%, N: 0.001 to 0.01
%, And T2 (° C.) represented by the formula (2) is 9%.
Having a chemical composition such that 00 ° C ≧ T2 (° C) ≧ 800 ° C,
When the contents of P and S as impurities are P: 0.02% or less and S: 0.01% or less, a steel slab composed of the balance of Fe and inevitable impurities is expressed by T2 (° C.) 50
When the steel sheet is manufactured by heating to a temperature in the range of 1 to 1200 ° C. and hot rolling, T2 (° C.)-100 is used as finish rolling.
C. to T2 (° C.) to start at -20 ° C., including a rolling step in which rolling at a rolling reduction of 30 to 70% per pass is included in one or more passes and cumulative rolling reduction is 50 to 95%. A method for producing a thick steel plate having excellent low-temperature toughness characterized by the following.

【0015】 T2(℃)=937.2−476.5・C%+56.0・Si%−19.7・ Mn%−16.3・Cu%−26.6・Ni%−4.9・Cr%+38.1・M o%+124.8・V%+136.3・Ti%−19.1・Nb%+198.4 ・Al%+3315.0・B% …… (2) (3)圧延終了後の鋼板を5〜40℃/sの冷却速度で
20〜600℃まで加速冷却することを特徴とする前記
(1)または(2)記載の低温靱性に優れた厚鋼板の製
造方法。
T2 (° C.) = 937.2−476.5 · C% + 56.0 · Si% −19.7 · Mn% −16.3 · Cu% −26.6 · Ni% −4.9 · Cr% + 38.1 · Mo% + 124.8 · V% + 136.3 · Ti% −19.1 · Nb% + 198.4 · Al% + 3315.0 · B% (2) (3) Rolling completed The method for producing a thick steel sheet excellent in low-temperature toughness according to the above (1) or (2), wherein the subsequent steel sheet is accelerated and cooled at a cooling rate of 5 to 40 ° C./s to 20 to 600 ° C.

【0016】(4)450℃以上、T1(℃)以下で焼
戻しを行うことを特徴とする前記(1)〜(3)のいず
れかに記載の低温靱性に優れた厚鋼板の製造方法。 (5)重量%で、Cr:0.01〜1.0%、Ni:
0.01〜3.0%、Mo:0.01〜1.00%、C
u:0.01〜1.5%よるなる群、Ti:0.003
〜0.10%、V:0.005〜0.50%、Nb:
0.003〜0.10%、Zr:0.003〜0.10
%、Ta:0.005〜0.20%、W:0.01〜
2.0%よりなる群、およびB:0.0003〜0.0
020%よりなる群の少なくとも1群の中から1種また
は2種以上をさらに含有することを特徴とする前記
(1)〜(4)のいずれかに記載の低温靱性に優れた厚
鋼板の製造方法。
(4) The method for producing a thick steel sheet excellent in low-temperature toughness according to any one of the above (1) to (3), wherein tempering is performed at 450 ° C. or more and T1 (° C.) or less. (5) Cr: 0.01-1.0%, Ni:
0.01-3.0%, Mo: 0.01-1.00%, C
u: group consisting of 0.01 to 1.5%, Ti: 0.003
-0.10%, V: 0.005-0.50%, Nb:
0.003-0.10%, Zr: 0.003-0.10
%, Ta: 0.005 to 0.20%, W: 0.01 to
A group consisting of 2.0%, and B: 0.0003 to 0.0
The production of a thick steel sheet excellent in low-temperature toughness according to any one of the above (1) to (4), further comprising one or more of at least one of a group consisting of 020%. Method.

【0017】(6)重量%で、Mg:0.0005〜
0.01%、Ca:0.0005〜0.01%、RE
M:0.005〜0.10%のうち1種または2種以上
をさらに含有することを特徴とする前記(1)〜(5)
のいずれかに記載の低温靱性に優れた厚鋼板の製造方
法。
(6) Mg: 0.0005 to 5% by weight
0.01%, Ca: 0.0005 to 0.01%, RE
M: one or more of 0.005 to 0.10% of the above (1) to (5).
The method for producing a thick steel sheet having excellent low-temperature toughness according to any one of the above.

【0018】[0018]

【発明の実施の形態】以下に、本発明について詳細に説
明する。本発明は従来達成レベルを凌駕するαの細粒化
の手段として、初めて加工αの回復・再結晶による方法
を用いている点に特徴を有する。即ち、従来の二相域圧
延技術では、二相域圧延によりαに導入された歪は集合
組織の発達および強化に働いているが、αの細粒化に対
しては積極的には用いられていなかったのに対して、本
発明では、γ/α二相域圧延で導入される加工歪により
加工αの回復・再結晶を極限的に図り、αの超細粒化を
図るものである。生産性を阻害せず、かつ均一な整細粒
とする観点から、加工後のαの回復・再結晶は従来の再
加熱処理のような方法ではなく、圧延後の冷却中、好ま
しくは圧延中あるいは圧延直後に生じさせる方が有利と
なる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. The present invention is characterized in that a method of recovering and recrystallizing the processed α is used for the first time as a means of refining α that exceeds the conventionally achieved level. In other words, in the conventional two-phase zone rolling technology, the strain introduced into α by two-phase zone rolling acts on the development and strengthening of the texture, but is actively used for the grain refinement of α. On the other hand, according to the present invention, the recovery and recrystallization of the processed α is extremely limited by the processing strain introduced in the γ / α dual-phase rolling, thereby achieving ultra-fine graining of α. . From the viewpoint of not hindering the productivity, and from the viewpoint of uniform fine granulation, the recovery and recrystallization of α after processing is not a method such as the conventional reheating treatment, but during cooling after rolling, preferably during rolling. Alternatively, it is more advantageous to generate it immediately after rolling.

【0019】本発明者らは、先に、特開平8−6023
9号公報に示すように、圧延によるαの超細粒化条件を
検討し、変態前のγ粒径を50μm以下とした上で、二
相域圧延時のαの割合を50%以上確保することで平均
粒径が3μm以下の超細粒組織が達成できることを知見
した。そして、さらに、特願平8−291294号にお
いては、凝固組織を微細化した上で二相域に再加熱・圧
延を行うことにより、一層の均一超細粒化を可能とする
手段を提案している。
The present inventors have previously disclosed in Japanese Patent Application Laid-Open No. Hei 8-6023
As shown in Japanese Patent Publication No. 9, the conditions for ultra-fine graining of α by rolling are examined, the γ grain size before transformation is reduced to 50 μm or less, and the ratio of α during two-phase region rolling is secured to 50% or more. As a result, it has been found that an ultrafine grain structure having an average particle size of 3 μm or less can be achieved. Further, Japanese Patent Application No. 8-291294 proposes a means for further refining the solidified structure and then performing reheating and rolling in the two-phase region to enable further uniform ultrafine graining. ing.

【0020】これらの発明の共通する要件は、αへ加工
を加える前のα粒径に代表される組織の微細化が必須で
ある点である。先に提案した特開平8−60239号公
報の場合は、γ域での圧延の最適化により変態後の組織
を微細化させ、また、特願平8−291294号の場合
は、二相域加熱前の鋼片組織の微細化処理を施してい
る。従って、前者ではγ域圧延を行うために生産能率
(T/H)の若干の低下が、また後者では製造工程の増
加が避けられない。
A common requirement of these inventions is that it is essential to refine the structure represented by the α grain size before processing α. In the case of Japanese Patent Application Laid-Open No. Hei 8-60239, the structure after transformation is refined by optimizing the rolling in the γ range. In the case of Japanese Patent Application No. 8-291294, the two-phase region heating is performed. The microstructure of the previous billet structure has been applied. Therefore, in the former case, the production efficiency (T / H) is slightly decreased due to the γ-range rolling, and in the latter case, the production process is inevitably increased.

【0021】本発明は、αへ直接加工を加えることによ
るα粒径の超細粒化を利用する点では基本的には先に提
案したものと同じであるが、累積圧下率だけでなく、各
圧延パスの加工条件を適正化することによって、αを加
工する前の組織微細化を考慮することなく、αの超細粒
化を達成できるものであり、先に提案した方法に比べて
より単純なプロセスで実現でき、その工業的な利点は明
白である。さらに、本発明によれば、先に提案した方法
以上の超細粒化が望め、かつ異方性の減少をも図ること
ができる。
The present invention is basically the same as the previously proposed one in utilizing the ultrafine graining of the α particle size by directly processing α, but not only the cumulative rolling reduction, By optimizing the processing conditions of each rolling pass, it is possible to achieve ultra-fine graining of α without considering the microstructural refinement before processing α. It can be realized with a simple process, and its industrial advantages are obvious. Further, according to the present invention, it is possible to achieve ultrafine graining more than the method proposed above, and it is possible to reduce anisotropy.

