JP5157598B2 - Ni-containing steel slab and method for continuously casting Ni-containing steel - Google Patents

Ni-containing steel slab and method for continuously casting Ni-containing steel Download PDF

Info

Publication number
JP5157598B2
JP5157598B2 JP2008095644A JP2008095644A JP5157598B2 JP 5157598 B2 JP5157598 B2 JP 5157598B2 JP 2008095644 A JP2008095644 A JP 2008095644A JP 2008095644 A JP2008095644 A JP 2008095644A JP 5157598 B2 JP5157598 B2 JP 5157598B2
Authority
JP
Japan
Prior art keywords
containing steel
mold
solidification
slab
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008095644A
Other languages
Japanese (ja)
Other versions
JP2009248099A (en
Inventor
幸雄 真保
康一 堤
聡 羽鳥
伸一 鈴木
伸夫 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008095644A priority Critical patent/JP5157598B2/en
Publication of JP2009248099A publication Critical patent/JP2009248099A/en
Application granted granted Critical
Publication of JP5157598B2 publication Critical patent/JP5157598B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Continuous Casting (AREA)

Description

本発明は、Ni(ニッケル)を7.5〜10質量%含有するNi含有鋼の鋳片、並びに、該Ni含有鋼鋳片を得るための連続鋳造方法に関するものである。   The present invention relates to a slab of Ni-containing steel containing 7.5 to 10% by mass of Ni (nickel) and a continuous casting method for obtaining the Ni-containing steel slab.

鋼にNiを添加すると低温靭性が向上することが知られており、Niを2〜10質量%程度含有する鋼が低温用鋼材として広く使用されている。なかでも9質量%前後のNiを含有する、所謂、9%Ni鋼は、−160℃以下での使用にも耐えることから、低温用の溶接構造用鋼として、LNGタンクなどに広く使用されている。しかしながら、9%Ni鋼をはじめとして、Niを7.5〜10質量%含有するNi含有鋼は、表面疵が発生しやすいことが知られており、鋳造後の鋳片の段階で、すでに表面及び表面近傍に多数の割れが存在する。   It is known that low temperature toughness is improved when Ni is added to steel, and steel containing about 2 to 10% by mass of Ni is widely used as a low temperature steel material. Among them, so-called 9% Ni steel containing about 9% by mass of Ni can withstand use at −160 ° C. or less, and is widely used in LNG tanks and the like as low-temperature welded structural steel. Yes. However, it is known that Ni-containing steel containing 7.5 to 10% by mass of Ni, including 9% Ni steel, is prone to surface flaws. And there are many cracks near the surface.

この連続鋳造工程におけるNi含有鋼鋳片の表面割れの発生機構としては、凝固時に結晶粒界に偏析したS(硫黄)やP(燐)などが結晶粒界を脆化させ、連続鋳造機の二次冷却帯での鋳片の曲げ矯正による応力や冷却による熱応力などによって結晶粒界が破壊され、割れに至ると考えられてきた。特に、600〜800℃の温度範囲(「高温脆化温度域」という)において低い歪速度(10-3/s程度)で曲げ矯正などの加工を加えると、多数の表面割れが発生すると考えられてきた。 As a mechanism for generating surface cracks in the Ni-containing steel slab in this continuous casting process, S (sulfur), P (phosphorus), etc. segregated at the grain boundaries during solidification embrittle the grain boundaries, It has been thought that the grain boundaries are destroyed and cracked due to stress due to bending correction of the slab in the secondary cooling zone or thermal stress due to cooling. In particular, when surface processing such as bending correction is applied at a low strain rate (about 10 −3 / s) in a temperature range of 600 to 800 ° C. (referred to as “high temperature embrittlement temperature range”), it is considered that many surface cracks occur. I came.

このように、Ni含有鋼を連続鋳造によって製造する際には、鋳片の表面割れの発生を防止することが極めて重要であり、また、上記のように、Ni含有鋼の連続鋳造時の表面割れを防止するには高温脆化温度域での矯正を避けることが有効であるとして、鋳片表面温度の管理を目的とした多数の二次冷却の制御方法が、Ni含有鋼鋳片の表面割れ防止方法として提案されてきた。   Thus, when producing Ni-containing steel by continuous casting, it is extremely important to prevent the occurrence of surface cracks in the slab, and as described above, the surface of Ni-containing steel during continuous casting In order to prevent cracking, it is effective to avoid straightening in the high temperature embrittlement temperature range. It has been proposed as a crack prevention method.

例えば、特許文献1には、Niを5〜10質量%含有する溶鋼を連続鋳造するに際して、溶鋼のP濃度を0.006質量%以下、S濃度を0.003質量%以下に調整し、且つ、二次冷却帯においては、鋳片の液相線温度から1050℃までの温度領域は3.0℃/秒以上の冷却速度で冷却するとともに、鋳片の矯正点通過時の表面温度を850℃以上に維持する連続鋳造方法が提案されている。   For example, in Patent Document 1, when continuously casting molten steel containing 5 to 10% by mass of Ni, the P concentration of the molten steel is adjusted to 0.006% by mass or less, and the S concentration is adjusted to 0.003% by mass or less, and In the secondary cooling zone, the temperature range from the liquidus temperature of the slab to 1050 ° C. is cooled at a cooling rate of 3.0 ° C./second or more, and the surface temperature when the slab passes through the correction point is 850. There has been proposed a continuous casting method that maintains the temperature at or above C.

また、特許文献2には、Niを8〜10質量%含有する高Ni鋼を垂直−曲げ型連続鋳造機によって連続鋳造する際に、鋳型内での鋳片のコーナー部表面温度の極小値(T1)、鋳片が鋳型を出てから上部矯正帯に至るまでの時間(t)、及び鋳型を出てから上部矯正帯に至るまでの鋳片のコーナー部表面温度の平均値(T2)を算出し、算出した極小値(T1)、時間(t)、平均値(T2)、及び予め測定した当該高Ni鋼の絞り値から、当該鋳造時における絞り値を推定し、この絞り値が50%以上になるように、鋳造速度及び二次冷却強度を制御する連続鋳造方法が提案されている。
特開平8−10919号公報 特開平8−33964号公報
Patent Document 2 discloses a minimum value of the surface temperature of a corner portion of a slab in a mold when continuously casting a high Ni steel containing 8 to 10% by mass of Ni using a vertical-bending type continuous casting machine ( T1), the time (t) from when the slab leaves the mold to the upper straightening zone, and the average value (T2) of the surface temperature of the corner of the slab from the casting to the upper straightening zone From the calculated minimum value (T1), time (t), average value (T2), and the previously measured drawing value of the high Ni steel, the drawing value at the time of casting is estimated, and this drawing value is 50 A continuous casting method has been proposed in which the casting speed and the secondary cooling strength are controlled so as to be at least%.
JP-A-8-10919 JP-A-8-33964

