JP2623606B2 - Manufacturing method of ferritic stainless steel - Google Patents

Manufacturing method of ferritic stainless steel

Info

Publication number
JP2623606B2
JP2623606B2 JP62271614A JP27161487A JP2623606B2 JP 2623606 B2 JP2623606 B2 JP 2623606B2 JP 62271614 A JP62271614 A JP 62271614A JP 27161487 A JP27161487 A JP 27161487A JP 2623606 B2 JP2623606 B2 JP 2623606B2
Authority
JP
Japan
Prior art keywords
stainless steel
temperature
ferritic stainless
content
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62271614A
Other languages
Japanese (ja)
Other versions
JPH01118341A (en
Inventor
正夫 小池
尚男 富士川
修二 吉田
忠仁 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP62271614A priority Critical patent/JP2623606B2/en
Publication of JPH01118341A publication Critical patent/JPH01118341A/en
Application granted granted Critical
Publication of JP2623606B2 publication Critical patent/JP2623606B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> この発明は、耐ローピング性に優れ、しかも表面性状
の良好なTi添加フェライト系ステンレス鋼を安定して製
造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for stably producing a Ti-added ferritic stainless steel having excellent roping resistance and good surface properties.

<従来技術とその問題点> SUS430に代表されるフェライト系ステンレス鋼は、優
れた加工性や耐食性を有している上、比較的安価である
ことから、厨房用品,電気製品及び自動車用材料として
広く用いられている鋼種である。
<Conventional technology and its problems> Ferritic stainless steel represented by SUS430 has excellent workability and corrosion resistance and is relatively inexpensive. It is a widely used steel grade.

しかしながら、フェライト系ステンレス鋼には、その
連続鋳造鋳片を圧延して製造した鋼板に深絞りや曲げ等
の冷間加工を施すと圧延方向に沿って“ローピング”と
呼ばれる肌荒れ性の表面起伏が頻繁に生じるとの問題が
指摘されており、製品の外観悪化を招いて商品価値を損
ねることからこの問題は極めて深刻なものであった。
However, ferritic stainless steel has a rough surface called "roping" along the rolling direction when cold-working such as deep drawing or bending is applied to a steel plate manufactured by rolling a continuous cast slab. It has been pointed out that the problem frequently occurs, and this problem is extremely serious because the appearance of the product is deteriorated and the commercial value is impaired.

ところで、ロービングの発生原因は、「連続鋳造時に
生成した粗大な柱状晶組織が圧延工程でも十分に破壊さ
れず、しかも集合組織が残存してしまう上、この粗大粒
や集合組織は熱間圧延中に再結晶し難くて組織が微細化
せず、従って塑性変形に異方性や不均一性が現れること
にある」と一般に考えられている。また、SUS430鋼のよ
うな鋼種の場合には熱間圧延中にフェライト(α)とオ
ーステナイト(γ)相の2相組織に分離するものであ
り、鋳造組織のαが粗大であれば、これから分離生成し
たこれら2相も当然に粗大となって上述のような不都合
を招くものと考えられていた。
By the way, the cause of the roving is that the coarse columnar crystal structure generated during continuous casting is not sufficiently destroyed even in the rolling step, and furthermore, the texture remains, and the coarse grains and the texture are formed during hot rolling. It is difficult to recrystallize, and the structure is not refined, and therefore, anisotropy and non-uniformity appear in plastic deformation. " In the case of a steel type such as SUS430 steel, it separates into a two-phase structure of ferrite (α) and austenite (γ) during hot rolling. If α in the cast structure is coarse, it is separated from this. It has been considered that these two phases formed naturally become coarse and cause the above-mentioned inconvenience.

そこで、ローピング現象等の表面欠陥の発生を低減す
るためには鋼の結晶粒を微細化することが最も有効であ
るとされ、従来より“温間圧延法”や“異径ロール圧延
法”等のように圧延に工夫を加えるものが提唱されてい
るが、それでも十分に満足できる再結晶化を達成するの
は困難であり、更に冷間圧延と焼鈍工程とを付加する必
要がある等、大幅なコストアップを伴う処理を避難かっ
た。
In order to reduce the occurrence of surface defects such as roping, it is considered most effective to refine the crystal grains of steel. Conventionally, "warm rolling" and "rolling with different diameters" have been used. However, it is difficult to achieve a sufficiently satisfactory recrystallization, and it is necessary to add a cold rolling and an annealing step. We did not want to evacuate the process that involved a significant cost increase.

