JP4398879B2 - Steel continuous casting method - Google Patents

Steel continuous casting method Download PDF

Info

Publication number
JP4398879B2
JP4398879B2 JP2005023313A JP2005023313A JP4398879B2 JP 4398879 B2 JP4398879 B2 JP 4398879B2 JP 2005023313 A JP2005023313 A JP 2005023313A JP 2005023313 A JP2005023313 A JP 2005023313A JP 4398879 B2 JP4398879 B2 JP 4398879B2
Authority
JP
Japan
Prior art keywords
slab
mold
continuous casting
cooling
mns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005023313A
Other languages
Japanese (ja)
Other versions
JP2006205241A (en
Inventor
敏之 梶谷
亘 山田
宏美 高橋
幸弘 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005023313A priority Critical patent/JP4398879B2/en
Publication of JP2006205241A publication Critical patent/JP2006205241A/en
Application granted granted Critical
Publication of JP4398879B2 publication Critical patent/JP4398879B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は,Bを含有する鋼の鋳片を,湾曲型連続鋳造機もしくは垂直曲げ型連続鋳造機で製造する方法に関する。   The present invention relates to a method for producing a steel slab containing B with a curved continuous casting machine or a vertical bending continuous casting machine.

Bは,鋼中に微量に添加されることで鋼の焼き入れ性等を向上させる。そのため,高張力鋼などには,Bを添加した鋼が多い。しかしながら,Bを含む鋼を連続鋳造法にて製造するに際しては,BNがオーステナイト粒界に沿って列状に析出し,それが原因で,鋳片の周面角部において高温で割れが発生することが明らかにされている。そのため,特開昭56-80354(特許文献1)には,BNの析出を抑制するために,B添加量に応じてNを低減し,あるいはTiを添加して割れを防止する方法が述べられている。しかし,製鋼操業上Nの低減には限界があり,またTiの添加も有効な手段となり得ない場合がある。例えば,Alを添加しない品種では,溶鋼にTiを添加してもTiは酸化物の生成に消費され,Nを固定してBNの析出を抑制するのに十分なsol.Tiを確保できないことがある。このようにB添加鋼の連鋳鋳片の割れを抑制するための成分設計には限界がある。   B improves the hardenability of steel by being added in small amounts in steel. For this reason, many high-strength steels contain B. However, when steel containing B is produced by the continuous casting method, BN precipitates in a line along the austenite grain boundary, which causes cracks at high temperatures in the peripheral corners of the slab. It has been made clear. Therefore, Japanese Patent Application Laid-Open No. 56-80354 (Patent Document 1) describes a method of preventing cracking by reducing N according to the amount of B added or adding Ti to suppress the precipitation of BN. ing. However, there are limits to the reduction of N in steelmaking operations, and the addition of Ti may not be an effective means. For example, in varieties that do not contain Al, even if Ti is added to the molten steel, Ti is consumed in the formation of oxides, and sufficient sol.Ti to fix N and suppress BN precipitation cannot be secured. is there. Thus, there is a limit to the component design to suppress cracking of the continuous cast slab of B-added steel.

ところで,AlやNb,Vを添加した鋼の連続鋳造鋳片におけるオーステナイト粒界割れを防止するには,2次冷却帯における緩冷却化が有効であることが,広く知られている。これらの鋼ではAlN,NbCN,VNが生成し,またオーステナイト粒界にフィルム状の初析フェライトが生成する700〜900℃で熱間延性が著しく低下する。そのため,鋳片に変形が加わる連鋳機の曲げおよび矯正点を,この脆化温度域よりも高い温度で通過させる緩冷却化により,割れを防止している。   By the way, it is widely known that mild cooling in the secondary cooling zone is effective in preventing austenite grain boundary cracking in continuously cast slabs of steel to which Al, Nb, or V is added. In these steels, AlN, NbCN, and VN are formed, and the hot ductility is remarkably lowered at 700 to 900 ° C where film-like pro-eutectoid ferrite is formed at the austenite grain boundaries. For this reason, cracking is prevented by slow cooling that allows the bending and straightening points of the continuous caster, which deforms the slab, to pass at a temperature higher than the embrittlement temperature range.

例えば特開昭56-80367(特許文献2)には,B添加鋼において,溶融温度から900℃まで0.01〜1℃/secといった低い冷却速度に制御することが述べられている。しかし,近年推進されている高速鋳造においては,このような鋳片の緩冷却化は凝固シェルの未発達を招き,ブレークアウト等の異常操業を誘発するため,対策と成りにくい。   For example, Japanese Patent Laid-Open No. 56-80367 (Patent Document 2) describes that in a B-added steel, the cooling rate is controlled to a low cooling rate of 0.01 to 1 ° C./sec from the melting temperature to 900 ° C. However, in the high-speed casting that has been promoted in recent years, such slow cooling of the slab leads to underdevelopment of the solidified shell and induces abnormal operations such as breakout, so it is difficult to be a countermeasure.