【0022】本発明の基本的な要件は、本発明の成分、
製造工程の範囲における加熱変態点、Ac1 、Ac3
態点の実験から求めた推定値、T1、T2の二つの温度
を基準とした以下の2種類の方法にある。 T1(℃)=750.8−26.6・C%+17.6・Si%−11.6・M n%−22.6・Cu%−23.0・Ni%+24.1・Cr%+22.5・M o%−39.7・V%−5.7・Ti%+232.6・Nb%−169.4・A l%−894.7・B% …… (1) T2(℃)=937.2−476.5・C%+56.0・Si%−19.7・ Mn%−16.3・Cu%−26.6・Ni%−4.9・Cr%+38.1・M o%+124.8・V%+136.3・Ti%−19.1・Nb%+198.4 ・Al%+3315.0・B% …… (2) 即ち、前記(1)の方法は、(1)式で示されるT1
(℃)が700℃以上であるような化学組成を有する鋼
片を(2)式で示されるT2(℃)に基づいて、T2
(℃)−100℃以上1200℃以下に加熱し、熱間圧
延により鋼板を製造するに際して、仕上圧延として圧延
を650℃以上T1(℃)+100℃以下で開始し、1
パスあたりの圧下率が30〜70%の圧延を1パス以上
含み、かつ累積圧下率が50〜95%であるような圧延
を行うことである。
The basic requirements of the present invention are the components of the present invention,
There are the following two methods based on two temperatures, T1 and T2, which are estimated values obtained from experiments of the heating transformation point, the Ac 1 and Ac 3 transformation points in the range of the manufacturing process. T1 (° C.) = 750.8−26.6 · C% + 17.6 · Si% −11.6 · Mn% −22.6 · Cu% −23.0 · Ni% + 24.1 · Cr% + 22 5.5 · Mo% -39.7 · V% -5.7 · Ti% + 232.6 · Nb% −169.4 · Al% −894.7 · B% (1) T2 (° C.) = 937.2-476.5.C% + 56.0.Si% -19.7.Mn% -16.3.Cu% -26.6.Ni% -4.9.Cr% + 38.1.M o% + 124.8 · V% + 136.3 · Ti% −19.1 · Nb% + 198.4 · Al% + 3315.0 · B% (2) That is, the method of (1) is based on (1) T1 shown by the equation)
A steel slab having a chemical composition such that (° C.) is 700 ° C. or more is converted into T2 based on T2 (° C.) represented by the equation (2).
(° C.) Heating to −100 ° C. or more and 1200 ° C. or less, and when producing a steel sheet by hot rolling, rolling as finish rolling is started at 650 ° C. or more and T1 (° C.) + 100 ° C. or less.
Rolling is performed in such a manner that rolling including a rolling reduction of 30 to 70% per pass is included in one or more passes and the cumulative rolling reduction is 50 to 95%.

【0023】また、前記(2)の方法は、T2(℃)が
800〜900℃の範囲にあるような化学組成を有する
鋼片をT2(℃)−50℃以上1200℃以下に加熱
し、熱間圧延により鋼板を製造するに際して、仕上圧延
として圧延をT2(℃)−100℃以上T2(℃)−2
0℃以下で開始し、1パスあたりの圧下率が30〜70
%の圧延を1パス以上含み、かつ累積圧下率が50〜9
5%であるような圧延を行うことである。
In the method (2), a slab having a chemical composition such that T2 (° C.) is in a range of 800 to 900 ° C. is heated to T2 (° C.) of -50 ° C. or more and 1200 ° C. or less, When producing a steel sheet by hot rolling, rolling is performed as finish rolling at T2 (° C.)-100 ° C. or more and T2 (° C.)-2.
Starting at 0 ° C or less, reduction rate per pass is 30-70
% Rolling in one or more passes and the cumulative rolling reduction is 50-9.
Rolling that is 5%.

【0024】先ず、第1の方法において、加工前組織の
如何によらず超細粒化するためには、熱間圧延に際し
て、1パスあたりの圧下率が30〜70%の圧延を1パ
ス以上含み、かつ累積圧下率が50〜95%であるよう
な圧延を行うことが必須であるが、その際、αを加工す
る温度は高い方が好ましい。そのためには、先ず、α/
γの二相域に再加熱するか、あるいはγ域に加熱後、冷
却中にαを生成させる必要がある。その熱間圧延におい
て、αを加工する温度域が低いとαの回復・再結晶によ
る超細粒化が十分に達成されない。
First, in the first method, in order to make ultra-fine grains irrespective of the microstructure before working, in hot rolling, rolling at a rolling reduction of 30 to 70% per pass is performed for one pass or more. It is essential to perform rolling so that the rolling rate is included and the cumulative draft is 50 to 95%. In this case, the temperature for processing α is preferably higher. For that purpose, first, α /
It is necessary to reheat to the two-phase region of γ, or to generate α during cooling after heating to the γ region. In the hot rolling, if the temperature range for processing α is low, ultra-fine graining by recovery and recrystallization of α cannot be sufficiently achieved.

【0025】このようなことから、αを高温で安定的に
確保するためには、組成、製造条件の両面での配慮が必
要で、詳細な実験により得られた要件が、(1)式で示
されるT1(℃)が700℃以上であるような化学組成
を有する鋼片を(2)式で示されるT2(℃)に基づい
て、T2(℃)−100℃以上1200℃以下に加熱す
ることである。T1(℃)が700℃未満の加熱変態点
の低い組成の鋼では、二相域加熱により所望のα/γ比
率を得ようとする場合、あるいはγ域に加熱後冷却中に
αを生成させる場合ともにαを高温で確保することが困
難なため、均一な超細粒化が望めない。また、圧延前の
鋼片の加熱温度として、二相域に再加熱する場合は、A
3 変態点に相当するT2から100℃超低温である
と、αを回復・再結晶させるのに十分な温度確保が困難
であるため、加熱温度の下限はT2(℃)−100℃と
する必要がある。また、γ単相域に加熱後、冷却中に生
成するαの加工によって超細粒化することも本発明のよ
うに圧延の各パスの圧下率を適正化する場合は可能であ
るが、加熱γ粒径が過大であると超細粒化には不利とな
るため、また、圧延までの待ち時間が不要に長くなる場
合も生じるため、加熱温度の上限は1200℃とする。
From the above, in order to stably secure α at a high temperature, consideration must be given to both the composition and the manufacturing conditions, and the requirement obtained by a detailed experiment is as follows. A steel slab having a chemical composition such that T1 (° C.) shown is 700 ° C. or more is heated to T2 (° C.)-100 ° C. or more and 1200 ° C. or less based on T2 (° C.) shown in Formula (2). That is. In the case of steel having a low T1 (° C.) lower than 700 ° C. and having a low transformation point, when a desired α / γ ratio is to be obtained by heating in the two-phase region, or α is generated in the γ region during cooling after heating. In both cases, it is difficult to secure α at a high temperature, so that uniform ultrafine graining cannot be expected. When the slab before rolling is heated to the two-phase region as the heating temperature of the slab, A
When the T2 corresponding to c 3 transformation point is 100 ° C. cryogenic, since it is difficult to sufficient temperature secured to restore and recrystallization of the alpha, the lower limit of the heating temperature is required to be T2 (° C.) -100 ° C. There is. Further, after heating to the γ single phase region, it is possible to make ultra-fine grains by processing of α generated during cooling, as in the present invention, when optimizing the rolling reduction of each pass of rolling, but heating is possible. If the γ particle size is too large, it is disadvantageous for ultrafine graining, and the waiting time until rolling may be unnecessarily long. Therefore, the upper limit of the heating temperature is set to 1200 ° C.