上記のように、表面割れを抑制するべく、Niを7.5〜10質量%含有するNi含有鋼の連続鋳造方法が多数提案されているが、いまだ表面割れの発生を完全に防止することはできないのが実状である。そのために、グラインダーなどを用いた鋳片表面の研削による割れ除去処理を余儀なくされ、生産性の低下や製造コストの上昇をもたらしていた。   As described above, in order to suppress surface cracking, many continuous casting methods of Ni-containing steel containing 7.5 to 10% by mass of Ni have been proposed, but it is still possible to completely prevent the occurrence of surface cracking. The actual situation is not possible. Therefore, the crack removal process by grinding of the slab surface using a grinder etc. was forced, resulting in a decrease in productivity and an increase in manufacturing cost.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、生産性の低下や製造コストの上昇をもたらしていた表面割れの発生の少ない、Niを7.5〜10質量%含有するNi含有鋼鋳片を提供するとともに、該Ni含有鋼鋳片を鋳造するための連続鋳造方法を提供することである。   The present invention has been made in view of the above circumstances, and the object is to contain Ni in an amount of 7.5 to 10% by mass with less generation of surface cracks that caused a decrease in productivity and an increase in manufacturing cost. An Ni-containing steel slab is provided, and a continuous casting method for casting the Ni-containing steel slab is provided.

上記課題を解決するための第1の発明に係るNi含有鋼鋳片は、Niを7.5〜10.0質量%含有し、連続鋳造によって鋳造されたNi含有鋼鋳片であって、鋳片表面での凝固核発生密度が0.6個/mm2以上であることを特徴とするものである。 The Ni-containing steel slab according to the first invention for solving the above-mentioned problem is a Ni-containing steel slab containing Ni of 7.5 to 10.0% by mass and cast by continuous casting, The solidification nucleus generation density on one surface is 0.6 pieces / mm 2 or more.

第2の発明に係るNi含有鋼鋳片は、質量%で、C:0.03〜0.10%、Si:0.01〜0.5%、Mn:0.3〜1.0%、P:0.001〜0.010%、S:0.0001〜0.005%以下、Ni:7.5〜10.0%、Al:0.010〜0.080%、N:0.0010〜0.0050%、O:0.0005〜0.0040%を含有し、残部がFe及び不可避的不純物からなる、連続鋳造によって鋳造されたNi含有鋼鋳片であって、鋳片表面での凝固核発生密度が0.6個/mm2以上であることを特徴とするものである。 The Ni-containing steel slab according to the second invention is in mass%, C: 0.03-0.10%, Si: 0.01-0.5%, Mn: 0.3-1.0%, P: 0.001 to 0.010%, S: 0.0001 to 0.005% or less, Ni: 7.5 to 10.0%, Al: 0.010 to 0.080%, N: 0.0010 A Ni-containing steel slab cast by continuous casting, containing ~ 0.0050%, O: 0.0005-0.0040%, the balance consisting of Fe and inevitable impurities, The solidification nucleus generation density is 0.6 pieces / mm 2 or more.

第3の発明に係るNi含有鋼鋳片は、第2の発明において、前記Ni含有鋼鋳片は、鋼組成として、更に、質量%で、Cu:0.03〜1.5%、Cr:0.03〜1.0%、Mo:0.02〜1.0%、Nb:0.003〜0.10%、V:0.003〜0.10%、Ti:0.005〜0.02%、B:0.0002〜0.0025%、Ca:0.0005〜0.005%のなかの1種または2種以上を含有することを特徴とするものである。   The Ni-containing steel slab according to the third invention is the Ni-containing steel slab according to the second invention, wherein the Ni-containing steel slab further has a steel composition in mass%, Cu: 0.03 to 1.5%, Cr: 0.03-1.0%, Mo: 0.02-1.0%, Nb: 0.003-0.10%, V: 0.003-0.10%, Ti: 0.005-0. One or more of 02%, B: 0.0002 to 0.0025%, and Ca: 0.0005 to 0.005% are contained.

第4の発明に係るNi含有鋼の連続鋳造方法は、第1ないし第3の発明の何れか1つに記載のNi含有鋼鋳片を鋳造するための連続鋳造方法であって、1300℃における粘度が1.0Pa・s(10ポアズ)以上のモールドパウダーを鋳型内に添加して鋳造することを特徴とするものである。   A Ni-containing steel continuous casting method according to a fourth invention is a continuous casting method for casting the Ni-containing steel slab according to any one of the first to third inventions, at 1300 ° C. A mold powder having a viscosity of 1.0 Pa · s (10 poise) or more is added into a mold and cast.

第5の発明に係るNi含有鋼の連続鋳造方法は、第1ないし第3の発明の何れか1つに記載のNi含有鋼鋳片を鋳造するための連続鋳造方法であって、鋳型を毎分80サイクル以上の振動数で振動させて鋳造することを特徴とするものである。   A Ni-containing steel continuous casting method according to a fifth invention is a continuous casting method for casting the Ni-containing steel slab according to any one of the first to third inventions, wherein It is characterized by casting at a frequency of 80 cycles or more.

第6の発明に係るNi含有鋼の連続鋳造方法は、第1ないし第3の発明の何れか1つに記載のNi含有鋼鋳片を鋳造するための連続鋳造方法であって、1300℃における粘度が1.0Pa・s(10ポアズ)以上のモールドパウダーを鋳型内に添加して鋳造するとともに、鋳型を毎分80サイクル以上の振動数で振動させて鋳造することを特徴とするものである。   A Ni-containing steel continuous casting method according to a sixth invention is a continuous casting method for casting the Ni-containing steel slab according to any one of the first to third inventions, at 1300 ° C. The molding powder is characterized in that a mold powder having a viscosity of 1.0 Pa · s (10 poise) or more is added to the mold and cast, and the mold is cast at a frequency of 80 cycles / min or more. .

本発明によれば、鋳片表面での凝固核発生密度が0.6個/mm2以上と多いので、凝固セルのサイズが小さくなって、凝固セル界面でのS及びPの偏析が軽減して凝固セル界面での脆化が少なくなり、且つ、凝固セル界面に作用する応力も分散され、これにより、凝固セル界面における凝固割れが抑制され、鋳片表面における割れの発生が低減する。その結果、鋳片表面の割れを除去するための表面手入れ工程が軽減され、生産性の向上及び製造コストの低減が可能となり、工業上有益な効果がもたらされる。 According to the present invention, the solidification nucleus generation density on the slab surface is as high as 0.6 pieces / mm 2 or more, so the size of the solidification cell is reduced and the segregation of S and P at the solidification cell interface is reduced. Thus, embrittlement at the solidification cell interface is reduced, and stress acting on the solidification cell interface is also dispersed, thereby suppressing solidification cracking at the solidification cell interface and reducing occurrence of cracks on the slab surface. As a result, the surface care process for removing cracks on the surface of the slab is reduced, the productivity can be improved and the manufacturing cost can be reduced, and an industrially beneficial effect is brought about.

以下、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described.