一方,特開平9-225607(特許文献3)には,Ni,Cu,V,Nb等を含有する低合金鋼の表面割れを防止するための方法として,(1)凝固シェル厚が10〜15mmで鋳型による冷却を終了し,2次冷却を開始し,(2)鋳片の表面温度を一旦600℃以上Ar3点以下の範囲にまで低下させ,(3)曲げおよび矯正部における表面温度を復熱により850℃以上とすることが述べられている。この方法では,(2)によりγ粒界が不明瞭となる組織とし,さらに,その後復熱させ,脆化の起こりにくい(3)の温度域で鋳片の変形を行っている。また復熱のためには,鋳型内の凝固シェル厚を10〜15mmとしないと熱容量が小さく復熱が不十分になるという理由から,鋳型内の冷却を規定した(1)の条件が必要となる。   On the other hand, in Japanese Patent Laid-Open No. 9-225607 (Patent Document 3), as a method for preventing surface cracking of a low alloy steel containing Ni, Cu, V, Nb, etc., (1) the solidified shell thickness is 10 to 15 mm. Finish cooling with the mold in step 2 and start secondary cooling. (2) Temporarily lower the surface temperature of the slab to the range of 600 ° C or higher and below the Ar3 point. It is stated that the temperature is raised to 850 ° C. or higher by heat. In this method, the structure in which the γ grain boundary is obscured by (2) is obtained, and then the slab is deformed in the temperature range (3) where recuperation is performed and embrittlement is unlikely to occur. For recuperation, the condition (1) that defines cooling in the mold is necessary because the heat capacity is small and recuperation is insufficient unless the solidified shell thickness in the mold is 10 to 15 mm. Become.

また,割れ防止のため鋳型内での凝固シェルの厚みを規定した発明としては,特開昭58-187251(特許文献4)があるが,縦割れや表面直下の内部割れといったデンドライト樹間の割れを防止する方法であり,2次冷却帯で発生するBに起因したオーステナイト粒界割れは,鋳型内の冷却を制御するだけでは防ぐことができない。   Japanese Patent Laid-Open No. 58-187251 (Patent Document 4) discloses an invention that regulates the thickness of the solidified shell in the mold to prevent cracks. However, cracks between dendrite trees such as vertical cracks and internal cracks directly below the surface are known. Austenite grain boundary cracking due to B occurring in the secondary cooling zone cannot be prevented simply by controlling the cooling in the mold.

特開昭56-80354号公報JP 56-80354 A 特開昭56-80367号公報JP 56-80367 A 特開平9-225607号公報Japanese Patent Laid-Open No. 9-225607 特開昭58-187251号公報JP 58-187251 A

以上のように,Bを添加した連続鋳造鋳片の表面割れに対しては,従来は成分の調整や緩冷却化といった対策が提案されているが,実際の操業においては,それらの実現が困難であることが多い。   As described above, countermeasures such as adjustment of components and slow cooling have been proposed for surface cracks in continuous cast slabs with B added, but these are difficult to achieve in actual operations. Often.

本発明の目的は,Bを含有する鋼を連続鋳造する際に,コスト増を招かずに高い生産性を維持しつつ,表面割れを防止できる方法を提供することにある。   An object of the present invention is to provide a method capable of preventing surface cracking while maintaining high productivity without incurring an increase in cost when steel containing B is continuously cast.

本発明者らは,冶金学的な検討を重ねた結果,B添加鋼を連続鋳造する際に発生する表面割れは,図1に示す如き,オーステナイト粒界に列状に連なって生ずる粗大なMnSの析出とそれを核とした粗大なBNの析出と,図2に示す如き,オーステナイト粒界におけるフィルム状のフェライトの析出といった2点が要因となることを知見した。これらのうち,図1に示すBNとMnSの析出物は,連鋳鋳片の曲げ・矯正時に粒界におけるミクロボイドの生成を促進し,粒界を脆化させる。このようにBNがMnSを核として析出するのは,BNとMnSの格子整合性が非常によいためである。したがって,粒界におけるBNの粗大な析出を防ぐには,MnSも含めて粗大な析出物の生成を防止する必要がある。この場合,精錬工程で鋼中S濃度を大きく低減することで,MnSの析出を抑制することも可能だが,そうすると,精錬コストと処理時間が大幅に増大してしまう。   As a result of repeated metallurgical studies, the present inventors found that the surface cracks that occur during continuous casting of B-added steel are coarse MnS formed in a row at austenite grain boundaries as shown in FIG. It was found that there are two factors, namely, precipitation of BN and coarse BN with the core and precipitation of film-like ferrite at the austenite grain boundary as shown in FIG. Among these, the precipitates of BN and MnS shown in Fig. 1 promote the formation of microvoids at the grain boundaries during the bending and straightening of the continuous cast slab, and embrittle the grain boundaries. The reason why BN precipitates with MnS as a nucleus is that the lattice matching between BN and MnS is very good. Therefore, to prevent coarse precipitation of BN at grain boundaries, it is necessary to prevent the formation of coarse precipitates including MnS. In this case, it is possible to suppress the precipitation of MnS by greatly reducing the S concentration in the steel during the refining process, but this will significantly increase the refining cost and processing time.

ここで,Mn=0.55%,S=0.01%,B=12ppm,N=25ppmの鋼においてMnSとBNの析出量を平衡計算により求めた結果を,図3に示す。BNは,1000℃から析出を開始し,MnSはさらに高い1200℃で析出を開始する。したがって,これらの粗大な析出を抑制するには,MnSが析出を始める1200℃から大きな冷却速度で冷却する必要がある。このときの冷却速度は100℃/sec以上必要である。またMnS析出は,拡散および核生成を考えると,1000℃で最も析出が促進する(すなわち,CCT線図やTTT線図において,析出のノーズは1000℃程度である)。よって,MnSの最も促進される1000℃以下になるまで,この冷却速度を維持する必要がある。   Here, Fig. 3 shows the results of equilibrium calculations for the precipitation amounts of MnS and BN in steel with Mn = 0.55%, S = 0.01%, B = 12ppm, and N = 25ppm. BN begins to precipitate at 1000 ° C, and MnS starts to precipitate at a higher 1200 ° C. Therefore, in order to suppress these coarse precipitations, it is necessary to cool at a high cooling rate from 1200 ° C where MnS begins to precipitate. The cooling rate at this time needs to be 100 ° C./sec or more. MnS precipitation is most promoted at 1000 ° C in consideration of diffusion and nucleation (that is, nose of precipitation is about 1000 ° C in CCT and TTT diagrams). Therefore, it is necessary to maintain this cooling rate until the temperature is below 1000 ° C where MnS is most promoted.