【0026】以上のように、化学組成、加熱条件を規定
した上で、αを超細粒化するために、1パスあたりの圧
下率が30〜70%の圧延を1パス以上含み、かつ累積
圧下率が50〜95%であるような圧延を650℃〜T
1(℃)+100℃で開始する必要がある。従来技術の
ように前組織の微細化が図られていれば、圧延条件とし
ては累積圧下率のみを一定以上確保すればよいが、本発
明のように前組織によらず超細粒化するためには、1パ
スあたりの圧下率が30%以上の圧延を1パス以上含む
必要がある。このような大圧下を行うことで粗大な組織
が微細化される。そのための下限の圧下率は30%であ
る。この場合、加工率が大きいこと自体と加工発熱によ
り温度が上昇することでαの回復・再結晶が促進され、
組織の微細化が図られる。該圧下率は大きければ大きい
程、細粒化には好ましいが、過剰な加工発熱により再
結晶したα粒が粒成長して粗大化する、1パスの圧下
率が過大であると圧延機に負荷がかかりすぎる、鋼板
形状に悪影響を及ぼす、という3つの理由から、1パス
あたりの圧下率の上限は70%とする。
As described above, in order to ultra-fine-grain α after defining the chemical composition and the heating conditions, rolling at a rolling reduction of 30 to 70% per pass includes at least one pass, and Rolling at a rolling reduction of 50 to 95% at 650 ° C to T
It is necessary to start at 1 (° C.) + 100 ° C. If the prior structure is refined as in the prior art, as rolling conditions, only the cumulative draft may be secured to a certain level or more. , It is necessary to include one or more passes in which the rolling reduction per pass is 30% or more. By performing such a large reduction, a coarse structure is refined. The lowering rate of reduction for that is 30%. In this case, the recovery and recrystallization of α are promoted by increasing the temperature due to the large processing rate itself and the heat generated during processing,
The structure can be miniaturized. The higher the rolling reduction, the better the grain refinement, but the recrystallized α grains grow and become coarse due to excessive processing heat. For example, the upper limit of the rolling reduction per pass is set to 70% because of the following three reasons: excessive application of heat and bad influence on the shape of the steel sheet.

【0027】1パスの圧下率が30〜70%の圧延はα
粒径の微細化の目的から、圧延の初期の方が効果が大で
あり、また好ましいが、累積圧下率、圧延温度域が本発
明範囲であれば、圧延のどの段階で行っても必要な超細
粒組織は得られる。また、30〜70%圧下のパスも多
い方が好ましいが、最低1パス含まれていれば超細粒化
に支障はない。
Rolling with a rolling reduction of 30 to 70% in one pass is α
From the purpose of reducing the grain size, the effect is greater in the early stage of rolling, and it is preferable.However, if the rolling reduction is within the range of the present invention, it is necessary to perform the rolling at any stage. An ultrafine grain structure is obtained. Further, it is preferable that there are many passes under 30-70% pressure, but if at least one pass is included, there is no problem in ultra-fine graining.

【0028】上記の1パスの圧下率が30〜70%のパ
スを含んだ上で、累積圧下率は50〜95%、圧延開始
温度は650℃〜T1(℃)+100℃の範囲とするこ
とで初めて超細粒化する。圧延開始温度はαを回復・再
結晶させるために一定以上に高くする必要があり、実験
に基づいて650℃以上とした。また、圧延温度が高す
ぎると、加工される組織の主体がαでなくなり、平均粒
径が微細化しない上、一部粗大粒を含む混粒になる。α
主体とみなされる温度はAc1 変態点に相当するT1を
基準にすれば組成によらず一定となり、本発明において
は、実験に基づいて、T1(℃)+100℃をα主体と
なる温度として圧延開始温度の上限とした。
[0028] In addition to the above-mentioned pass including the pass of which the rolling reduction is 30 to 70%, the cumulative rolling reduction is 50 to 95%, and the rolling start temperature is in the range of 650 ° C to T1 (° C) + 100 ° C. Ultra-fine graining for the first time. The rolling start temperature needs to be higher than a certain value in order to recover and recrystallize α, and was set to 650 ° C. or higher based on experiments. On the other hand, if the rolling temperature is too high, the main component of the structure to be processed will not be α, and the average grain size will not be reduced, and the mixed grains will include some coarse grains. α
The temperature regarded as the main component is constant irrespective of the composition based on T1 corresponding to the Ac 1 transformation point. In the present invention, based on experiments, T1 (° C.) + 100 ° C. is set as the temperature at which α is the main component. The upper limit of the starting temperature was set.

【0029】以上のような1パスの圧下率、圧延温度条
件において、累積圧下率が50%未満ではその他の条件
を満足していても回復・再結晶が十分でなく、また、回
復・再結晶後のα粒径も3μm以下にならないため、累
積圧下率は50%以上が必要である。累積圧下率は大き
ければ大きい程、超細粒化には有利であるが、95%を
超える圧延を行っても超細粒化の程度は飽和する上に、
累積圧下率が95%超では鋼片厚や最終板厚の範囲が大
幅に限定されて実用的でないため、本発明では累積圧下
率の上限を95%に限定する。
In the above-described one-pass rolling reduction and rolling temperature conditions, if the cumulative rolling reduction is less than 50%, recovery / recrystallization is not sufficient even if other conditions are satisfied, and recovery / recrystallization is not performed. Since the subsequent α particle size does not become 3 μm or less, the cumulative draft must be 50% or more. The greater the cumulative rolling reduction, the more advantageous for ultra-fine graining. However, even if rolling exceeds 95%, the degree of ultra-fine graining is saturated,
If the cumulative rolling reduction exceeds 95%, the range of the thickness of the slab and the final sheet thickness is significantly limited and is not practical. Therefore, in the present invention, the upper limit of the cumulative rolling reduction is limited to 95%.

【0030】次に、前記(2)の方法においては、超細
粒化が可能な化学組成と加熱温度、圧延開始温度の範囲
が第1の方法と異なる。即ち、Ac3 変態点に相当する
T2を基準としたときに、T2(℃)が800〜900
℃の範囲にある鋼片をT2(℃)−50℃以上1200
℃以下に加熱し、熱間圧延により鋼板を製造するに際し
て、圧延をT2(℃)−100℃以上T2(℃)−20
℃以下で開始する。ただし、前記(2)の方法は、前記
(1)の方法を若干変更したもので、超細粒化の思想と
してはほぼ同義である。即ち、前記(1)の方法はαを
直接加工する仕上圧延前にα主体組織とすることを前提
として超細粒化のための製造条件を規定したものである
が、前記(2)の方法は仕上圧延に入る段階でのα比率
が少ない場合も許容するためのもので、圧延中にαが生
成して圧延の途中段階でα主体組織となるような場合で
の超細粒化条件を示したものである。
Next, the method (2) is different from the first method in the range of the chemical composition capable of ultrafine graining, the heating temperature, and the rolling start temperature. That is, T2 (° C.) is 800 to 900 on the basis of T2 corresponding to the Ac 3 transformation point.
Steel slab in the range of ℃ is T2 (℃) -50 ℃ or more 1200
When the steel sheet is manufactured by heating to a temperature of not more than 100 ° C. and hot rolling, the rolling is performed at T2 (° C.)-100 ° C. or more and T2 (° C.)-20
Start below ℃. However, the method (2) is a slight modification of the method (1), and has almost the same concept as the concept of ultrafine graining. That is, in the method (1), the production conditions for ultra-fine graining are defined on the assumption that an α-based structure is formed before finish rolling in which α is directly processed. Is to allow the case where the α ratio is small at the stage of finishing rolling, and the condition of ultra-fine graining in the case where α is generated during rolling and becomes α main structure in the middle stage of rolling. It is shown.

【0031】前記(2)の方法において、T2で表して
900℃≧T2≧800℃となる化学組成としたのは圧
延中でのα生成が容易な組成とするためで、T2が80
0℃未満の組成では圧延中のαの生成が十分でない。ま
た、T2が高い組成であればある程、αの生成は容易で
はあるが、実用的にはT2が900℃以下の組成であれ
ば超細粒化の条件を満足できるので、上限を900℃と
した。
In the method (2), the chemical composition represented by T2 and satisfying 900 ° C. ≧ T2 ≧ 800 ° C. is a composition in which α can be easily generated during rolling.
If the composition is lower than 0 ° C., the generation of α during rolling is not sufficient. The higher the composition of T2, the easier the generation of α is. However, in practice, if the composition of T2 is 900 ° C. or less, the condition of ultrafine graining can be satisfied. And

