JP4564189B2 - High toughness non-tempered steel for hot forging - Google Patents

High toughness non-tempered steel for hot forging Download PDF

Info

Publication number
JP4564189B2
JP4564189B2 JP2001043788A JP2001043788A JP4564189B2 JP 4564189 B2 JP4564189 B2 JP 4564189B2 JP 2001043788 A JP2001043788 A JP 2001043788A JP 2001043788 A JP2001043788 A JP 2001043788A JP 4564189 B2 JP4564189 B2 JP 4564189B2
Authority
JP
Japan
Prior art keywords
steel
hot forging
inclusions
high toughness
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001043788A
Other languages
Japanese (ja)
Other versions
JP2002241890A (en
Inventor
浩一 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001043788A priority Critical patent/JP4564189B2/en
Publication of JP2002241890A publication Critical patent/JP2002241890A/en
Application granted granted Critical
Publication of JP4564189B2 publication Critical patent/JP4564189B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高靭性非調質鋼、特に質量%でC:0.1〜0.6%の炭素鋼及び低合金鋼からなる熱間鍛造用の非調質鋼に関するものである。
【0002】
【従来の技術】
従来、自動車部品等の機械部品の多くは熱間鍛造により成型された後、焼入れ、焼戻し処理、いわゆる調質処理を施された後、切断、研削等の機械加工を経て製造されてきた。
【0003】
しかしながら、省工程による生産性の向上や省エネルギー化の要求から、上述の調質処理省略が志向され、省エネルギーやコスト削減メリットから非調質鋼の適用が拡大している。
【0004】
一般に調質処理を省略した非調質鋼では調質鋼に比べ靭性が低いために高い靭性が要求されない機械部品に使用されるなど、用途が狭い範囲に限定されるという問題があった。
【0005】
従来、この非調質鋼として機械構造用炭素鋼にV、Nb等の元素を少量添加するマイクロアロイ型非調質鋼が提案されたが、熱間鍛造ままの組織は著しく粗大化したフェライト・パ−ライト組織のため靭性は極めて低く適用範囲は極めて限定されていた。
【0006】
このような欠点を解消するため少量のTiを添加して結晶粒の粗大化を防止し靭性の改善を図る方法が提案されているが(例えば特開昭56−38448号公報)、その効果は必ずしも安定していない。
【0007】
また、Zr、Tiのうち1種又は2種以上を少量添加すると共に、鋳造工程での冷却速度を確保することでMnSやTiN及びZrNの内少なくとも1種を微細均一に分散させる熱間鍛造用非調質鋼の製造方法が提案されている(特公平6−75747号公報)。
【0008】
更に、Al、V、Nb、Ti、B等の炭、窒化物形成元素を添加すると共に、Ca、Te、Ce及びその他の稀土類金属、ミッシュメタル及びその混合物を0.001〜0.04wt%添加する高靭性非調質鋼及びその製造方法が提案されている(特開平6−340946号公報)。
【0009】
また、特公平4−70385号公報にはZrとB添加により熱間鍛造材の強度、靭性の改善を図る方法が提案され、更に稀土類元素の添加により靭性の改善を図る方法が提案されている。
【0010】
【発明が解決しようとする課題】
本発明は上述の機械部品製造工程において、熱間鍛造後の熱処理を省略しても、常に安定して従来の非調質鋼で達成できないレベルの高靭性を有する非調質鋼を提供するものである。
【0011】
【課題を解決する手段】
本発明者らは上述の機械部品製造工程において、熱間鍛造後の調質処理を省略しても、常に安定して従来の非調質鋼で達成できないレベルの高靭性を有する非調質鋼を実現する手段について種々の研究を重ね、鋼材の組成を適正に制御すると共に、硫化物や酸化物及び酸化物と硫化物が複合化した介在物サイズの減少を図ると共にそれら介在物のアスペクト比(長さ/幅)をある程度以下に制御することにより、熱間鍛造後に調質処理を省略しても高い靭性を安定して達成できることを見出すと共に、それらを実現する具体的な手段を見出し、本発明を完成した。
【0012】
本発明の要旨は以下の通りである。
【0013】
(1) 質量%で、
C:0.1〜0.6%、
Si:0.01〜2.0%、
Mn:0.2〜2.0%、
S:0.005〜0.5%、
Cr:0.1〜2.0%、
Ti:0.005〜0.1%、
N:0.003〜0.02%、
Al:0.07%以下(0%含む)、
Sn:0.008〜0.1%、
更に、
Rem(稀土類金属):0.005〜0.1%、
及びCa:0.0005〜0.005%
を含み、且つ、
(Rem%+Ca%)/(S%)≧0.05
の関係を満たし、残部Fe及び不可避的不純物からなり、介在物の平均円相当径が20μm以下であり、介在物の平均アスペクト比(長さ/幅)が10以下であることを特徴とする熱間鍛造用高靭性非調質鋼。
【0014】
(2) 更に、質量%で、
Zr:0.007〜0.1
含み、且つ、
