JP6651306B2 - Continuous casting method - Google Patents

Continuous casting method Download PDF

Info

Publication number
JP6651306B2
JP6651306B2 JP2015147166A JP2015147166A JP6651306B2 JP 6651306 B2 JP6651306 B2 JP 6651306B2 JP 2015147166 A JP2015147166 A JP 2015147166A JP 2015147166 A JP2015147166 A JP 2015147166A JP 6651306 B2 JP6651306 B2 JP 6651306B2
Authority
JP
Japan
Prior art keywords
slab
center
mns
content
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015147166A
Other languages
Japanese (ja)
Other versions
JP2017024057A (en
Inventor
水上 英夫
英夫 水上
山田 健二
健二 山田
原田 寛
寛 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015147166A priority Critical patent/JP6651306B2/en
Publication of JP2017024057A publication Critical patent/JP2017024057A/en
Application granted granted Critical
Publication of JP6651306B2 publication Critical patent/JP6651306B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は連続鋳造方法に関するものであり、特に鋳片中心部の中心偏析の悪影響を低減することのできる、鋼の連続鋳造方法に関するものである。   The present invention relates to a continuous casting method, and more particularly to a continuous casting method for steel capable of reducing the adverse effect of center segregation at the center of a slab.

連続鋳造方法によってスラブやブルームなどの鋳片を鋳造する場合に、鋳片の中心部に硫黄(S)やリン(P)等の成分が偏析する、いわゆる中心偏析が発生することがある。連続鋳造中の凝固速度は凝固シェルが厚くなるほど低下し、鋳片厚み中心部は最も凝固速度が遅くなるため、凝固組織が粗大化する。これにともなって、特に鋳片中心部に中心偏析が生成し、品質向上を阻害するという問題が顕在化する。中心偏析部に形成される有害非金属介在物としてMnSが挙げられる。鋼板を加工する際に、粗大なMnSが起点になり割れが発生し、鋼板の靱性を低下させることとなる。これを防ぐには、MnSの粗大化を抑制すること、さらには微細化することが必須となる。   When casting a slab or bloom such as a slab by a continuous casting method, so-called center segregation in which components such as sulfur (S) and phosphorus (P) segregate in the center of the slab may occur. The solidification rate during continuous casting decreases as the thickness of the solidified shell increases, and the solidification rate becomes slowest at the center of the slab thickness, so that the solidification structure becomes coarse. Along with this, the problem that center segregation is generated particularly at the center of the slab, which hinders quality improvement, becomes apparent. As a harmful nonmetallic inclusion formed in the center segregation portion, MnS can be mentioned. When a steel sheet is processed, coarse MnS is used as a starting point to cause cracks, thereby reducing the toughness of the steel sheet. In order to prevent this, it is essential to suppress the MnS from becoming coarser and to further reduce the size.

MnSは、液相中で晶出し、あるいは固相中で析出することにより形成される。そこで以下、MnSの形成を総称して「MnSが晶析出」ということとする。   MnS is formed by crystallization in a liquid phase or precipitation in a solid phase. Therefore, hereinafter, the formation of MnS is collectively referred to as “MnS is crystallized”.

従来、極厚鋼板については、インゴットに鋳造して分塊圧延を経た上で厚板圧延がなされていた。これに対して近年は、極厚鋼板についても連続鋳造によって鋳造することが試みられている。極厚鋼板を連続鋳造するに際しては、熱間圧延の圧下率を確保するために鋳片の厚みを極厚化する必要があり、極厚鋼板を連続鋳造する際の鋳片厚みは300mm超となることがある。そのため、鋳片中心部の凝固組織粗大化はさらに顕著になり、中心偏析の程度が悪化する。   Conventionally, an extremely thick steel plate has been cast into an ingot, subjected to slab rolling, and then subjected to thick plate rolling. On the other hand, in recent years, it has been attempted to cast an extremely thick steel plate by continuous casting. When continuously casting extremely thick steel plates, it is necessary to make the thickness of the slab extremely thick in order to secure the reduction ratio of hot rolling, and the slab thickness when continuously casting the extremely thick steel plates is over 300 mm. May be. Therefore, the coarsening of the solidification structure at the center of the slab becomes even more remarkable, and the degree of center segregation deteriorates.

鋼板の高強度化を実現するため、鋼中のMnの濃度を高めることが一般的に行われる。前述のように、Mnは溶鋼中のSと反応してMnSが生成する。Mn濃度が高いほどMnSが粗大化するので、高Mn鋼においてはより一層の中心偏析対策が必要となる。   In order to increase the strength of a steel sheet, it is common practice to increase the concentration of Mn in the steel. As described above, Mn reacts with S in molten steel to produce MnS. Since the MnS becomes coarser as the Mn concentration becomes higher, a further countermeasure for center segregation is required in a high Mn steel.

特許文献1には、圧下を行うことなく鋳造した場合の鋳片の厚さ方向中心におけるデンドライト1次アーム間隔λ0を基準とし、鋳片の厚さ方向中心におけるデンドライト1次アーム間隔λと前記λ0の比の値λ/λ0が0.1〜0.9となるように、鋳片の厚さ方向中心が凝固した直後に圧下を行うことを特徴とする鋳片の連続鋳造方法、および圧下を行うことなく鋳造した場合の鋳片の厚さ方向中心における析出物の直径d0を基準とし、鋳片の厚さ方向中心における析出物の直径dと前記d0の比の値d/d0が0.1〜0.9となるように、鋳片の厚さ方向中心が凝固した直後に圧下を行うことを特徴とする鋳片の連続鋳造方法が開示されている。 Patent Document 1 discloses that a primary dendrite arm interval λ at a center of a slab thickness direction is used as a reference, based on a dendrite primary arm interval λ 0 at a center of a slab thickness when casting is performed without reduction. a continuous casting method of a slab, wherein the reduction is performed immediately after the center of the slab in the thickness direction is solidified so that the value λ / λ 0 of the ratio of λ 0 is 0.1 to 0.9; And the diameter d 0 of the precipitate at the center in the thickness direction of the slab when cast without performing reduction, and the value d of the ratio of the diameter d of the precipitate at the center in the thickness direction of the slab to d 0. A continuous casting method of a slab is disclosed in which rolling is performed immediately after the center of the slab in the thickness direction is solidified so that / d 0 is 0.1 to 0.9.

特許文献2にはMgを添加することによりMgOもしくはMg含有酸化物を核にして、酸化物を包含もしくは周辺に析出した窒化物より構成される大きさ0.01〜2.0μmの酸化物−窒化物の複合粒子を1mm2当たり1.0×105〜1.0×108個含む鋼材を製造する技術が開示されている。 Patent Document 2 discloses an oxide having a size of 0.01 to 2.0 μm composed of a nitride containing MgO or an Mg-containing oxide as a nucleus by adding Mg and containing or depositing around the oxide. A technique for manufacturing a steel material containing 1.0 × 10 5 to 1.0 × 10 8 nitride composite particles per 1 mm 2 is disclosed.