【0032】また、前記(2)の方法では加熱温度の下
限をT2(℃)−50℃としている。これは、(2)の
方法では圧延中のαの生成を前提としているため、前記
(1)の方法における二相域加熱温度のように低温にす
る必要がないためで、900℃≧T2≧800℃となる
化学組成において、後述する圧延開始温度を前提とした
場合に二相域加熱で超細粒化が安定に達成される温度と
して、実験結果に基づいて限定した。上限の1200℃
は第1の方法の限定理由と同じであ前記(2)の方法で
圧延開始温度をT2(℃)−100℃〜T2(℃)−2
0℃としたのは、上記条件で鋼片を加熱した場合に圧延
開始温度がT2(℃)−100℃未満であると、αの回
復・再結晶が十分進行せず、従って超細粒化が不十分と
なるためであり、一方、T2(℃)−20℃超である
と、圧延温度域が高温となり、再結晶したαの粒成長が
生じて、平均粒径の粗大化、混粒組織の顕在化が生じる
可能性が大となるためである。このため、本発明におい
ては、圧延開始温度範囲をT2(℃)−100℃〜T2
(℃)−20℃とした。
In the method (2), the lower limit of the heating temperature is T2 (° C.)-50 ° C. This is because the method (2) is premised on the formation of α during rolling, so that it is not necessary to lower the temperature as in the two-phase zone heating temperature in the method (1). At a chemical composition of 800 ° C., the temperature at which ultra-fine graining is stably achieved by heating in the two-phase region is limited based on experimental results, assuming a rolling start temperature described later. 1200 ℃ upper limit
Is the same as the limitation reason of the first method, and the rolling start temperature is set to T2 (° C.)-100 ° C. to T2 (° C.)-2 by the method (2).
The reason why the temperature is set to 0 ° C. is that when the slab is heated under the above conditions and the rolling start temperature is lower than T2 (° C.)-100 ° C., the recovery and recrystallization of α do not sufficiently proceed, and therefore, ultrafine graining On the other hand, if T2 (° C.) is more than −20 ° C., the rolling temperature range becomes high, recrystallized α grains grow, and the average grain size becomes coarse, and the mixed grains become large. This is because there is a high possibility that the tissue will be revealed. Therefore, in the present invention, the rolling start temperature range is T2 (° C) -100 ° C to T2.
(° C.) −20 ° C.

【0033】なお、本発明においては圧延開始温度のみ
を規定しているが、本発明の加熱条件、圧下条件の範囲
であれば、圧延開始温度を規制すれば圧延終了温度は超
細粒化を阻害しない温度範囲内に必然的に収まる。ただ
し、加熱の不均一等により、圧延終了温度が過大に上昇
すると超細粒化が達成されない場合も生じるため、好ま
しくは、圧延終了温度はT2(℃)−20℃以下に限定
するべきである。
Although only the rolling start temperature is specified in the present invention, if the rolling start temperature is regulated within the range of the heating condition and the rolling reduction condition of the present invention, the rolling end temperature can be reduced to an ultra-fine grain size. Inevitably falls within a temperature range that does not interfere. However, if the rolling end temperature is excessively increased due to uneven heating or the like, ultrafine graining may not be achieved in some cases. Therefore, preferably, the rolling end temperature should be limited to T2 (° C.)-20 ° C. or lower. .

【0034】以上の圧延に関する基本要件は、仕上圧延
に関してのものであり、仕上圧延の前の圧延条件の如何
によらない。即ち、該仕上圧延の前に板厚調整の目的の
ために粗圧延を実施しても、本発明の効果を阻害するも
のではない。本発明の要件を満足する限りは、仕上圧延
前に圧延を加えること自体は組織微細化につながるた
め、超細粒化にとって好ましい場合もある。
The basic requirements for the rolling described above relate to finish rolling, and do not depend on the rolling conditions before finish rolling. That is, even if the rough rolling is performed for the purpose of adjusting the thickness before the finish rolling, the effect of the present invention is not impaired. As long as the requirements of the present invention are satisfied, since rolling itself before finish rolling leads to microstructural refinement, it may be preferable for ultrafine graining.

【0035】圧延後の冷却としては、所望の強度・靱性
レベルに応じて、そのまま放冷しても、また5〜40℃
/sの冷却速度で20〜600℃まで加速冷却してもよ
い。さらに、放冷あるいは加速冷却後の鋼板を450℃
〜T1(℃)の範囲で焼戻しを行ってもよい。加速冷却
する場合の冷却速度は5〜40℃/sに限定するが、こ
のように限定したのは、5℃/s未満では加速冷却によ
る組織の変化が明確でなく、確実な強度、靱性の向上が
期待できないためであり、40℃/s超では表層と内部
との組織あるいは特性の差が大きく生じて好ましくない
ためである。また、該冷却速度での加速冷却は鋼板の所
望の強度、靱性に応じて20〜600℃で停止する。加
速冷却の停止温度を20℃未満とすることは材質を制御
する上で何ら効果がなく、単に製造コストの上昇を招く
だけである。逆に、加速冷却を600℃超で停止する
と、加速冷却による強度向上や靱性向上効果が明確に得
られない。
As the cooling after the rolling, depending on the desired strength and toughness level, it is allowed to cool as it is, or at 5 to 40 ° C.
The cooling rate may be accelerated to 20 to 600 ° C. at a cooling rate of / s. Furthermore, the steel plate after cooling or accelerated cooling is heated to 450 ° C.
Tempering may be performed in a range of T1 (° C.). The cooling rate in the case of accelerated cooling is limited to 5 to 40 ° C./s. However, when the cooling rate is less than 5 ° C./s, the structural change due to accelerated cooling is not clear, This is because no improvement can be expected, and if the temperature exceeds 40 ° C./s, the difference in the structure or characteristics between the surface layer and the inside is large, which is not preferable. The accelerated cooling at the cooling rate stops at 20 to 600 ° C. depending on the desired strength and toughness of the steel sheet. Setting the stop temperature of the accelerated cooling to less than 20 ° C. has no effect in controlling the material, and merely causes an increase in manufacturing cost. Conversely, if accelerated cooling is stopped at more than 600 ° C., the effect of improving strength and toughness by accelerated cooling cannot be clearly obtained.

【0036】放冷あるいは加速冷却後の鋼板に対して、
強度調整、靱性向上、形状改善の目的で、さらに焼戻し
処理を施すことも可能である。その場合には、形成され
た超細粒組織を損なわないことが必須要件となる。本発
明では焼戻し温度を450℃〜T1(℃)の範囲とする
のが好ましいが、これは、450℃未満では焼戻しの効
果が明確ではなく、またAc1 変態点に対応するT1
(℃)超では表層部の超細粒組織の形態を損なうおそれ
があるためである。本発明の方法によって形成された組
織はαの回復・再結晶組織ではあるが、圧延中にほぼ動
的に形成された組織であるため、かなり安定であり、A
1 変態点まで焼戻し温度を高めても超細粒αの形態は
保存される。なお、該焼戻し温度範囲において、焼戻し
の加熱保持時間は工業的な範囲であれば任意であるが、
表層部の超細粒組織保存の観点からは、保持時間は5h
以内であることが好ましい。
With respect to the steel sheet after cooling or accelerated cooling,
For the purpose of adjusting the strength, improving the toughness, and improving the shape, it is possible to further perform a tempering treatment. In that case, it is an essential requirement that the formed ultrafine grain structure is not damaged. In the present invention, the tempering temperature is preferably in the range of 450 ° C. to T1 (° C.). However, when the tempering temperature is lower than 450 ° C., the effect of the tempering is not clear and the T1 temperature corresponding to the Ac 1 transformation point is low.
If the temperature exceeds (° C.), the form of the ultrafine grain structure in the surface layer may be impaired. Although the structure formed by the method of the present invention is a recovered and recrystallized structure of α, since it is a structure formed almost dynamically during rolling, it is considerably stable, and A
Even if the tempering temperature is increased to the c 1 transformation point, the form of the ultrafine grains α is preserved. In the tempering temperature range, the heating and holding time for tempering is arbitrary as long as it is in an industrial range.
From the viewpoint of preserving the ultrafine grain structure of the surface layer, the holding time is 5 hours.
It is preferably within the range.

【0037】以上が、本発明の加熱・圧延などに関する
要件の説明であるが、構造部材として必要な強度を確保
し、かつ、低温靱性を確保するためには、上述の加熱・
圧延などの条件だけでなく、化学成分も適正範囲内とす
る必要がある。即ち、前記(1)の方法においてはT1
(℃)が700℃以上となるように、また、前記(2)
の方法においてはT2(℃)が800〜900℃の範囲
となるように化学組成の組み合わせを調整する必要があ
るとともに、元素個々についても、以下に示すような理
由により、その組成範囲を調整する必要がある。
The above is a description of the requirements relating to the heating and rolling of the present invention. In order to secure the necessary strength as a structural member and to ensure low-temperature toughness, the above-mentioned heating and rolling must be performed.
In addition to conditions such as rolling, it is necessary that the chemical composition be within an appropriate range. That is, in the method (1), T1
(° C.) is equal to or higher than 700 ° C.
In the method (1), it is necessary to adjust the combination of chemical compositions so that T2 (° C.) is in the range of 800 to 900 ° C., and for each element, the composition range is adjusted for the following reason. There is a need.