(Rem%+Ca%+2×Zr%)/(S%)≧0.05
関係を満たすことを特徴とする上記(1)記載の熱間鍛造用高靭性非調質鋼。
【0015】
(3) 更に、質量%で、
V:0.01〜0.5
含有することを特徴とする上記(1)又は(2)記載の熱間鍛造用高靭性非調質鋼。
(4) 更に、質量%で、
V:0.01〜0.5%、
Mg:0.0005〜0.01%
を含み、且つ、
(Rem%+Ca%+Mg%)/(S%)≧0.05
の関係を満たすことを特徴とする上記(1)記載の熱間鍛造用高靭性非調質鋼。
(5) 更に、質量%で、
Nb:0.01〜0.3%、及びB:0.0003〜0.005%
のうちの1種又は2種、
Pb:0.01〜0.3%、及びBi:0.01〜0.3%
のうちの1種又は2種、
を含有することを特徴とする上記(1)乃至(4)のいずれかに記載の熱間鍛造用高靭性非調質鋼。
【0016】
) 更に、質量%で、
Ni:0.01〜2.0%、
Mo:0.01〜1.0%
の2種のうちの1種又は2種を含有することを特徴とする上記(1)乃至(5)のいずれかに記載の熱間鍛造用高靭性非調質鋼。
【0017】
) 更に、質量%で、
Pb:0.01〜0.3%、
Bi:0.01〜0.3
うちの少なくとも1種以上を含有することを特徴とする上記(1)乃至(4)及び上記(6)のいずれかに記載の熱間鍛造用高靭性非調質鋼。
【0018】
【発明の実施の形態】
以下本発明の各請求項の要件について説明する。
【0019】
まず、本発明の請求項1で鋼材成分を規定した理由は次の通りである。
【0020】
Cは鋼材の強度を得るための必須成分であり、0.1%未満とすると機械構造用部品としての特性が得られなくなるし、0.6%超とすると熱間鍛造品の機械的特性のバラツキが大きくなり、安定した品質が得られにくい。
【0021】
Siも強度を確保する上で有用な元素であるが、強度アップには少なくとも0.01%以上必要であり、また、2.0%超えて含有するとフェライト地の脆化が激しくなるため、その含有量は2.0%以下に抑えるべきである。
【0022】
Mnは強靭化作用が大きくSi同様有用な元素であり、且つ、0.2%未満では熱間延性が低く、鋼材の熱間圧延や熱間加工が困難である。また、2.0%を超えると切削性や溶接性等が低下するので制限した。
【0023】
Sは被削性を向上させる元素であり、0.005%未満では被削性が低く切削加工が困難となり、また、非調質鋼では熱間鍛造後の冷却過程でフェライトの生成を促進する等で靭性の向上をもたらす一方、MnSの増加により機械的特性の劣化や異方性の増大をもたらす。0.5%超では機械的特性の劣化や異方性の増大に加え、熱間延性も極端に低くなるため0.5%以下に制限した。
【0024】
Crも強度上昇に有効な元素であるが、強度上昇のためには少なくとも0.1%以上必要であり、2.0%を超えると靭性が顕著に低下するため上限は2.0%とした。
【0025】
Tiはオーステナイト組織を微細化にして靭性の向上をもたらす元素であり、そのためには、少なくとも0.005%以上必要であり、一方、0.1%を超えると粗大なTiN等が生成して靭性の劣化をもたらすため、上限を0.1%に設定した。
【0026】
NはAl、Ti等の窒化物形成元素と窒化物を形成してオーステナイト結晶粒を微細化するのに有用な元素である。上記効果を発揮させるには少なくとの0.003%以上のNが必要であり、0.02%を超えて含有しても上記効果は飽和とするため、Nの上限は0.02%とした。
【0027】
Alは一般には脱酸や結晶粒の制御にとって有用な元素であるが、Si、Mn、Tiを含有するケースではAlは必ずしも添加する必要がない。Alを添加した分は脱酸や結晶粒制御に寄与し、Al量が0.07%超では熱間加工性を害するため、Alの範囲を0.07%以下(0%含む)とした。
【0028】
Snはフェライトに固溶し、強度の向上に寄与すると共に、本発明鋼では凝固時の初晶フェライトの増加やそれにともなうSのデンドライト樹間への排出の抑制効果やSn自身のデンドライト樹間に存在する液相への濃化により、最終凝固部に晶出する硫化物の小型化に寄与すると共に、後述するRem、Ca等の添加による硫化物の組成制御で熱間圧延や熱間鍛造での延伸を防止して硫化物のアスペクト比低減を図る際、その効果を増大させる作用を有することが判明した。そのような効果が得られるのは実施例に記載のように少なくとも0.008%以上のSnを含有させる。また、Snの含有量が0.1%を超えると熱間延性が著しく低下するため、その上限を0.1%以下とした。上記Sn含有量の範囲でもSnによる熱間延性の低下が問題となる場合には、Niを添加し、熱間延性を確保するのが好ましい。
【0029】
本発明者らが種々検討した結果、熱間圧延等で延伸したMnS等の硫化物が従来から言われているような機械的異方性の増大をもたらすばかりでなく、靭性の低下にも大きな影響を及ぼしていることが判明した。
【0030】
そこで、延伸した硫化物による靭性低下を防止する方法について検討し、Rem(稀土類金属):0.005〜0.1%とCa:0.0005〜0.005%を含有させ、且つ、(Rem%+Ca%)/(S%)≧0.05になるよう含有させると、MnSがRemaが固溶する硫化物や硫化物と酸化物が複合化した介在物に変化することによって熱間での可塑性がMnSに比べ大幅に減少し、熱間圧延や熱間鍛造によって介在物がMnSのように延伸するのを極めて効果的に防止でき、その結果、延伸したMnS等による靭性の低下を大幅に改善できることが判明した。
【0031】
また、上記条件を満足するようにRemとCaを添加した場合、Rem又はCaを含有するほぼ球状の酸化物が生成し、そのような形態変化も低温靭性の改善に寄与していることが判明した。
【0032】
Remとaの添加によって、硫化物の熱間加工時の延伸を効果的に抑制するには、Remが0.005%以上必要であり、Caも0.0005%以上添加する必要があり、一方、Remを0.1%以上、Caを0.005%以上添加するとこれらの元素を含む硫化物のクラスーターが出現し易くなり、それらの生成によって靭性は却って低下する。更にS量に比べRemやCaの添加量が不足しても硫化物の熱間加工時の延伸を十分防止できないため、(Rem%+Ca%)/(S%)≧0.05になるよう含有させる必要がある。