しかしながら、MgOもしくはMg含有酸化物を核にMnSが析出しても、その後の降温過程でMnS成長し、終にはMgOもしくはMg含有酸化物を覆ってしまい微細化効果が無くなり、MnSが粗大化することになる。このためMn濃度を高めることで鋼板の高強度化を図るにはMgを添加することだけでは十分でない。   However, even if MnS precipitates with MgO or Mg-containing oxides as nuclei, MnS grows in the subsequent temperature-lowering process, and eventually covers the MgO or Mg-containing oxide, so that the effect of miniaturization is lost and MnS becomes coarse. Will be. Therefore, adding Mg alone is not sufficient to increase the strength of the steel sheet by increasing the Mn concentration.

特開2015−6680号公報JP-A-2015-6680 特開2001−335882号公報JP 2001-335882 A

本発明は、鋳片中心部の中心偏析に起因する品質悪影響をより一層軽減することのできる、連続鋳造方法を提供することを目的とする。   An object of the present invention is to provide a continuous casting method that can further reduce adverse effects on quality caused by center segregation at the center of a slab.

即ち、本発明の要旨とするところは以下のとおりである。
(1)質量%で、C:0.02〜1.50%、Si:0.005〜0.8%、Mn:0.05〜3.0%、P:0.02%以下、S:0.001〜0.02%、N:0.002〜0.008%、O:0.0001〜0.015%、Ag:0.0001〜0.5%を含有し、残部Fe及び不可避的不純物からなる溶鋼を連続鋳造し、得られた鋳片を、λ/λ0が0.1〜0.9となるように、鋳片の厚さ方向中心が凝固した後に圧下を行うことを特徴とする連続鋳造方法。
但し、λは、圧下後の鋳片の、厚さ方向中心におけるデンドライト1次アーム間隔であり、λ0は、圧下を行うことなく鋳造した鋳片の、厚さ方向中心におけるデンドライト1次アーム間隔である。
(2)質量%で、C:0.02〜1.50%、Si:0.005〜0.8%、Mn:0.05〜3.0%、P:0.02%以下、S:0.001〜0.02%、N:0.002〜0.008%、O:0.0001〜0.015%、Ag:0.0001〜0.5%を含有し、残部Fe及び不可避的不純物からなる溶鋼を連続鋳造し、鋳片の厚さ方向中心部温度が固相線温度〜(固相線温度−400℃)の範囲内において圧下率5〜50%で圧下を行うことを特徴とする連続鋳造方法。
(3)溶鋼成分は、Feの一部に代えて、質量%で、Ti:0.005〜0.03%、Cu:0.05〜1.5%、Ni:0.05〜5.0%、Cr:0.02〜1.0%、Mo:0.02〜1.0%、Nb:0.005〜0.05%、V:0.005〜0.1%およびB:0.0004〜0.004%のうち1種以上を含有することを特徴とする上記(1)又は(2)に記載の連続鋳造方法。
That is, the gist of the present invention is as follows.
(1) In mass%, C: 0.02 to 1.50%, Si: 0.005 to 0.8%, Mn: 0.05 to 3.0%, P: 0.02% or less, S: 0.001 to 0.02%, N: 0.002 to 0.008%, O: 0.0001 to 0.015%, Ag: 0.0001 to 0.5%, the balance being Fe and inevitable Molten steel consisting of impurities is continuously cast, and the obtained slab is rolled down after the center in the thickness direction of the slab is solidified so that λ / λ 0 is 0.1 to 0.9. And continuous casting method.
Here, λ is the primary dendrite arm spacing at the center in the thickness direction of the cast slab after reduction, and λ 0 is the primary dendrite arm spacing at the center in the thickness direction of the slab cast without reduction. It is.
(2) In mass%, C: 0.02 to 1.50%, Si: 0.005 to 0.8%, Mn: 0.05 to 3.0%, P: 0.02% or less, S: 0.001 to 0.02%, N: 0.002 to 0.008%, O: 0.0001 to 0.015%, Ag: 0.0001 to 0.5%, the balance being Fe and inevitable It is characterized in that molten steel consisting of impurities is continuously cast, and reduction is performed at a reduction rate of 5 to 50% when the temperature in the center of the slab in the thickness direction is in the range of solidus temperature to (solidus temperature-400 ° C). And continuous casting method.
(3) Instead of a part of Fe, the molten steel component is represented by mass%, Ti: 0.005 to 0.03%, Cu: 0.05 to 1.5%, Ni: 0.05 to 5.0. %, Cr: 0.02 to 1.0%, Mo: 0.02 to 1.0%, Nb: 0.005 to 0.05%, V: 0.005 to 0.1%, and B: 0. The continuous casting method according to the above (1) or (2), wherein at least one of 0004 to 0.004% is contained.

本発明の溶融金属の連続鋳造方法によれば、微細な晶析出物を連鋳々片内に生成させることができる。   ADVANTAGE OF THE INVENTION According to the continuous casting method of the molten metal of this invention, a fine crystalline precipitate can be produced in a continuous cast piece.

前述のとおり、鋳片の中心偏析部に形成される有害非金属介在物としてMnSが挙げられる。鋼板を加工する際に、粗大なMnSが起点になり割れが発生し、鋼板の靱性を低下させることとなる。これを防ぐには、MnSの粗大化を抑制すること、さらには微細化することが必須となる。   As described above, MnS is an example of a harmful nonmetallic inclusion formed at the center segregation portion of the slab. When a steel sheet is processed, coarse MnS is used as a starting point to cause cracks, thereby reducing the toughness of the steel sheet. In order to prevent this, it is essential to suppress the MnS from becoming coarser and to further reduce the size.

連続鋳造中の鋳片固液界面付近において、特に鋳造上面側の凝固シェルに関しては、厚み中心付近までデンドライト凝固が進行する。鋳造下面側については、厚み中心付近に等軸晶帯ができることもある。Mnは凝固過程における溶質再分配により、デンドライト樹芯部でMn濃度が低く、デンドライト樹間部で濃度が高くなり、数十μm〜数mmのサイズのデンドライトの範囲内においてMn濃度が大きく異なることになる。このため、溶鋼中のMn濃度、S濃度ではMnSが生成しなくても、このような凝固の進行につれてデンドライト樹間の濃化溶鋼部ではMn濃度が増大するため、MnSの溶解度積を超える場合が生じ、MnSが晶析出することになる。このMnSは鋳片の圧延中に延伸し、鋼板の靱性を低下させてしまう。連鋳々片の場合は厚み中心領域のMn濃度が偏析により高くなることからMnSが晶析出し易く、冷却速度も小さいことと相まって粗大なMnSが生成することになり、鋼板の靱性が大きく低下することになる。鋼板の靱性低下は、鋼板が高強度であるほど顕著に現れる。   In the vicinity of the slab solid-liquid interface during continuous casting, particularly for the solidified shell on the casting upper surface side, dendrite solidification proceeds to near the center of thickness. On the casting lower surface side, an equiaxed zone may be formed in the vicinity of the thickness center. Due to solute redistribution in the coagulation process, Mn concentration is low at the core of the dendrite and high at the interdendritic tree, and the Mn concentration greatly differs within the range of dendrites of several tens μm to several mm in size. become. For this reason, even if MnS is not generated at the Mn concentration and S concentration in the molten steel, the Mn concentration increases in the concentrated molten steel portion between the dendrite trees as the solidification progresses, and the MnS exceeds the solubility product of MnS. And MnS crystallizes out. This MnS elongates during rolling of the slab, and reduces the toughness of the steel sheet. In the case of continuously cast slabs, the Mn concentration in the center region of the thickness increases due to segregation, so that MnS is easily crystallized, and together with the low cooling rate, coarse MnS is generated, and the toughness of the steel sheet is greatly reduced. Will be. The decrease in toughness of a steel sheet becomes more remarkable as the steel sheet has higher strength.