【0038】先ず、Cは鋼の強度を向上させる有効な成
分として添加するもので、0.01%未満では構造用鋼
に必要な強度の確保が困難であり、また、0.20%を
超える過剰の添加は一様伸びおよび靱性、さらに耐溶接
割れ性などを著しく低下させるので、0.01〜0.2
0%の範囲とした。次に、Siは脱酸元素として、ま
た、母材の強度確保に有効な元素であるため、0.03
%以上添加させる必要がある。逆に、1.0%を超える
過剰の添加は粗大な酸化物を形成して延性の劣化や靱性
の劣化を招く。従って、Siの範囲は0.03〜1.0
%とした。
First, C is added as an effective component for improving the strength of steel, and if it is less than 0.01%, it is difficult to secure the strength required for structural steel, and more than 0.20%. Excessive addition significantly reduces uniform elongation and toughness, as well as weld cracking resistance.
The range was 0%. Next, since Si is an element effective as a deoxidizing element and ensuring the strength of the base material,
% Or more. Conversely, an excessive addition exceeding 1.0% forms a coarse oxide, which leads to deterioration of ductility and toughness. Therefore, the range of Si is 0.03 to 1.0.
%.

【0039】また、Mnは母材の強度、靱性の確保に必
要な元素であり、最低限0.30%添加する必要がある
が、溶接部の靱性、割れ性など材質上許容できる範囲で
上限を2.0%とした。Alは脱酸、γ粒径の細粒化等
に有効な元素であり、効果を発揮するためには0.00
5%以上含有する必要があるが、0.1%を超えて過剰
に添加すると、粗大な酸化物を形成して延性を極端に劣
化させるため、0.005〜0.1%の範囲に限定する
必要がある。
Mn is an element necessary for securing the strength and toughness of the base material, and it is necessary to add at least 0.30%. Was set to 2.0%. Al is an element effective for deoxidation, refining of γ particle size, etc.
It is necessary to contain 5% or more, but if added in excess of 0.1%, a coarse oxide is formed and the ductility is extremely deteriorated, so it is limited to the range of 0.005 to 0.1%. There is a need to.

【0040】NはAlやTiと結びついてγ粒微細化に
有効に働き、強度、靱性向上に有効であるが、その効果
を発現させるためには0.001%以上含有させる必要
がある。一方、過剰に添加すると固溶Nが増加して靱性
に悪影響を及ぼすので、許容できる範囲として上限を
0.01%とする。P、Sは、不純物元素として極力低
減することが好ましいが、不必要に低減することは製鋼
工程に負荷をかけるため、靱性、延性の低下や溶接性の
劣化を招かない許容できる量として、Pは0.02%以
下、Sは0.01%以下に制限する。
N works effectively with Al and Ti to refine γ grains and is effective in improving strength and toughness. However, it is necessary to contain 0.001% or more to exhibit the effects. On the other hand, if added excessively, solute N increases and adversely affects toughness, so the upper limit is made 0.01% as an acceptable range. P and S are preferably reduced as impurity elements as much as possible. However, since unnecessary reduction imposes a load on the steel making process, P and S are defined as allowable amounts that do not cause a decrease in toughness, ductility or weldability. Is limited to 0.02% or less, and S is limited to 0.01% or less.

【0041】以上が本発明鋼の基本成分であるが、所望
の強度レベルに応じて、母材強度の上昇の目的で、必要
に応じてCr、Ni、Mo、Cu、Ti、V、Nb、Z
r、Ta、W、Bの1種または2種以上を、さらに、延
性向上の目的で、Mg、Ca、REMの1種または2種
以上を含有することができる。先ず、CrおよびMo
は、いずれも母材の強度向上に有効な元素であるが、明
瞭な効果を得るためには、それぞれ0.01%以上添加
する必要があり、一方、1.0%を超えて添加すると、
靱性が劣化する傾向を有するため、これらの元素の添加
量をそれぞれ0.01〜1.0%の範囲とする。
The above are the basic components of the steel of the present invention. However, according to the desired strength level, Cr, Ni, Mo, Cu, Ti, V, Nb, Z
One or more of r, Ta, W, and B, and one or more of Mg, Ca, and REM can be further contained for the purpose of improving ductility. First, Cr and Mo
Are effective elements for improving the strength of the base material, but in order to obtain a clear effect, it is necessary to add 0.01% or more, respectively.
Since the toughness tends to deteriorate, the amount of each of these elements is set in the range of 0.01 to 1.0%.

【0042】また、Niは母材の強度と靱性を同時に向
上でき、非常に有効な元素であるが、効果を発揮させる
ためには0.01%以上含有させる必要がある。含有量
が多くなると強度、靱性は向上するが、3.0%を超え
て添加しても効果が飽和する一方で、溶接性が劣化する
ため、上限を3.0%とする。次に、CuもほぼNiと
同様の効果を有するが、1.5%超では熱間加工性に問
題を生じるため、0.01〜1.5%の範囲に限定す
る。
Ni is a very effective element that can improve the strength and toughness of the base material at the same time, but it is necessary to contain 0.01% or more in order to exert the effect. When the content is increased, the strength and toughness are improved. However, if the content exceeds 3.0%, the effect is saturated, but the weldability is deteriorated. Therefore, the upper limit is set to 3.0%. Next, Cu also has substantially the same effect as Ni, but if it exceeds 1.5%, there is a problem in hot workability. Therefore, it is limited to the range of 0.01 to 1.5%.

【0043】Tiは析出強化により母材の強度向上に寄
与するとともに、TiNの形成によりγ粒微細化にも有
効な元素であるが、効果を発揮させるためには0.00
3%以上の添加が必要である。一方、0.10%を超え
ると、Alと同様に、粗大な酸化物を形成して靱性や延
性を劣化させるため、上限を0.10%とする。Vおよ
びNbは、いずれも主として析出強化により母材の強度
向上に寄与するが、過剰に添加すると延性や靱性を劣化
させる。従って、延性、靱性の劣化を招かずに、効果を
発揮できる範囲として、Vは0.005〜0.50%、
Nbは0.003〜0.10%とする。
Ti is an element that contributes to the improvement of the strength of the base material by precipitation strengthening and is also effective for the refinement of γ grains by the formation of TiN.
It is necessary to add 3% or more. On the other hand, if it exceeds 0.10%, as in the case of Al, a coarse oxide is formed to deteriorate toughness and ductility, so the upper limit is made 0.10%. Both V and Nb mainly contribute to the improvement of the strength of the base material by precipitation strengthening, but when added excessively, it deteriorates ductility and toughness. Therefore, V is 0.005 to 0.50% as a range in which the effect can be exhibited without deteriorating ductility and toughness.
Nb is made 0.003 to 0.10%.

【0044】Zr、TaもV、Nbと同様に、主として
析出強化により母材の強度向上に寄与するが、過剰に添
加すると延性や靱性を劣化させる。従って、延性、靱性
の劣化を招かずに、効果を発揮できる範囲として、Zr
は0.003〜0.10%、Taは0.005〜0.2
0%とする。Wは固溶強化および析出強化により母材強
度の上昇に有効であるが、効果を発揮させるためには
0.01%以上の添加が必要である。一方、2.0%を
超えて過剰に含有すると、靱性劣化が顕著となるため、
上限を2.0%とする。
Like V and Nb, Zr and Ta also contribute to improvement of the strength of the base material mainly by precipitation strengthening, but when added excessively, the ductility and toughness are deteriorated. Therefore, as a range in which the effect can be exhibited without causing deterioration of ductility and toughness, Zr
Is 0.003 to 0.10%, and Ta is 0.005 to 0.2%.
0%. W is effective for increasing the strength of the base metal by solid solution strengthening and precipitation strengthening, but it is necessary to add 0.01% or more to exhibit the effect. On the other hand, if the content exceeds 2.0%, the toughness deteriorates remarkably.
The upper limit is set to 2.0%.