【0033】
更に、熱間鍛造用の非調質鋼において、介在物の円相当径の平均値が20μm以下にすると共に、それらの介在物アスペクト比(長さ/幅)の平均値が10以下になるよう制御すると、衝撃が加わった場合の伸びた硫化物系介在物が存在する時の様な介在物によるノッチ効果は大幅に緩和され、また、亀裂の伝播抵抗を増大させる等の効果で、硫化物による靭性低下を極めて効果的に改善できる。
【0034】
ここで言う介在物とは酸化物、硫化物及び酸化物と硫化物が複合化した介在物であり、そのなかにはRemやCaを含有する酸化物や硫化物及びそれらの複合した介在物も含まれる。
【0035】
上記の介在物サイズの小型化を実現するには、成分を請求項1に規定した範囲に制御すると共に、鋼塊もしくは鋳片を製造する鋳造工程において、凝固中に硫化物等の介在物が晶出する場合、1500℃〜1300℃の温度区間の冷却速度をある程度確保することにより、凝固中に晶出する介在物の成長を抑えることも有効である。
【0036】
鋳片や鋼塊の断面サイズが小さいほど上記凝固中の冷却速度を確保し易く、MnS等凝固中に晶出する介在物の成長を抑制して、介在物の小型化を達成し易い。
【0037】
また、硫化物等高温での可塑性を有する介在物はサイズが大きいほど熱間加工で延伸するため、上述のような手段で鋳造段階においても介在物サイズを小さくコントロールすることも介在物の熱間圧延や熱間鍛造等での延伸を抑制する上で有効である。
【0038】
また、何らかの理由でRemやCaの添加量が規制され、熱間加工による硫化物等の延伸を十分に防止できない場合において、請求項2に記載したZr:0.007〜0.1%を含有させ、且つ、(Rem%+Ca%+2×Zr%)/(S%)≧0.05になるよう含有させ、あるいは、請求項4に記載したMg:0.0005〜0.01%を含有させ、且つ、(Rem%+Ca%+Mg%)/(S%)≧0.05になるように含有させ、硫化物の可塑性を低減することも熱間加工での延伸をより確実に防止する上で有効である。
【0039】
Zr及びMgの添加により熱間加工時における硫化物の延伸防止を図るにはZrは0.007%以上、Mgは0.0005%以上添加する必要がある。Zrが0.1%超添加すると硬質なZrO2等の酸化物が増加し、それが原因で靭性が低下する場合があり、Zrの含有量の上限は0.1%とした。Mgについては0.01%超添加しても溶鋼中でのMgSの生成に消費され、凝固中に晶出する介在物の形態制御には有効に作用しなくなるため、Mg含有量の上限については0.01%とした。
【0040】
一層強度や靭性の向上が必要な時は、請求項3又は4のようにVの添加請求項5のようにNb、Bの添加が有効である。
【0041】
VやNbは共に炭、窒化物を形成して強度や靭性を向上させる元素であり、Nbについては熱間加工中オーステナイトの再結晶を抑制して結晶粒の微細化を促進するためその点でも、強度靭性を向上させる。V、Nbとも0.01%以上の添加で上記改善効果が現れ、また、Vの添加量が0.5%を超えると、Nbも添加量が0.3%を超えると熱間延性の低下が激しいため、それぞれの添加量の上限を0.5%と0.3%とした。
【0042】
一方、Bは非調質鋼でフェライトの生成を促進したり、硬度を向上させる効果を有するが効果が出現するのは0.0003%以上であり、0.005%を超えると熱間延性や靭性も低下するためBの添加量は0.005%に制限した。
【0043】
焼入れ性や靭性の向上が必要な時は請求項のようにNi、Moの添加が有効である。
【0044】
Ni、Moは焼入れ性を確保すると共に靭性を向上させるのに有効な元素であり、それらの効果を得るには少なくとも0.01%以上添加する必要があり、Niについては2.0%を超えて添加しても、Moについては1.0%を超えて添加しても効果が飽和するのでNiの上限を2.0%、Moの上限を1.0%とした。
【0045】
被削性向上のニーズがある場合には、請求項のようにPbやBiの添加が被削性の向上に有効である。
【0046】
被削性改善効果を得るには、PbとBiでは0.01%以上添加する必要があり、一方、どの元素も0.3%を超えて添加すると著しく熱間延性を劣化させるためPb、Biの2元素共に添加量の上限を0.3%とした。
【0047】
【実施例】
(実施例1)
本実施例では、請求項1、請求項5に該当する発明鋼とそれらに対応する各比較鋼の引張り強度や低温靭性を調査、対比するため、表1に示した化学組成を有する150kgの鋼塊を真空溶解炉で溶製すると共に鋼塊が凝固する際の冷却速度を大幅に変化させた。本発明鋼と一部の比較鋼の鋼塊を鋳型内で放冷したのに対し、比較鋼No.9、10の鋼塊の溶製では、カオール等の断熱材を用いた断熱ボックスに鋳型を設置すると共にガス加熱で断熱ボックス内に設置された鋳型の周囲を加熱して上記冷却速度大幅に低下させ硫化物等の凝固中に晶出する介在物の粗大化を図った。
【0048】
製造した鋼塊は1250℃に加熱後熱間鍛造で90φの丸棒に成型後一旦室温まで冷却して介在物調査用サンプルを採取した。その後90φの丸棒を1250℃に再度加熱して熱間鍛造することにより50φの丸棒に成型した。鍛造終了後の1100℃から室温までは空冷にて冷却した。そのようにして得られた50φの丸棒より切削加工にてJIS4号引張り試験片やJIS3号衝撃試験片を採取し、室温で引張り試験やシャルピー試験を実施、強度と低温靭性を評価した。各試験の結果を表1に示す。尚、介在物径や介在物のアスペクト比(長さ/幅)の測定では、光学顕微鏡を用いて90φの丸棒縦断面に存在する介在物を400倍の倍率で20視野ほど写真観察し、その写真中の介在物全てを対象に画像解析装置で解析して、介在物の円相当径とアスペクト比(長さ/幅)の平均値を求めた。
【0049】
【表1】