一方、圧延素材たる連続鋳造鋳片の横断面方向に分布
する等軸晶帯を増加することは鋳造組織の微細化につな
がるものであるが、これも耐ローピング性改善に有効で
あることが確認されたことから、鋳片凝固組織を等軸晶
化してローピング現象の抑制を図るべく“低温鋳造法",
“電磁撹拌",“Ti等の合金元素を添加する方法”等の試
みも実施されているが、これらの方法には何れも次のよ
うな問題点があり、今一つ満足できるものではなかっ
た。
On the other hand, increasing the number of equiaxed zones distributed in the cross-sectional direction of the continuous cast slab, which is a rolled material, leads to the refinement of the casting structure, but this was also confirmed to be effective in improving roping resistance. In order to suppress the roping phenomenon by equiaxing the solidified structure of the slab,
Attempts such as "electromagnetic stirring" and "a method of adding alloy elements such as Ti" have been made, but all of these methods have the following problems and have not been satisfactory.

即ち、低温鋳造法は、鋳入温度を凝固温度に可及的に
接近させて行う鋳造法であるため操業中にノズル詰りが
発生し易く、最悪の場合には鋳込みが不可能となる他、
鋳入溶湯の粘性が高くなるので“連続鋳造用フラックス
(CCパウダー)の巻き込み現象”或いは“非金属介在物
の浮上分離が不十分となること”等に起因する鋳片表面
疵の発生が目立つことから、量産的な操業ベース下での
採用が困難である。
That is, the low-temperature casting method is a casting method in which the casting temperature is made as close as possible to the solidification temperature, so that nozzle clogging easily occurs during operation, and in the worst case, casting becomes impossible,
Since the viscosity of the molten cast metal is high, the occurrence of slab surface flaws due to "entrainment of continuous casting flux (CC powder)" or "insufficient floating separation of non-metallic inclusions" is noticeable. For this reason, it is difficult to adopt the system on a mass production basis.

また、電磁撹拌は凝固組織の等軸晶化に有効な方法で
はあるが、安定して達成できる等軸晶化率は精々鋳片断
面の60%以下程度でしかなく、通常圧延によって耐ロー
ピング性に優れた鋼板を得ることのできる鋳片の等軸晶
化率の下限たる“等軸晶化率:70%”には及ばないもの
であった。
In addition, electromagnetic stirring is an effective method for equiaxed crystallization of the solidified structure, but the stable equiaxed crystallization rate is only about 60% or less of the cross section of the slab. It was below the lower limit of the equiaxed crystallization ratio of the cast slab from which a steel sheet excellent in quality could be obtained, ie, “equiaxed crystallization ratio: 70%”.

一方、フェライト系ステンレス鋼にTiを添加すること
で凝固組織の等軸化は容易となるが、この場合でも“等
軸晶化率:70%以上”を達成するためには低温鋳造法と
の併用が不可欠であるので前述した“低温鋳造法に指摘
される問題”を免れ得ない上、添加したTiと溶鋼中に存
在するNとの反応生成物たるTiNが単独で、或いは更に
これとノズル耐火物やCCパウダーとの反応生成物として
鋳片表面に補足され、表面疵の原因となると言う問題も
無視できなかった。
On the other hand, by adding Ti to ferritic stainless steel, it is easy to make the solidified structure equiaxed, but even in this case, in order to achieve “equiaxed crystallization ratio: 70% or more”, it is necessary to use low-temperature casting. Since the combined use is indispensable, the above-mentioned “problem pointed out by the low-temperature casting method” cannot be escaped. In addition, TiN, which is a reaction product of the added Ti and N present in the molten steel, can be used alone or in addition to the nozzle. The problem of being trapped on the slab surface as a reaction product with refractories and CC powder and causing surface flaws could not be ignored.

<問題点を解決するための手段> 本発明者等は、上述した観点から、深絞り等の冷間加
工時に問題となるローピング発生の懸念がなく、しかも
良好な表面性状を有するフェライト系ステンレス鋼を安
定に量産し得る手段を提供すべく様々な角度から実験・
研究を行った過程で、「格別な設備や実作業上困難な条
件を導入することなく耐ローピング性に優れたフェライ
ト系ステンレス鋼を量産するには、Ti添加によって連続
鋳造鋳片の等軸晶化率を上げる方法が最も現実的であ
り、Ti添加量,Tiと反応し易いN含有量並びに鋳込み温
度の調整によっては、格別な手立てを講じなくても好ま
しい性状のフェライト系ステンレス鋼が安定して得られ
る可能性がある」との感触が得られたのである。
<Means for Solving the Problems> From the above-described viewpoints, the present inventors have found that there is no concern about occurrence of roping, which is a problem during cold working such as deep drawing, and that the ferritic stainless steel has good surface properties. Experiments from various angles to provide a means to stably mass-produce
In the course of the research, `` In order to mass-produce ferritic stainless steel with excellent roping resistance without introducing extraordinary equipment and difficult conditions in actual work, it is necessary to add Ti to equiaxed The most practical method is to increase the conversion rate, and by adjusting the amount of Ti added, the N content that easily reacts with Ti, and the casting temperature, ferritic stainless steel with favorable properties can be stabilized without taking special measures. There is a possibility that it is possible to obtain it. "