【0045】Bは0.0003%以上のごく微量添加で
鋼材の焼入れ性を高めて強度上昇に非常に有効である
が、過剰に添加するとBNを形成して、逆に焼入れ性を
落としたり、靱性を大きく劣化させるため、上限を0.
0020%とする。Mg、Ca、REMはいずれも硫化
物の熱間圧延中の展伸を抑制して延性特性向上に有効で
ある。また、酸化物を微細化させて継手靱性の向上にも
有効に働く。その効果を発揮させるための下限の含有量
は、MgおよびCaは0.0005%、REMは0.0
05%である。一方、過剰に含有すると、硫化物や酸化
物の粗大化を生じ、延性、靱性の劣化を招くため、上限
を各々、Mg、Caは0.01%、REMは0.10%
とする。
B is very effective for increasing the strength by increasing the hardenability of steel by adding a very small amount of 0.0003% or more. However, when B is added excessively, it forms BN and conversely reduces the hardenability. In order to greatly deteriorate toughness, the upper limit is set to 0.
0020%. Mg, Ca, and REM are all effective in suppressing ductility of sulfide during hot rolling and improving ductility. In addition, the oxides are effectively refined to effectively improve joint toughness. The lower limit contents for exhibiting the effect are 0.0005% for Mg and Ca and 0.005% for REM.
05%. On the other hand, if it is contained excessively, sulfides and oxides are coarsened and ductility and toughness are deteriorated. Therefore, the upper limits are respectively 0.01% for Mg and Ca and 0.10% for REM.
And

【0046】次に、本発明の効果を実施例によってさら
に具体的に述べる。
Next, the effects of the present invention will be described more specifically with reference to examples.

【0047】[0047]

【実施例】実施例に用いた供試鋼の化学成分を表1、表
2(表1のつづき−1)、表3(表1のつづき−2)に
示す。各供試鋼は造塊後、分塊圧延により、あるいは連
続鋳造により鋼片となしたものである。表1〜3の内、
鋼番1〜14は本発明の化学組成範囲を満足しており、
鋼番15〜20は本発明の化学組成範囲を満足していな
い。
EXAMPLES The chemical compositions of the test steels used in the examples are shown in Tables 1 and 2 (continuation-1 in Table 1) and Table 3 (continuation-2 in Table 1). Each of the test steels was made into a slab by ingot slab rolling or continuous casting. Of Tables 1-3,
Steel numbers 1 to 14 satisfy the chemical composition range of the present invention,
Steel numbers 15 to 20 do not satisfy the chemical composition range of the present invention.

【0048】表1〜3の化学成分の鋼片を、表4、表5
(表4のつづき−1)、表6(表4のつづき−2)、表
7(表4のつづき−3)、表8、表9(表8のつづき−
1)、表10(表8のつづき−2)、表11(表8のつ
づき−3)、表12、表13(表12のつづき−1)、
表14(表12のつづき−2)、表15(表12のつづ
き−3)に示す条件により鋼板に製造し、室温の強度、
2mmVノッチシャルピー衝撃特性、さらに、脆性き裂
の伝播停止特性としてESSO特性を調査した。表4〜
7は本発明の請求項1に基づく方法により製造したもの
を示しており、表8〜11は請求項2に基づく方法によ
り製造したものを示している。また、表12〜15は比
較例を示している。
The steel slabs having the chemical compositions shown in Tables 1 to 3 were used in Tables 4 and 5
(Continued in Table 4-1), Table 6 (Continued in Table 4-2), Table 7 (Continued in Table 4-3), Table 8, Table 9 (Continued in Table 8-
1), Table 10 (continuation of Table 8-2), Table 11 (continuation of Table 8-3), Table 12, Table 13 (continuation of Table 12-1),
The steel plate was manufactured under the conditions shown in Table 14 (continuation-2 of Table 12) and Table 15 (continuation-3 of Table 12), and the strength at room temperature was determined.
The 2 mm V notch Charpy impact characteristics and the ESSO characteristics as brittle crack propagation stopping characteristics were investigated. Table 4-
7 shows what was manufactured by the method according to claim 1 of the present invention, and Tables 8 to 11 show what was manufactured by the method according to claim 2. Tables 12 to 15 show comparative examples.

【0049】試験片は全て板厚中心部から圧延方向に直
角(C方向)に採取した。シャルピー衝撃特性は50%
破面遷移温度(vTrs)で、また、脆性き裂の伝播停
止特性はESSO試験で測定し、Kca値が400kg
f・mm-3/2となる温度(TKca400)でそれぞれ
評価した。強度、靱性の試験結果も表4〜15に示す。
なお、平均α粒径は倍率2000倍の走査型電子顕微鏡
写真を用いて切断法により求め、20視野の平均値を示
した。
All the test pieces were taken at right angles (C direction) to the rolling direction from the center of the sheet thickness. 50% Charpy impact properties
Fracture surface transition temperature (vTrs) and brittle crack propagation arrestability were measured by an ESSO test, and the Kca value was 400 kg.
They were evaluated respectively f · mm -3/2 become temperature (TKca400). Tables 4 to 15 also show the test results of strength and toughness.
The average α particle size was determined by a cutting method using a scanning electron microscope photograph at a magnification of 2000 times, and the average value in 20 visual fields was shown.

【0050】[0050]

【表1】 [Table 1]

【0051】[0051]

【表2】 [Table 2]

【0052】[0052]

【表3】 [Table 3]

【0053】[0053]

【表4】 [Table 4]

【0054】[0054]

【表5】 [Table 5]

【0055】[0055]

【表6】 [Table 6]

【0056】[0056]

【表7】 [Table 7]

【0057】[0057]

【表8】 [Table 8]

【0058】[0058]

【表9】 [Table 9]

【0059】[0059]

【表10】 [Table 10]

【0060】[0060]

【表11】 [Table 11]

【0061】[0061]

【表12】 [Table 12]

【0062】[0062]

【表13】 [Table 13]

【0063】[0063]

【表14】 [Table 14]

【0064】[0064]

【表15】 表4〜7、表8〜11において、試験No.A1〜A1
7はいずれも本発明の化学組成の鋼片を本発明の要件に
従って製造した鋼板であり、全て最終的に得られたα組
織は整粒でかつ平均粒径は2μm以下となっており、そ
の結果、靱性値はvTrsで約−120℃以下、TKc
a400で約−110℃以下が達成されており、本発明
により脆性破壊の発生特性だけでなく脆性き裂伝播停止
特性も併せて極めて優れた低温靱性が得られることが明
白である。
[Table 15] In Tables 4 to 7 and Tables 8 to 11, Test No. A1 to A1
7 is a steel plate in which a steel slab of the chemical composition of the present invention is manufactured in accordance with the requirements of the present invention, and the finally obtained α structure is sized and the average particle size is 2 μm or less. As a result, the toughness value was about −120 ° C. or less in vTrs, and TKc
At about -110 ° C or less at a400, it is clear that the present invention can provide extremely excellent low-temperature toughness in addition to brittle fracture initiation properties as well as brittle crack propagation arrest properties.

【0065】一方、表12〜15に示す試験No.B1
〜B10は比較例であり、いずれかの条件が本発明の限
定範囲を外れているため、本発明例に比べてシャルピー
衝撃特性、ESSO特性ともにはるかに劣る。即ち、試
験No.B1はCが過剰なため、シャルピー衝撃特性、
ESSO特性ともに劣る。
On the other hand, Test Nos. B1
-B10 are comparative examples, and any of the conditions are out of the limited range of the present invention, so that both Charpy impact characteristics and ESSO characteristics are much inferior to those of the present invention examples. That is, the test No. B1 has too much C, so it has Charpy impact properties,
Both ESSO characteristics are inferior.

【0066】試験No.B2はMn量が過剰なため、良
好なシャルピー特性、ESSO特性が得られていない。
試験No.B3、B4はともにNi量が過剰であり、か
つ化学組成から求められるT1、T2が本発明の条件を
満足しておらず、その結果として超細粒化が不十分なた
め、Ni量の割にはシャルピー衝撃特性、ESSO特性
ともに良好な値が得られていない。
Test No. B2 does not have good Charpy characteristics and ESSO characteristics because of an excessive amount of Mn.
Test No. Both B3 and B4 have excessive amounts of Ni, and T1 and T2 obtained from the chemical composition do not satisfy the conditions of the present invention. As a result, ultrafine graining is insufficient. Did not obtain good values for both Charpy impact characteristics and ESSO characteristics.

【0067】試験No.B5は不純物としてのPが過剰
なため、シャルピー衝撃特性、ESSO特性が劣る。試
験No.B6はCr、Moがともに過剰であるため、シ
ャルピー衝撃特性、ESSO特性がともに著しく劣化す
る。試験No.B7〜B10は本発明の化学組成は満足
しているものの、製造条件が本発明に従っていないため
に良好なシャルピー衝撃特性、ESSO特性が得られて
いないものである。
Test No. B5 has poor Charpy impact characteristics and ESSO characteristics due to excessive P as an impurity. Test No. In B6, since both Cr and Mo are excessive, both Charpy impact characteristics and ESSO characteristics are significantly deteriorated. Test No. Although B7 to B10 satisfy the chemical composition of the present invention, good Charpy impact characteristics and ESSO characteristics are not obtained because the production conditions are not in accordance with the present invention.