Figure 0004564189
【0050】
表1からも明らかなように、本発明鋼を用いて熱間鍛造後空冷したものは、比較鋼を用いて熱間鍛造し、その後空冷したものに比べ、強度、低温靭性共に高い傾向を示した。逆にSnやRem、Caの含有量、(Rem+Ca)/Sの比が本発明の請求項1で規定した範囲を逸脱したり、成分系が規定範囲を満足していても介在物の平均円相当径や平均アスペクト比が規定範囲を外れると強度や靭性が本発明鋼に比べ劣化するのが分かる。
【0051】
また、凝固時の冷却速度を大幅な低減を図った比較鋼No.9と10と本発明鋼のNo.1〜3、6を比較すると、比較鋼No.9では介在物の平均円相当径と平均アスペクト比が、No.10では介在物の平均円相当径が本発明鋼より増大しており、そのことに起因して強度や衝撃値が低下していることが分かる。比較鋼No.12では(Rem+Ca)/Sの比が請求項1の範囲を満足しておらず、そのため介在物の平均アスペクト比が大きく、強度や衝撃値も発明鋼に比べかなり低下している。
【0052】
(実施例2)
表2に化学組成を示した鋼を高炉、転炉法で溶製し、220mm角のブルーム鋳片に鋳造後、分塊圧延、棒鋼圧延で90φの丸棒に成型した。
【0053】
上記の方法で得られた丸棒を用いて1250℃に加熱後熱間鍛造し、50φの丸棒に成型した後、鍛造終了後1100℃から室温まで空冷した。そのようにして得られた材料より、実施例1と同様、JIS4号引張り試験片やJIS3号衝撃試験片を切削加工により採取して室温にて引張り試験やシャルピー試験を実施した。各試験の結果を表2に併記した。
【0054】
【表2】
Figure 0004564189
【0055】
本試験でも介在物の円相当径や介在物のアスペクト比の平均値は実施例1と同様の画像解析装置を用いる方法で90φの丸棒の縦断面で計測した。
【0056】
請求項1に該当する発明鋼はNo.1、4、10、11の発明鋼であり、No.12、13、15、21、22、23はその比較鋼である。また、請求項2に該当する発明鋼はNo.8、9の発明鋼であり、No.19、20はその比較鋼である。No.3、5、6、9の鋼材は請求項3に該当する発明鋼であり、その比較鋼がNo.14、16、17、20の鋼材である。更に、請求項4及び請求項5に該当する発明鋼はそれぞれNo.7とNo.5、6であり、それらに対応する比較鋼はそれぞれNo.18とNo.16、17である。
【0057】
本実施例においても、各請求項に該当する発明鋼を用いて熱間鍛造した場合は、各発明鋼に対応する比較鋼を用いた場合に比べ、室温での引張り強度や靭性は高い値が得られており、本発明鋼が優れた熱間鍛造用非調質鋼であることが本実施例でも確認された。
【0058】
また、表2より分かるように本実施例においても成分系が各請求鋼の範囲を満足していなかったり、成分系は規定範囲を満足しても、それ以外の介在物の平均円相当径や平均アスペクト比が規定範囲を外れると本発明鋼に比較して強度や靭性がかなり低下しているのが分かる。
【0059】
【発明の効果】
以上説明したように、本発明の鋼では調質処理を施さなくても高い強度や靭性値が得られると共に、調質処理の省略によって大幅なエネルギーや製造コストの削減が可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high toughness non-heat treated steel, in particular, a non-heat treated steel for hot forging made of carbon steel and low alloy steel having C: 0.1 to 0.6% by mass.
[0002]
[Prior art]
Conventionally, many machine parts such as automobile parts have been manufactured by hot forging, quenching, tempering, so-called tempering, and then machining such as cutting and grinding.
[0003]
However, due to demands for improved productivity and energy savings due to process savings, the above-mentioned refining treatment is omitted, and the application of non-heat treated steel is expanding due to energy saving and cost reduction benefits.
[0004]
In general, non-tempered steel that has not been subjected to tempering treatment has a problem that its use is limited to a narrow range, such as being used for machine parts that do not require high toughness because it has lower toughness than tempered steel.
[0005]
Conventionally, a microalloy type non-heat treated steel has been proposed in which a small amount of elements such as V and Nb are added to the carbon steel for machine structure as a non-heat treated steel. Due to the pearlite structure, the toughness was extremely low and the application range was extremely limited.
[0006]
In order to eliminate such drawbacks, a method has been proposed in which a small amount of Ti is added to prevent coarsening of crystal grains and to improve toughness (for example, JP-A-56-38448). Not necessarily stable.
[0007]
For hot forging, finely and uniformly disperse at least one of MnS, TiN, and ZrN by adding a small amount of one or more of Zr and Ti and securing a cooling rate in the casting process. A method for producing non-heat treated steel has been proposed (Japanese Patent Publication No. 6-75747).
[0008]
Furthermore, while adding carbon, nitride forming elements such as Al, V, Nb, Ti, B, etc., 0.001 to 0.04 wt% of Ca, Te, Ce and other rare earth metals, misch metals and mixtures thereof A high toughness non-heat treated steel and a method for producing the same have been proposed (Japanese Patent Laid-Open No. 6-340946).
[0009]
Japanese Patent Publication No. 4-70385 proposes a method for improving the strength and toughness of hot forged materials by adding Zr and B, and a method for improving toughness by adding rare earth elements. Yes.
[0010]
[Problems to be solved by the invention]
The present invention provides a non-heat treated steel having a high toughness level that cannot always be achieved with a conventional non-heat treated steel even if the heat treatment after hot forging is omitted in the above-mentioned machine part manufacturing process. It is.
[0011]
[Means for solving the problems]
In the machine part manufacturing process described above, the present inventors have obtained a non-tempered steel having a level of high toughness that cannot always be achieved with conventional non-tempered steel even if the tempering treatment after hot forging is omitted. Through various researches on the means to achieve this, the steel composition is controlled appropriately, and sulfides, oxides, and oxide / sulfide composite inclusions are reduced in size, and the aspect ratio of these inclusions is reduced. By controlling (length / width) to a certain extent or less, it is found that high toughness can be stably achieved even if the tempering treatment is omitted after hot forging, and specific means for realizing them are found, The present invention has been completed.
[0012]
The gist of the present invention is as follows.
[0013]
(1) In mass%,
C: 0.1-0.6%
Si: 0.01 to 2.0%,
Mn: 0.2 to 2.0%,
S: 0.005 to 0.5%,
Cr: 0.1 to 2.0%,
Ti: 0.005 to 0.1%,
N: 0.003 to 0.02%,
Al: 0.07% or less (including 0%),
Sn: 0.008 to 0.1%,
Furthermore,
Rem (rare earth metal): 0.005 to 0.1%,
And Ca: 0.0005 to 0.005%
And including
(Rem% + Ca%) / (S%) ≧ 0.05
And the balance is composed of the remaining Fe and inevitable impurities, the average equivalent circle diameter of inclusions is 20 μm or less, and the average aspect ratio (length / width) of inclusions is 10 or less. High toughness non-tempered steel for hot forging.
[0014]
(2) Furthermore, in mass%,
Zr: 0.007 to 0.1 %
And including
(Rem% + Ca% + 2 × Zr %) / ( S %) ≧ 0.05
The high toughness non-tempered steel for hot forging according to the above (1), characterized by satisfying the relationship:
[0015]
(3) Furthermore, in mass%,
V: 0.01 to 0.5 %
The high toughness non-tempered steel for hot forging according to the above (1) or (2), which contains
(4) Furthermore, in mass%,
V: 0.01-0.5%
Mg: 0.0005 to 0.01%
And including
(Rem% + Ca% + Mg%) / (S%) ≧ 0.05
The high toughness non-tempered steel for hot forging according to the above (1), characterized by satisfying the relationship:
(5) Furthermore, in mass%,
Nb: 0.01-0.3% and B: 0.0003-0.005%
One or two of these,
Pb: 0.01 to 0.3% and Bi: 0.01 to 0.3%
One or two of these,
The high toughness non-heat treated steel for hot forging according to any one of the above (1) to (4), comprising:
[0016]
( 6 ) Furthermore, in mass%,
Ni: 0.01 to 2.0%,
Mo: 0.01 to 1.0%
The high toughness non-tempered steel for hot forging according to any one of the above (1) to ( 5) , comprising one or two of the two types.
[0017]
( 7 ) Furthermore, in mass%,
Pb: 0.01-0.3%
Bi: 0.01-0.3 %
The high toughness non-heat treated steel for hot forging according to any one of (1) to (4) and (6) above , comprising at least one of the above .
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The requirements of each claim of the present invention will be described below.
[0019]
First, the reason why the steel material components are defined in claim 1 of the present invention is as follows.
[0020]
C is an essential component for obtaining the strength of the steel material. If it is less than 0.1%, the characteristics as a machine structural part cannot be obtained, and if it exceeds 0.6%, the mechanical characteristics of the hot forged product are not obtained. The variation becomes large and it is difficult to obtain stable quality.
[0021]
Si is also an element useful for securing the strength, but at least 0.01% or more is necessary for increasing the strength, and if it exceeds 2.0%, the embrittlement of the ferrite ground becomes severe. The content should be kept below 2.0%.
[0022]