そこで本発明者等は、上記感触を踏まえ、まず成分組
成の面から、フェライト系ステンレス鋼の耐ロービング
性を左右する鋳造組織の等軸晶率と品質評価の大きな決
定要件である表面疵発生状況とに影響を及ぼすとみられ
る“溶鋼中のTi含有量とN含有量”についての検討を中
心に研究を続けた結果、次に示す如き知見を得るに至っ
たのである。
Therefore, based on the above-mentioned feeling, the present inventors first considered, from the aspect of the component composition, the equiaxial crystal ratio of the cast structure that determines the roving resistance of the ferritic stainless steel and the surface flaw occurrence condition which is a major determining requirement of the quality evaluation. As a result of continuing research focusing on the examination of "Ti content and N content in molten steel", which is thought to have an effect on the above, the following findings were obtained.

(a) フェライト系ステンレス鋼にあっては、鋼中の
Ti含有量及びN含有量の増加に伴って、“等軸晶化率”
及び“表面疵発生の頻度”とも増加し、都合の悪い動向
を示すが、比較狭い範囲ではあるが“耐ロービング性に
とって好ましい等軸晶化率:70%以上の領域”と“表面
疵発生率が許容範囲となる領域”とが重複して存在する
Ti及びンNの含有量範囲が明らかに存在すること。
(A) For ferritic stainless steel,
With the increase of Ti content and N content, "Equiaxed crystallization ratio"
And "frequency of occurrence of surface flaws" also increased, indicating an inconvenient trend, but in a comparatively narrow range, "a region of 70% or more preferable equiaxed crystallization rate for roving resistance" and "surface flaw generation rate" Is an allowable range "
Clearly there are Ti and N content ranges.

即ち、第1図は17%Cr含有フエライト系ステンレス鋼
(以降、成分割合は重量%で示す)での「鋼中Ti量及び
N量と連続鋳造鋳片の等軸晶化率との関係を示すグラ
フ」であるが、等軸晶化率は溶鋼中Ti量及びN量の増加
と共に高くなり、該Ti量及びN量が第1図中の曲線以上
の値になると70%以上の等軸晶化率が安定して得られる
ことを示している。一方、第2図は、同じく17%Cr含有
フエライト系ステンレス鋼での「鋼中Ti量及びN量と連
続鋳造鋳片の表面疵との関係を示すグラフ」であるが、
表面疵の発生状況は、やはり溶鋼中Ti量及びN量の増加
と共に高くなり、該Ti量及びN量を第2図中の曲線以下
の値に抑制しないと表面疵を許容できる範囲内に抑え切
れないことを示している。そして、第3図に注目された
い。第3図は、第1図に示される結果と第2図に示され
る結果を同一図中にまとめて表わしたものであるが、
“等軸晶化率:70%以上を安定して得られるTi及びンN
含有量”と“表面疵を許容できる範囲内に安定して抑え
得るTi及びN含有量”とが重視している領域(第3図中
のハッチングを付した領域)の存在することを明瞭に示
している。
That is, Fig. 1 shows the relationship between the Ti content and the N content in steel and the equiaxed crystallization ratio of a continuous cast slab in a ferritic stainless steel containing 17% Cr (hereinafter, the component ratio is shown by weight%). The graph shows that the equiaxed crystallization ratio increases with the increase of the Ti content and the N content in the molten steel. When the Ti content and the N content exceed the curves in FIG. This shows that the crystallization ratio can be obtained stably. On the other hand, FIG. 2 is a “graph showing the relationship between the Ti content and the N content in steel and the surface flaw of the continuous cast slab” in the same ferrite stainless steel containing 17% Cr.
The occurrence of surface flaws also increases with the increase of Ti content and N content in molten steel, and unless the Ti content and N content are suppressed to values below the curve in FIG. 2, surface flaws are suppressed to an acceptable range. Indicates that it cannot be cut. Attention is drawn to FIG. FIG. 3 shows the results shown in FIG. 1 and the results shown in FIG. 2 collectively in the same figure.
“Equiaxed crystallization ratio: Ti and N that can be obtained stably at 70% or more
It is clear that there is a region (hatched region in FIG. 3) in which the “content” and “the Ti and N contents that can stably suppress the surface flaws within an acceptable range” are present. Is shown.