【0068】即ち、試験No.B7は加熱温度が高すぎ
るために、超細粒化が十分でなく、シャルピー衝撃特
性、ESSO特性とも劣る。試験No.B8は累積圧下
率が過少であるために、超細粒化が十分でなく、シャル
ピー衝撃特性、ESSO特性ともに劣る。一方、試験N
o.B9は累積圧下率は本発明の範囲を満足している
が、1パスあたりの圧下率が30%以上のものを含まな
いため、加熱組織の微細化が図られておらず、超細粒化
が達成されていない。
That is, the test No. In B7, the heating temperature is too high, so that ultrafine graining is not sufficient, and the Charpy impact characteristics and ESSO characteristics are inferior. Test No. Since B8 has an excessively low rolling reduction, the ultrafine graining is not sufficient, and both Charpy impact characteristics and ESSO characteristics are inferior. On the other hand, test N
o. B9 satisfies the range of the present invention, but does not include those having a rolling reduction of 30% or more per pass. Has not been achieved.

【0069】試験No.B10は圧延開始温度が高すぎ
て、γ単相域の加工に終わっているため、αを直接加工
した場合にのみ得られる超細粒化が達成できず、そのた
めシャルピー衝撃特性、ESSO特性の大幅な改善が認
められない。以上、実施例からも、本発明により安定し
て超細粒組織が達成され、それにより非常に良好な低温
靱性が得られることが明白である。
Test No. In B10, since the rolling start temperature is too high and processing in the γ single phase region has been completed, it is not possible to achieve ultra-fine graining that can be obtained only when α is directly processed, so that the Charpy impact characteristics and ESSO characteristics are significantly increased. No significant improvement is observed. As described above, it is clear from the examples that the present invention stably achieves an ultrafine-grained structure, thereby obtaining very good low-temperature toughness.

【0070】[0070]

【発明の効果】本発明は、高価な合金元素の添加や、生
産性の劣る複雑な熱間加工あるいは熱処理工程を必要と
せずに、平均α粒径が2μm以下でかつ混粒度が小さい
整粒の超細粒α組織を得ることにより、低温靱性の良好
な厚鋼板を製造できる画期的な方法であり、製造コスト
の低減、構造物としての安全性の向上等、産業上の効果
は極めて大きい。
The present invention does not require the addition of expensive alloying elements or the need for complicated hot working or heat treatment steps with inferior productivity, and the average grain size is 2 μm or less and the mixed grain size is small. It is an epoch-making method that can produce thick steel plate with good low-temperature toughness by obtaining ultrafine-grained α-structure, and its industrial effects are extremely low, such as reduction of manufacturing cost and improvement of safety as a structure. large.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.01〜0.20%、 Si:0.03〜1.0%、 Mn:0.30〜2.0%、 Al:0.005〜0.1%、 N:0.001〜0.01% を含有し、かつ、(1)式で示されるT1(℃)がT1
(℃)≧700℃となる化学組成を有し、不純物として
のP、Sの含有量が、 P:0.02%以下、 S:0.01%以下 で、残部Feおよび不可避不純物からなる鋼片を(2)
式で示されるT2(℃)−100℃〜1200℃の範囲
に加熱し、熱間圧延により鋼板を製造するに際して、仕
上圧延として650℃〜T1(℃)+100℃で開始
し、1パスあたりの圧下率が30〜70%の圧延を1パ
ス以上含み、かつ累積圧下率が50〜95%であるよう
な圧延工程を含むことを特徴とする低温靱性に優れた厚
鋼板の製造方法。 T1(℃)=750.8−26.6・C%+17.6・Si%−11.6・M n%−22.6・Cu%−23.0・Ni%+24.1・Cr%+22.5・M o%−39.7・V%−5.7・Ti%+232.6・Nb%−169.4・A l%−894.7・B% …… (1) T2(℃)=937.2−476.5・C%+56.0・Si%−19.7・ Mn%−16.3・Cu%−26.6・Ni%−4.9・Cr%+38.1・M o%+124.8・V%+136.3・Ti%−19.1・Nb%+198.4 ・Al%+3315.0・B% …… (2)
C .: 0.01 to 0.20%, Si: 0.03 to 1.0%, Mn: 0.30 to 2.0%, Al: 0.005 to 0.5% by weight. 1%, N: 0.001 to 0.01%, and T1 (° C.) represented by the formula (1) is T1
(° C.) Steel having a chemical composition of ≧ 700 ° C., the content of P and S as impurities is P: 0.02% or less, S: 0.01% or less, and the balance is Fe and unavoidable impurities. A piece (2)
When the steel sheet is manufactured by heating to a range of T2 (° C.)-100 ° C. to 1200 ° C. represented by the formula and hot rolling, finish rolling at 650 ° C. to T1 (° C.) + 100 ° C. A method for producing a thick steel plate excellent in low-temperature toughness, comprising a rolling step in which rolling at a rolling reduction of 30 to 70% is included in one or more passes and a cumulative rolling reduction is 50 to 95%. T1 (° C.) = 750.8−26.6 · C% + 17.6 · Si% −11.6 · Mn% −22.6 · Cu% −23.0 · Ni% + 24.1 · Cr% + 22 5.5 · Mo% -39.7 · V% -5.7 · Ti% + 232.6 · Nb% −169.4 · Al% −894.7 · B% (1) T2 (° C.) = 937.2-476.5.C% + 56.0.Si% -19.7.Mn% -16.3.Cu% -26.6.Ni% -4.9.Cr% + 38.1.M o% + 124.8 · V% + 136.3 · Ti% −19.1 · Nb% + 198.4 · Al% + 3315.0 · B% (2)
【請求項2】 重量%で、 C:0.01〜0.20%、 Si:0.03〜1.0%、 Mn:0.30〜2.0%、 Al:0.005〜0.1%、 N:0.001〜0.01% を含有し、かつ、(2)式で示されるT2(℃)が90
0℃≧T2(℃)≧800℃となる化学組成を有し、不
純物としてのP、Sの含有量が、 P:0.02%以下、 S:0.01%以下 で、残部Feおよび不可避不純物からなる鋼片を(2)
式で示されるT2(℃)−50℃〜1200℃の範囲に
加熱し、熱間圧延により鋼板を製造するに際して、仕上
圧延としてT2(℃)−100℃〜T2(℃)−20℃
で開始し、1パスあたりの圧下率が30〜70%の圧延
を1パス以上含み、かつ累積圧下率が50〜95%であ
るような圧延工程を含むことを特徴とする低温靱性に優
れた厚鋼板の製造方法。 T2(℃)=937.2−476.5・C%+56.0・Si%−19.7・ Mn%−16.3・Cu%−26.6・Ni%−4.9・Cr%+38.1・M o%+124.8・V%+136.3・Ti%−19.1・Nb%+198.4 ・Al%+3315.0・B% …… (2)
2. In% by weight, C: 0.01 to 0.20%, Si: 0.03 to 1.0%, Mn: 0.30 to 2.0%, Al: 0.005 to 0.5%. 1%, N: 0.001 to 0.01%, and T2 (° C.) represented by the formula (2) is 90%.
It has a chemical composition of 0 ° C. ≧ T2 (° C.) ≧ 800 ° C., the content of P and S as impurities is P: 0.02% or less, S: 0.01% or less, and the balance of Fe and unavoidable Slab made of impurities (2)
When the steel sheet is manufactured by heating to a range of T2 (° C) −50 ° C. to 1200 ° C. represented by the formula and hot rolling, T2 (° C.) −100 ° C. to T2 (° C.) −20 ° C. as finish rolling.
And a rolling process in which rolling at a rolling reduction of 30 to 70% per pass is included in one or more passes and a cumulative rolling reduction is 50 to 95%. Manufacturing method of thick steel plate. T2 (° C.) = 937.2−476.5 · C% + 56.0 · Si% −19.7 · Mn% −16.3 · Cu% −26.6 · Ni% −4.9 · Cr% + 38 0.1.Mo% + 124.8.V% + 136.3.Ti% -19.1.Nb% + 198.4.Al% + 3315.0.B% (2)
【請求項3】 圧延終了後の鋼板を5〜40℃/sの冷
却速度で20〜600℃まで加速冷却することを特徴と
する請求項1または2記載の低温靱性に優れた厚鋼板の
製造方法。
3. The production of a thick steel sheet excellent in low-temperature toughness according to claim 1 or 2, wherein the steel sheet after rolling is cooled at a cooling rate of 5 to 40 ° C./s to 20 to 600 ° C. Method.
【請求項4】 450℃以上、T1(℃)以下で焼戻し
を行うことを特徴とする請求項1〜3のいずれか1項に
記載の低温靱性に優れた厚鋼板の製造方法。
4. The method for producing a thick steel sheet having excellent low-temperature toughness according to claim 1, wherein tempering is performed at a temperature of 450 ° C. or more and T1 (° C.) or less.
【請求項5】 重量%で、 Cr:0.01〜1.0%、 Ni:0.01〜3.0%、 Mo:0.01〜1.00%、 Cu:0.01〜1.5% よりなる群、 Ti:0.003〜0.10%、 V:0.005〜0.50%、 Nb:0.003〜0.10%、 Zr:0.003〜0.10%、 Ta:0.005〜0.20%、 W:0.01〜2.0% よりなる群、および B:0.0003〜0.0020% よりなる群の少なくとも1群の中から1種または2種以
上をさらに含有することを特徴とする請求項1〜4のい
ずれか1項に記載の低温靱性に優れた厚鋼板の製造方
法。
5. Cr: 0.01-1.0%, Ni: 0.01-3.0%, Mo: 0.01-1.00%, Cu: 0.01-1. Group consisting of 5%, Ti: 0.003 to 0.10%, V: 0.005 to 0.50%, Nb: 0.003 to 0.10%, Zr: 0.003 to 0.10%, One or two of at least one of a group consisting of Ta: 0.005 to 0.20%, W: 0.01 to 2.0%, and B: 0.0003 to 0.0020% The method for producing a thick steel sheet having excellent low-temperature toughness according to any one of claims 1 to 4, further comprising at least one of a kind and a kind.
【請求項6】 重量%で、 Mg:0.0005〜0.01%、 Ca:0.0005〜0.01%、 REM:0.005〜0.10% のうち1種または2種以上をさらに含有することを特徴
とする請求項1〜5のいずれか1項に記載の低温靱性に
優れた厚鋼板の製造方法。
6. One or more of Mg: 0.0005 to 0.01%, Ca: 0.0005 to 0.01%, and REM: 0.005 to 0.10% by weight%. The method for producing a thick steel plate having excellent low-temperature toughness according to any one of claims 1 to 5, further comprising:
JP23365297A 1997-08-29 1997-08-29 Production of thick steel plate excellent in low temperature toughness Withdrawn JPH1171615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23365297A JPH1171615A (en) 1997-08-29 1997-08-29 Production of thick steel plate excellent in low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23365297A JPH1171615A (en) 1997-08-29 1997-08-29 Production of thick steel plate excellent in low temperature toughness