晶析出するMnSの大きさが小さければ、鋳造後に行う熱間圧延における加熱時に拡散を促進させて、有害晶析出物を矮小化あるいは消滅させることができる。   If the size of MnS to be crystallized is small, diffusion during heating in hot rolling performed after casting can be promoted, and harmful crystal precipitates can be reduced or eliminated.

特許文献1においては、凝固が完了した後の連鋳々片に圧下を加え、温度が高く塑性変形しやすい鋳片厚み中心部を塑性変形させることにより、晶析出したMnSを扁平に変形させて短径部の径を小さくし、後工程における加熱処理時の拡散の促進により偏析を低減させている。   In Patent Document 1, the MnS crystallized out is deformed flat by applying pressure to the continuously cast slab after solidification is completed and plastically deforming the slab thickness center where the temperature is high and plastic deformation is likely to occur. The diameter of the short diameter portion is reduced, and segregation is reduced by promoting diffusion during a heat treatment in a subsequent step.

本発明においては、特許文献1記載発明のように凝固後の鋳片を圧下して厚み中心部のMnS形状を扁平化することに加え、凝固末期にデンドライト樹間に晶析出するMnSの晶析出サイズそのものを微細化することを検討した。   In the present invention, in addition to flattening the MnS shape at the center of the thickness by rolling down the solidified slab as in the invention described in Patent Document 1, crystallization of MnS precipitated between dendrite trees at the end of solidification We considered reducing the size itself.

その結果、溶鋼中にAgを0.0001〜0.5質量%含有させることにより、その他の鋳造条件が同じでAgを含有させない場合に比較し、鋳片中心部に晶析出するMnSの大きさを微細化できることを見出した。晶析出物MnSを構成するMnと固溶するAgを0.0001〜0.5%溶鋼中に添加して、連続鋳造鋳片を製造すれば、鋳片の凝固過程とその後の冷却過程でMnとAgの固溶体中のMnの溶解度が低下し、Sと反応してMnSを生成するMnの量が低下し、MnSの成長が抑制され、粗大化を防ぐことができるものと推定される。Agの融点は962℃、沸点は2212℃であり、製鋼温度である1600℃の溶鋼中に容易に溶融するとともに、蒸発もし難く、高歩留まりで効率良く所望の効果を得ることができる。融点が製鋼温度よりも低いことから、Agの添加位置はRH槽内、レードル内、タンディッシュ内、鋳型内のいずれの場所でも良い。   As a result, by containing 0.0001 to 0.5% by mass of Ag in the molten steel, the size of MnS crystallized at the center of the slab is larger than that in the case where the other casting conditions are the same and Ag is not contained. Can be miniaturized. By adding Ag which forms a solid solution with Mn constituting the crystal precipitate MnS to 0.0001-0.5% molten steel to produce a continuous cast slab, Mn is obtained during the solidification process of the slab and the subsequent cooling process. It is presumed that the solubility of Mn in the solid solution of Ag and Ag decreases, the amount of Mn that reacts with S to form MnS decreases, the growth of MnS is suppressed, and coarsening can be prevented. Ag has a melting point of 962 ° C. and a boiling point of 2212 ° C., and is easily melted in molten steel at 1600 ° C., which is a steelmaking temperature, hardly evaporates, and a desired effect can be obtained efficiently with high yield. Since the melting point is lower than the steelmaking temperature, the addition position of Ag may be any location in the RH tank, ladle, tundish, or mold.

本発明は、上記のように溶鋼中にAgを0.0001〜0.5質量%含有させることによって鋳片厚み中心部に晶析出するMnSの大きさを微細化し、さらに凝固完了後の鋳片を圧下して鋳片中心部に大きな塑性変形を加えることによって晶析出したMnSの形状を扁平化する。あるいは上記Ag添加に加え凝固後の鋳片を圧下してデンドライトの間隔を小さくすることでMnSの析出するスペースを小さくし、MnSを微細化する。その結果、後工程の鋳片加熱時に晶析出物の拡散を促進して偏析による品質への影響を軽減することができる。   The present invention reduces the size of MnS crystallized at the center of the slab thickness by adding 0.0001 to 0.5% by mass of Ag in the molten steel as described above, and furthermore, the slab after solidification is completed. By applying large plastic deformation to the center of the slab to flatten the shape of the precipitated MnS. Alternatively, in addition to the addition of Ag, the cast slab after solidification is pressed down to reduce the intervals between dendrites, thereby reducing the space where MnS is deposited and miniaturizing MnS. As a result, it is possible to promote the diffusion of crystal precipitates at the time of heating the slab in the subsequent step, and reduce the influence of segregation on quality.

まず、本発明の鋼成分の限定理由について説明する。特に断らない限り、%は質量%を意味する。   First, the reasons for limiting the steel components of the present invention will be described. Unless otherwise specified,% means% by mass.

C:0.02〜1.50%
Cは、強度および靱性を確保するために有効な元素である。その含有量が0.02%未満では、上記の効果が充分に得られず、一方、その含有量が1.50%を超えて高くなると母材およびHAZ部の靭性が低下する。そこで、Cの適正範囲を0.02〜1.50%とした。
C: 0.02 to 1.50%
C is an element effective for securing strength and toughness. If the content is less than 0.02%, the above effects cannot be sufficiently obtained. On the other hand, if the content is higher than 1.50%, the toughness of the base material and the HAZ decreases. Therefore, the appropriate range of C is set to 0.02 to 1.50%.

Si:0.005〜0.8%
Siは、0.005%未満では母材の強度を確保できないので下限を0.005%とした。また、0.8%を超えると溶接性が低下するため上限を0.8%とした。上記の理由から、その適正範囲を0.005〜0.8%とした。
Si: 0.005 to 0.8%
If the content of Si is less than 0.005%, the strength of the base material cannot be secured, so the lower limit is made 0.005%. Further, if it exceeds 0.8%, the weldability decreases, so the upper limit was made 0.8%. For the above reasons, the appropriate range is 0.005 to 0.8%.

Mn:0.05〜3.0%
Mnは、鋼板の高強度化と靱性の確保のために有効な元素である。上記の効果を得るためには、その含有量を0.05%以上とする必要がある。一方、その含有量が3.0%を超えて高くなると、靱性が損なわれる。このため、Mn含有量の適正範囲を0.05〜3.0%とした。本発明は、鋼板の高強度化のためにMn含有量を0.5%以上とした場合に特に好適である。Mn含有量が高いために、鋳片凝固時に厚み中心部のデンドライト樹間に濃化する濃化Mn濃度も高くなり、晶析出するMnSの大きさも大きくなるため、本発明の効果が特に顕著に現れるためである。
Mn: 0.05-3.0%
Mn is an element effective for increasing the strength and ensuring the toughness of the steel sheet. In order to obtain the above effects, the content needs to be 0.05% or more. On the other hand, if the content exceeds 3.0%, toughness is impaired. Therefore, the appropriate range of the Mn content is set to 0.05 to 3.0%. The present invention is particularly suitable when the Mn content is set to 0.5% or more for increasing the strength of the steel sheet. Because the Mn content is high, the concentrated Mn concentration concentrated between dendrite trees in the center of the thickness during solidification of the slab also increases, and the size of MnS to be crystallized also increases, so that the effect of the present invention is particularly remarkable. To appear.

P:0.02%以下
Pは、鋼板の延性および靱性および加工性を劣化させる元素であることから、その含有量を0.02%以下に制限する。
P: 0.02% or less P is an element that deteriorates the ductility, toughness, and workability of the steel sheet, so that its content is limited to 0.02% or less.

S:0.001〜0.02%
Sは、MnS介在物などを形成して結晶粒内にフェライトの生成を促進する効果がある。0.001%未満ではフェライトの生成する効果がほとんど無いため、0.001%を下限とした。ただし、0.02%を超えると鋼板の延性を低下させるため、0.02%を上限とした。上記の理由から、S含有量の適正範囲を0.001〜0.02%とした。
S: 0.001 to 0.02%
S has the effect of forming MnS inclusions and promoting the formation of ferrite in crystal grains. If less than 0.001%, there is almost no effect of producing ferrite, so 0.001% was made the lower limit. However, if it exceeds 0.02%, the ductility of the steel sheet is reduced, so the upper limit is made 0.02%. For the above reasons, the appropriate range of the S content is set to 0.001 to 0.02%.

N:0.002〜0.008%
Nは、Tiと反応してTiNを析出させるために必要な元素である。ただし、N含有率が0.008%を超えて高くなると、鋼の靭性が低下することから、N含有率の上限を0.008%とした。しかしながら、工業的にNを完全に鋼から除去することは不可能であるため、実操業において低減可能な範囲を考慮し、N含有率の下限を0.002%とした。
N: 0.002-0.008%
N is an element necessary for reacting with Ti to precipitate TiN. However, if the N content exceeds 0.008% and increases, the toughness of the steel decreases. Therefore, the upper limit of the N content is set to 0.008%. However, since it is impossible to completely remove N from steel industrially, the lower limit of the N content is set to 0.002% in consideration of a range that can be reduced in actual operation.

O:0.0001〜0.015%
Oは酸化物を生成させるために必要な元素である。O含有率が0.0001%未満では酸化物の個数が不足するため、O含有率の下限を0.0001%とした。また、O含有率が0.015%を超えて高くなると、酸化物が多くなり過ぎて鋼の靭性が低下するため、O含有率の上限を0.015%とした。
O: 0.0001 to 0.015%
O is an element necessary for generating an oxide. If the O content is less than 0.0001%, the number of oxides becomes insufficient, so the lower limit of the O content is set to 0.0001%. Further, when the O content exceeds 0.015%, the oxide becomes too large and the toughness of the steel decreases, so the upper limit of the O content is set to 0.015%.

Ag:0.0001〜0.5%
Agは、本発明において最も重要な金属元素である。その濃度が0.0001%未満ではMnの温度低下に伴う固溶度の減少効果がほとんど無いため、0.0001%を下限とした。また、Agは固体の鋼中への溶解度が大きくないことから、0.5%を超えて高くなると、鋳片の冷却過程において粗大なAgが単独で晶析出するか、あるいはまたAg酸化物を生成し、靭性を低下させるため0.5%を上限とした。上記の理由から、Ag含有量の適正範囲を0.0001〜0.5%とした。
Ag: 0.0001-0.5%
Ag is the most important metal element in the present invention. If the concentration is less than 0.0001%, there is almost no effect of decreasing the solid solubility with a decrease in the temperature of Mn, so the lower limit was made 0.0001%. Moreover, since the solubility of Ag in solid steel is not large, when it exceeds 0.5%, coarse Ag alone precipitates in the cooling process of the slab, or Ag oxide is removed. 0.5% was made the upper limit in order to form and lower the toughness. For the above reasons, the appropriate range of the Ag content is set to 0.0001 to 0.5%.

本発明は、さらに必要に応じて下記元素を含有することとしても良い。   The present invention may further contain the following elements as needed.

Ti:0.005〜0.03%
Tiは、主として炭窒化物を析出し、その析出強化作用により母材強度の向上に寄与する有効な元素である。Ti含有率が0.005%未満では、炭窒化物の析出強化作用により母材強度を向上させる効果が充分ではなく、一方、Ti含有率が0.03%を超えて高くなると、鋼中に粗大な析出物や介在物を形成して、鋼の靭性を低下させる。上記の理由から、Ti含有率の適正範囲を0.005〜0.03%とした。
Ti: 0.005 to 0.03%
Ti is an effective element that mainly precipitates carbonitrides and contributes to improvement of the base metal strength by its precipitation strengthening action. If the Ti content is less than 0.005%, the effect of improving the strength of the base metal by the precipitation strengthening action of carbonitride is not sufficient. On the other hand, if the Ti content exceeds 0.03%, the steel contains It forms coarse precipitates and inclusions, reducing the toughness of the steel. For the above reasons, the appropriate range of the Ti content is set to 0.005 to 0.03%.

Cu:0.05〜1.5%
Cuは、含有させれば焼入れ性の向上および析出強化に有効な作用を有する元素である。しかし、Cu含有率が0.05%未満では、焼入れ性向上効果および析出強化効果が無い。一方、Cu含有率が1.5%を超えて高くなると、鋼の熱間加工性が低下する。上記の理由から、Cuを含有させる場合のCu含有率の範囲を0.05〜1.5%とした。
Cu: 0.05-1.5%
Cu is an element that, when contained, has an effect of improving hardenability and strengthening precipitation. However, if the Cu content is less than 0.05%, there is no quenching improvement effect and no precipitation strengthening effect. On the other hand, when the Cu content exceeds 1.5%, the hot workability of steel decreases. For the reasons described above, the range of the Cu content when Cu is contained is set to 0.05 to 1.5%.

Ni:0.05〜5.0%
Niは、含有させれば母材の靭性を向上させる作用を有する元素である。しかし、Ni含有率が0.05%未満では、母材の靭性を向上させる効果が無い。一方、Ni含有率が5.0%を超えて高くなると、焼入れ性が過剰となり、鋼の靭性に悪影響を及ぼす。そこで、Niを含有させる場合のNi含有率の範囲を0.05〜5.0%とした。
Ni: 0.05 to 5.0%
Ni is an element having an effect of improving the toughness of the base material when contained. However, if the Ni content is less than 0.05%, there is no effect of improving the toughness of the base material. On the other hand, when the Ni content is higher than 5.0%, the hardenability becomes excessive, which adversely affects the toughness of the steel. Therefore, the range of the Ni content when Ni is contained is set to 0.05 to 5.0%.

Cr:0.02〜1.0%
Crは、含有させれば焼入れ性の向上、および析出強化による母材強度の向上に有効な作用を発揮する元素である。しかし、Cr含有率が0.02%未満では、焼入れ性向上効果および析出強化効果が無い。一方、Cr含有率が1.0%を超えて高くなると、鋼の靭性および溶接性が劣化する傾向が認められる。そこで、Crを含有させる場合のCr含有率の範囲を0.02〜1.0%とした。
Cr: 0.02 to 1.0%
Cr is an element that, when contained, exhibits an effect of improving hardenability and improving base material strength by precipitation strengthening. However, if the Cr content is less than 0.02%, there is no quenching property improving effect and no precipitation strengthening effect. On the other hand, when the Cr content exceeds 1.0%, the toughness and weldability of steel tend to deteriorate. Therefore, the range of the Cr content when Cr is contained is set to 0.02 to 1.0%.

Mo:0.02〜1.0%
Moは、含有させれば焼入れ性の向上および強度の向上に有効な作用を発揮する元素である。しかし、Mo含有率が0.02%未満では、焼入れ性向上効果および強度向上効果が明確ではない。一方、Mo含有率が1.0%を超えて高くなると、鋼の靭性および延性の低下ならびに溶接性の劣化が顕在化する。そこで、Moを含有させる場合のMo含有率の範囲を0.02〜1.0%とした。
Mo: 0.02 to 1.0%
Mo is an element that, when contained, exerts an effective action for improving hardenability and strength. However, if the Mo content is less than 0.02%, the effect of improving hardenability and the effect of improving strength are not clear. On the other hand, when the Mo content exceeds 1.0%, the toughness and ductility of the steel and the weldability deteriorate. Therefore, the range of the Mo content when Mo is contained is set to 0.02 to 1.0%.

Nb:0.005〜0.05%
Nbは、含有させれば炭化物や窒化物を生成して鋼の強度を向上させる作用を有する元素である。しかし、Nb含有率が0.005%未満では、炭化物や窒化物の生成による鋼の強度向上効果が明確ではない。一方、Nb含有率が0.05%を超えて高くなると、鋼中に粗大な炭化物や窒化物を形成するため、逆に靭性を低下させる。上記の理由から、Nbを含有させる場合のNb含有率の範囲を0.005〜0.05%とした。
Nb: 0.005 to 0.05%
Nb is an element having a function of improving the strength of steel by generating carbides and nitrides when contained. However, when the Nb content is less than 0.005%, the effect of improving the strength of steel due to generation of carbides and nitrides is not clear. On the other hand, when the Nb content is higher than 0.05%, coarse carbides and nitrides are formed in the steel, so that the toughness is reduced. For the above reasons, the range of the Nb content when Nb is contained is set to 0.005 to 0.05%.

V:0.005〜0.1%
Vは、含有させれば炭化物や窒化物を生成して鋼の強度を向上させる効果を有する元素である。しかし、V含有率が0.005%未満では、炭化物や窒化物の生成による鋼の強度向上効果が明確ではない。一方、V含有率が0.1%を超えて高くなると、鋼の靭性を低下させる。上記の理由から、Vを含有させる場合のV含有率の範囲を0.005〜0.1%とした。
V: 0.005 to 0.1%
V is an element that has an effect of increasing the strength of steel by generating carbides and nitrides when contained. However, when the V content is less than 0.005%, the effect of improving the strength of steel by the generation of carbides and nitrides is not clear. On the other hand, when the V content is higher than 0.1%, the toughness of the steel is reduced. For the above reasons, the range of the V content when V is contained is set to 0.005 to 0.1%.

B:0.0004〜0.004%
Bは、含有させれば焼入れ性を増大させるとともに、BNを生成することで固溶Nの含有率を低下させ、HAZの靭性を向上させる効果がある。ただし、B含有率が0.0004%未満では、焼入れ性の増大効果およびHAZの靭性向上効果が明確では無い。しかしながら、B含有率が0.004%を超えて高くなると、鋼中に粗大な硼化物が析出し、これにより鋼の靭性が劣化する。上記の理由から、Bを含有させる場合のB含有率の範囲を0.0004〜0.004%とした。
B: 0.0004-0.004%
When B is contained, it has the effect of increasing the quenchability, and also producing BN, thereby reducing the content of solid solution N and improving the toughness of HAZ. However, if the B content is less than 0.0004%, the effect of increasing hardenability and the effect of improving the toughness of HAZ are not clear. However, when the B content is higher than 0.004%, coarse borides precipitate in the steel, thereby deteriorating the toughness of the steel. For the reasons described above, the range of the B content when B is contained is set to 0.0004 to 0.004%.

次に、本発明の連続鋳造方法について説明する。   Next, the continuous casting method of the present invention will be described.

上記のような成分の溶鋼を連続鋳造して鋳片とし、鋳片の厚さ方向が凝固した後に圧下を行う。圧下位置、圧下率については、圧下を行うことなく鋳造した場合の鋳片の厚さ方向中心におけるデンドライト1次アーム間隔λ0を基準とし、鋳片の厚さ方向中心におけるデンドライト1次アーム間隔λと前記λ0の比の値λ/λ0が0.1〜0.9となるように圧下を行うことにより、MnSの形状扁平化を十分に行い、後工程の加熱処理でMnSの拡散を促進させることができる。 The molten steel having the above-described components is continuously cast into a slab, and the slab is reduced after the thickness direction of the slab solidifies. With respect to the rolling position and the rolling reduction, the primary dendrite arm spacing λ 0 at the center of the slab in the thickness direction of the slab is used as a reference, based on the dendrite primary arm spacing λ 0 at the center of the slab in the case of casting without rolling. By performing the reduction so that the value λ / λ 0 of the ratio of λ 0 and λ 0 becomes 0.1 to 0.9, the shape of MnS is sufficiently flattened, and the diffusion of MnS is reduced by a heat treatment in a later step. Can be promoted.

鋳片の厚さ方向中心部温度が固相線温度〜(固相線温度−400℃)の範囲内において圧下率5〜50%で圧下を行うことにより、デンドライト1次アーム間隔λと前記λ0の比の値λ/λ0を0.1〜0.9とすることができる。鋳片の厚さ方向中心部温度が固相線温度より低い温度で圧下を開始することにより、凝固完了後の鋳片を圧下することができる。また、鋳片の厚さ方向中心部温度が(固相線温度−400℃)よりも高い温度で圧下を開始することにより、鋳片厚み中央部は表層側に比較して温度が高いため、圧下を行った際に厚み中央部が特に圧下による塑性変形を受け、デンドライト1次アーム間隔を十分に狭くすることができる。また、圧下率を5%以上とすることにより、圧下効果を発揮してデンドライト1次アーム間隔を十分に狭くすることができる。圧下率を高くしすぎても効果が飽和するので、圧下率の上限を50%とした。なお、圧下率(%)とは、(圧下前鋳片厚−圧下後鋳片厚)/圧下前鋳片厚×100として算出することができる。 By reducing the slab in the thickness direction center temperature within the range of the solidus temperature to (solidus temperature-400 ° C) at a reduction rate of 5 to 50%, the dendrite primary arm interval λ and the λ The value λ / λ 0 of the ratio of 0 can be set to 0.1 to 0.9. By starting the reduction at a temperature at the center of the slab in the thickness direction lower than the solidus temperature, the slab after solidification can be reduced. Further, by starting the reduction at a temperature in the center of the slab in the thickness direction at a temperature higher than (solidus temperature −400 ° C.), the slab thickness center is higher in temperature than the surface layer side. When the rolling is performed, the central portion of the thickness is particularly subjected to plastic deformation due to the rolling, and the interval between the primary arms of the dendrite can be sufficiently reduced. Further, by setting the rolling reduction to 5% or more, the rolling reduction effect is exhibited, and the interval between the primary arms of the dendrite can be sufficiently reduced. Since the effect is saturated even if the rolling reduction is too high, the upper limit of the rolling reduction is set to 50%. The rolling reduction (%) can be calculated as (thickness of slab before rolling-thickness of slab after rolling) / thickness of slab before rolling × 100.

ここで、連続鋳造中の鋳造長手方向における鋳片厚さ方向中心温度の算出方法について説明する。鋳片の伝熱シミュレーションプログラムを用いて、予めミクロ偏析による溶質元素の濃化を考慮した凝固解析を行い、鋳片厚み中央部の温度と固相率の関係を求め、さらに操業中においても測定可能な鋳片の表面温度と鋳片厚み中央の固相率の関係を求めることができる。この計算で固相率が1.0となる凝固完了部位置を算出し、さらに伝熱シミュレーションを行うことによって、凝固完了後の鋳造長手方向における鋳片厚さ方向中心温度の推移を算出することができる。ここでは、鋳造中の鋳片表面温度を実測し、実測した鋳片表面温度を代入して計算機にて凝固解析を行い、鋳造長手方向各部位の中心温度を算出した。ここで、密度ρは、ρ=7.27+0.25×固相率(g/cm3)とした。(鉄と鋼、vol.94(2008)、p.507:水上英夫、山中章裕) Here, a method of calculating the center temperature in the slab thickness direction in the casting longitudinal direction during continuous casting will be described. Using a slab heat transfer simulation program, perform solidification analysis in advance taking into account the concentration of solute elements by microsegregation, find the relationship between the temperature at the center of the slab thickness and the solid fraction, and measure it even during operation The relationship between the surface temperature of the slab and the solid fraction at the center of the slab thickness can be determined. In this calculation, the position of the solidified portion where the solid phase ratio becomes 1.0 is calculated, and the transition of the slab thickness direction center temperature in the casting longitudinal direction after the solidification is completed by performing heat transfer simulation. Can be. Here, the surface temperature of the slab during casting was actually measured, the solidification analysis was performed by a computer by substituting the actually measured surface temperature of the slab, and the center temperature of each part in the casting longitudinal direction was calculated. Here, the density ρ was defined as ρ = 7.27 + 0.25 × solid fraction (g / cm 3 ). (Iron and Steel, vol. 94 (2008), p. 507: Hideo Mizukami, Akihiro Yamanaka)

転炉にて表1に示す成分含有量の溶鋼を溶製し、垂直曲げ型のスラブ連続鋳造装置によって連続鋳造した。Agを含め、溶鋼中成分はレードル内の溶鋼に添加した。
連続鋳造において、タンディッシュ内溶鋼温度目標は1550℃、鋳型サイズ:幅1600mm×厚さ250mm、鋳造速度:0.5〜1.5m/分とした。鋳片の厚さ方向中心が凝固した後に圧下を行う圧下用ロール径については、直径800mmとした。圧下用ロールによる圧下位置は、鋳片の厚み中心部温度が固相線温度との関係で表2に示す温度となった位置を圧下開始位置とした。圧下後の鋳片厚さは140mm、170mm、又は235mmとした。それぞれ圧下率は44%、32%、6%となる。
In a converter, molten steel having the component contents shown in Table 1 was smelted and continuously cast by a vertical bending type slab continuous casting apparatus. The components in the molten steel, including Ag, were added to the molten steel in the ladle.
In continuous casting, the molten steel temperature target in the tundish was 1550 ° C., the mold size was 1600 mm in width × 250 mm in thickness, and the casting speed was 0.5 to 1.5 m / min. The rolling roll diameter for reducing after the center in the thickness direction of the slab was solidified was 800 mm in diameter. The rolling position by the rolling roll was a rolling start position where the temperature at the center of the thickness of the slab became the temperature shown in Table 2 in relation to the solidus temperature. The slab thickness after rolling was 140 mm, 170 mm, or 235 mm. The rolling reductions are 44%, 32%, and 6%, respectively.

本発明の連続鋳造方法の効果の評価は第1に、鋳片厚み中心部のデンドライト1次アーム間隔によって評価した。Agを添加せず、圧下を行うことなく鋳造した表2の比較例1の鋳片の厚さ方向中心におけるデンドライト1次アーム間隔λ0を基準とし、各実施例における鋳片の厚さ方向中心におけるデンドライト1次アーム間隔λと前記λ0の比の値λ/λ0を評価指標とし、結果を表2に示した。鋳片の厚み中央部を境として、鋳造時に厚み下面側となる側には若干の等軸晶帯が形成されていたが、鋳造時に厚み上面側となる面は厚み中央部まで含めてデンドライト凝固しており、デンドライト1次アーム間隔を測定することができた。 First, the effect of the continuous casting method of the present invention was evaluated based on the dendrite primary arm spacing at the center of the slab thickness. Based on the dendrite primary arm spacing λ 0 at the center in the thickness direction of the slab of Comparative Example 1 in Table 2 cast without addition of Ag and without reduction, the center of the slab in the thickness direction of each example was used. Table 2 shows the evaluation results using the value λ / λ 0 of the ratio between the dendrite primary arm spacing λ and the above λ 0 in Table 2 as an evaluation index. A small equiaxed zone was formed on the side that was the lower side of the thickness at the time of casting from the center of the thickness of the slab, but the surface that was the upper side of the thickness during casting included dendrite solidification including the center of the thickness. As a result, the primary dendrite arm interval could be measured.

本発明の連続鋳造方法の効果の評価は第2に、鋳造した鋳片の厚み中心部における晶析出物MnSのサイズ(短径)で評価した。介在物の測定用の試料は、鋳片幅中央部で、厚み中央位置から採取した。厚み中央から±25mm、鋳造方向に50mmのサイズの試料を採取し、50mm×50mmの面を分析した。試料の分析面は、エメリー・ペーパーおよび研磨剤(粒径が6μmおよび1μmのダイヤモンドの砥粒)を順に使用して研磨して仕上げた。   Second, the effect of the continuous casting method of the present invention was evaluated by evaluating the size (short diameter) of the crystalline precipitate MnS at the center of the thickness of the cast slab. A sample for measuring inclusions was collected from the center of the thickness at the center of the slab width. A sample having a size of ± 25 mm from the center of the thickness and 50 mm in the casting direction was sampled, and a 50 mm × 50 mm surface was analyzed. The analytical surface of the sample was polished and finished using emery paper and an abrasive (diamond grains of 6 μm and 1 μm in diameter) in this order.

晶析出物の分析は、SEM−EDAXを用い、倍率1000倍で観察した。本発明では凝固完了後の圧下によって鋳片厚み中心部が主に塑性変形を受け、MnS晶析出物も鋳片の塑性変形に伴って扁平化している。そこで、1μm以上の短径サイズの晶析出物MnSの短径を測定した。Agを添加せず、圧下を行うことなく鋳造した表2の比較例1の短径平均値を基準値1.0として、各実施例の晶析出物MnSの短径を評価し、「晶析出物径比」として表2に示した。   The crystal precipitate was analyzed at a magnification of 1000 times using SEM-EDAX. In the present invention, the central portion of the slab thickness is mainly subjected to plastic deformation by the reduction after the solidification is completed, and the MnS crystal precipitates are also flattened with the plastic deformation of the slab. Therefore, the minor axis of the crystal precipitate MnS having a minor axis size of 1 μm or more was measured. The minor axis of the crystalline precipitate MnS of each example was evaluated using the average minor axis of Comparative Example 1 in Table 2 cast without addition of Ag and without reduction as a reference value of 1.0. The ratio is shown in Table 2 below.

鋳片厚み中心部の晶析出物の微細化による効果を評価するため、鋳造した鋳片を圧延し、シャルピー試験を行った。靭性の測定用の試料は、上記条件で作製した連続鋳造鋳片に、1250℃で90分保持する熱処理を行った後、制御圧延・制御冷却法、焼入れ・焼戻し法、および直接焼入れ・焼戻し法のいずれかの製造方法によって厚み50mmの鋼板を製造した。試料の形状は、縦10mm、横10mm、長さ50mmの角柱状とした。鋼板の厚み方向を試料の長手方向とし、鋼板の厚み中央部を試料の長手中央部とし、当該中央部をノッチ位置とした。この試料を用いて再現HAZ熱処理を施した上でシャルピー試験を行なった。   The cast slab was rolled and subjected to a Charpy test in order to evaluate the effect of the refinement of the crystal precipitate at the center of the slab thickness. A sample for measuring toughness was prepared by subjecting a continuous cast slab produced under the above conditions to heat treatment at 1250 ° C. for 90 minutes, followed by controlled rolling / controlled cooling, quenching / tempering, and direct quenching / tempering. A steel plate having a thickness of 50 mm was manufactured by any one of the above manufacturing methods. The shape of the sample was a prism having a length of 10 mm, a width of 10 mm, and a length of 50 mm. The thickness direction of the steel sheet was defined as the longitudinal direction of the sample, the center of the thickness of the steel sheet was defined as the longitudinal center of the sample, and the center was defined as the notch position. A Charpy test was performed after performing a reproduction HAZ heat treatment using this sample.

再現HAZ熱処理は、高周波誘導加熱装置を用いてArガス雰囲気中で行い、試料の長さ方向の中心の幅10mmの領域を加熱した。加熱は室温から1450℃まで30秒間で加熱し、60秒間保持した後、Heガスを用いて加熱部を急速冷却した。   The reproduction HAZ heat treatment was performed in an Ar gas atmosphere using a high-frequency induction heating device to heat an area having a width of 10 mm at the center in the longitudinal direction of the sample. The heating was performed from room temperature to 1450 ° C. for 30 seconds, and after maintaining for 60 seconds, the heating unit was rapidly cooled using He gas.

シャルピー試験は、0℃での吸収エネルギーによって評価した。Agを添加せず、圧下を行うことなく鋳造した表2の比較例1の吸収エネルギーを基準値1.0として、各実施例の靱性指数を算出し、表2に記載している。   The Charpy test was evaluated by the energy absorbed at 0 ° C. The toughness index of each example was calculated with the absorbed energy of Comparative Example 1 of Table 2 cast without addition of Ag and without rolling down as a reference value of 1.0, and is shown in Table 2.

Figure 0006651306
Figure 0006651306

Figure 0006651306
Figure 0006651306

比較例1はAg添加なし、凝固後の圧下なしの比較例であり、λ/λ0、晶析出物径比、靱性指数はいずれも1.0である。 Comparative Example 1 is a comparative example without Ag addition and no reduction after solidification, and λ / λ 0 , crystal precipitate diameter ratio, and toughness index are all 1.0.

比較例2はAgを添加しているものの凝固後の圧下を行っておらず、λ/λ0は1.0であり、Ag添加の効果で晶析出物径比の改善効果は見られるものの十分ではなく、靱性指数の改善効果も十分ではなかった。 In Comparative Example 2, although Ag was added, the reduction after solidification was not performed, and λ / λ 0 was 1.0. The effect of the addition of Ag was effective in improving the crystal precipitate diameter ratio, but was sufficient. However, the effect of improving the toughness index was not sufficient.

比較例3はAgを添加せずに凝固後の圧下を行っており、λ/λ0の改善効果は見られるものの晶析出物径比の改善効果が十分ではなく、靱性指数の改善効果も十分ではなかった。 In Comparative Example 3, the reduction after solidification was performed without adding Ag, and although the effect of improving λ / λ 0 was observed, the effect of improving the crystal precipitate diameter ratio was not sufficient, and the effect of improving the toughness index was also sufficient. Was not.

本発明例1〜9は、いずれも溶鋼中にAgを本発明範囲内で含有するとともに、凝固後の圧下を本発明の適正条件で実施しており、λ/λ0の改善効果が見られるとともに、Ag含有による晶析出物微細化効果が相乗し、晶析出物径比が0.63以下と良好な結果を得ることができ、靱性指数も2.3以上と大きな改善効果を得ることができた。 In each of Inventive Examples 1 to 9, Ag is contained in the molten steel within the scope of the present invention, and the reduction after solidification is performed under the appropriate conditions of the present invention, and an improvement effect of λ / λ 0 is seen. At the same time, the crystal precipitate refinement effect due to the inclusion of Ag is synergistic, the crystal precipitate diameter ratio can be as good as 0.63 or less, and the toughness index can be as large as 2.3 or more. did it.

Claims (3)

質量%で、C:0.02〜1.50%、Si:0.005〜0.8%、Mn:0.05〜3.0%、P:0.02%以下、S:0.001〜0.02%、N:0.002〜0.008%、O:0.0001〜0.015%、Ag:0.0001〜0.5%を含有し、残部Fe及び不可避的不純物からなる溶鋼を連続鋳造し、得られた鋳片を、λ/λ0が0.1〜0.9となるように、鋳片の厚さ方向中心が凝固した後に圧下を行うことを特徴とする連続鋳造方法。
但し、λは、圧下後の鋳片の、厚さ方向中心におけるデンドライト1次アーム間隔であり、λ0は、圧下を行うことなく鋳造した鋳片の、厚さ方向中心におけるデンドライト1次アーム間隔である。
In mass%, C: 0.02 to 1.50%, Si: 0.005 to 0.8%, Mn: 0.05 to 3.0%, P: 0.02% or less, S: 0.001 0.02%, N: 0.002 to 0.008%, O: 0.0001 to 0.015%, Ag: 0.0001 to 0.5%, the balance being Fe and unavoidable impurities Continuous casting of molten steel, and rolling the obtained slab after solidifying the center in the thickness direction of the slab so that λ / λ 0 is 0.1 to 0.9. Casting method.
Here, λ is the primary dendrite arm spacing at the center in the thickness direction of the cast slab after reduction, and λ 0 is the primary dendrite arm spacing at the center in the thickness direction of the slab cast without reduction. It is.
質量%で、C:0.02〜1.50%、Si:0.005〜0.8%、Mn:0.05〜3.0%、P:0.02%以下、S:0.001〜0.02%、N:0.002〜0.008%、O:0.0001〜0.015%、Ag:0.0001〜0.5%を含有し、残部Fe及び不可避的不純物からなる溶鋼を連続鋳造し、鋳片の厚さ方向中心部温度が固相線温度〜(固相線温度−400℃)の範囲内において圧下率5〜50%で圧下を行うことを特徴とする連続鋳造方法。   In mass%, C: 0.02 to 1.50%, Si: 0.005 to 0.8%, Mn: 0.05 to 3.0%, P: 0.02% or less, S: 0.001 0.02%, N: 0.002 to 0.008%, O: 0.0001 to 0.015%, Ag: 0.0001 to 0.5%, the balance being Fe and unavoidable impurities Continuous casting wherein molten steel is continuously cast, and the reduction is performed at a reduction rate of 5 to 50% when the temperature in the center of the slab in the thickness direction is in the range of solidus temperature to (solidus temperature-400 ° C). Casting method. 溶鋼成分は、Feの一部に代えて、質量%で、Ti:0.005〜0.03%、Cu:0.05〜1.5%、Ni:0.05〜5.0%、Cr:0.02〜1.0%、Mo:0.02〜1.0%、Nb:0.005〜0.05%、V:0.005〜0.1%およびB:0.0004〜0.004%のうち1種以上を含有することを特徴とする請求項1又は2に記載の連続鋳造方法。   The molten steel component is 0.005 to 0.03% of Ti, 0.05 to 1.5% of Cu, 0.05 to 5.0% of Ni, Cr of 0.05 to 5.0% by mass instead of a part of Fe. : 0.02 to 1.0%, Mo: 0.02 to 1.0%, Nb: 0.005 to 0.05%, V: 0.005 to 0.1%, and B: 0.0004 to 0 The continuous casting method according to claim 1 or 2, wherein the method comprises one or more of 0.004%.
JP2015147166A 2015-07-24 2015-07-24 Continuous casting method Active JP6651306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015147166A JP6651306B2 (en) 2015-07-24 2015-07-24 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015147166A JP6651306B2 (en) 2015-07-24 2015-07-24 Continuous casting method

Publications (2)

Publication Number Publication Date
JP2017024057A JP2017024057A (en) 2017-02-02
JP6651306B2 true JP6651306B2 (en) 2020-02-19

Family

ID=57949139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015147166A Active JP6651306B2 (en) 2015-07-24 2015-07-24 Continuous casting method

Country Status (1)

Country Link
JP (1) JP6651306B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107282900B (en) * 2017-06-20 2019-03-05 东北大学 MnS inclusion size prediction technique in a kind of steel continuous casting billet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4569458B2 (en) * 2005-12-08 2010-10-27 住友金属工業株式会社 Continuous casting method of steel material with finely dispersed precipitates and slab for steel material
JP5712726B2 (en) * 2011-03-28 2015-05-07 新日鐵住金株式会社 Continuous casting method and continuous casting slab

Also Published As

Publication number Publication date
JP2017024057A (en) 2017-02-02

Similar Documents

Publication Publication Date Title
JP4644076B2 (en) High strength thin steel sheet with excellent elongation and hole expansibility and manufacturing method thereof
JP6177551B2 (en) Hot-rolled steel sheet with excellent drawability and surface hardness after processing
JP6787238B2 (en) Manufacturing method of steel for machine structure
JP5589516B2 (en) Steel for thick plate
CN107438487A (en) Light-duty martensite steel plate of hot rolling and preparation method thereof
JP6131833B2 (en) Method for continuous casting of Ti deoxidized steel
JP6111892B2 (en) Continuous casting method and continuous casting slab
JP5928413B2 (en) Steel continuous casting method
JP6651306B2 (en) Continuous casting method
JP2020509168A (en) Surface part NRL-Extra-thick steel material excellent in physical properties for drop test and method for producing the same
JP4398879B2 (en) Steel continuous casting method
JP5516013B2 (en) High-strength steel plate, continuous casting method of slabs that are materials of this high-strength steel plate, and method for producing high-strength steel
JP6413644B2 (en) Steel continuous casting method and continuous cast slab
JP5035162B2 (en) Hot-rolled steel sheet and manufacturing method thereof
KR101719515B1 (en) Method for casting
JP5157598B2 (en) Ni-containing steel slab and method for continuously casting Ni-containing steel
JP6862723B2 (en) Continuously cast steel slabs and continuous casting methods
JP2833442B2 (en) Ni-containing steel for low temperature and secondary cooling method of continuous cast slab thereof
JP2953919B2 (en) Slab for high toughness and high strength steel and method for producing rolled section steel using the slab
JP6772818B2 (en) Continuous casting method
JP6515291B2 (en) Continuous steel casting method
JP4466335B2 (en) Steel continuous casting method
JP4564189B2 (en) High toughness non-tempered steel for hot forging
JP5821792B2 (en) Method for producing continuous cast slab of steel containing B and method for continuous casting
JPH08253813A (en) Production of high chromium ferritic stainless steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200122

R150 Certificate of patent or registration of utility model

Ref document number: 6651306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150