Mn has a strong toughening effect and is a useful element like Si, and if it is less than 0.2%, the hot ductility is low, and it is difficult to hot-roll and hot-work steel materials. Further, if it exceeds 2.0%, the machinability, weldability, and the like are lowered, so the limit is imposed.
[0023]
S is an element that improves machinability, and if it is less than 0.005%, the machinability is low and cutting is difficult, and non-heat treated steel promotes the formation of ferrite in the cooling process after hot forging. While the toughness is improved by, for example, the increase in MnS causes the deterioration of mechanical properties and the increase in anisotropy. If it exceeds 0.5%, the mechanical properties deteriorate and the anisotropy increases, and the hot ductility becomes extremely low.
[0024]
Cr is also an element effective in increasing the strength, but at least 0.1% or more is necessary for increasing the strength, and if it exceeds 2.0%, the toughness is remarkably reduced, so the upper limit was made 2.0%. .
[0025]
Ti is an element that refines the austenite structure to improve toughness, and for that purpose, at least 0.005% or more is necessary. On the other hand, if it exceeds 0.1%, coarse TiN or the like is generated and toughness is increased. Therefore, the upper limit was set to 0.1%.
[0026]
N is an element useful for forming a nitride with a nitride-forming element such as Al or Ti to refine the austenite crystal grains. In order to exhibit the above effect, at least 0.003% or more of N is necessary, and even if the content exceeds 0.02%, the above effect is saturated, so the upper limit of N is 0.02%. did.
[0027]
Al is generally an element useful for deoxidation and control of crystal grains, but Al is not necessarily added in the case of containing Si, Mn and Ti. The amount of Al added contributes to deoxidation and crystal grain control, and when the Al content exceeds 0.07%, hot workability is impaired. Therefore, the Al range is set to 0.07% or less (including 0%).
[0028]
Sn dissolves in ferrite and contributes to the improvement of strength. In the steel of the present invention, the increase in primary crystal ferrite during solidification and the effect of suppressing the discharge of S into the dendrite trees, and between the dendrite trees of Sn itself. Concentration to the existing liquid phase contributes to miniaturization of the sulfide crystallized in the final solidified part, and also by hot rolling and hot forging by controlling the composition of sulfide by adding Rem, Ca, etc. described later. It has been found that when the aspect ratio of the sulfide is reduced by preventing the stretching of the film, the effect is increased. Such an effect is obtained by containing at least 0.008% or more of Sn as described in Examples. Moreover, since hot ductility will fall remarkably when Sn content exceeds 0.1%, the upper limit was made into 0.1% or less. Even in the range of the Sn content, when a decrease in hot ductility due to Sn becomes a problem, it is preferable to add Ni to ensure hot ductility.
[0029]
As a result of various investigations by the present inventors, sulfides such as MnS stretched by hot rolling or the like not only cause an increase in mechanical anisotropy as conventionally known, but also greatly reduce the toughness. It turns out that it has an influence.
[0030]
Therefore, we investigated how to prevent the decrease in toughness due stretched sulfide, Rem (rare Ruikin Genus): 0.005% to 0.1% and Ca: 0.0005 to 0.005% is contained, and, When (Rem% + Ca%) / is contained so that the (S%) ≧ 0.05, MnS oxide and sulphide or sulphide R em and C a forms a solid solution is changed to inclusions complexed As a result, the hot plasticity is greatly reduced compared to MnS, and the inclusions can be extremely effectively prevented from being stretched like MnS by hot rolling or hot forging. As a result, due to the stretched MnS, etc. It has been found that the reduction in toughness can be greatly improved.
[0031]
Also, in the case of adding Rem and Ca so as to satisfy the above condition, that the oxide of approximately spherical shape having containing an R em or Ca is generated, which contributes to such morphological change improvement in low temperature toughness Turned out .
[0032]
The addition of Re m and C a, In order to effectively suppress the stretching during hot working of sulfides, Rem is required than 0.005%, it is necessary to add Ca also less than 0.0005% On the other hand, if Rem is added at 0.1% or more and Ca is added at 0.005% or more, sulfide clusterers containing these elements are likely to appear, and the toughness is lowered by their formation. Furthermore, even if the amount of Rem or Ca added is insufficient compared to the amount of S, it is not possible to sufficiently prevent stretching during hot working of sulfide, so that (Rem% + Ca%) / (S%) ≧ 0.05 is contained. It is necessary to let
[0033]
Further, in the non-heat treated steel for hot forging, the average value of the equivalent circle diameter of inclusions is set to 20 μm or less, and the average value of the inclusion aspect ratio (length / width) is set to 10 or less. When controlled, the notch effect due to inclusions such as the presence of elongated sulfide inclusions when an impact is applied is greatly mitigated, and the effect of increasing the propagation resistance of cracks, etc. Can reduce the toughness due to the above.
[0034]
The inclusions mentioned here are oxides, sulfides, and inclusions in which oxides and sulfides are compounded, including oxides and sulfides containing Rem and Ca, and complex inclusions thereof. .
[0035]
In order to reduce the size of the inclusions, the components are controlled within the range defined in claim 1, and in the casting process for producing a steel ingot or slab, inclusions such as sulfides are solidified during solidification. In the case of crystallization, it is also effective to suppress the growth of inclusions that crystallize during solidification by securing a cooling rate in a temperature range of 1500 ° C. to 1300 ° C. to some extent.
[0036]
The smaller the cross-sectional size of the slab or steel ingot, the easier it is to secure the cooling rate during solidification, and the growth of inclusions that crystallize during solidification, such as MnS, is suppressed, and the inclusions can be made smaller.
[0037]
In addition, since inclusions having high temperature plasticity such as sulfides are stretched by hot working as the size increases, it is also possible to control the inclusion size to be small in the casting stage by the above-described means. This is effective in suppressing stretching during rolling or hot forging.
[0038]
Further, when the amount of addition of Rem or Ca is restricted for some reason and stretching of sulfides and the like due to hot working cannot be sufficiently prevented, Zr described in claim 2: 0.007 to 0.1 % is contained And (Rem% + Ca% + 2 × Zr %) / ( S %) ≧ 0.05 or Mg according to claim 4: 0.0005 to 0.01%. In addition, (Rem% + Ca% + Mg%) / (S%) ≧ 0.05 is added to reduce the plasticity of the sulfide in order to more reliably prevent stretching during hot working. It is valid.
[0039]
In order to prevent the stretching of sulfides during hot working by adding Zr and Mg, it is necessary to add 0.007% or more of Zr and 0.0005% or more of Mg. If Zr exceeds 0.1%, hard oxides such as ZrO 2 increase, which may cause toughness to decrease. The upper limit of the Zr content is set to 0.1%. Even if Mg is added in excess of 0.01%, it is consumed in the formation of MgS in the molten steel, and it will not work effectively for the form control of inclusions that crystallize during solidification. 0.01%.
[0040]
When further improvement of strength and toughness is required , addition of V as in claim 3 or 4 and addition of Nb and B as in claim 5 are effective.
[0041]