本発明の基本的な考え方は、鋳片表面の初期凝固を制御することにより、具体的には多数の凝固核を発生させることにより、凝固セル界面へのP(燐)やS(硫黄)などの不純物元素及びC(炭素)の濃化を低減し、凝固セル界面での凝固割れを防止し、これにより、鋳片表面に発生する割れを防止するというものである。   The basic idea of the present invention is that by controlling the initial solidification of the slab surface, specifically by generating a large number of solidification nuclei, P (phosphorus), S (sulfur), etc. at the solidification cell interface Concentration of the impurity element and C (carbon) is reduced, and solidification cracks at the solidification cell interface are prevented, thereby preventing cracks generated on the surface of the slab.

従来から、Ni(ニッケル)を7.5〜10質量%含有するNi含有鋼鋳片の表面割れは、粗大な凝固組織の結晶粒界に沿って発生していることが知られていた。また、この割れの発生原因は、Ni含有鋼の延性が低下する600〜900℃の範囲で、矯正応力、バルジング応力、熱応力などによる引張り応力が鋳片表面に加えられ、この引張り応力によってSやPなどが濃化して脆化した結晶粒界が破壊するからであると考えられてきた。尚、本発明において、Ni含有鋼とは、7.5〜10質量%のNiを含有する鋼の総称である。   Conventionally, it has been known that surface cracks in Ni-containing steel slabs containing 7.5 to 10% by mass of Ni (nickel) occur along the grain boundaries of a coarse solidified structure. In addition, the cause of this crack is the range of 600 to 900 ° C. at which the ductility of the Ni-containing steel decreases, and tensile stress due to straightening stress, bulging stress, thermal stress, etc. is applied to the slab surface. It has been thought that this is because the grain boundaries that have become brittle due to the concentration of P and P are destroyed. In addition, in this invention, Ni containing steel is a general term for the steel containing 7.5-10 mass% Ni.

しかしながら、本発明者らが実際のNi含有鋼鋳片の表面割れを詳細に調査したところ、割れ破面には、600〜900℃の延性低下温度領域で破壊したと考えられる細かいディンプルからなる破面の他に、極めて平坦な面が存在することを発見した。この面は、その形状から、凝固の際に最終凝固部にC、S、Pなどが濃化して融点が低下し、最終凝固部に低融点の液相が存在している状態で、周囲の既に凝固の完了した部分が収縮するために発生する、一種の凝固割れであると考えられた。   However, when the present inventors investigated in detail the surface cracks of actual Ni-containing steel slabs, the cracked fracture surface was a fracture consisting of fine dimples that were considered to have broken in the ductile temperature range of 600 to 900 ° C. In addition to the surface, we found that there is a very flat surface. This surface has a shape in which C, S, P, etc. are concentrated in the final solidified part during the solidification, the melting point is lowered, and a liquid phase having a low melting point is present in the final solidified part. It was thought to be a kind of solidification cracking that occurs because the already solidified part contracts.

即ち、Ni含有鋼鋳片の表面割れは、従来考えられていた連続鋳造機の二次冷却帯で初めて割れが発生するのではなく、鋳型内で凝固シェルが成長する際に、凝固シェルを構成する凝固セルと凝固セルとの境界に、C、S、Pなどの溶質元素が濃化して低融点の液相が生じ、この低融点の液相が生じることにより凝固割れが発生し、この凝固割れを起点として、二次冷却帯での熱応力や曲げ矯正による応力などによって更に割れが進展するものと考えられた。   That is, surface cracks in Ni-containing steel slabs do not occur for the first time in the secondary cooling zone of a continuous casting machine that has been considered in the past, but constitute solidified shells when they grow in the mold. At the boundary between the solidifying cell and the solidifying cell, solute elements such as C, S, and P are concentrated to form a low-melting liquid phase. This low-melting liquid phase causes solidification cracks. It was thought that the cracks progressed further due to the thermal stress in the secondary cooling zone and the stress due to bending straightening.

従って、割れを防止するには、従来実施されていた二次冷却帯での熱応力や曲げ矯正応力の緩和だけでは十分ではなく、むしろ、鋳型での初期凝固における凝固割れを防止することが重要且つ必要であることが分かった。   Therefore, in order to prevent cracking, it is not sufficient to relax the thermal stress and bending straightening stress in the secondary cooling zone that has been implemented in the past, but rather it is important to prevent solidification cracking during initial solidification in the mold. And it turned out to be necessary.

凝固割れは、最終凝固部での溶質元素の濃化が少ないほど、また、最終凝固部に作用する熱応力が小さいほど発生しにくい。従って、凝固セルのサイズを小さくすることが凝固割れの防止に有効である。これは、凝固セルのサイズが小さくなると、自ずと冷却速度が速くなって溶質元素の濃化が抑制され、また、凝固セルのサイズが小さいと熱応力が分散されて個々の凝固セル界面に作用する熱応力が小さくなるからである。   The solidification crack is less likely to occur as the concentration of the solute element in the final solidified portion is smaller and the thermal stress acting on the final solidified portion is smaller. Therefore, reducing the size of the solidification cell is effective in preventing solidification cracking. This is because when the size of the solidification cell is reduced, the cooling rate is naturally increased and the concentration of the solute element is suppressed, and when the size of the solidification cell is small, the thermal stress is dispersed and acts on each solidification cell interface. This is because the thermal stress is reduced.

凝固セルのサイズを小さくするには、溶鋼が鋳型と接触する部分(正確には溶鋼と鋳型との間にはモールドパウダーの極薄い層が存在するので、溶鋼の凝固は、モールドパウダー層の表面で発生する)における凝固核発生密度を大きくすることが必要となる。一般的に、凝固セルの個数と凝固核の個数とは相関関係があり、凝固セルのサイズは、凝固核発生密度が大きくなるほど小さくなることが知られている。   In order to reduce the size of the solidification cell, the part where the molten steel comes into contact with the mold (exactly, there is an extremely thin layer of mold powder between the molten steel and the mold, so solidification of the molten steel takes place on the surface of the mold powder layer. It is necessary to increase the solidification nucleus generation density in Generally, there is a correlation between the number of solidification cells and the number of solidification nuclei, and it is known that the size of the solidification cells decreases as the solidification nucleus generation density increases.

本発明者らは、実際のNi含有鋼鋳片を詳細に調査した結果、表面割れ防止のためには、凝固核の発生個数は多いほど望ましいが、鋳片表面での凝固核発生密度が0.6個/mm2以上であれば、初期凝固シェルにおける凝固割れを減少させ、鋳片の表面割れを防止する効果が発現されることを確認した。 As a result of detailed investigation of actual Ni-containing steel slabs, the present inventors found that the number of solidified nuclei generated is desirable in order to prevent surface cracking, but the solidification nucleation density on the slab surface is 0. It was confirmed that the effect of reducing the solidification cracking in the initial solidification shell and preventing the surface cracking of the cast slab was exhibited when the number was 6 pieces / mm 2 or more.