(b) ところが、前記第1図に示した曲線は、凝固温
度をT(℃)とした場合の式 log[%N」=−19755/(T+273)+7.78 +0.07[%Ti」−log[%Ti] +0.045[%Cr] ……(1) で算出される「17%Cr含有フエライト系ステンレス鋼に
おける凝固温度(1500℃)でのTi−N平衡曲線」に良く
一致しており、一方、前記第2図で示した曲線は、過熱
度(ΔT)が60℃のときの鋳込温度をT(℃)とした場
合に前記(1)式で算出される「17%Cr含有フエライト
系ステンレス鋼における鋳込温度(1560℃)でのTi−N
平衡曲線」と良く一致していること。
(B) However, the curve shown in FIG. 1 is obtained from the equation log [% N] = − 19755 / (T + 273) + 7.78 + 0.07 [% Ti] − when the solidification temperature is T (° C.). log [% Ti] +0.045 [% Cr] ……………………………………………………………………………………………………………… (1) On the other hand, the curve shown in FIG. 2 indicates that “17% Cr” calculated by the above equation (1) when the casting temperature when the superheat (ΔT) is 60 ° C. is T (° C.). Of Ti-N at casting temperature (1560 ° C) in ferrite stainless steel
Good equilibrium curve ".

第4図は、第3図で示したグラフ中に、17%Cr含有フ
エライト系ステンレス鋼における凝固温度(1500℃)及
び過熱度(ΔT)を60℃とした鋳込温度(1560℃)での
Ti−N平衡曲線をそれぞれ併記したものであるが、この
第4図からも上記事実を明瞭に確認できる。
FIG. 4 shows the graph shown in FIG. 3 at a casting temperature (1560 ° C.) at a solidification temperature (1500 ° C.) and a superheat degree (ΔT) of 60 ° C. in a ferrite stainless steel containing 17% Cr.
The Ti-N equilibrium curves are also shown, and the above fact can be clearly confirmed from FIG.

(d) 従って、冶金学的に描かれた前記第4図を現象
面から見ると、17%Cr含有フエライト系ステンレス鋼に
おいては、凝固温度たる1500℃でのTi−N平衡曲線より
も鋼中のTi及びN含有量が多くなると等軸晶が形成し易
くなり、一方、過熱度(ΔT)が60℃の鋳込温度(1560
℃)でのTi−N平衡曲線よりも鋼中のTi及びN含有量が
少なくなると表面疵の発生が現象するので、1500℃及び
1560℃でのTi−N平衡曲線にて囲まれたTi及びN含有量
領域であれば“等軸晶化率が70%以上”で“表面疵発生
が殆んど無い”と言う、絞り加工等に供するのに好適な
高品質の連続鋳造鋳片が得られる旨を示している。
(D) Therefore, looking at the above-mentioned metallurgical drawing of FIG. 4 from the viewpoint of phenomena, the ferrite stainless steel containing 17% Cr has a higher solidification temperature than the Ti-N equilibrium curve at the solidification temperature of 1500 ° C. When the Ti and N contents of the steel are large, equiaxed crystals are easily formed, while the superheating degree (ΔT) is 60 ° C. and the casting temperature (1560
C)), the lower the Ti and N content in the steel than the Ti-N equilibrium curve at 1,500 ° C
In the region of Ti and N content surrounded by the Ti-N equilibrium curve at 1560 ° C, the drawing process is described as “Equiaxed crystallization ratio is 70% or more” and “Almost no surface defects” It shows that a high-quality continuous cast slab suitable for use in such applications can be obtained.

なお、上述のように、17%Cr含有フエライト系ステン
レス鋼において凝固温度たる1500℃でのTi−N平衡曲線
よりも鋼中のTi及びN含有量が多い領域で等軸晶化率が
大となるのは、溶鋼の凝固開始以前にTiNが析出し、こ
れが核となって等軸晶生成に寄与するためであり、ま
た、1560℃の鋳込温度でのTi−N平衡曲線よりも鋼中の
Ti及びN含有量が少なくなると表面疵が発生し難くなる
のは、表面疵の一因となるTiNが鋳込時点での溶鋼中に
析出していないことによるものと推察される。そのた
め、凝固温度たる1500℃でのTi−N平衡曲線と鋳入温度
たる1560℃でのTi−N平衡曲線にて囲まれたTi及びN含
有量領域は、鋳込温度でTiNが析出していないことによ
る表面疵発生要因除去効果と、凝固温度以前にTiNが析
出することによる等軸晶化率増大効果との相乗効果が十
分に期待し得る領域であると窺うことができる。
As described above, the equiaxed crystallization ratio in a region where the Ti and N contents in the steel are higher than the Ti-N equilibrium curve at a solidification temperature of 1500 ° C. in 17% Cr-containing ferritic stainless steel is considered to be large. This is because TiN precipitates before the start of solidification of the molten steel, and this precipitates as a nucleus to contribute to the formation of equiaxed crystals.In addition, the Ti-N equilibrium curve at a casting temperature of 1560 ° C. of
The reason that the surface flaws are less likely to occur when the content of Ti and N is reduced is presumed to be that TiN, which contributes to the surface flaws, is not precipitated in the molten steel at the time of casting. Therefore, in the Ti and N content region surrounded by the Ti-N equilibrium curve at the solidification temperature of 1500 ° C and the Ti-N equilibrium curve at the casting temperature of 1560 ° C, TiN is precipitated at the casting temperature. It can be seen that this is a region where a synergistic effect between the effect of removing the surface flaw generation factor due to the absence of the alloy and the effect of increasing the equiaxed crystallization ratio due to the precipitation of TiN before the solidification temperature can be sufficiently expected.