Publications (1)

Publication Number Publication Date
JPH1171615A true JPH1171615A (en) 1999-03-16

Family

ID=16958411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23365297A Withdrawn JPH1171615A (en) 1997-08-29 1997-08-29 Production of thick steel plate excellent in low temperature toughness

Country Status (1)

Country Link
JP (1) JPH1171615A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002074460A1 (en) * 2001-03-16 2002-09-26 Nakayama Steel Works, Ltd. Hot rolling mill and hot rolling method
US7076983B2 (en) 2001-03-16 2006-07-18 Nakayama Steel Works, Ltd. Apparatus and method for hot rolling
WO2011148755A1 (en) * 2010-05-27 2011-12-01 新日本製鐵株式会社 Process for producing high-strength steel plate for welded structure
JP2013147694A (en) * 2012-01-18 2013-08-01 Nippon Steel & Sumitomo Metal Corp High strength hot rolled steel sheet for line pipe excellent in on-site weldability and method for producing the same
WO2015147055A1 (en) * 2014-03-28 2015-10-01 株式会社神戸製鋼所 Steel sheet for high-strength line pipe having excellent low temperature toughness, and steel tube for high-strength line pipe
KR20160081488A (en) * 2014-12-31 2016-07-08 두산중공업 주식회사 Ultra thick steel plate and manufacturing method for offshore structure having ultra-high strength and high toughness
JP2017172010A (en) * 2016-03-24 2017-09-28 新日鐵住金株式会社 Sour-resistant steel sheet and sour- resistant steel tube
WO2020116538A1 (en) * 2018-12-07 2020-06-11 Jfeスチール株式会社 Steel sheet and production method therefor
KR20220089497A (en) * 2020-12-21 2022-06-28 주식회사 포스코 Steel matreial having excellent low temperature impact toughness and manufacturing method for the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002074460A1 (en) * 2001-03-16 2002-09-26 Nakayama Steel Works, Ltd. Hot rolling mill and hot rolling method
US7076983B2 (en) 2001-03-16 2006-07-18 Nakayama Steel Works, Ltd. Apparatus and method for hot rolling
WO2011148755A1 (en) * 2010-05-27 2011-12-01 新日本製鐵株式会社 Process for producing high-strength steel plate for welded structure
JP4897127B2 (en) * 2010-05-27 2012-03-14 新日本製鐵株式会社 Manufacturing method of high strength steel sheet for welded structure
JP2013147694A (en) * 2012-01-18 2013-08-01 Nippon Steel & Sumitomo Metal Corp High strength hot rolled steel sheet for line pipe excellent in on-site weldability and method for producing the same
WO2015147055A1 (en) * 2014-03-28 2015-10-01 株式会社神戸製鋼所 Steel sheet for high-strength line pipe having excellent low temperature toughness, and steel tube for high-strength line pipe
JP2015190042A (en) * 2014-03-28 2015-11-02 株式会社神戸製鋼所 Steel plate for high strength line pipe and steel pipe for high strength line pipe excellent in low temperature toughness
KR20160081488A (en) * 2014-12-31 2016-07-08 두산중공업 주식회사 Ultra thick steel plate and manufacturing method for offshore structure having ultra-high strength and high toughness
JP2017172010A (en) * 2016-03-24 2017-09-28 新日鐵住金株式会社 Sour-resistant steel sheet and sour- resistant steel tube
WO2020116538A1 (en) * 2018-12-07 2020-06-11 Jfeスチール株式会社 Steel sheet and production method therefor
JPWO2020116538A1 (en) * 2018-12-07 2021-02-15 Jfeスチール株式会社 Steel plate and its manufacturing method
CN113166830A (en) * 2018-12-07 2021-07-23 杰富意钢铁株式会社 Steel sheet and method for producing same
KR20220089497A (en) * 2020-12-21 2022-06-28 주식회사 포스코 Steel matreial having excellent low temperature impact toughness and manufacturing method for the same
WO2022139191A1 (en) * 2020-12-21 2022-06-30 주식회사 포스코 Highly thick steel material having excellent low-temperature impact toughness and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP3848465B2 (en) Method for producing thick high-tensile steel with excellent low-temperature toughness
JP4193315B2 (en) High strength steel sheet and high strength galvanized steel sheet with excellent ductility and low yield ratio, and methods for producing them
WO2011148755A1 (en) Process for producing high-strength steel plate for welded structure
JPH11140582A (en) High toughness thick steel plate excellent in toughness in weld heat-affected zone, and its production
JP3314295B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JPH09176782A (en) Building use high tensile strength steel excellent in fracture resistance and its production
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JP3842836B2 (en) Method for producing high-tensile steel with excellent low-temperature toughness
JP3922805B2 (en) Manufacturing method of high-tensile steel with excellent low-temperature toughness
JP4299774B2 (en) High strength low specific gravity steel sheet with excellent ductility and fatigue characteristics and method for producing the same
JPH1171615A (en) Production of thick steel plate excellent in low temperature toughness
JP3383148B2 (en) Manufacturing method of high strength steel with excellent toughness
JP3369435B2 (en) Manufacturing method of non-heat treated high strength steel excellent in low temperature toughness
JP2005029889A (en) High strength low specific gravity steel sheet excellent in ductility, and its production method
JP2008013812A (en) High toughness and high tensile strength thick steel plate and its production method
JP3290595B2 (en) Method for manufacturing high-tensile steel plate with excellent toughness and weldability
JP3261515B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JPH09104947A (en) High yield ratio type hot rolled high strength steel plate excellent in formability or formability and spot weldability
JP3168665B2 (en) Hot-rolled high-strength steel sheet with excellent workability and its manufacturing method
JP2953919B2 (en) Slab for high toughness and high strength steel and method for producing rolled section steel using the slab
JPH093591A (en) Extremely thick high tensile strength steel plate and its production
JP3485737B2 (en) Manufacturing method of thick steel plate with excellent low temperature toughness
JP2003034825A (en) Method for manufacturing high strength cold-rolled steel sheet
JP3502809B2 (en) Method of manufacturing steel with excellent toughness
JP2005029841A (en) High strength steel for welded structure having excellent low temperature toughness in high heat input weld part haz, and its production method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041102