本発明は、上記知見に基づきなされたものであり、本発明に係るNi含有鋼鋳片は、Niを7.5〜10.0質量%含有し、連続鋳造によって鋳造されたNi含有鋼鋳片であって、鋳片表面での凝固核発生密度が0.6個/mm2以上であることを特徴とする。 This invention is made | formed based on the said knowledge, Ni containing steel slab which concerns on this invention contains 7.5-10.0 mass% of Ni, and Ni containing steel slab cast by continuous casting The solidification nucleus generation density on the slab surface is 0.6 pieces / mm 2 or more.

Ni含有鋼鋳片に限らず、連続鋳造鋳片表面での凝固核発生密度を高くする方法の1つとして、初期凝固時の冷却を強くすること、つまり、鋳型内での冷却を強化することが挙げられる。しかしながら、Ni含有鋼鋳片の連続鋳造では、鋳型内溶鋼湯面上に、酸化防止剤、保温剤、鋳型と凝固シェルとの潤滑剤などとして機能するモールドパウダーを添加しており、このモールドパウダーは凝固シェルと鋳型との間隙に流入することから、溶鋼と鋳型とは直接接触せず、溶鋼はモールドパウダーの流入層を介して鋳型によって間接的に冷却されている。   As one of the methods for increasing the density of solidification nuclei on the surface of continuous cast slabs, not limited to Ni-containing steel slabs, increasing the cooling during initial solidification, that is, enhancing the cooling in the mold Is mentioned. However, in continuous casting of Ni-containing steel slabs, mold powder that functions as an antioxidant, a heat retaining agent, a lubricant between the mold and the solidified shell, etc. is added onto the molten steel surface in the mold. Flows into the gap between the solidified shell and the mold, so that the molten steel and the mold do not directly contact each other, and the molten steel is indirectly cooled by the mold through the mold powder inflow layer.

モールドパウダーは、CaO、SiO2、Na2O、CaF2、Al23などで構成されており、その熱伝導度は、金属である溶鋼及び連続鋳造用鋳型を構成する銅のそれよりも著しく小さい。そのために、溶鋼から鋳型への抜熱は、モールドパウダーの流入層厚みに左右される。つまり、モールドパウダーの流入層厚みが薄くなれば鋳型による冷却が高くなり、逆に、厚みが厚くなれば冷却が低下する。モールドパウダーの流入層厚みは、モールドパウダーの消費量から推定でき、通常、0.1〜0.3mm程度と算出されている。 The mold powder is composed of CaO, SiO 2 , Na 2 O, CaF 2 , Al 2 O 3, etc., and its thermal conductivity is higher than that of molten metal that is a metal and copper that constitutes a continuous casting mold. Remarkably small. Therefore, the heat removal from the molten steel to the mold depends on the inflow layer thickness of the mold powder. That is, when the inflow layer thickness of the mold powder is reduced, the cooling by the mold is increased, and conversely, when the thickness is increased, the cooling is decreased. The inflow layer thickness of the mold powder can be estimated from the consumption of the mold powder, and is usually calculated to be about 0.1 to 0.3 mm.

モールドパウダーの流入層厚みを薄くする方法は、粘度の高いモールドパウダーを使用することである。モールドパウダーの粘度が高いと、凝固シェルと鋳型との間隙に流れ込みにくくなり、モールドパウダーの流入層厚みが薄くなり、溶鋼から鋳型への抜熱が大きくなる。   A method for reducing the thickness of the inflow layer of the mold powder is to use a mold powder having a high viscosity. When the viscosity of the mold powder is high, it becomes difficult to flow into the gap between the solidified shell and the mold, the thickness of the inflow layer of the mold powder becomes thin, and heat removal from the molten steel to the mold increases.

また、鋳型の振動数(オシレーション・サイクル)を高めることも、鋳片表面での凝固核発生密度を高めることに有効である。鋳型振動により凝固途中のデンドライト樹枝状晶の一部が解離してモールドパウダー流入層の表面に付着し、そこから凝固が発生することがあるからである。   Increasing the frequency (oscillation cycle) of the mold is also effective in increasing the density of solidification nuclei on the slab surface. This is because part of the dendrite dendrites in the middle of solidification dissociate due to mold vibration and adhere to the surface of the mold powder inflow layer, and solidification may occur from there.

本発明者らは、鋳型の振動数(オシレーション・サイクル)を毎分60回の一定としてモールドパウダーの粘度を変更した試験結果から、1300℃における粘度が1.0Pa・s(10ポアズ)以上のモールドパウダーを使用することにより、Ni含有鋼鋳片表面での凝固核発生密度が0.6個/mm2以上となって、鋳片の表面割れが減少することを確認した。 The present inventors have found that the viscosity at 1300 ° C. is not less than 1.0 Pa · s (10 poise) based on the test result of changing the viscosity of the mold powder with the mold frequency (oscillation cycle) constant at 60 times per minute. By using this mold powder, it was confirmed that the solidification nucleus generation density on the surface of the Ni-containing steel slab became 0.6 pieces / mm 2 or more, and the surface cracks of the slab were reduced.

また、本発明者らは、モールドパウダーとして1300℃における粘度が0.2Pa・s(2ポアズ)のモールドパウダーを使用し、鋳型の振動数(オシレーション・サイクル)を変更した試験結果から、鋳型の振動数を毎分80回以上とすることにより、Ni含有鋼鋳片表面での凝固核発生密度が0.6個/mm2以上となって、鋳片の表面割れが減少することを確認した。また更に、1300℃における粘度が1.0Pa・s(10ポアズ)以上のモールドパウダーを使用し、且つ、鋳型の振動数を毎分80回以上とすることにより、Ni含有鋼鋳片表面での凝固核発生密度が0.6個/mm2以上となって、鋳片の表面割れが大幅に減少することも確認した。 In addition, the present inventors used a mold powder having a viscosity at 1300 ° C. of 0.2 Pa · s (2 poise) as the mold powder, and changed the mold frequency (oscillation cycle). It is confirmed that the solidification nucleus generation density on the Ni-containing steel slab surface becomes 0.6 pieces / mm 2 or more by reducing the vibration frequency of the steel to 80 times or more per minute and the surface cracks of the slab are reduced. did. Furthermore, by using a mold powder having a viscosity at 1300 ° C. of 1.0 Pa · s (10 poise) or more and making the frequency of the mold 80 times or more per minute, It was also confirmed that the solidification nucleus generation density was 0.6 pieces / mm 2 or more, and the surface cracks of the slab were greatly reduced.

本発明は、Niを7.5〜10.0質量%含有するNi含有鋼に適用されるものであり、Ni以外の化学成分を限定することは必須ではないが、本発明を適用する上で好適な低温用の溶接構造用鋼としてのNi含有鋼の化学組成を限定したので、その理由を以下に説明する。   The present invention is applied to Ni-containing steel containing 7.5 to 10.0% by mass of Ni, and it is not essential to limit chemical components other than Ni, but in applying the present invention. The reason is described below because the chemical composition of Ni-containing steel as a suitable low-temperature welded structural steel is limited.