(e) 更に、以上の知見事項をTi添加フェライト系ス
テンレス鋼全般に拡張すると、連続鋳造鋳片の等軸晶化
率:70%以上(十分に満足できる耐ローピング性が確保
できる)を実現するためには化学成分組成で決定される
凝固温度以上でTiNを析出させることが必要であり、一
方、表面疵の発生を十分に抑制するためには、鋳込温度
においてTiNを析出させないことが必要であって、耐ロ
ーピング性及び表面疵抑制効果とも優れたTi添加フェラ
イト系ステンレス鋼を得るには、溶鋼中のTiとNとの反
応生成物であるTiNを溶鋼中の各種成分で決定される凝
固温度(T1)以上で析出させる共に、鋳込温度(T2)以
上では析出させないようにすることが重要な要件となる
こと。
(E) Further, if the above findings are extended to Ti-added ferritic stainless steels in general, the equiaxed crystallization ratio of continuous cast slabs: 70% or more (sufficient roping resistance can be secured). Therefore, it is necessary to precipitate TiN at a solidification temperature or higher determined by the composition of the chemical components. On the other hand, in order to sufficiently suppress the occurrence of surface defects, it is necessary not to precipitate TiN at the casting temperature. In order to obtain a Ti-added ferritic stainless steel excellent in both roping resistance and surface flaw suppression effect, TiN which is a reaction product of Ti and N in the molten steel is determined by various components in the molten steel. It is an important requirement that precipitation be performed at a temperature higher than the solidification temperature (T 1 ), but not at a temperature higher than the casting temperature (T 2 ).

この発明は、上記知見に基づいてなされたものであ
り、 「Crを9〜30%含有するTi添加フェライト系ステンレ
ス鋼の連続鋳造に当り、鋼の成分組成に基づいて定まる
凝固温度T1(℃)と、鋳込温度T2(℃)と、鋼中のTi
量,N量及びCr量に基づいて定まるTiN析出温度T3(℃)
とが式 T1≦T3<T2≦T1+100 を満たすように調整することを特徴とすることにより、
耐ローピング性に優れると共に表面疵発生が殆んど見ら
れないTi添加フェライト系ステンレス鋼を安定して量産
し得るようにした点」 に特徴を有するものである。
The present invention has been made on the basis of the above-described findings. "In the continuous casting of a Ti-added ferritic stainless steel containing 9 to 30% of Cr, the solidification temperature T 1 (° C.) ), Casting temperature T 2 (° C), and Ti in steel
Temperature T 3 (° C) determined based on the amount of N, the amount of Cr and the amount of Cr
Is adjusted so as to satisfy the expression T 1 ≦ T 3 <T 2 ≦ T 1 +100,
It is characterized by being able to stably mass-produce a Ti-added ferritic stainless steel having excellent roping resistance and hardly any surface flaws.

なお、本発明がCr含有量:9〜30%のフェライト系ステ
ンレス鋼を対象としたのは、Cr含有量が9%未満になる
とステンレス鋼としての耐食性が発揮されなくなり、一
方、30%を超えてCrを含有させる加工性が悪くなって本
発明の方法を適用する工業的価値が無くなるからであ
る。
It should be noted that the present invention is intended for ferrite stainless steel having a Cr content of 9 to 30%, because when the Cr content is less than 9%, the corrosion resistance of the stainless steel is not exhibited, while the content exceeds 30%. This is because the processability of adding Cr deteriorates and the industrial value of applying the method of the present invention is lost.

また、対象とするフェライト系ステンレス鋼の凝固温
度T1(℃)は略その化学成分組成によって決まり、式 T1(℃)=1536−(100.3[%C]−22.41[%C] +13.55[%Si]−0.64[%Si」 +5.82[%Mn]+0.3[%Mn] +4.2[%Cu]+3.0[%Mo] +4.18[%Ni]+0.01[%Ni] +1.59[%Cr]−0.007[%Cr」) にて算出される。更に、対象とするTi添加フェライト系
ステンレス鋼のTiN析出温度T3は、式 log[%N]=−19755/(T3+273)+7.78 +0.07[%Ti]−log[%Ti] +0.045[%Cr] で算出される。
The solidification temperature T 1 (° C.) of the target ferritic stainless steel is substantially determined by its chemical composition, and the equation T 1 (° C.) = 1536− (100.3 [% C] −22.41 [% C] 2 +13. 55 [% Si] -0.64 [% Si] 2 +5.82 [% Mn] +0.3 [% Mn] 2 + 4.2 [% Cu] +3.0 [% Mo] +4.18 [% Ni] +0. Calculated as 01 [% Ni] 2 + 1.59 [% Cr]-0.007 [% Cr] 2 ). Further, TiN precipitation temperature T 3 of the Ti added ferritic stainless steel of interest, wherein log [% N] = - 19755 / (T 3 +273) +7.78 +0.07 [% Ti] -log [% Ti] Calculated as +0.045 [% Cr].