V and Nb are elements that improve the strength and toughness by forming charcoal and nitride, and Nb also suppresses the recrystallization of austenite during hot working and promotes the refinement of crystal grains. , Improve strength toughness. When V and Nb are added in an amount of 0.01% or more, the above improvement effect appears. When the amount of V exceeds 0.5%, the hot ductility decreases when the amount of Nb also exceeds 0.3%. Therefore, the upper limit of each addition amount was set to 0.5% and 0.3%.
[0042]
On the other hand, B is a non-tempered steel and has the effect of promoting the formation of ferrite and improving the hardness, but the effect appears at 0.0003% or more, and when it exceeds 0.005%, hot ductility and Since the toughness also decreases, the amount of B added is limited to 0.005%.
[0043]
When it is necessary to improve hardenability and toughness, addition of Ni and Mo is effective as described in claim 6 .
[0044]
Ni and Mo are effective elements for ensuring hardenability and improving toughness, and in order to obtain these effects, it is necessary to add at least 0.01% or more, and Ni exceeds 2.0%. Even if the addition of Mo exceeds 1.0%, the effect is saturated, so the upper limit of Ni is 2.0% and the upper limit of Mo is 1.0%.
[0045]
When there is a need for improvement of machinability, the addition of Pb and Bi as in claim 7 is effective for improving machinability.
[0046]
To obtain the machinability improving effect, it is necessary to more than the added pressure of 0.01% in the Pb and Bi, on the other hand, in order to degrade significantly the hot ductility which element is also added in excess of 0.3% Pb and the upper limit of the addition amount of 2 elements both of Bi is 0.3%.
[0047]
【Example】
Example 1
In this example, in order to investigate and contrast the tensile strength and low-temperature toughness of the invention steels corresponding to claims 1 and 5 and the corresponding comparative steels, 150 kg steel having the chemical composition shown in Table 1 was used. The ingot was melted in a vacuum melting furnace and the cooling rate when the steel ingot solidified was greatly changed. The ingots of the steel of the present invention and some comparative steels were allowed to cool in the mold. In the melting of 9, 10 steel ingots, the mold is placed in a heat insulation box using a heat insulating material such as cahors, and the surroundings of the mold placed in the heat insulation box are heated by gas heating, and the cooling rate is greatly reduced. The inclusions crystallized during the solidification of sulfides and the like were coarsened.
[0048]
The manufactured steel ingot was heated to 1250 ° C., then formed into a 90φ round bar by hot forging, and then cooled to room temperature, and an inclusion investigation sample was collected. Thereafter, the 90φ round bar was heated again to 1250 ° C. and hot forged to form a 50φ round bar. After forging was completed, air cooling was performed from 1100 ° C. to room temperature. JIS No. 4 tensile test pieces and JIS No. 3 impact test pieces were collected by cutting from the 50φ round bar thus obtained, and subjected to tensile tests and Charpy tests at room temperature to evaluate strength and low-temperature toughness. The results of each test are shown in Table 1. In addition, in the measurement of the inclusion diameter and the aspect ratio (length / width) of the inclusions, the optical microscope is used to observe the inclusions existing in the vertical section of the 90φ round bar about 20 fields of view at a magnification of 400 times. All inclusions in the photograph were analyzed with an image analyzer, and the average value of the equivalent circle diameter and aspect ratio (length / width) of the inclusions was determined.
[0049]
[Table 1]
Figure 0004564189
[0050]
As is clear from Table 1, the steel that had been air-cooled after hot forging using the steel of the present invention showed higher tendencies in both strength and low-temperature toughness than those that were hot-forged using comparative steel and then air-cooled. It was. Conversely, even if the Sn, Rem, Ca content and the ratio of (Rem + Ca) / S deviate from the range defined in claim 1 of the present invention or the component system satisfies the specified range, the average circle of inclusions It can be seen that when the equivalent diameter and the average aspect ratio are out of the specified range, the strength and toughness deteriorate compared to the steel of the present invention.
[0051]
In addition, comparative steel No. 1 which greatly reduced the cooling rate during solidification. Nos. 9 and 10 and steel Nos. 1 to 3 and 6 are compared, comparative steel No. In No. 9, the average equivalent circle diameter and average aspect ratio of inclusions were 10 shows that the average equivalent circle diameter of inclusions is larger than that of the steel according to the present invention, and the strength and impact value are reduced due to this. Comparative steel No. No. 12, the ratio of (Rem + Ca) / S does not satisfy the range of claim 1, so that the average aspect ratio of inclusions is large, and the strength and impact value are considerably lower than those of the inventive steel.
[0052]
(Example 2)
Steels having chemical compositions shown in Table 2 were melted by a blast furnace and a converter method, cast into a 220 mm square bloom slab, and then formed into 90φ round bars by split rolling and bar rolling.
[0053]
The round bar obtained by the above method was heated to 1250 ° C. and then hot forged, formed into a 50φ round bar, and then air-cooled from 1100 ° C. to room temperature after forging was completed. From the material thus obtained, as in Example 1, JIS No. 4 tensile test piece and JIS No. 3 impact test piece were collected by cutting and subjected to tensile test and Charpy test at room temperature. The results of each test are also shown in Table 2.
[0054]
[Table 2]
Figure 0004564189
[0055]
In this test as well, the average equivalent circle diameter of inclusions and the average value of the aspect ratio of inclusions were measured on a vertical section of a 90φ round bar by the same method as that used in Example 1.
[0056]
The invention steel corresponding to claim 1 is No. 1. No. 1, 4, 10, and 11 of the invention steel. 12, 13, 15, 21, 22, 23 are comparative steels. The invention steel corresponding to claim 2 is No. No. 8 and 9 invention steel. 19 and 20 are comparative steels. No. The steel materials 3, 5, 6, and 9 are invention steels corresponding to claim 3, and the comparative steel is No. 3. 14, 16, 17, and 20 steel materials. Further, invention steels corresponding to claims 4 and 5 are No. 7 and no. No. 5 and No. 6, and the corresponding comparative steels are No. 18 and No. 16 and 17.
[0057]
Also in this example, when hot forging using the invention steel corresponding to each claim, the tensile strength and toughness at room temperature are higher than when using the comparative steel corresponding to each invention steel. In this example, it was confirmed that the steel of the present invention is an excellent non-heat treated steel for hot forging.
[0058]
Further, as can be seen from Table 2, even in this example, the component system does not satisfy the range of each claimed steel, or even if the component system satisfies the specified range, the average equivalent circle diameter of other inclusions or It can be seen that when the average aspect ratio is outside the specified range, the strength and toughness are considerably reduced as compared with the steel of the present invention.
[0059]
【The invention's effect】
As described above, with the steel of the present invention, high strength and toughness values can be obtained without performing a tempering treatment, and it is possible to significantly reduce energy and manufacturing cost by omitting the tempering treatment.