また,図2に示すフィルム状の粒界フェライトは,オーステナイトよりも強度が小さいので歪が集中し,割れの原因となる。一般的にフィルム状のフェライトは,冷却速度が小さいと生成しやすいが,Bを添加した鋼ではその傾向が特に顕著である。Bは焼入れ性を上げるため,B添加鋼では冷却速度が速いと比較的容易にベイナイト組織となる。しかし冷却速度が小さいと,図1に示したようにオーステナイト粒界にBNが析出し,粒界近傍のsol.Bが減少して焼入れ性が低下するため,粒界部でのフェライトの析出が容易となる。したがって,フィルム状のフェライトの生成を抑制するためにも,BNの析出,さらにはBNの核となるMnSの析出を抑制する必要がある。   Further, since the film-like grain boundary ferrite shown in FIG. 2 has a lower strength than austenite, strain concentrates and causes cracking. In general, film-like ferrite is likely to be generated at a low cooling rate, but this tendency is particularly noticeable in steels containing B. Since B increases the hardenability, the B-added steel has a bainite structure relatively easily when the cooling rate is high. However, if the cooling rate is low, BN precipitates at the austenite grain boundary as shown in FIG. 1, and sol.B near the grain boundary decreases and the hardenability decreases, so that ferrite precipitates at the grain boundary. It becomes easy. Therefore, in order to suppress the formation of film-like ferrite, it is necessary to suppress the precipitation of BN and further the precipitation of MnS which is the nucleus of BN.

本発明者らは,以上の冶金学的な検討から,B添加鋼を鋳造するにあたり,鋳片の温度を1200℃から1000℃以下になるまで,100℃/sec以上の冷却速度で冷却することにより,S濃度低減に費やす精錬コストと処理時間を要さずにMnSとBNの析出を回避でき,B添加鋼の割れを抑制することが可能となるという知見を得た。なお,実際の鋼の製造においては,この冷却条件を連続鋳造にて満足することが必要となる。本発明者らは,連続鋳造法では2次冷却の冷却能力が,鋳型のそれに比べて非常に大きいことに着目し,鋳型内での鋳片の滞在時間を短くし,鋳型直下からの2次冷却帯上部で大量の冷却水を鋳片に噴霧することで,上記冷却条件を満たすことができることを知見した。   Based on the above metallurgical studies, the present inventors have cooled the slab at a cooling rate of 100 ° C./sec or higher until the temperature of the slab is reduced from 1200 ° C. to 1000 ° C. or lower when casting the B-added steel. Thus, it was found that precipitation of MnS and BN can be avoided and cracking of B-added steel can be suppressed without requiring refining costs and processing time for reducing the S concentration. In actual steel production, it is necessary to satisfy this cooling condition by continuous casting. The present inventors pay attention to the fact that the cooling capacity of the secondary cooling is much larger than that of the mold in the continuous casting method, shortening the stay time of the slab in the mold, It has been found that the above cooling condition can be satisfied by spraying a large amount of cooling water on the slab at the upper part of the cooling zone.

上記知見に基き,本願発明によれば,質量%で,C:0.06〜0.20%,B:0.0005〜0.003%を含有する鋼の鋳片を,湾曲型連続鋳造機もしくは垂直曲げ型連続鋳造機で製造するに際し,鋳片の周面角部の表面から深さ0.5mm〜2mmの位置における冷却が,1200℃〜1000℃の間において100℃/sec以上の冷却速度で行われることを特徴とする,鋼の連続鋳造方法が提供される。   Based on the above findings, according to the present invention, a steel slab containing C: 0.06-0.20% and B: 0.0005-0.003% by mass% is obtained by a curved continuous casting machine or a vertical bending continuous casting machine. When manufacturing, cooling at a position 0.5mm to 2mm deep from the surface of the peripheral corner of the slab is performed at a cooling rate of 100 ° C / sec or more between 1200 ° C and 1000 ° C. , A method for continuous casting of steel is provided.

前記湾曲型連続鋳造機もしくは垂直曲げ型連続鋳造機の鋳型下端にて,鋳片の周面角部の凝固シェルの厚みを7〜10mmとし,鋳型直下の2次冷却帯で,鋳片の周面角部の表面から深さ0.5mm〜2mmの位置における温度が1000℃となるまで,100℃/sec以上の冷却速度で冷却しても良い。
また本発明によれば,質量%で,C:0.06〜0.20%,B:0.0005〜0.003%を含有する鋼の鋳片を,湾曲型連続鋳造機もしくは垂直曲げ型連続鋳造機で製造するに際し,鋳造速度Vc(m/min)を,3.24×L<Vc<6.61×L(Lは鋳型の湯面から下の長さ)とし,鋳片の周面角部の表面から深さ0.5mm〜2mmの位置における温度が1000℃となるまで,冷却水の水量密度を3000l/min/m2以上とすることを特徴とする,鋼の連続鋳造方法が提供される。
The thickness of the solidified shell at the corner of the peripheral surface of the slab is 7 to 10 mm at the lower end of the mold of the curved continuous casting machine or the vertical bending continuous casting machine. It may be cooled at a cooling rate of 100 ° C / sec or higher until the temperature at the depth of 0.5mm to 2mm from the surface of the face corner reaches 1000 ° C.
According to the present invention, when a steel slab containing C: 0.06 to 0.20% and B: 0.0005 to 0.003% by mass% is produced by a curved continuous casting machine or a vertical bending continuous casting machine, The casting speed Vc (m / min) is 3.24 × L <Vc <6.61 × L (L is the length below the mold surface of the mold), and the depth from the surface of the peripheral surface corner of the slab. There is provided a continuous casting method of steel, characterized in that the water density of cooling water is 3000 l / min / m 2 or more until the temperature at a position of 0.5 mm to 2 mm reaches 1000 ° C.

本発明によれば,B添加鋼において表面の粒界割れを生成させることなく,表面性状の優れた鋳片を製造することが可能となる。   According to the present invention, it is possible to produce a cast slab having excellent surface properties without generating grain boundary cracks on the surface of B-added steel.

本発明者らは,上記知見に基づき鋳片表面近傍の組織と割れ発生との関係について調査を進めた。その結果,割れの発生している鋳片では,表面から内部に向かってオーステナイト粒界に常にMnSとBNの析出が認められた。一方,割れの発生していない鋳片では,表面から0.5mmまでの範囲では,MnSとBNの析出が見られたが,それよりも深い位置(0.5mmから2mmの深さまで)では,MnSとBNの析出物は存在しなかった。したがって,表面から0.5mm深さまではMnSおよびBNの析出しても,それよりも深部にMnS,BNがなければ,割れは伝播せず無害である。   Based on the above findings, the present inventors have investigated the relationship between the structure near the slab surface and the occurrence of cracks. As a result, in the slab where cracks occurred, precipitation of MnS and BN was always observed at the austenite grain boundary from the surface to the inside. On the other hand, in the slab where cracks did not occur, precipitation of MnS and BN was observed in the range from the surface to 0.5 mm, but at a deeper position (from 0.5 mm to 2 mm depth), MnS and BN were observed. There was no precipitate of BN. Therefore, even if MnS and BN precipitate at a depth of 0.5 mm from the surface, cracks will not propagate and be harmless if there is no MnS or BN deeper than that.

また更に調査したところ,鋳片の周面角部は特に割れが発生しやすいが,この周面角部の表面から深さ0.5mm〜2mmの位置においてMnSおよびBNの析出をさせなければ,鋳片全体の表面割れを回避できることが分った。   Further investigation revealed that the peripheral corners of the slab are particularly prone to cracking, but if MnS and BN are not precipitated at a depth of 0.5 mm to 2 mm from the surface of the peripheral corners, It has been found that surface cracking of the entire piece can be avoided.

湾曲型連続鋳造機もしくは垂直曲げ型連続鋳造機で連続鋳造を行うに際し,鋳型下端において,鋳片の周面角部の凝固シェル厚が7〜10mmとなるように制御する。連続鋳造機内における伝熱凝固計算を行ったところ,鋳型下端でのシェル厚が10mmを超えると,鋳片の表面から0.5mm深さでの温度が1200℃以下にまで低下してしまう。鋳型内では100℃/secよりも小さい冷却速度であるので,このように鋳型下端でのシェル厚が10mmを超えた場合は,鋳片の表面から0.5mm以上の深さでMnSが析出するため,粗大なMnSが粒界に生成し,さらにMnSを核としてBNが析出する。このため,鋳型下端における鋳片の周面角部のシェル厚が10mmを超えると,連鋳機の曲げ点もしくは矯正点で,表面割れを発生させてしまう。   When performing continuous casting with a curved continuous casting machine or a vertical bending continuous casting machine, the solidified shell thickness at the corner of the peripheral surface of the slab is controlled to be 7 to 10 mm at the lower end of the mold. When heat transfer solidification calculation is performed in a continuous casting machine, if the shell thickness at the lower end of the mold exceeds 10 mm, the temperature at a depth of 0.5 mm from the surface of the slab falls to 1200 ° C or less. Since the cooling rate is lower than 100 ° C / sec in the mold, if the shell thickness at the lower end of the mold exceeds 10 mm, MnS precipitates at a depth of 0.5 mm or more from the surface of the slab. Coarse MnS is formed at the grain boundaries, and BN is precipitated with MnS as nuclei. For this reason, if the shell thickness of the peripheral corner portion of the slab at the lower end of the mold exceeds 10 mm, surface cracks will occur at the bending point or correction point of the continuous casting machine.

鋳型下端における鋳片の周面角部のシェル厚を10mm以下とすれば,鋳型内において鋳片周面角部の表面から0.5mm以上の深さの位置で温度が1200℃まで下がることがないので,粗大なMnSの析出は表面から0.5mm深さまでとなり,表面割れは伝播しなくなる。操業上,このようなシェル厚とするには,鋳造速度を大きくすることが有効である。しかし,鋳型下端でのシェル厚が7mmより小さくなると,シェルの剛性が不十分となりブレークアウトの危険が高くなってしまう。このため,連続鋳造機の鋳型下端にて,鋳片の周面角部の凝固シェルの厚みを7〜10mmとする。鋳造速度Vc(m/min)を,3.24×L<Vc<6.61×L(Lは鋳型の湯面から下の長さ)とすることにより,連続鋳造機の鋳型下端にて,鋳片の周面角部の凝固シェルの厚みを7〜10mmとすることができる。   If the shell thickness at the corner of the slab at the lower end of the mold is 10 mm or less, the temperature will not drop to 1200 ° C at a depth of 0.5 mm or more from the surface of the corner of the slab in the mold. As a result, coarse MnS precipitation is 0.5 mm deep from the surface, and surface cracks do not propagate. In terms of operation, it is effective to increase the casting speed in order to achieve such a shell thickness. However, if the shell thickness at the lower end of the mold is smaller than 7 mm, the rigidity of the shell becomes insufficient and the risk of breakout increases. For this reason, the thickness of the solidified shell at the peripheral corner portion of the slab is set to 7 to 10 mm at the lower end of the mold of the continuous casting machine. By setting the casting speed Vc (m / min) to 3.24 × L <Vc <6.61 × L (L is the length below the mold surface of the mold), at the lower end of the mold of the continuous casting machine, The thickness of the solidified shell at the peripheral corner of the slab can be 7 to 10 mm.

なお,連続鋳造機の鋳型下端でのシェル厚は,厳密には上述のように伝熱凝固計算で求めるべきであるが,簡易的には以下の数式(式1)により求めてもよい。
鋳型下端シェル厚(mm)=18√鋳型下端での経過時間(分)=18√メニスカスから下の鋳型長さ(m)/鋳造速度Vc(m/分) ・・・ (式1)
Although the shell thickness at the lower end of the mold of the continuous casting machine should be determined strictly by heat transfer solidification calculation as described above, it may be determined simply by the following equation (Equation 1).
Mold bottom shell thickness (mm) = 18√ Elapsed time at the mold bottom (min) = 18√ Mold length below the meniscus (m) / Casting speed Vc (m / min) (Formula 1)

このように,鋳型内で高温状態に保ち周面角部の表面から0.5mm以上の深さではMnSを析出させずに,そのまま2次冷却帯に持ち込まれた鋳片を,2次冷却帯上部で急冷却する。これにより,MnSの析出,BNの析出を防ぎ,粒界の脆化を回避する。そのために必要な2次冷却帯での冷却速度は100℃/secであり,鋳片の周面角部の表面から深さ0.5〜2mmの位置で温度が1000℃となるまで,100℃/sec以上の冷却速度で冷却する。このような急冷却を鋳型直下の2次冷却帯上部で達成するには,水量密度3000〜4000l/min/m2程度とするとよい。また鋳片の周面角部は特に割れが発生しやすいので,確実に周面角部に冷却水が掛かるように留意すべきである。 In this way, the slab that was brought into the secondary cooling zone without depositing MnS at a depth of 0.5 mm or more from the surface of the peripheral corner kept at a high temperature in the mold was transferred to the upper part of the secondary cooling zone. Cool quickly. This prevents precipitation of MnS and BN, and avoids embrittlement of grain boundaries. The cooling rate in the secondary cooling zone required for this is 100 ° C / sec. 100 ° C / sec until the temperature reaches 1000 ° C at a depth of 0.5-2mm from the surface of the peripheral corner of the slab. Cool at the above cooling rate. In order to achieve such rapid cooling in the upper part of the secondary cooling zone directly under the mold, the water density should be about 3000 to 4000 l / min / m 2 . In addition, since the peripheral corners of the slab are particularly susceptible to cracking, care should be taken to ensure that the peripheral corners are covered with cooling water.

なお,特開平9-225607には,B添加鋼ではないが,Nb,V,Ni,Cuを含む鋼の鋳造方法として,その後の復熱を容易にするために,鋳型下端で10〜15mmのシェル厚とすると述べられている。本願発明では,より積極的に析出物の制御を行うために,シェル厚を7〜10mmとさらに薄くして,鋳型下端での鋳片の温度を高くしている。これにより,鋳型内における析出物の生成領域を表面から0.5mmまでに抑えることができ,製品疵になるような大きな割れの伝播を防ぐ。このように本願発明における鋳型内での条件を析出物の制御を狙ったものであり,特開平9-225607が2次冷却帯での復熱を目的としていることと本質的に異なる。   In JP-A-9-225607, although it is not a B-added steel, as a casting method of steel containing Nb, V, Ni, and Cu, in order to facilitate subsequent reheating, the bottom of the mold is 10 to 15 mm. It is said to be shell thickness. In the present invention, in order to more positively control the precipitates, the shell thickness is further reduced to 7 to 10 mm to increase the temperature of the slab at the lower end of the mold. As a result, the precipitate generation area in the mold can be reduced to 0.5 mm from the surface, preventing the propagation of large cracks that would result in product defects. Thus, the conditions in the mold in the present invention are intended to control the precipitates, and are essentially different from that disclosed in JP-A-9-225607 is intended for recuperation in the secondary cooling zone.

本発明において,鋼の成分範囲として,質量%で,C:0.06〜0.20%としているが,このC濃度範囲で鋳片の高温脆化が起こりやすいからである。これは包晶組成近傍で鋳片のオーステイナイト粒径が大きくなることによる。これ以外のC範囲では本願発明のような対策をとらなくても,鋳片の割れは発生しない。   In the present invention, the steel component range is mass%, and C: 0.06 to 0.20%, because high temperature embrittlement of the slab is likely to occur within this C concentration range. This is because the austenite grain size of the slab increases in the vicinity of the peritectic composition. In the other C range, cracking of the slab does not occur even if measures such as the present invention are not taken.

また質量%で,B:0.0005〜0.003%としたが,0.0005%(5ppm)未満ではBNの析出が起こりにくいので,鋳片の割れは起こらない。また材質を向上させる目的で,Bを0.003%(30ppm)を超えて添加する必要性はないので,0.0005〜0.003%とした。   Moreover, although B: 0.0005 to 0.003% in mass%, if less than 0.0005% (5 ppm), BN does not easily precipitate, so cracking of the slab does not occur. Also, for the purpose of improving the material, there is no need to add B in excess of 0.003% (30 ppm), so it was set to 0.0005 to 0.003%.

本願発明のように鋳型下端でのシェル厚を薄くすること,および2次冷却を強冷にすることは,高速鋳造下でも容易に実現可能である。したがって,例えば特開昭56-80367に記載されている緩冷却化とは異なり,生産性に対する悪影響がほとんどない。   As in the present invention, it is possible to easily reduce the shell thickness at the lower end of the mold and to strongly cool the secondary cooling even under high speed casting. Therefore, unlike the slow cooling described in JP-A-56-80367, for example, there is almost no adverse effect on productivity.

つぎに本発明の実施例について述べる。
表1に示す成分1,2(質量%)の溶鋼を転炉,2次精錬設備にて溶製し,湾曲型のビレット連続鋳造機で鋳造した。鋳片の断面サイズは130mm角であった。鋳型直下には,急冷却可能なノズルを配置し,水量密度4000l/min/m2までの冷却が可能とした。5本のストランドにてストランドごとに鋳造速度と2次冷却条件を変えて鋳造を行った。表2に,本発明の範囲内である実施例1〜5および本発明の範囲外である比較例1〜5の各鋳片の成分,鋳造速度,鋳型下端シェル厚,鋳型直下の2次冷却帯での冷却速度,鋳片割れ指数,線材でのヘゲ疵指数を示した。なお,鋳造速度は2.0〜5.7m/minとした。また,鋳片割れ指数は次のように測定した。即ち,鋳片の周面角部を含む対角線を鋳造方向に切断後,鋳片を酸洗した。そして,鋳片の周面角部に存在する微細な割れの個数を丹念に測定し,鋳片単位長さ(m)あたりの割れの個数を指数とした。また,線材でのヘゲ疵指数は,圧延後の線材の不合格率(%)を示す。
Next, examples of the present invention will be described.
Molten steels of components 1 and 2 (mass%) shown in Table 1 were melted in a converter and secondary refining equipment, and cast with a curved billet continuous casting machine. The cross-sectional size of the slab was 130 mm square. A nozzle capable of rapid cooling is placed directly under the mold, enabling cooling to a water density of 4000 l / min / m 2 . Casting was performed by changing the casting speed and the secondary cooling condition for each strand with five strands. Table 2 shows the composition of each slab of Examples 1 to 5 within the scope of the present invention and Comparative Examples 1 to 5 outside the scope of the present invention, casting speed, mold bottom shell thickness, secondary cooling just below the mold. The cooling rate in the strip, the slab cracking index, and the baldness index in the wire were shown. The casting speed was 2.0 to 5.7 m / min. The slab cracking index was measured as follows. That is, the slab was pickled after the diagonal line including the peripheral corner of the slab was cut in the casting direction. The number of fine cracks present at the corners of the slab was carefully measured, and the number of cracks per slab unit length (m) was taken as an index. In addition, the hail index for a wire indicates the rejection rate (%) of the wire after rolling.

Figure 0004398879
Figure 0004398879

図4に,実施例1での,鋳片周面角部の表面から0.5mm深さと,表面から2.0mm深さでの温度履歴(2次元伝熱凝固計算の計算結果)を示す。鋳型下端での当該位置の温度が1200℃以上であり,このときのシェル厚は9mmであった(シェル厚は鋳造速度と鋳型メニスカスと鋳型下端までの距離から(式1)により求めた)。2次冷却帯において,鋳型直下に配置したノズルからの水量を制御することで,冷却速度を160℃/secで一気に冷却した。比較例1では鋳型内での冷却条件は実施例1と同じとしたが,2次冷却水の水量を小さくし,70℃/secで冷却した。   FIG. 4 shows temperature histories (calculation results of two-dimensional heat transfer solidification calculation) at a depth of 0.5 mm from the surface of the slab peripheral surface and 2.0 mm from the surface in Example 1. The temperature at this position at the lower end of the mold was 1200 ° C. or more, and the shell thickness at this time was 9 mm (the shell thickness was obtained from (Formula 1) from the casting speed, the distance between the mold meniscus and the lower end of the mold). In the secondary cooling zone, the cooling rate was 160 ° C./sec at a stroke by controlling the amount of water from the nozzle arranged directly under the mold. In Comparative Example 1, the cooling conditions in the mold were the same as in Example 1, but the amount of secondary cooling water was reduced and cooling was performed at 70 ° C./sec.

鋳造後に鋳片から切り出した500mm長さのサンプルを酸洗し,鋳片周面角部の割れ発生の有無を調べた。その結果,表2に示すように本願発明の実施例1では割れが皆無であった。一方,比較例1では2mm程度の深さの非常に微細でシャープな割れが多数存在した。   A 500 mm long sample cut out from the slab after casting was pickled and examined for the occurrence of cracks at the corners of the peripheral surface of the slab. As a result, as shown in Table 2, there was no crack in Example 1 of the present invention. On the other hand, in Comparative Example 1, there were many very fine and sharp cracks having a depth of about 2 mm.

さらに鋳片のコーナー部の組織を光学顕微鏡で観察した(腐食はナイタール)。比較例1の鋳片のコーナー部では図2に示すようなフィルム状の粒界フェライトが観察され,その一部に沿って割れが生成していた。一方,実施例1の鋳片ではフィルム状のフェライトの生成はなかった。さらに析出物を観察のため,抽出レプリカ法でTEM用サンプルを作成した。比較例1の鋳片からは割れの先端から採取したが,図1に示すような0.2μm程度のMnSとそれ包むようにBNの析出が見られた。これらの析出物は,割れ先端から伸びた旧オーステナイト粒界に沿って,列状に多数存在していた。一方,実施例1の鋳片では表面から0.5mm位置まではこのようなMnSとBNの析出がわずかに見られたが,0.5mmから内側2.0mmまでは析出物は全く存在しなかった。これは,鋳片の最表層(表面から0.5mm深さまで)は鋳型内でMnSの析出温度にわずかにかかるためMnSが析出したが,それよりも内側では鋳型を出てからMnSの析出温度以下となるため,2次冷却の急冷によりMnSの析出が抑えられたと解釈される。   Further, the structure of the corner portion of the slab was observed with an optical microscope (corrosion was nital). At the corner portion of the slab of Comparative Example 1, film-like grain boundary ferrite as shown in FIG. 2 was observed, and cracks were generated along a part thereof. On the other hand, no film-like ferrite was produced in the slab of Example 1. In order to observe the precipitate, a sample for TEM was prepared by the extraction replica method. The slab of Comparative Example 1 was taken from the tip of the crack, but MnS of about 0.2 μm as shown in FIG. Many of these precipitates existed in a line along the prior austenite grain boundary extending from the crack tip. On the other hand, in the slab of Example 1, such precipitation of MnS and BN was slightly observed from the surface to the position of 0.5 mm, but no precipitate was present from 0.5 mm to the inner 2.0 mm. This is because the outermost layer of the slab (from the surface to a depth of 0.5 mm) is slightly affected by the deposition temperature of MnS in the mold, but MnS was deposited inside, but below that, the MnS deposition temperature was below the MnS deposition temperature. Therefore, it is interpreted that the precipitation of MnS was suppressed by the rapid cooling of the secondary cooling.

次に,実施例1および比較例1のビレット鋳片を熱間圧延し,6mmφの線材に加工した。その結果,実施例1の鋳片から得られた線材の表面には全く疵がなかった。一方,比較例1の線材では,ヘゲ状すなわち二重肌状の疵の発生が認められた。   Next, the billet slabs of Example 1 and Comparative Example 1 were hot-rolled and processed into 6 mmφ wires. As a result, the surface of the wire obtained from the slab of Example 1 was completely free from defects. On the other hand, in the wire material of Comparative Example 1, generation of wrinkle-like or double skin-like wrinkles was observed.

比較例2では,鋳造速度を低下させて鋳型下端でのシェル厚を11mmとした。2次冷却では160℃/secで強冷却した。比較例2においても上述の方法で鋳片の割れを観察したところ,割れが存在した。比較例2では鋳型内の滞留時間が長いので,鋳型下端での温度が低く,鋳型内にて小さな冷却速度でかなりの深さにまで粗大なMnSが列状に析出したため,2次冷却帯で強冷却したにもかかわらず粒界の脆化を防げなかったのである。   In Comparative Example 2, the casting speed was reduced and the shell thickness at the lower end of the mold was 11 mm. In the secondary cooling, strong cooling was performed at 160 ° C./sec. Also in Comparative Example 2, when the crack of the slab was observed by the above-described method, there was a crack. In Comparative Example 2, the residence time in the mold is long, so the temperature at the lower end of the mold is low, and coarse MnS precipitates in a row at a small cooling rate to a considerable depth. Despite the strong cooling, the grain boundary embrittlement could not be prevented.

表2に示すように,その他の実施例においても鋳片の表面の割れを防止することができ,一方比較例では割れが発生もしくはブレークアウトにより操業ができなかった。比較例3では,鋳型内での滞留時間が長く鋳型内で粗大なMnSが析出した上に,さらに2次冷却でも冷却速度が小さくMnSとBNの析出が促進されたために,割れが多発した。比較例4では,比較例1と同様に,鋳型内での冷却は適正であったが2次冷却での冷却が不足のためMnSとBNが析出し割れに至った。比較例5では鋳造速度が速すぎて,ブレークアウトが発生した。   As shown in Table 2, cracks on the surface of the slab could also be prevented in the other examples, whereas in the comparative example, cracks occurred or operation was not possible due to breakout. In Comparative Example 3, the residence time in the mold was long and coarse MnS was precipitated, and the cooling rate was small even in the secondary cooling, and the precipitation of MnS and BN was promoted. In Comparative Example 4, as in Comparative Example 1, cooling in the mold was appropriate, but MnS and BN were precipitated and cracked due to insufficient cooling in the secondary cooling. In Comparative Example 5, the casting speed was too high and breakout occurred.

Figure 0004398879
Figure 0004398879

本願発明の実施例はビレット連続鋳造におけるものであるが,本知見はスラブ連続鋳造でも同様に適用可能である。特に鋳造速度の大きい薄スラブ連続鋳造法では鋳型下端でのシェル厚を7-10mmと低位にすることが容易であり,B添加鋼の割れ防止に有効である。   Although the embodiment of the present invention is for billet continuous casting, the present knowledge can be similarly applied to slab continuous casting. In particular, in the thin slab continuous casting method with a high casting speed, it is easy to reduce the shell thickness at the lower end of the mold to 7-10 mm, which is effective in preventing cracking of B-added steel.

B添加鋼を連続鋳造する際にオーステナイト粒界に発生するMnSとBNの析出の説明図である。It is explanatory drawing of precipitation of MnS and BN which generate | occur | produce in an austenite grain boundary when carrying out continuous casting of B addition steel. 鋳片に析出したフィルム状のフェライトを示す顕微鏡写真である。It is a microscope picture which shows the film-form ferrite which precipitated on the slab. Mn=0.55%,S=0.01%,B=12ppm,N=25ppmの鋼における温度とMnS,BNの析出量との関係(熱力学計算)を示すグラフである。It is a graph which shows the relationship (thermodynamic calculation) with the temperature and the precipitation amount of MnS and BN in steel of Mn = 0.55%, S = 0.01%, B = 12ppm, N = 25ppm. 実施例1における鋳片表面から0.5mm,2mm深さでの温度履歴を示すグラフである。3 is a graph showing a temperature history at a depth of 0.5 mm and 2 mm from a slab surface in Example 1. FIG.

Claims (3)

質量%で,C:0.06〜0.20%,B:0.0005〜0.003%を含有する鋼の鋳片を,湾曲型連続鋳造機もしくは垂直曲げ型連続鋳造機で製造するに際し,
鋳片の周面角部の表面から深さ0.5mm〜2mmの位置における冷却が,1200℃〜1000℃の間において100℃/sec以上の冷却速度で行われることを特徴とする,鋼の連続鋳造方法。
When manufacturing steel slabs containing C: 0.06-0.20% and B: 0.0005-0.003% by mass in a curved continuous casting machine or a vertical bending continuous casting machine,
Continuous cooling of steel, characterized in that cooling at a depth of 0.5 mm to 2 mm from the surface of the peripheral corner of the slab is performed at a cooling rate of at least 100 ° C / sec between 1200 ° C and 1000 ° C. Casting method.
前記湾曲型連続鋳造機もしくは垂直曲げ型連続鋳造機の鋳型下端にて,鋳片の周面角部の凝固シェルの厚みを7〜10mmとし,
鋳型直下の2次冷却帯で,鋳片の周面角部の表面から深さ0.5mm〜2mmの位置における温度が1000℃となるまで,100℃/sec以上の冷却速度で冷却することを特徴とする,請求項1に記載の鋼の連続鋳造方法。
The thickness of the solidified shell at the corner of the peripheral surface of the slab is 7 to 10 mm at the lower end of the mold of the curved continuous casting machine or the vertical bending continuous casting machine.
In the secondary cooling zone directly under the mold, cooling is performed at a cooling rate of 100 ° C / sec or more until the temperature at the depth of 0.5mm to 2mm from the surface of the peripheral surface of the slab reaches 1000 ° C. The continuous casting method of steel according to claim 1.
質量%で,C:0.06〜0.20%,B:0.0005〜0.003%を含有する鋼の鋳片を,湾曲型連続鋳造機もしくは垂直曲げ型連続鋳造機で製造するに際し,
鋳造速度Vc(m/min)を,3.24×L<Vc<6.61×L(Lは鋳型の湯面から下の長さ)とし,鋳片の周面角部の表面から深さ0.5mm〜2mmの位置における温度が1000℃となるまで,冷却水の水量密度を3000l/min/m2以上とすることを特徴とする,鋼の連続鋳造方法。
When manufacturing steel slabs containing C: 0.06-0.20% and B: 0.0005-0.003% by mass in a curved continuous casting machine or a vertical bending continuous casting machine,
The casting speed Vc (m / min) is 3.24 × L <Vc <6.61 × L (L is the length below the mold surface of the mold), and the depth from the surface of the peripheral surface corner of the slab. until the temperature at the location of 0.5mm~2mm is 1000 ° C., and wherein the making the water density of the cooling water 3000l / min / m 2 or more, a continuous casting method of steel.
JP2005023313A 2005-01-31 2005-01-31 Steel continuous casting method Active JP4398879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005023313A JP4398879B2 (en) 2005-01-31 2005-01-31 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005023313A JP4398879B2 (en) 2005-01-31 2005-01-31 Steel continuous casting method

Publications (2)

Publication Number Publication Date
JP2006205241A JP2006205241A (en) 2006-08-10
JP4398879B2 true JP4398879B2 (en) 2010-01-13

Family

ID=36962611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005023313A Active JP4398879B2 (en) 2005-01-31 2005-01-31 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP4398879B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101412537B1 (en) 2012-01-31 2014-07-01 현대제철 주식회사 Reducing method of crack for addition of boron high-carbon steel
CN108393455A (en) * 2018-01-25 2018-08-14 石家庄钢铁有限责任公司 Control the continuous cast method of MnS inclusion sizes in steel alloy bloom
CN115141985B (en) * 2021-03-31 2023-05-09 宝山钢铁股份有限公司 Medium-carbon high-titanium boron-containing steel with high hardenability and slab continuous casting production method thereof
CN116043096A (en) * 2023-01-19 2023-05-02 鞍钢股份有限公司 Steelmaking method for reducing manganese segregation of ship plate steel casting blank

Also Published As

Publication number Publication date
JP2006205241A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
CN110177896B (en) Steel sheet and method for producing same
RU2554265C2 (en) Method of production of hot-rolled flat rolled steel
KR101365652B1 (en) Method for producing a grain-oriented electrical steel strip
JP5255398B2 (en) Specific gravity high strength cold-rolled steel sheet and low specific gravity high strength plated steel sheet
KR101365653B1 (en) Method for producing a grain-oriented electrical steel strip
JP4725216B2 (en) Low alloy steel for oil well pipes with excellent resistance to sulfide stress cracking
JP5846445B2 (en) Cold rolled steel sheet and method for producing the same
JP6177551B2 (en) Hot-rolled steel sheet with excellent drawability and surface hardness after processing
JP5825185B2 (en) Cold rolled steel sheet and method for producing the same
KR20230059827A (en) Wire rod for 5,000 MPa class diamond wire and its production method
KR20060090809A (en) Hot rolled steel sheet for working
JP5741379B2 (en) High tensile steel plate with excellent toughness and method for producing the same
JP5381785B2 (en) Continuous cast slab for high-strength steel sheet, and steel plate obtained from the slab
JP5533629B2 (en) Continuously cast slab for high-strength steel sheet, its continuous casting method, and high-strength steel sheet
JP3422612B2 (en) Manufacturing method of ultra low carbon cold rolled steel sheet
JP4398879B2 (en) Steel continuous casting method
JP6737411B2 (en) Steel plate
JP6052503B2 (en) High-strength hot-rolled steel sheet and its manufacturing method
JP3008825B2 (en) Slab surface crack suppression method
JP2001138019A (en) Continuous casting method
JP5516013B2 (en) High-strength steel plate, continuous casting method of slabs that are materials of this high-strength steel plate, and method for producing high-strength steel
CN116254460A (en) Cold-rolled high-strength weather-resistant steel, preparation process and application thereof
JPH11197809A (en) Method for preventing surface crack on continuously cast slab
KR20230035624A (en) hot rolled steel
KR20230006903A (en) continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4398879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350