そして、前記凝固温度T1,鋳込温度T2及びTiN析出温
度T3がそれぞれ〔T1≦T3<T2〕なる条件を満たしていな
いと、十分に満足できる耐ローピング性と表面性状を有
するフェライト系ステンレス鋼を安定して製造すること
ができない。
If the solidification temperature T 1 , the casting temperature T 2, and the TiN precipitation temperature T 3 do not satisfy the condition of [T 1 ≦ T 3 <T 2 ], respectively, a sufficiently satisfactory roping resistance and surface properties can be obtained. Cannot be manufactured stably.

更に、実操業においては耐ブレークアウト性を確保し
かつ健全鋳片を得るためには過熱度(ΔT)の上限が存
在し、この点から見た採用可能な鋳込温度は〔凝固温度
+100℃〕以下程度であることから、鋳込温度T2(℃)
は凝固温度T1(℃)を使用したところの T2≦T1+100 なる条件で上限を規制した。なお、鋳込温度の下限につ
ては、理論上は凝固温度より高ければ良いことになる
が、実操業においては過熱度(ΔT)が30℃より小さい
と注湯用ノズルの閉塞が生じ易くなることから、好まし
くは鋳込温度T2(℃)を〔T1+30〕(℃)以上とするこ
とが推奨される。
Furthermore, in actual operation, in order to secure breakout resistance and obtain a sound slab, there is an upper limit of the degree of superheat (ΔT). In view of this point, the applicable casting temperature is [solidification temperature + 100 ° C]. ] Casting temperature T 2 (° C)
The upper limit was regulated under the condition of T 2 ≦ T 1 +100 using the solidification temperature T 1 (° C.). The lower limit of the casting temperature is theoretically better if it is higher than the solidification temperature. However, in actual operation, if the superheat degree (ΔT) is less than 30 ° C., the pouring nozzle is likely to be clogged. For this reason, it is preferable that the casting temperature T 2 (° C.) be set to [T 1 +30] (° C.) or more.

続いて、この発明を実施例により、比較例と対比しな
がら更に具体的に説明する。
Next, the present invention will be described more specifically with reference to examples and comparative examples.

<実施例> まず、常法にて第1表に示される如き成分組成のTi添
加フェライト系ステンレス鋼を溶製し、実験室規模の連
続鋳造装置によって鋳込温度T2を変化させつつ50mm厚鋳
片を鋳造した。
<Example> First, smelted Ti added ferritic stainless steel such component compositions shown in Table 1 in a conventional manner, 50 mm thickness while changing the pouring temperature T 2 by the laboratory-scale continuous casting apparatus A slab was cast.

次いで、得られた各鋳片について表面疵発生状 況と等軸晶化率を調べた後、これを1200℃に過熱してか
ら熱間圧延し、厚さが3mmの熱延鋼板を得た。続いて、
これら熱延鋼板に〔830℃で16時間均熱した後炉冷〕な
る条件の焼鈍を施してから0.5mm厚にまで冷間圧延し、
更に〔830℃に1分間過熱保持後空冷〕なる条件の焼鈍
を施して冷延板製品とした。
Then, for each of the obtained slabs, After examining the conditions and the equiaxed crystallization ratio, this was heated to 1200 ° C. and then hot-rolled to obtain a hot-rolled steel sheet having a thickness of 3 mm. continue,
These hot-rolled steel sheets were annealed under conditions of (soaking at 830 ° C for 16 hours and then furnace-cooled) and then cold-rolled to a thickness of 0.5 mm,
Further, annealing was performed under the condition of [overheating at 830 ° C. for 1 minute and air cooling] to obtain a cold rolled sheet product.

そして、得られた冷延板製品からJIS5号引張り試験片
を採取し、20%引張りを加えた後、耐ローピング性を評
価した。
Then, a JIS No. 5 tensile test piece was collected from the obtained cold rolled sheet product, and after applying a 20% tensile strength, the roping resistance was evaluated.

このようにして得られた結果を第1表に併せて示し
た。
The results thus obtained are also shown in Table 1.