Claims (7)

質量%で、
C:0.1〜0.6%、
Si:0.01〜2.0%、
Mn:0.2〜2.0%、
S:0.005〜0.5%、
Cr:0.1〜2.0%、
Ti:0.005〜0.1%、
N:0.003〜0.02%、
Al:0.07%以下(0%含む)、
Sn:0.008〜0.1%、
更に、
Rem(稀土類金属):0.005〜0.1%、
及びCa:0.0005〜0.005%
を含み、且つ、
(Rem%+Ca%)/(S%)≧0.05
の関係を満たし、残部Fe及び不可避的不純物からなり、介在物の平均円相当径が20μm以下であり、介在物の平均アスペクト比(長さ/幅)が10以下であることを特徴とする熱間鍛造用高靭性非調質鋼。
% By mass
C: 0.1-0.6%
Si: 0.01 to 2.0%,
Mn: 0.2 to 2.0%,
S: 0.005 to 0.5%,
Cr: 0.1 to 2.0%,
Ti: 0.005 to 0.1%,
N: 0.003 to 0.02%,
Al: 0.07% or less (including 0%),
Sn: 0.008 to 0.1%,
Furthermore,
Rem (rare earth metal): 0.005 to 0.1%,
And Ca: 0.0005 to 0.005%
And including
(Rem% + Ca%) / (S%) ≧ 0.05
And the balance is composed of the remaining Fe and inevitable impurities, the average equivalent circle diameter of inclusions is 20 μm or less, and the average aspect ratio (length / width) of inclusions is 10 or less. High toughness non-tempered steel for hot forging.
更に、質量%で、
Zr:0.007〜0.1%
を含み、且つ、
(Rem%+Ca%+2×Zr%)/(S%)≧0.05
の関係を満たすことを特徴とする請求項1記載の熱間鍛造用高靭性非調質鋼。
Furthermore, in mass%,
Zr: 0.007 to 0.1%
And including
(Rem% + Ca% + 2 × Zr%) / (S%) ≧ 0.05
The high toughness non-tempered steel for hot forging according to claim 1, wherein:
更に、質量%で、
V:0.01〜0.5%
を含有することを特徴とする請求項1又は2記載の熱間鍛造用高靭性非調質鋼。
Furthermore, in mass%,
V: 0.01 to 0.5%
The high toughness non-tempered steel for hot forging according to claim 1 or 2, characterized by comprising:
更に、質量%で、
V:0.01〜0.5%、
Mg:0.0005〜0.01%
を含み、且つ、
(Rem%+Ca%+Mg%)/(S%)≧0.05
の関係を満たすことを特徴とする請求項1記載の熱間鍛造用高靭性非調質鋼。
Furthermore, in mass%,
V: 0.01-0.5%
Mg: 0.0005 to 0.01%
And including
(Rem% + Ca% + Mg%) / (S%) ≧ 0.05
The high toughness non-tempered steel for hot forging according to claim 1, wherein:
更に、質量%で、
Nb:0.01〜0.3%、及びB:0.0003〜0.005%
のうちの1種又は2種、
Pb:0.01〜0.3%、及びBi:0.01〜0.3%
のうちの1種又は2種、
を含有することを特徴とする請求項1乃至4のいずれかに記載の熱間鍛造用高靭性非調質鋼。
Furthermore, in mass%,
Nb: 0.01-0.3% and B: 0.0003-0.005%
One or two of these,
Pb: 0.01 to 0.3% and Bi: 0.01 to 0.3%
One or two of these,
The high toughness non-tempered steel for hot forging according to claim 1, comprising:
更に、質量%で、
Ni:0.01〜2.0%、
Mo:0.01〜1.0%
の2種のうちの1種又は2種を含有することを特徴とする請求項1乃至5のいずれかに記載の熱間鍛造用高靭性非調質鋼。
Furthermore, in mass%,
Ni: 0.01 to 2.0%,
Mo: 0.01 to 1.0%
The high toughness non-tempered steel for hot forging according to any one of claims 1 to 5, comprising one or two of the two types.
更に、質量%で、
Pb:0.01〜0.3%、
Bi:0.01〜0.3%
のうちの少なくとも1種以上を含有することを特徴とする請求項1乃至4及び請求項6のいずれかに記載の熱間鍛造用高靭性非調質鋼。
Furthermore, in mass%,
Pb: 0.01-0.3%
Bi: 0.01 to 0.3%
The high toughness non-heat-treated steel for hot forging according to any one of claims 1 to 4 and 6, characterized by containing at least one of the above.
JP2001043788A 2001-02-20 2001-02-20 High toughness non-tempered steel for hot forging Expired - Fee Related JP4564189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001043788A JP4564189B2 (en) 2001-02-20 2001-02-20 High toughness non-tempered steel for hot forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001043788A JP4564189B2 (en) 2001-02-20 2001-02-20 High toughness non-tempered steel for hot forging