Cは、母材の強度確保に必須の元素である。0.03質量%(以下、単に「%」と記す)未満では、母材強度が確保できないので、0.03%を下限とした。また、Cを過剰に添加すると、脆性破壊の起点となるセメンタイトや島状マルテンサイトが増加し、好適な靭性が得られない。0.10%を超えると靭性低下が顕著となるので、これを上限値とした。   C is an element essential for ensuring the strength of the base material. If it is less than 0.03% by mass (hereinafter simply referred to as “%”), the strength of the base material cannot be secured, so 0.03% was made the lower limit. Moreover, when C is added excessively, the cementite and island martensite which become the starting point of a brittle fracture will increase, and suitable toughness will not be obtained. When the content exceeds 0.10%, the toughness is significantly reduced.

Si(珪素)は、脱酸に有効であり、また母材強度上昇に有効な元素であるが、過剰に添加すると、溶接熱影響部(HAZ)の組織中に島状マルテンサイトが生成し、良好なHAZ靭性が得られない。従って、HAZ靭性確保のために、上限値を0.5%とした。また、脱酸の効果を得るためには、0.01%以上の添加が必要であり、下限を0.01%とした。   Si (silicon) is an element effective for deoxidation and effective for increasing the strength of the base material, but when added excessively, island martensite is generated in the structure of the weld heat affected zone (HAZ), Good HAZ toughness cannot be obtained. Therefore, the upper limit is set to 0.5% in order to ensure HAZ toughness. Moreover, in order to acquire the effect of deoxidation, addition of 0.01% or more is required, and the minimum was made into 0.01%.

Mn(マンガン)は、母材強度上昇に有効な元素である。0.3%未満では、この効果が得られないので、下限値を0.3%とした。逆に、1.0%を超えて含有すると、母材及びHAZの良好な靭性が得られない。従って、上限を1.0%とした。   Mn (manganese) is an effective element for increasing the strength of the base material. If less than 0.3%, this effect cannot be obtained, so the lower limit was set to 0.3%. On the other hand, if the content exceeds 1.0%, good toughness of the base material and HAZ cannot be obtained. Therefore, the upper limit was made 1.0%.

Pは、粒界脆化をもたらし、表面割れの発生を促進させ、また、母材及びHAZの靭性を低下させるため、低い方が望ましい。0.010%を超えて含有すると、表面割れが顕著となるので、0.010%を上限とした。また、0.001%未満へのP含有量の低下は、製鋼工程における脱燐精錬の負荷が増し、コスト上昇を招くので、下限値を0.001%とした。   P is desirable to be low because it causes grain boundary embrittlement, promotes the generation of surface cracks, and lowers the toughness of the base material and HAZ. If the content exceeds 0.010%, surface cracking becomes remarkable, so 0.010% was made the upper limit. Moreover, since the reduction | decrease of P content to less than 0.001% increases the load of the dephosphorization refining in a steelmaking process, and causes a cost rise, the lower limit was made into 0.001%.

Sも、粒界脆化をもたらし、表面割れの発生を促進させ、また、MnSなどの介在物として靭性を低下させるため、低い方が望ましい。0.005%を超えて含有すると、表面割れが顕著となるので、0.005%を上限とした。また、0.0001%未満へのS含有量の低下は、製鋼工程における脱硫精錬の負荷が増し、コスト上昇を招くので、下限値を0.0001%とした。   S is also preferable to be low because S also causes grain boundary embrittlement, promotes the generation of surface cracks, and reduces toughness as inclusions such as MnS. If the content exceeds 0.005%, surface cracks become prominent, so 0.005% was made the upper limit. Moreover, since the reduction | decrease of S content to less than 0.0001% increases the load of desulfurization refining in a steelmaking process, and causes a cost rise, the lower limit was made 0.0001%.

Niは、低温靭性の確保に必須の元素であり、7.5%未満ではこの効果が十分に得られないので、下限値を7.5%とした。一方、Niは高価な元素であり、10.0%を超えて含有すると、経済性を損なうので、上限値を10.0%とした。   Ni is an element essential for ensuring low temperature toughness, and if it is less than 7.5%, this effect cannot be sufficiently obtained, so the lower limit was set to 7.5%. On the other hand, Ni is an expensive element, and if it is contained in excess of 10.0%, the economic efficiency is impaired, so the upper limit was made 10.0%.

Al(アルミニウム)は、鋼の脱酸に必要な元素であり、0.010%未満の含有量では、この効果が得られないので、下限値を0.010%とした。また、0.080%を超えて含有すると、粗大なAlNにより母材及びHAZの靭性が低下する。従って、上限値を0.080%とした。   Al (aluminum) is an element necessary for deoxidation of steel, and if the content is less than 0.010%, this effect cannot be obtained, so the lower limit was made 0.010%. Moreover, when it contains exceeding 0.080%, the toughness of a base material and HAZ will fall with coarse AlN. Therefore, the upper limit is set to 0.080%.

N(窒素)は、母材及びHAZの靭性を低下させる元素であり、低いほど望ましい。0.0050%を超えて含有すると、粗大なAlNを生成し、母材及びHAZの良好な靭性が得られない。従って、上限値を0.0050%とした。一方、0.0010%未満へのN含有量の低下は、製鋼工程における脱窒処理及び吸窒防止処理の負荷が増し、コスト上昇を招くので、下限値を0.0010%とした。   N (nitrogen) is an element that lowers the toughness of the base material and the HAZ, and is preferably as low as possible. If the content exceeds 0.0050%, coarse AlN is generated, and good toughness of the base material and HAZ cannot be obtained. Therefore, the upper limit is set to 0.0050%. On the other hand, a decrease in the N content to less than 0.0010% increases the load of denitrification treatment and nitrogen absorption prevention treatment in the steel making process, leading to an increase in cost, so the lower limit was set to 0.0010%.

O(酸素)は、介在物を形成して靭性に有害な元素であり、低い方が望ましい。0.0040%を超えて含有すると、靭性低下が顕著となるので、0.0040%を上限とした。一方、0.0005%未満へのO含有量の低下は、製鋼工程における介在物除去処理の負荷が増し、コスト上昇を招くので、下限値を0.0005%とした。   O (oxygen) is an element that forms inclusions and is harmful to toughness, and is preferably low. When the content exceeds 0.0040%, a decrease in toughness becomes remarkable, so 0.0040% was made the upper limit. On the other hand, a decrease in the O content to less than 0.0005% increases the load of the inclusion removal process in the steel making process and causes an increase in cost, so the lower limit was set to 0.0005%.

更に、上記の合金元素の他に、母材や継手の強度及び靭性の向上のために、Cu、Cr、Mo、Nb、V、Ti、B、Caのなかの1種または2種以上を含有させることが好ましく、以下にその成分の限定理由を説明する。   Further, in addition to the above alloy elements, one or more of Cu, Cr, Mo, Nb, V, Ti, B, and Ca are contained in order to improve the strength and toughness of the base material and joint. The reasons for limiting the components are described below.

Cu(銅)は、母材の強度を上昇させる。0.03%未満ではこの効果が得られないので、添加する場合の下限値を0.03%とした。逆に、1.5%を超えるとHAZの靭性が低下するので、上限値を1.5%とした。   Cu (copper) increases the strength of the base material. If less than 0.03%, this effect cannot be obtained, so the lower limit for addition is set to 0.03%. On the other hand, if it exceeds 1.5%, the toughness of the HAZ decreases, so the upper limit was set to 1.5%.

Cr(クロム)は、母材の強度を上昇させる。0.03%未満ではこの効果が得られないので、添加する場合の下限値を0.03%とした。逆に、1.0%を超えるとHAZの靭性が低下するので、上限値を1.0%とした。   Cr (chromium) increases the strength of the base material. If less than 0.03%, this effect cannot be obtained, so the lower limit for addition is set to 0.03%. On the contrary, if it exceeds 1.0%, the toughness of HAZ decreases, so the upper limit value was made 1.0%.

Mo(モリブデン)は、母材の強度を上昇させる。0.02%未満ではこの効果が得られないので、添加する場合の下限値を0.02%とした。逆に、1.0%を超えるとHAZの靭性が低下するので、上限値を1.0%とした。   Mo (molybdenum) increases the strength of the base material. If less than 0.02%, this effect cannot be obtained, so the lower limit for addition is set to 0.02%. On the contrary, if it exceeds 1.0%, the toughness of HAZ decreases, so the upper limit value was made 1.0%.

Nb(ニオブ)は、母材の強度上昇及び細粒化に効果がある。0.003%未満ではこれらの効果が得られないので、添加する場合の下限値を0.003%とした。逆に、0.10%を超えるとHAZの靭性が低下するので、上限値を0.10%とした。   Nb (niobium) is effective in increasing the strength and refining of the base material. If less than 0.003%, these effects cannot be obtained, so the lower limit for addition is set to 0.003%. On the other hand, if it exceeds 0.10%, the toughness of the HAZ decreases, so the upper limit was made 0.10%.

V(バナジウム)は、母材の強度上昇及び細粒化に効果がある。0.003%未満ではこれらの効果が得られないので、添加する場合の下限値を0.003%とした。逆に、0.10%を超えるとHAZの靭性が低下するので、上限値を0.10%とした。   V (vanadium) is effective in increasing the strength and refining of the base material. If less than 0.003%, these effects cannot be obtained, so the lower limit for addition is set to 0.003%. On the other hand, if it exceeds 0.10%, the toughness of the HAZ decreases, so the upper limit was made 0.10%.

Ti(チタン)は、母材の強度上昇及び細粒化に効果がある。0.005%未満ではこれらの効果が得られないので、添加する場合の下限値を0.005%とした。逆に、0.02%を超えると粗大なTiNを生成し、これが破壊の起点となり、HAZの良好な靭性が得られないので、上限値を0.02%とした。   Ti (titanium) is effective in increasing the strength and refining of the base material. If less than 0.005%, these effects cannot be obtained, so the lower limit for addition is 0.005%. On the other hand, if it exceeds 0.02%, coarse TiN is generated, which becomes the starting point of fracture, and good toughness of HAZ cannot be obtained, so the upper limit was made 0.02%.

B(ボロン)は、極微量の添加で焼入れ性を向上させるので、制御冷却及び焼入れ熱処理を施す場合に、顕著な強度上昇をもたらす。0.0002%未満では強度上昇効果が得られないので、添加する場合の下限値を0.0002%とした。逆に、0.0025%を超えると粗大なボロン窒化物や炭硼化物を析出し、これが破壊の起点となり、HAZの靭性が低下するので、上限値を0.0025%とした。   B (boron) improves the hardenability when added in a very small amount, and therefore, when subjected to controlled cooling and quenching heat treatment, the strength is significantly increased. If it is less than 0.0002%, the effect of increasing the strength cannot be obtained. Therefore, the lower limit for addition is set to 0.0002%. On the other hand, if it exceeds 0.0025%, coarse boron nitride or carboboride precipitates, which becomes the starting point of fracture and decreases the toughness of the HAZ, so the upper limit value was made 0.0025%.

Ca(カルシウム)は、介在物の形態制御を担い、これによる靭性向上に有効な他、SをCaSとして強力に固定するため、粒界での延性低下割れを防止して、表面割れの低減に効果のある元素である。0.0005%未満ではこれらの効果が得られないので、添加する場合の下限値を0.0005%とした。逆に、0.005%を超えると粗大なCa含有介在物が生成し、これが破壊の起点となり、HAZの靭性が低下するので、上限値を0.005%とした。   Ca (calcium) is responsible for controlling the form of inclusions, and is effective in improving toughness, and in order to strongly fix S as CaS, it prevents ductile drop at grain boundaries and reduces surface cracks. It is an effective element. If less than 0.0005%, these effects cannot be obtained, so the lower limit for addition is set to 0.0005%. On the other hand, if it exceeds 0.005%, coarse Ca-containing inclusions are generated, which becomes the starting point of fracture, and the toughness of HAZ decreases, so the upper limit value was made 0.005%.

以上説明したように、本発明に係るNi含有鋼鋳片では、鋳片表面での凝固核発生密度が0.6個/mm2以上と多いので、凝固セルのサイズが小さくなり、凝固セル界面でのS及びPの偏析が軽減して凝固セル界面での脆化が少なくなり、且つ、凝固セル界面に作用する応力も分散されることにより、凝固セル界面における凝固割れが抑制されて、鋳片表面における割れの発生が低減する。 As described above, in the Ni-containing steel slab according to the present invention, the solidification nucleus generation density on the slab surface is as large as 0.6 pieces / mm 2 or more, so the size of the solidification cell is reduced and the solidification cell interface is reduced. Segregation of S and P at the surface is reduced, embrittlement at the solidification cell interface is reduced, and stress acting on the solidification cell interface is also dispersed, so that solidification cracking at the solidification cell interface is suppressed, and Generation of cracks on one surface is reduced.

転炉及びRH真空脱ガス装置を用いてNi含有鋼を溶製し、この溶鋼を厚みが250mm、幅が1700mmの垂直曲げ型スラブ連続鋳造機で鋳造する試験を合計4ヒート実施(試験No.1〜4)した。表1に、試験No.1〜4のNi含有鋼の化学成分を示し、また、表2に、試験No.1〜4の連続鋳造機での鋳造条件を示す。   Using a converter and RH vacuum degassing apparatus, a Ni-containing steel was melted, and a test in which this molten steel was cast with a vertical bending slab continuous casting machine having a thickness of 250 mm and a width of 1700 mm was conducted in total 4 heats (Test No. 1-4). Table 1 shows the chemical components of the Ni-containing steels of Test Nos. 1 to 4, and Table 2 shows the casting conditions in the continuous casting machine of Tests No. 1 to 4.

Figure 0005157598
Figure 0005157598

Figure 0005157598
Figure 0005157598

試験No.1の鋳造条件は、鋳造速度が0.8m/min、鋳型オシレーションの振幅が8mm、振動数が60cpmであり、使用するモールドパウダーの1300℃における粘度は0.2Pa・sであり、一般的な鋳造条件である。   The casting conditions of the test No. 1 are a casting speed of 0.8 m / min, a mold oscillation amplitude of 8 mm, a vibration frequency of 60 cpm, and the mold powder used has a viscosity at 1300 ° C. of 0.2 Pa · s. It is a general casting condition.

試験No.2の鋳造条件は、鋳造速度が0.8m/min、鋳型オシレーションの振幅が8mm、振動数が60cpmであり、使用するモールドパウダーの1300℃における粘度は4.0Pa・sであり、試験No.1に対して、使用するモールドパウダーの粘度を高めた試験である。試験No.3の鋳造条件は、鋳造速度が0.8m/min、鋳型オシレーションの振幅が8mm、振動数が100cpmであり、使用するモールドパウダーの1300℃における粘度は0.2Pa・sであり、試験No.1に対して、鋳型オシレーションの振動数を高めた試験である。試験No.4の鋳造条件は、鋳造速度が0.8m/min、鋳型オシレーションの振幅が8mm、振動数が100cpmであり、使用するモールドパウダーの1300℃における粘度は4.0Pa・sであり、試験No.1に対して、使用するモールドパウダーの粘度を高め且つ鋳型オシレーションの振動数を高めた試験である。   The casting conditions of Test No. 2 are a casting speed of 0.8 m / min, a mold oscillation amplitude of 8 mm, a vibration frequency of 60 cpm, and the viscosity at 1300 ° C. of the mold powder used is 4.0 Pa · s. In this test, the viscosity of the mold powder used was increased with respect to test No. 1. The casting conditions for test No. 3 are: casting speed is 0.8 m / min, mold oscillation amplitude is 8 mm, vibration frequency is 100 cpm, and the viscosity at 1300 ° C. of the mold powder used is 0.2 Pa · s. This is a test in which the oscillation frequency of the mold oscillation is increased with respect to test No. 1. The casting conditions of test No. 4 were as follows: casting speed was 0.8 m / min, mold oscillation amplitude was 8 mm, vibration frequency was 100 cpm, and the viscosity at 1300 ° C. of the mold powder used was 4.0 Pa · s. The test No. 1 is a test in which the viscosity of the mold powder used is increased and the vibration frequency of the mold oscillation is increased.

鋳造後の鋳片を厚みが190mmになるまで圧延し、次いで、表面割れの評価のための300mm長さ×全幅の試料を切り出した。この試料の表面をショットブラスト処理して表面の酸化膜を除去し、その後、浸透探傷試験により表面割れを判別し、割れの長さ及び個数を測定した。また、表面割れの深さを調べるために、表面から3mm位置、6mm位置、9mm位置で研削し、それぞれの面で浸透探傷試験により表面割れを判別し、割れの長さ及び個数を測定した。   The cast slab was rolled until the thickness reached 190 mm, and then a sample of 300 mm length × full width for evaluation of surface cracking was cut out. The surface of this sample was shot blasted to remove the oxide film on the surface, and then surface cracks were identified by a penetrant flaw detection test, and the length and number of cracks were measured. In addition, in order to investigate the depth of surface cracks, grinding was performed at 3 mm position, 6 mm position, and 9 mm position from the surface, surface cracks were determined on each surface by a penetrant flaw detection test, and the length and number of cracks were measured.

また、鋳片表面の凝固核発生密度は、以下の方法により測定した。即ち、鋳片表面から試料を採取し、鋳片表面の酸化膜を除去して鏡面研磨し、ピクリン酸で腐食して凝固組織を現出させ、凝固組織の写真を撮影した。写真を観察して、デンドライト樹枝がほぼ同じ方向を向いている塊(凝固セル、或いはデンドライトセル)を一つの凝固核から成長したものとみなし、凝固核発生密度を算出した。つまり、凝固組織の写真から凝固セルの個数を数え、その凝固セルの占めている面積で除して凝固核発生密度とした。この場合、凝固セルの大きさはオシレーションマークの近くでは小さく、オシレーションマークから離れると大きくなるので、凝固セルを数える範囲は、オシレーションマークからオシレーションマークまでとして、平均的な値を求めている。   Moreover, the solidification nucleus generation density on the surface of the slab was measured by the following method. Specifically, a sample was taken from the surface of the slab, the oxide film on the surface of the slab was removed and mirror-polished, corroded with picric acid to reveal a solidified structure, and a photograph of the solidified structure was taken. By observing the photograph, the mass (solidification cell or dendrite cell) in which the dendritic tree branches are oriented in substantially the same direction was regarded as having grown from one solidification nucleus, and the solidification nucleus generation density was calculated. That is, the number of solidification cells was counted from a photograph of the solidification structure and divided by the area occupied by the solidification cells to obtain solidification nucleus generation density. In this case, the size of the coagulation cell is small near the oscillation mark and increases as it moves away from the oscillation mark. Therefore, the average number of solidification cells is calculated from the oscillation mark to the oscillation mark. ing.

表3に、各試験における凝固核発生密度、及び、割れ総長さ(=割れ長さ×割れ個数)の調査結果を示す。   Table 3 shows the results of investigation of solidification nucleus generation density and total crack length (= crack length × number of cracks) in each test.

Figure 0005157598
Figure 0005157598

凝固核発生密度が0.4個/mm2の試験No.1では、多くの表面割れが発生し、しかも、表面から6mm位置でも割れが発生していた。 In the test No. 1 in which the solidification nucleus generation density was 0.4 / mm 2 , many surface cracks occurred, and cracks also occurred at a position of 6 mm from the surface.

これに対して、試験No.2、3、4では、凝固核発生密度が0.6個/mm2よりも多くなっており、凝固核発生密度が多くなるに応じて、表面割れの発生が減少することが確認できた。特に、高粘度のモールドパウダーを使用し、且つ鋳型オシレーションの振動数を増加させた試験No.4では、大幅な表面割れの減少が確認できた。尚、表3の備考欄には、本発明の範囲内の試験を「本発明例」と表示し、それ以外を「比較例」と表示している。 On the other hand, in tests No. 2, 3, and 4, the solidification nucleus generation density is higher than 0.6 / mm 2, and as the solidification nucleus generation density increases, surface cracks are generated. It was confirmed that it decreased. In particular, in test No. 4 in which a high-viscosity mold powder was used and the frequency of mold oscillation was increased, a significant reduction in surface cracks was confirmed. In the remarks column of Table 3, tests within the scope of the present invention are displayed as “examples of the present invention”, and the others are displayed as “comparative examples”.

Claims (5)

質量%で、C:0.03〜0.10%、Si:0.01〜0.5%、Mn:0.3〜1.0%、P:0.001〜0.010%、S:0.0001〜0.005%以下、Ni:7.5〜10.0%、Al:0.010〜0.080%、N:0.0010〜0.0050%、O:0.0005〜0.0040%を含有し、残部がFe及び不可避的不純物からなる、連続鋳造によって鋳造されたNi含有鋼鋳片であって、鋳片表面での凝固核発生密度が0.6個/mm2以上であることを特徴とするNi含有鋼鋳片。 In mass%, C: 0.03-0.10%, Si: 0.01-0.5%, Mn: 0.3-1.0%, P: 0.001-0.010%, S: 0.0001 to 0.005% or less, Ni: 7.5 to 10.0%, Al: 0.010 to 0.080%, N: 0.0010 to 0.0050%, O: 0.0005 to 0 A Ni-containing steel slab cast by continuous casting containing 0040% and the balance consisting of Fe and inevitable impurities, and the solidification nucleus generation density on the slab surface is 0.6 pieces / mm 2 or more A Ni-containing steel slab characterized by 前記Ni含有鋼鋳片は、鋼組成として、更に、質量%で、Cu:0.03〜1.5%、Cr:0.03〜1.0%、Mo:0.02〜1.0%、Nb:0.003〜0.10%、V:0.003〜0.10%、Ti:0.005〜0.02%、B:0.0002〜0.0025%、Ca:0.0005〜0.005%のなかの1種または2種以上を含有することを特徴とする、請求項に記載のNi含有鋼鋳片。 The Ni-containing steel slab is further in terms of steel composition by mass: Cu: 0.03-1.5%, Cr: 0.03-1.0%, Mo: 0.02-1.0% Nb: 0.003-0.10%, V: 0.003-0.10%, Ti: 0.005-0.02%, B: 0.0002-0.0025%, Ca: 0.0005 The Ni-containing steel slab according to claim 1, comprising one or more of ˜0.005%. 請求項1または請求項2に記載のNi含有鋼鋳片を鋳造するための連続鋳造方法であって、1300℃における粘度が1.0Pa・s(10ポアズ)以上のモールドパウダーを鋳型内に添加して鋳造することを特徴とする、Ni含有鋼の連続鋳造方法。 A continuous casting method for casting the Ni-containing steel slab according to claim 1 or 2 , wherein a mold powder having a viscosity at 1300 ° C of 1.0 Pa · s (10 poise) or more is added into the mold. A continuous casting method of Ni-containing steel. 請求項1または請求項2に記載のNi含有鋼鋳片を鋳造するための連続鋳造方法であって、鋳型を毎分80サイクル以上の振動数で振動させて鋳造することを特徴とする、Ni含有鋼の連続鋳造方法。 A continuous casting method for casting the Ni-containing steel slab according to claim 1 or 2 , wherein the casting is performed by vibrating the mold at a frequency of 80 cycles or more per minute. A method for continuous casting of contained steel. 請求項1または請求項2に記載のNi含有鋼鋳片を鋳造するための連続鋳造方法であって、1300℃における粘度が1.0Pa・s(10ポアズ)以上のモールドパウダーを鋳型内に添加して鋳造するとともに、鋳型を毎分80サイクル以上の振動数で振動させて鋳造することを特徴とする、Ni含有鋼の連続鋳造方法。 A continuous casting method for casting the Ni-containing steel slab according to claim 1 or 2 , wherein a mold powder having a viscosity at 1300 ° C of 1.0 Pa · s (10 poise) or more is added into the mold. And continuously casting the Ni-containing steel, wherein the casting is performed by vibrating the mold at a frequency of 80 cycles or more per minute.
JP2008095644A 2008-04-02 2008-04-02 Ni-containing steel slab and method for continuously casting Ni-containing steel Active JP5157598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008095644A JP5157598B2 (en) 2008-04-02 2008-04-02 Ni-containing steel slab and method for continuously casting Ni-containing steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008095644A JP5157598B2 (en) 2008-04-02 2008-04-02 Ni-containing steel slab and method for continuously casting Ni-containing steel

Publications (2)

Publication Number Publication Date
JP2009248099A JP2009248099A (en) 2009-10-29
JP5157598B2 true JP5157598B2 (en) 2013-03-06

Family

ID=41309275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008095644A Active JP5157598B2 (en) 2008-04-02 2008-04-02 Ni-containing steel slab and method for continuously casting Ni-containing steel

Country Status (1)

Country Link
JP (1) JP5157598B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6443424B2 (en) * 2016-02-29 2018-12-26 Jfeスチール株式会社 Method for producing Ni-containing steel
CN109694987B (en) * 2017-10-20 2021-02-23 鞍钢股份有限公司 High-nickel steel for ultralow-temperature pressure vessel and manufacturing method thereof
WO2024053276A1 (en) * 2022-09-09 2024-03-14 Jfeスチール株式会社 Steel cast slab, continuous casting method, and method for producing steel cast slab

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3215573B2 (en) * 1994-06-27 2001-10-09 川崎製鉄株式会社 Continuous casting method of nickel-containing steel
JP3018911B2 (en) * 1994-07-20 2000-03-13 日本鋼管株式会社 Continuous casting method of high Ni steel
JP4924104B2 (en) * 2007-03-02 2012-04-25 Jfeスチール株式会社 Method for producing high Ni content steel slab

Also Published As

Publication number Publication date
JP2009248099A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
KR101630107B1 (en) Forged steel roll manufacturing method
CN101346486B9 (en) Duplex stainless steel
CA1326143C (en) Ferritic stainless steel and processing therefore
JP4363403B2 (en) Steel for line pipe excellent in HIC resistance and line pipe manufactured using the steel
JP2006206967A (en) Method for continuously casting free-cutting steel for machine structure
JP6787238B2 (en) Manufacturing method of steel for machine structure
JPWO2017183630A1 (en) Steel
JP6951060B2 (en) Manufacturing method of slabs
JP4900127B2 (en) Induction hardening steel and manufacturing method thereof
AU2015224087A1 (en) Welded joint and method for producing welded joint
JP2009074123A (en) METHOD FOR MANUFACTURING Ni-CONTAINING STEEL HAVING EXCELLENT SURFACE QUALITY
CN110408842B (en) Duplex stainless steel having excellent low-temperature toughness
JP6131833B2 (en) Method for continuous casting of Ti deoxidized steel
JP3633515B2 (en) Hot-rolled steel sheet having excellent resistance to hydrogen-induced cracking and method for producing the same
JP5157598B2 (en) Ni-containing steel slab and method for continuously casting Ni-containing steel
JP3508715B2 (en) High Cr steel slab and seamless steel pipe
JP5206239B2 (en) Continuous casting method of high N content duplex stainless steel
JP4922971B2 (en) Composite roll for hot rolling and manufacturing method thereof
JP7508018B2 (en) Manufacturing method of Ni-containing steel slab
WO2024053276A1 (en) Steel cast slab, continuous casting method, and method for producing steel cast slab
JP2022181056A (en) Ni-CONTAINING STEEL SLAB MANUFACTURING METHOD
JP6651306B2 (en) Continuous casting method
TW202413666A (en) Flat steel blank, continuous casting method and manufacturing method of flat steel blank
JP6443424B2 (en) Method for producing Ni-containing steel
JP3562483B2 (en) Method for manufacturing high-strength thick steel plate with excellent constraint weld cracking resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110322

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5157598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250