第1表に示される結果からも明らかな如く、本発明で
規定する条件通りに製造されたフェライト系ステンレス
鋼材は、何れも耐ローピング性及び表面疵状況ともに十
分満足できる結果を示すのに対して、〔凝固温度T1≦Ti
N析出温度T3〕なる条件を満足しない試験番号12〜16,2
0〜21,25及び27では耐ローピング性評価がB〜Cの不満
足な成績となっており、一方、〔TiN析出温度T3<鋳込
温度T2〕なる条件を満足しない試験番号17〜19,22〜24,
26及び28では許容限度を超える表面疵の発生が見られ
る。
As is clear from the results shown in Table 1, the ferritic stainless steels manufactured under the conditions specified in the present invention show satisfactory results in both roping resistance and surface flaw state. , (Solidification temperature T 1 ≦ Ti
N precipitation temperature T 3 ] Test numbers 12 to 16,2 that do not satisfy the condition
In 0 to 21, 25 and 27, the evaluation of roping resistance was unsatisfactory of B to C. On the other hand, test numbers 17 to 19 which did not satisfy the condition of [TiN deposition temperature T 3 <casting temperature T 2 ] , 22〜24,
On 26 and 28, the occurrence of surface flaws exceeding the allowable limit was observed.

<効果の総括> 上述のように、この発明よれば、耐ローピング性に優
れると共に良好な表面性状を有し、建材,厨房用品,電
気製品或いは自動車用品素材等として十分に満足できる
性能を発揮するフェライト系ステンレス鋼を、コスト高
を招くような格別な設備や手段を講じることなく安全生
産することが可能となるど、産業上極めて有用な効果が
もたらされるのである。
<Summary of Effects> As described above, according to the present invention, it has excellent roping resistance and good surface properties, and exhibits sufficiently satisfactory performance as a building material, a kitchen product, an electric product, or a car product material. Ferritic stainless steel can be safely produced without taking special facilities or measures that would increase the cost, but an extremely useful effect in industry can be brought about.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、17%Cr含有フエライト系ステンレス鋼におけ
る「鋼中Ti量及びN量と連続鋳造鋳片の等軸晶化率との
関係」を示すグラフ。 第2図は、17%Cr含有フエライト系ステンレス鋼にける
「鋼中Ti量及びN量と連続鋳造鋳片の表面疵との関係」
を示すグラフ。 第3図は、第1図に示される曲線と第2図に示される曲
線とを同一図中にまとめて表わしたグラフ。 第4図は、第3図で示したグラフ中に、17%Cr含有フエ
ライト系ステンレス鋼における凝固温度(1500℃)及び
過熱度(ΔT)を60℃とした鋳込温度(1560℃)でのTi
−N平衡曲線をそれぞれ併記したもの。
FIG. 1 is a graph showing “relationship between Ti content and N content in steel and equiaxed crystallization ratio of continuous cast slab” in 17% Cr-containing ferritic stainless steel. Fig. 2 shows the relationship between the Ti content and N content in steel and the surface flaw of continuous cast slab in ferritic stainless steel containing 17% Cr.
A graph showing. FIG. 3 is a graph in which the curve shown in FIG. 1 and the curve shown in FIG. 2 are collectively shown in the same figure. FIG. 4 shows the graph shown in FIG. 3 at a casting temperature (1560 ° C.) at a solidification temperature (1500 ° C.) and a superheat degree (ΔT) of 60 ° C. in a ferrite stainless steel containing 17% Cr. Ti
-N equilibrium curves are also shown.

フロントページの続き (72)発明者 須藤 忠仁 新潟県上越市港町2―12―1 日本ステ ンレス株式会社直江津研究所内 (56)参考文献 特開 昭49−41227(JP,A) 特開 昭51−119622(JP,A) 特開 昭57−127554(JP,A)Continuation of the front page (72) Inventor Tadahito Sudo 2-12-1 Minatomachi, Joetsu City, Niigata Prefecture Inside Naoetsu Research Laboratory, Japan Stainless Steel Co., Ltd. (56) References JP-A-49-41227 (JP, A) 119622 (JP, A) JP-A-57-127554 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Crを9〜30%含有するTi添加フェライト系
ステンレス鋼の連続鋳造に当り、鋼の成分組成に基づい
て定まる凝固温度T1(℃)と、鋳込温度T2(℃)と、鋼
中のTi量,N量及びCr量に基づいて定まるTiN析出温度T3
(℃)とが式 T1≦T3<T2≦T1+100 を満たすように調整することを特徴とする、Ti添加フェ
ライト系ステンレス鋼の製造方法。
In a continuous casting of a Ti-added ferritic stainless steel containing 9 to 30% of Cr, a solidification temperature T 1 (° C.) and a casting temperature T 2 (° C.) are determined based on the composition of the steel. And a TiN precipitation temperature T 3 determined based on the amounts of Ti, N and Cr in the steel.
(° C.) and a method for producing a Ti-added ferritic stainless steel, characterized by satisfying the following expression: T 1 ≦ T 3 <T 2 ≦ T 1 +100.
JP62271614A 1987-10-29 1987-10-29 Manufacturing method of ferritic stainless steel Expired - Lifetime JP2623606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62271614A JP2623606B2 (en) 1987-10-29 1987-10-29 Manufacturing method of ferritic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62271614A JP2623606B2 (en) 1987-10-29 1987-10-29 Manufacturing method of ferritic stainless steel

Publications (2)

Publication Number Publication Date
JPH01118341A JPH01118341A (en) 1989-05-10
JP2623606B2 true JP2623606B2 (en) 1997-06-25

Family

ID=17502526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62271614A Expired - Lifetime JP2623606B2 (en) 1987-10-29 1987-10-29 Manufacturing method of ferritic stainless steel

Country Status (1)

Country Link
JP (1) JP2623606B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104726788A (en) * 2013-12-20 2015-06-24 Posco公司 Method of Manufacturing Ti-Containing Austenitic Stainless Steel Sheet by Twin Roll Strip Caster

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100430161C (en) * 2006-12-27 2008-11-05 东北大学 Cast rolling method and equipment of isometric crystal ferrite stainless steel slab band
KR100922067B1 (en) * 2007-12-18 2009-10-16 주식회사 포스코 Continuous casting method for ferritic stainless steel
JP6306353B2 (en) * 2014-01-21 2018-04-04 Jfeスチール株式会社 Method for producing slab for ferritic stainless steel cold rolled steel sheet and method for producing ferritic stainless steel cold rolled steel sheet
JP6398299B2 (en) * 2014-05-09 2018-10-03 新日鐵住金株式会社 Continuous casting powder of steel and continuous casting method
ES2727177T3 (en) 2015-09-30 2019-10-14 Jfe Steel Corp Ferritic Stainless Steel Sheet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4941227A (en) * 1972-08-29 1974-04-18
JPS51119622A (en) * 1975-04-15 1976-10-20 Nippon Steel Corp Method to manufacture stainless steel comprising titanium with less tiin group
JPS5910861B2 (en) * 1981-01-31 1984-03-12 新日本製鐵株式会社 Manufacturing method of austenitic stainless steel with less occurrence of defects during rolling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104726788A (en) * 2013-12-20 2015-06-24 Posco公司 Method of Manufacturing Ti-Containing Austenitic Stainless Steel Sheet by Twin Roll Strip Caster

Also Published As

Publication number Publication date
JPH01118341A (en) 1989-05-10

Similar Documents

Publication Publication Date Title
JP5002991B2 (en) Method for producing ferritic stainless steel cold-rolled steel sheet excellent in surface distortion resistance and surface properties and coated steel sheet
JP6306353B2 (en) Method for producing slab for ferritic stainless steel cold rolled steel sheet and method for producing ferritic stainless steel cold rolled steel sheet
JP4388613B2 (en) Ferritic chromium alloyed steel without ridging
CA2254584C (en) Non-ridging ferritic chromium alloyed steel
JP2001288544A (en) High purity ferritic stainless steel excellent in surface property and corrosion resistance and its production method
WO1995023242A1 (en) Thin cast piece and thin sheet of straight carbon steel containing large quantity of copper and tin and method of manufacturing the same
US9816163B2 (en) Cost-effective ferritic stainless steel
JP2623606B2 (en) Manufacturing method of ferritic stainless steel
JP2023507528A (en) LOW-CARBON LOW-COST ULTRA-HIGH-STRENGTH MULTI-PHASE STEEL STEEL/STRIP AND METHOD FOR MANUFACTURING SAME
JP2001271143A (en) Ferritic stainless steel excellent in ridging resistance and its production method
JP3458831B2 (en) Method for producing Cr-based stainless steel
JP3477098B2 (en) Ferritic stainless steel sheet excellent in surface properties and ridging properties and method for producing the same
JP4259097B2 (en) Ti-containing high workability ferritic chromium steel sheet excellent in ridging resistance and method for producing the same
JP2623606C (en)
JP4357080B2 (en) Solidified grain refined steel and solidified grain refined austenitic stainless steel and their welded joints
JPS5871356A (en) Ferritic stainless steel with superior service performance, mainly corrosion resistance and its manufacture
JP2000054081A (en) Austenitic stainless steel sheet free from uneven surface gloss, and its manufacture
JP3331163B2 (en) Method for producing austenitic stainless steel sheet without uneven surface gloss
JP3909731B2 (en) Ferritic stainless steel with excellent ridging properties and method for producing the same
JP2759678B2 (en) Stainless steel with excellent hot workability
JP3061915B2 (en) Manufacturing method of cold rolled steel sheet for processing
JP4258039B2 (en) Ferritic stainless steel hot-rolled sheet, cold-rolled sheet excellent in ridging resistance, and manufacturing method thereof
JPH0742552B2 (en) High Ni alloy thin strip having excellent corrosion resistance and method for producing the same
AU2003200957B2 (en) Non-ridging Ferritic Chromium Alloyed Steel
JP2547139B2 (en) Method for controlling composition of non-metallic inclusions in steel

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080411

Year of fee payment: 11