Publications (2)

Publication Number Publication Date
JP2002241890A JP2002241890A (en) 2002-08-28
JP4564189B2 true JP4564189B2 (en) 2010-10-20

Family

ID=18905899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001043788A Expired - Fee Related JP4564189B2 (en) 2001-02-20 2001-02-20 High toughness non-tempered steel for hot forging

Country Status (1)

Country Link
JP (1) JP4564189B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5245544B2 (en) * 2008-05-30 2013-07-24 新日鐵住金株式会社 Common rail with excellent fatigue characteristics
CN114908216B (en) * 2022-04-26 2023-09-01 东风商用车有限公司 Bismuth tellurium adding method for free cutting steel, free cutting carburizing steel and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168848A (en) * 1987-12-23 1989-07-04 Sanyo Special Steel Co Ltd Universal free cutting steel for automobile parts and its production
JPH0892687A (en) * 1994-09-22 1996-04-09 Kobe Steel Ltd High strength and high toughness non-heattreated steel for hot forging and its production
JPH1129842A (en) * 1997-07-15 1999-02-02 Sumitomo Metal Ind Ltd Ferrite-pearlite type non-heat treated steel
JPH11350065A (en) * 1998-06-04 1999-12-21 Daido Steel Co Ltd Non-refining steel for hot forging excellent in machinability
JP2000282172A (en) * 1999-01-28 2000-10-10 Sumitomo Metal Ind Ltd Steel for machine structure excellent in machinability and toughness, and machine structural parts
JP2001020033A (en) * 1999-07-07 2001-01-23 Kawasaki Steel Corp Non-heattreated high tensile strength steel excellent in toughness of base material and weld heat-affected zone

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168848A (en) * 1987-12-23 1989-07-04 Sanyo Special Steel Co Ltd Universal free cutting steel for automobile parts and its production
JPH0892687A (en) * 1994-09-22 1996-04-09 Kobe Steel Ltd High strength and high toughness non-heattreated steel for hot forging and its production
JPH1129842A (en) * 1997-07-15 1999-02-02 Sumitomo Metal Ind Ltd Ferrite-pearlite type non-heat treated steel
JPH11350065A (en) * 1998-06-04 1999-12-21 Daido Steel Co Ltd Non-refining steel for hot forging excellent in machinability
JP2000282172A (en) * 1999-01-28 2000-10-10 Sumitomo Metal Ind Ltd Steel for machine structure excellent in machinability and toughness, and machine structural parts
JP2001020033A (en) * 1999-07-07 2001-01-23 Kawasaki Steel Corp Non-heattreated high tensile strength steel excellent in toughness of base material and weld heat-affected zone

Also Published As

Publication number Publication date
JP2002241890A (en) 2002-08-28

Similar Documents

Publication Publication Date Title
KR100892385B1 (en) Steel for welded structure excellent in low temperature toughness of heat affected zone of welded part, and method for production thereof
JP4699341B2 (en) High strength hot forged non-tempered steel parts with excellent fatigue limit ratio
TWI404808B (en) Boron steel sheet with high quenching property and manufacturing method thereof
JP6068314B2 (en) Hot-rolled steel sheet with excellent cold workability and surface hardness after carburizing heat treatment
WO2015162928A1 (en) Spring steel and method for producing same
KR100740414B1 (en) Non-refined steel being reduced in anisotropy of material and excellent in strength, toughness and machinability
JP4699342B2 (en) High strength non-tempered steel for cold forging with excellent fatigue limit ratio
US5648044A (en) Graphite steel for machine structural use exhibiting excellent free cutting characteristic, cold forging characteristic and post-hardening/tempering fatigue resistance
JP6787238B2 (en) Manufacturing method of steel for machine structure
JPH0892687A (en) High strength and high toughness non-heattreated steel for hot forging and its production
JP4041413B2 (en) Machine structural steel having excellent chip disposal and manufacturing method thereof
JP4564189B2 (en) High toughness non-tempered steel for hot forging
JPH11131187A (en) Rapidly graphitizable steel and its production
JPH0791579B2 (en) Method for manufacturing case-hardening steel in which crystal grains do not coarsen during carburizing heat treatment
JP4716546B2 (en) Non-tempered steel for hot forging containing no V
JPH0629480B2 (en) Hot-rolled high-strength steel sheet excellent in strength, ductility, toughness, and fatigue characteristics, and method for producing the same
JPH06279849A (en) Production of steel for machine structure excellent in machinability
JP2003055743A (en) Steel for cold die having excellent machinability
JP2000160285A (en) High-strength and high-toughness non-heat treated steel
JP2005344167A (en) Steel product for carburized parts or carbonitrided parts, and method for manufacturing carburized parts or carbonitrided parts
JP4196485B2 (en) Machine structural steel with excellent machinability, cold forgeability and hardenability
JP2001011571A (en) Steel for machine structure excellent in machinability, cold forgeability and hardenability
JPH0797659A (en) Steel for machine structural use excellent in machinability, cold forgeability, fatigue strength characteristic after quench-and-temper, member of the same, and their production
JP3903996B2 (en) Steel bar and machine structural member for cold forging with excellent machinability, cold forgeability and fatigue strength characteristics after quenching and tempering
JP3391537B2 (en) Non-heat treated steel for high performance hot forging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4564189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees