JP2001020033A - Non-heattreated high tensile strength steel excellent in toughness of base material and weld heat-affected zone - Google Patents

Non-heattreated high tensile strength steel excellent in toughness of base material and weld heat-affected zone

Info

Publication number
JP2001020033A
JP2001020033A JP19341199A JP19341199A JP2001020033A JP 2001020033 A JP2001020033 A JP 2001020033A JP 19341199 A JP19341199 A JP 19341199A JP 19341199 A JP19341199 A JP 19341199A JP 2001020033 A JP2001020033 A JP 2001020033A
Authority
JP
Japan
Prior art keywords
oxide
toughness
steel
less
inclusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19341199A
Other languages
Japanese (ja)
Other versions
JP4144123B2 (en
Inventor
Yasushi Morikage
康 森影
Seiji Nabeshima
誠司 鍋島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19341199A priority Critical patent/JP4144123B2/en
Publication of JP2001020033A publication Critical patent/JP2001020033A/en
Application granted granted Critical
Publication of JP4144123B2 publication Critical patent/JP4144123B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the toughness of the base material and weld heat-affected zone, by dispersing oxide inclusions contg. specified amounts of Ti oxide, Ca oxide, REM oxide and Al2O3 into steel having a specified compsn. in a specified state. SOLUTION: This steel contains, by weight, 0.01 to 0.18% C, 0.02 to 0.60% Si, 0.60 to 2.00% Mn, <=0.03% P, <=0.015% S, 0.005 to 0.08% Ti, 0.0020 to 0.0100% N, 0.0010 to 0.0200% REM, 0.0010 to 0.0200% Ca and Al:Ti/<=5, and the value of Ceq defined by the formula is 0.36 to 0.45%. The content of each element in the formula is denoted by weight %. Then, into the steel, oxide inclusions composed of, by weight, <=90% Ti oxide, Ca oxide and REM oxide by 5 to 50% in total and <=70% Al2O3 are dispersed by 1×103 to <1×105 pieces/mm2 by the number of the ones having the size equivalent to a circle of >=200 nm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、建築構造物、海洋
構造物、パイプ、船舶、貯槽、土木構造物、建設機械等
に用いられる非調質高張力鋼材に係り、とくに母材およ
び溶接熱影響部の靱性に優れた鋼材に関する。本発明に
おける鋼材は、厚鋼板、鋼帯、形鋼、棒鋼を含むものと
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-heat treated high-strength steel material used for building structures, marine structures, pipes, ships, storage tanks, civil engineering structures, construction machines, etc., and more particularly to a base material and welding heat. It relates to a steel material with excellent toughness in the affected zone. The steel material in the present invention includes a thick steel plate, a steel strip, a shaped steel, and a steel bar.

【0002】[0002]

【従来の技術】高強度と高靱性、高溶接性を兼ね備えた
厚鋼板を製造する優れた方法として、TMCP(Thermo
Mechanical Control Process )法が知られている。し
かし、上記TMCP法により製造された厚鋼板では、溶
接熱影響部の靱性が十分ではなく、このため、この種鋼
材を、低温で使用する溶接構造物に使用することには問
題があった。
2. Description of the Related Art As an excellent method for producing a thick steel plate having both high strength, high toughness, and high weldability, TMCP (Thermo
Mechanical Control Process) is known. However, in the thick steel plate manufactured by the above-mentioned TMCP method, the toughness of the weld heat affected zone is not sufficient, and therefore, there is a problem in using such a steel material for a welded structure used at a low temperature.

【0003】また、溶接熱影響部(HAZ)の靱性を改
善するために、酸化物あるいは窒化物を鋼中に均一に分
散させ、HAZ組織を微細化し、靱性を向上させる方法
についても検討が行われている。例えば、特開平2−12
5812号公報には、鋼中に粒子径0.05〜10μmのTiを主成
分とする酸化物を5×103 〜1×106 個/mm2 含有する
鋳片を900 〜1100℃で再加熱後、900 ℃以下の累積圧下
量30〜90%、圧延終了温度700 〜850 ℃で圧延し冷却
後、500 ℃〜Ac1変態点の温度で時効処理する、HAZ
靱性の優れたCu添加鋼の製造方法が提案されている。
Further, in order to improve the toughness of the heat affected zone (HAZ), a method of uniformly dispersing an oxide or nitride in steel to refine the HAZ structure and improve toughness has been studied. Have been done. For example, Japanese Patent Laid-Open No. 2-12
No. 5812 discloses that a slab containing 5 × 10 3 to 1 × 10 6 particles / mm 2 of an oxide mainly composed of Ti having a particle diameter of 0.05 to 10 μm in steel is reheated at 900 to 1100 ° C. Rolling at a rolling reduction temperature of 700 to 850 ° C, cooling at a cumulative reduction of 30 to 90% below 900 ° C, cooling, and then aging at a temperature of 500 ° C to the Ac 1 transformation point, HAZ
A method for producing a Cu-added steel having excellent toughness has been proposed.

【0004】また、特開平4−48048 号公報には、C:
0.03〜0.20wt%、Nb、Tiを含有し、母地中に0.001 〜0.
100wt %の粒径0.5 μm以下の(Ti、Nb)(O、N)複
合結晶相を有した酸化物系介在物が分散してなる溶接熱
影響部靱性の優れた鋼材が提案されている。
Japanese Patent Application Laid-Open No. 4-48048 discloses that C:
Contains 0.03 to 0.20 wt%, Nb and Ti, and 0.001 to 0.
There has been proposed a steel material having excellent toughness of a heat affected zone in which oxide inclusions having a (Ti, Nb) (O, N) composite crystal phase having a grain size of 0.5 μm or less of 100 wt% are dispersed therein.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、特開平
2−125812号公報や特開平4−48048 号公報に記載され
た技術では、溶接熱影響部靱性は向上するものの、母材
靱性が低温用鋼材としては十分でないという問題があ
り、母材靱性向上のためには、酸化物系介在物の存在状
態の更なる改善を必要としている。
However, in the techniques described in JP-A-2-125812 and JP-A-4-48048, although the toughness of the weld heat-affected zone is improved, the base metal toughness is low. However, in order to improve the toughness of the base material, it is necessary to further improve the existing state of the oxide-based inclusions.

【0006】さらに、母材および溶接熱影響部の組織制
御に有効な量のTi酸化物を鋼中に存在させようとする
と、鋳込み時にノズル閉塞が生じ易くなり、生産性が劣
るという問題があった。本発明は、上記した従来技術の
問題を有利に解決し、母材靱性および溶接熱影響部靱性
を兼ね備え、しかも、ノズル詰まりもなく安定して生産
性高く製造できる非調質高張力鋼材を提案することを目
的とする。
[0006] Furthermore, if an amount of Ti oxide effective for controlling the structure of the base metal and the weld heat affected zone is to be present in steel, nozzle clogging is likely to occur during casting, resulting in poor productivity. Was. The present invention advantageously solves the above-mentioned problems of the prior art, and proposes a non-refined high-strength steel material having both base metal toughness and weld heat-affected zone toughness, and capable of being manufactured stably with high productivity without nozzle clogging. The purpose is to do.

【0007】[0007]

【課題を解決するための手段】本発明者らは、ノズル詰
まりもなく、酸化物系介在物を鋼材中に均一微細に分散
させる方法についてさらに研究した結果、酸化物系介在
物をTi酸化物を主体とし、酸化物系介在物の組成を最適
範囲とする必要があることを見いだした。つぎに、本発
明者らが、酸化物系介在物の最適組成範囲について行っ
た検討結果について説明する。
Means for Solving the Problems The present inventors have further studied a method of uniformly and finely dispersing oxide-based inclusions in a steel material without nozzle clogging. And found that the composition of the oxide-based inclusions needs to be within the optimum range. Next, the results of a study performed by the present inventors on the optimum composition range of the oxide-based inclusion will be described.

【0008】本発明者らは、脱酸処理後の溶鋼中に介在
物組成調整用合金を添加して介在物組成の制御を行い、
溶鋼中の介在物中のTi2O3 、CaO +REM 酸化物、Al2O3
濃度を変化させた圧延用鋼素材を鋳込み、該圧延用鋼素
材を熱間圧延して鋼板を製造した。まず、圧延素材鋳込
み中のノズルづまりの発生状況を調査した。ノズルづま
りについては、連続鋳造工程においてイマージョンノズ
ルの閉塞が起こった時をノズルづまり有りとした。
The present inventors added an alloy for adjusting the composition of inclusions to the molten steel after the deoxidization treatment to control the composition of the inclusions,
Ti 2 O 3 , CaO + REM oxide, Al 2 O 3 in inclusions in molten steel
A steel material for rolling with a varied concentration was cast, and the steel material for rolling was hot-rolled to produce a steel sheet. First, the occurrence of nozzle clogging during casting of a rolled material was investigated. Regarding the nozzle clogging, when the immersion nozzle was clogged in the continuous casting process, it was determined that the nozzle was clogged.

【0009】また、本発明者らは、介在物中にCaO およ
びREM 酸化物が含まれると、鋼材の耐錆性に影響を及ぼ
すことを知見したため、得られた鋼板についての発錆状
況を調査した。鋼板の発錆については、圧延・冷却後の
鋼板を10日間大気中で放置した後にマクロ観察をして錆
があったものを発錆ありとした。それらの結果を纏め
て、図1に示す。
Further, the present inventors have found that the inclusion of CaO and REM oxides in the inclusions affects the rust resistance of the steel material. did. Regarding the rusting of the steel sheet, the steel sheet after rolling and cooling was allowed to stand in the air for 10 days and then macroscopically observed. The results are summarized in FIG.

【0010】介在物中のTi2O3 濃度が90重量%超である
か、または、CaO +REM 酸化物濃度が5重量%未満とな
ると、介在物の融点が高く、鋳込み時のノズル内面に介
在物が付着しやすくなり、ノズル閉塞の原因となる。ま
た、Al2O3 濃度が70重量%を超えると、大形クラスター
介在物を形成しやすく、また溶鋼との濡れ性が低下し、
ノズル閉塞が顕著となる。また、介在物中のCaO +REM
酸化物の濃度が50重量%を超えると、介在物が液相状態
で硫黄を含有しやすくなる。その結果、液相介在物が凝
固する際に、介在物の周囲にCaS やREM 硫化物が生成す
る。このため、介在物の粗大化を招くとともに、鋼板で
の発錆が顕著となる。
When the concentration of Ti 2 O 3 in the inclusion is more than 90% by weight or the concentration of CaO + REM oxide is less than 5% by weight, the melting point of the inclusion is high and the inclusion on the inner surface of the nozzle during casting is high. An object is likely to adhere, causing nozzle blockage. If the Al 2 O 3 concentration exceeds 70% by weight, large cluster inclusions are easily formed, and the wettability with molten steel decreases.
Nozzle blockage becomes significant. In addition, CaO + REM in inclusions
If the oxide concentration exceeds 50% by weight, the inclusions tend to contain sulfur in a liquid phase. As a result, when the liquid phase inclusion solidifies, CaS and REM sulfide are generated around the inclusion. For this reason, the inclusions are coarsened, and rust on the steel sheet becomes remarkable.

【0011】すなわち、酸化物系介在物の均一微細分散
のためには、脱酸生成介在物と溶鋼の濡れ性を良好とす
る必要があり、そのためには、 介在物中のAl2O3 濃度を70重量%以下に低減するこ
と、 酸化物系介在物中のCaO およびREM 酸化物濃度は50重
量%以下にすること、が必要であり、さらにノズル閉塞
を防止するためには、脱酸生成物の融点を低下させる必
要があり、そのためには、 Ca処理あるいはREM 処理によって介在物中のCaO およ
びREM 酸化物濃度を少なくとも5重量%以上とするこ
と、 Al2O3 濃度を70重量%以下、Ti酸化物濃度を90重量%
以下とすること、また、発錆を防止するためには、 介在物中のCaO +REM 酸化物の濃度を50wt%以下とす
ること、が重要となるという知見を得た。
That is, in order to uniformly and finely disperse the oxide-based inclusions, it is necessary to improve the wettability between the deoxidized inclusions and the molten steel. To this end, the Al 2 O 3 concentration in the inclusions is required. To 70% by weight or less, and the CaO and REM oxide concentration in the oxide-based inclusions to 50% by weight or less. It is necessary to lower the melting point of the material. To achieve this, the CaO or REM oxide concentration must be at least 5% by weight or more by Ca treatment or REM treatment, and the Al 2 O 3 concentration must be 70% by weight or less. , Ti oxide concentration 90% by weight
It has been found that it is important to reduce the content of CaO + REM oxide in inclusions to 50 wt% or less in order to prevent rusting.

【0012】これらの知見から、本発明者らは、最適な
酸化物系介在物の最適組成範囲として、図1に示すよう
に、Ti酸化物:90重量%以下、CaO およびREM 酸化物の
合計:5〜50重量%、Al2O3 :70重量%以下であるとし
た。酸化物系介在物の組成が図1の範囲となるように制
御することにより、ノズル詰まりや有害な介在物クラス
ターの生成を引き起こすことなく、介在物の結晶粒粗大
化抑制能(ピン止め効果)を有効に利用することがで
き、溶接熱影響部の組織を改善し溶接熱影響部靱性を有
効に向上させることができる。
Based on these findings, the present inventors have found that the optimum composition range of the oxide-based inclusions is, as shown in FIG. 1, a Ti oxide: 90% by weight or less, a total of CaO and REM oxides. : 5-50 wt%, Al 2 O 3: was is 70 wt% or less. By controlling the composition of the oxide-based inclusions to fall within the range shown in FIG. 1, the ability to suppress grain coarsening of the inclusions (pinning effect) without causing nozzle clogging and generation of harmful inclusion clusters Can be effectively used, the structure of the weld heat affected zone can be improved, and the weld heat affected zone toughness can be effectively improved.

【0013】さらに、本発明者らは、母材および溶接熱
影響部靱性の更なる向上について鋭意検討した。その結
果、上記した組成を有し、200 nm以上の円相当径を有す
るものの個数で酸化物系介在物を最適分散させることに
より、母材靱性をさらに向上させることができるという
知見を得た。本発明は、上記した知見に基づいて構成さ
れたものである。
Further, the present inventors have studied diligently about further improvement in the toughness of the base metal and the weld heat affected zone. As a result, it has been found that the base material toughness can be further improved by optimally dispersing oxide-based inclusions in the number having the above-mentioned composition and having a circle equivalent diameter of 200 nm or more. The present invention has been made based on the above findings.

【0014】すなわち、本発明は、重量%で、C:0.01
〜0.18%、Si:0.02〜0.60%、Mn:0.60〜2.00%、P:
0.030 %以下、S:0.015 %以下、Ti:0.005 〜0.08
%、N:0.0020〜0.0100%、REM :0.0010〜0.0200%、
Ca:0.0010〜0.0200%、Al:(Ti%)/5以下を含有
し、残部Feおよび不可避的不純物からなり、かつ次
(1)式 Ceq(%) =C+Si/24 +Mn/6+Ni/40 +Cr/5+Mo/4+V/14 ………(1) (ここに、C、Si、Mn、Ni、Cr、Mo、V:各元素の含有
量(重量%))で定義されるCeq が0.36〜0.45%である
鋼組成を有し、かつ、重量%で、Ti酸化物:90%以下、
Ca酸化物およびREM 酸化物の合計:5〜50%、Al2O3
70%以下からなる介在物組成を有する酸化物系介在物
を、200nm 以上の円相当直径を有するものの個数で1×
103 個/mm2 以上1×105 個/mm2 未満分散させたこと
を特徴とする母材および溶接熱影響部靱性に優れた非調
質高張力鋼材であり、また、本発明では、前記鋼組成に
加えてさらに、重量%で、V:0.03〜0.15%を含有する
ことが好ましく、また、本発明では、前記各鋼組成に加
えてさらに、重量%で、Cu:0.02〜1.5 %、Ni:0.02〜
0.06%、Cr:0.05〜0.50%、Mo:0.02〜0.50%、Nb:0.
003 〜0.020 %のうちの1種または2種以上を含有する
ことが好ましく、また、本発明では、前記各鋼組成に加
えてさらに、重量%で、B:0.0002〜0.0020%を含有す
ることが好ましい。
That is, in the present invention, C: 0.01% by weight.
~ 0.18%, Si: 0.02 ~ 0.60%, Mn: 0.60 ~ 2.00%, P:
0.030% or less, S: 0.015% or less, Ti: 0.005 to 0.08
%, N: 0.0020-0.0100%, REM: 0.0010-0.0200%,
Ca: 0.0010 to 0.0200%, Al: (Ti%) / 5 or less, the balance being Fe and unavoidable impurities, and the following equation (1): Ceq (%) = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1) (where Ceq defined by C, Si, Mn, Ni, Cr, Mo, and V: the content (% by weight) of each element) is 0.36 to 0.45%. It has a steel composition and, in weight percent, Ti oxides: 90% or less,
Total of Ca oxide and REM oxide: 5 to 50%, Al 2 O 3 :
Oxide-based inclusions having an inclusion composition of 70% or less are counted as 1 ×
A base material characterized by being dispersed in a range of 10 3 pieces / mm 2 or more and less than 1 × 10 5 pieces / mm 2, and a non-heat-treated high-strength steel material excellent in weld heat-affected zone toughness. In addition to the steel composition, it is preferable to further contain V: 0.03 to 0.15% by weight, and in the present invention, Cu: 0.02 to 1.5% by weight in addition to the above steel compositions. , Ni: 0.02 ~
0.06%, Cr: 0.05 to 0.50%, Mo: 0.02 to 0.50%, Nb: 0.
It is preferable to contain one or more of 003 to 0.020%. In the present invention, in addition to the above steel compositions, it is preferable that B: 0.0002 to 0.0020% by weight% is further contained. preferable.

【0015】[0015]

【発明の実施の形態】以下に、本発明の限定理由を説明
する。まず、本発明鋼材の組成限定理由について説明す
る。以下、組成についての%は、重量%を意味する。 C:0.01〜0.18% Cは、鋼の強度を増加させる元素であり、所望の強度を
確保するために0.01%以上の含有を必要とするが、0.18
%を超えて含有すると、母材靱性および溶接性が低下す
る。このため、Cは0.01〜0.18%に限定した。なお、実
用上、好ましくは0.08〜0.16%である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting the present invention will be described below. First, the reasons for limiting the composition of the steel material of the present invention will be described. Hereinafter,% for the composition means% by weight. C: 0.01 to 0.18% C is an element that increases the strength of steel, and requires 0.01% or more of C in order to secure desired strength.
%, The base material toughness and the weldability decrease. For this reason, C was limited to 0.01 to 0.18%. In practice, it is preferably 0.08 to 0.16%.

【0016】Si:0.02〜0.60% Siは、固溶強化により鋼の強度を増加させるのに有効な
元素であるが、0.02%未満の含有では、その効果が少な
く、一方、0.60%を超えて含有すると、HAZ靱性が著
しく劣化する。このため、Siは0.02〜0.60%に限定し
た。 Mn:0.60〜2.00% Mnは、鋼の強度を増加し高強度化に有効な元素であり、
所望の強度を確保するためには0.60%以上の含有を必要
とする。しかし、2.00%を超える含有は、圧延後空冷し
た組織がフェライト+ベイナイト組織となり、母材靱性
が低下する。このため、Mnは0.60〜2.00%の範囲に限定
した。なお、好ましくは1.00〜1.70%である。
Si: 0.02 to 0.60% Si is an effective element for increasing the strength of steel by solid solution strengthening. However, if the content is less than 0.02%, the effect is small, while on the other hand, it exceeds 0.60%. If it is contained, the HAZ toughness is significantly deteriorated. For this reason, Si was limited to 0.02 to 0.60%. Mn: 0.60 to 2.00% Mn is an element that increases the strength of steel and is effective in increasing the strength.
To secure the desired strength, the content of 0.60% or more is required. However, when the content exceeds 2.00%, the structure air-cooled after rolling becomes a ferrite + bainite structure, and the base material toughness decreases. For this reason, Mn was limited to the range of 0.60 to 2.00%. In addition, it is preferably 1.00 to 1.70%.

【0017】P:0.030 %以下 Pは、粒界に偏析し鋼の靱性を劣化させるので、できる
だけ低減するのが望ましいが、0.030 %までは許容でき
るため、0.030 %以下に限定した。 S:0.015 %以下 Sは、主にMnS を形成して鋼中に存在し、圧延冷却後の
組織を微細にする作用を有するが、0.015 %を超えての
含有は、板厚方向の靱性・延性を低下させる。このた
め、Sは0.015 %以下に限定した。MnS として細粒化効
果を得るためにはSは0.004 〜0.010 %の範囲とするの
が望ましい。
P: 0.030% or less Since P segregates at the grain boundaries and deteriorates the toughness of the steel, it is desirable to reduce P as much as possible. However, since P can be tolerated up to 0.030%, it is limited to 0.030% or less. S: 0.015% or less S is mainly formed in steel by forming MnS and has an effect of making the structure after rolling and cooling fine. However, if it exceeds 0.015%, the toughness in the thickness direction is reduced. Reduces ductility. Therefore, S is limited to 0.015% or less. In order to obtain a grain refining effect as MnS, S is desirably in the range of 0.004 to 0.010%.

【0018】Ti:0.005 〜0.08% Tiは、本発明で重要な元素の1つである。Ti脱酸により
生成する酸化物を有効に利用することが本発明の一つの
重要な要素である。鋼中に均一微細に分散したTi酸化物
を主体とする酸化物系介在物は、結晶粒ピン止め効果に
よりオーステナイト粒成長を抑制する効果を有する。ま
た、さらに、200nm 以上の酸化物系介在物を均一に分散
させ、フェライト生成核として、母材組織、溶接熱影響
部組織を微細化する。また、脱酸後残留したTiは、その
後の冷却過程にNと結合しTiN を生成する。TiN は溶接
熱影響部のオーステナイト粒の粗大化抑制に寄与し、溶
接熱影響部靱性を向上させる。また、フェライト生成核
として作用し、組織を微細化し、母材靱性を向上させ
る。
Ti: 0.005 to 0.08% Ti is one of the important elements in the present invention. Effective utilization of the oxide generated by Ti deoxidation is one important element of the present invention. Oxide-based inclusions mainly composed of Ti oxide uniformly and finely dispersed in steel have an effect of suppressing austenite grain growth by a crystal grain pinning effect. Further, oxide-based inclusions of 200 nm or more are uniformly dispersed, and the base material structure and the weld heat affected zone structure are refined as ferrite generation nuclei. Further, Ti remaining after deoxidation combines with N in the subsequent cooling process to form TiN. TiN contributes to suppressing the coarsening of austenite grains in the heat affected zone and improves the toughness of the heat affected zone. Further, it acts as a ferrite generation nucleus, refines the structure, and improves the base material toughness.

【0019】これらの効果を発揮させるには、Tiは0.00
5 %以上の含有を必要とする。また、0.08%を超えての
含有は鋼の清浄性を劣化させるうえ、固溶Tiの増加ある
いはTi炭化物が析出し、靱性を劣化させる。このため、
Tiは0.005 〜0.08%に限定した。なお、好ましくは0.01
0 〜0.025 %である。 N:0.0020〜0.0100% Nは、Tiと結合してTiN を形成し、圧延素材を加熱する
際にγ粒の粒成長を抑制し、さらに、圧延中にフェライ
トの析出核となり、結晶粒を微細化させる作用を有し、
靱性向上に大きく寄与する。これらの効果を有効に発揮
させるためには、0.0020%以上の含有を必要とするが、
0.0100%を超えての含有は、母材靱性や溶接性を大きく
損なうので、Nは0.0020〜0.0100%の範囲に限定した。
In order to exert these effects, Ti is added in an amount of 0.00
Requires a content of 5% or more. Further, if the content exceeds 0.08%, the cleanliness of the steel is deteriorated, and in addition, the increase in solid solution Ti or the precipitation of Ti carbides deteriorates the toughness. For this reason,
Ti is limited to 0.005 to 0.08%. Incidentally, preferably 0.01
0 to 0.025%. N: 0.0020% to 0.0100% N combines with Ti to form TiN, suppresses the growth of γ grains when the rolled material is heated, and further, becomes a precipitation nucleus of ferrite during rolling, and refines the crystal grains. Has the effect of
It greatly contributes to improving toughness. In order to exert these effects effectively, 0.0020% or more is required,
If the content exceeds 0.0100%, the base material toughness and weldability are greatly impaired, so N was limited to the range of 0.0020 to 0.0100%.

【0020】Al:(Ti%)/5以下 Alは、脱酸剤として作用するが、本発明では予備脱酸剤
としてTi脱酸前のO濃度を調整するために用いることが
できる。本発明では、Al2O3 クラスターを生成させない
ために、Al含有量をTi含有量(重量%)の1/5 以下に限
定する。Al含有量がTi含有量の1/5 を超えると、Ti−Al
−O 平衡から、Al2O3 クラスターが生成し、酸化物系介
在物の均一微細分散ができなくなる。なお、好ましく
は、Alは(Ti%)/6 以下である。
Al: (Ti%) / 5 or less Al acts as a deoxidizing agent. In the present invention, Al can be used as a preliminary deoxidizing agent for adjusting the O concentration before Ti deoxidizing. In the present invention, the Al content is limited to 1/5 or less of the Ti content (% by weight) in order not to generate Al 2 O 3 clusters. If the Al content exceeds 1/5 of the Ti content, Ti-Al
From -O equilibrium, Al 2 O 3 clusters are generated, can not be uniformly and finely dispersed in the oxide inclusions. Preferably, Al is (Ti%) / 6 or less.

【0021】Ca:0.0010〜0.0200%、REM :0.0010〜0.
0200% Ca、REM 添加により、介在物中のREM 酸化物およびCaO
酸化物の濃度が増加するが、これにより、介在物の融点
が低下して鋳込み時のノズル内面への付着が抑制でき、
ノズル閉塞を回避できる。また、Ca、REM は、濡れ性改
善に寄与し、脱酸生成物の微細均一分散を実現するため
に必須となる元素である。REM 、Caは、高温においても
安定な酸化物を形成して微細分散し、γ粒成長を抑制す
る。さらに、圧延後のフェライト粒径を細かくする効果
もあり、また、HAZ靱性の向上にも有効である。これ
らの効果を得るためには、それぞれ0.0010%以上の含有
が必要となるが、一方、それぞれ0.0200%を超えての含
有は、鋼の清浄性を低下させ、母材靱性を損ねる。この
ため、Ca、REM はそれぞれ0.0010〜0.0200%の範囲に限
定した。なお、REM およびCaは、それぞれを単独で添加
しても介在物のノズル閉塞回避の効果は少ないため、本
発明では、REM およびCaは同時に含有する必要がある。
Ca: 0.0010-0.0200%, REM: 0.0010-0.
0200% Ca, REM oxide, REM oxide and CaO in inclusions
Although the concentration of the oxide increases, the melting point of the inclusions decreases, and the adhesion to the nozzle inner surface during casting can be suppressed,
Nozzle blockage can be avoided. In addition, Ca and REM are elements that contribute to the improvement of wettability and are indispensable for achieving fine and uniform dispersion of deoxidized products. REM and Ca form stable oxides even at high temperatures and finely disperse, thereby suppressing γ grain growth. Further, it has the effect of reducing the ferrite grain size after rolling, and is also effective in improving the HAZ toughness. In order to obtain these effects, the content of each is required to be 0.0010% or more. On the other hand, if the content exceeds 0.0200%, the cleanliness of steel is reduced and the base material toughness is impaired. For this reason, Ca and REM were each limited to the range of 0.0010 to 0.0200%. It should be noted that REM and Ca need to be simultaneously contained in the present invention, since adding REM and Ca alone has little effect on avoiding nozzle clogging of inclusions.

【0022】V:0.03〜0.15% Vは、圧延冷却中にVNとしてγ粒中に析出し、それを核
としてフェライトが析出するため、結晶粒微細化に有効
に作用し、靱性向上に大きく寄与する。また、フェライ
ト変態後にもフェライト中にVNが析出し、冷却時に強水
冷を行うことなく母材強度を高めることができる。板厚
方向での特性の均一性の確保や、残留応力・歪み軽減に
も有効であり、必要に応じ含有できる。
V: 0.03 to 0.15% V precipitates as VN in γ grains during rolling and cooling, and ferrite precipitates as nuclei, thereby effectively acting to refine crystal grains and greatly contributing to improvement in toughness. I do. In addition, VN is precipitated in the ferrite even after the ferrite transformation, and the base material strength can be increased without performing strong water cooling during cooling. It is effective in ensuring uniformity of properties in the thickness direction and reducing residual stress and distortion, and can be contained as necessary.

【0023】これらの効果を有効に発揮させるために
は、0.03%以上のVを含有させることが好ましい。しか
し、0.15%を超えて含有すると母材靱性や溶接性を大き
く損なうため、Vは0.04〜0.15%の範囲とするのが好ま
しい。 Cu:0.02〜1.5 %、Ni:0.02〜0.60%、Cr:0.05〜0.50
%、Mo:0.02〜0.50%、Nb:0.003 〜0.020 %のうちの
1種または2種以上 Cu、Ni、Nb、Cr、Moは、いずれも焼入れ性向上に有効な
元素であり、必要に応じ1種または2種以上を選択して
含有できる。Cu、Ni、Nb、Cr、Moの含有により、Ar3
が下がりフェライト粒がより微細となり靱性向上に寄与
する。
In order to exhibit these effects effectively, it is preferable to contain V in an amount of 0.03% or more. However, if the content exceeds 0.15%, the base material toughness and weldability are greatly impaired, so V is preferably set in the range of 0.04 to 0.15%. Cu: 0.02 to 1.5%, Ni: 0.02 to 0.60%, Cr: 0.05 to 0.50
%, Mo: 0.02 to 0.50%, Nb: 0.003 to 0.020% One or more of them Cu, Ni, Nb, Cr, and Mo are all effective elements for improving hardenability. One or two or more can be selected and contained. The inclusion of Cu, Ni, Nb, Cr, and Mo lowers the Ar 3 point and makes the ferrite grains finer, contributing to an improvement in toughness.

【0024】Cu、Ni、Nb、Cr、Moの含有量が多くなる
と、Ar3 点が低下しすぎて、べイナイト変態が主体とな
り、フェライトの細粒化が不十分となり、強度は上昇す
るが、フェライトの細粒化が不十分となる。このような
ことから、Cu、Ni、Nb、Cr、Moはそれぞれ0.02%、0.02
%、0.05%、0.02%、0.003 %以上を含有するのが好ま
しい。また、Cuを添加する場合は、Cuによる熱間加工性
の低下を補償するために、Cuとほぼ同量Niを添加するの
が好ましい。しかし、Niの多量添加は製造コストを増加
させるため、Cu、Niの上限は0.6 %とするのが好まし
い。また、Nb、Cr、Moはそれぞれ0.020 %、0.50%、0.
50%を超えると溶接性や靱性を損なうため、これらを上
限とするのが好ましい。
When the contents of Cu, Ni, Nb, Cr and Mo are too large, the Ar 3 point is too low, the bainite transformation is mainly carried out, the grain size of ferrite becomes insufficient, and the strength increases. In addition, grain refinement of ferrite becomes insufficient. From these facts, Cu, Ni, Nb, Cr, and Mo are 0.02% and 0.02%, respectively.
%, 0.05%, 0.02%, 0.003% or more. In addition, when adding Cu, it is preferable to add approximately the same amount of Ni as Cu in order to compensate for the reduction in hot workability due to Cu. However, since the addition of a large amount of Ni increases the production cost, the upper limits of Cu and Ni are preferably set to 0.6%. Nb, Cr, and Mo are 0.020%, 0.50%, and 0.2%, respectively.
If it exceeds 50%, the weldability and toughness are impaired, so it is preferable to make these the upper limits.

【0025】B:0.0002〜0.0020% Bは、粒界に偏析して粗大な粒界フェライトの生成を抑
制し、圧延後のフェライト粒を細かくする作用を有し、
必要に応じ含有できる。この効果は0.0002%以上の含有
で認められる。一方、0.0020%を超えて含有すると靱性
が低下する。このため、Bは0.0002〜0.0020%の範囲に
限定するのが好ましい。
B: 0.0002% to 0.0020% B has the effect of segregating at the grain boundaries to suppress the formation of coarse grain boundary ferrite and to make the ferrite grains after rolling finer.
It can be contained as needed. This effect is recognized at a content of 0.0002% or more. On the other hand, if the content exceeds 0.0020%, the toughness decreases. For this reason, B is preferably limited to the range of 0.0002 to 0.0020%.

【0026】Ceq :0.36〜0.45wt% Ceq は次(1)式で定義する。 Ceq(%) =C+Si/24 +Mn/6+Ni/40 +Cr/5+Mo/4+V/14 ………(1) ここに、C、Si、Mn、Ni、Cr、Mo、V:各元素の含有量
(重量%) Ceq が0.45%を超えると、溶接割れ感受性が高くなり、
HAZ靱性が低下する。一方、Ceq が0.36%未満では母
材およびHAZ軟化部での強度確保が困難となる。この
ため、Ceq は0.36〜0.45%の範囲内に限定する。
Ceq: 0.36 to 0.45 wt% Ceq is defined by the following equation (1). Ceq (%) = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1) where, C, Si, Mn, Ni, Cr, Mo, V: content of each element (weight) %) When Ceq exceeds 0.45%, weld crack susceptibility increases,
HAZ toughness decreases. On the other hand, if Ceq is less than 0.36%, it becomes difficult to secure strength in the base material and the HAZ softened portion. For this reason, Ceq is limited to the range of 0.36 to 0.45%.

【0027】上記した成分以外の残部はFeおよび不可避
的不純物である。不可避的不純物としては、O:0.0100
%以下、N:0.0100%以下が許容できる。ついで、本発
明鋼材の好適な製造方法について説明する。上記した組
成の溶鋼を、Ti脱酸して溶製する。なお、Alによる予備
脱酸を行ってもよいのは言うまでもない。溶製方法は、
とくに限定されないが、転炉、電気炉、真空溶解炉等の
通常公知の溶製方法がいずれも好適に利用できる。な
お、脱酸方法をTi脱酸とすることにより、脱酸生成物が
Ti酸化物主体の介在物となる。
The balance other than the above components is Fe and inevitable impurities. O: 0.0100 as inevitable impurities
% Or less, N: 0.0100% or less is acceptable. Next, a preferred method for producing the steel material of the present invention will be described. The molten steel having the above composition is melted by deoxidizing Ti. It goes without saying that preliminary deoxidation with Al may be performed. The smelting method is
Although not particularly limited, any commonly known melting method such as a converter, an electric furnace, and a vacuum melting furnace can be suitably used. By using Ti deoxidation as the deoxidation method, deoxidation products
It becomes an inclusion mainly composed of Ti oxide.

【0028】溶鋼は、ついで連続鋳造法、造塊法等の通
常公知の鋳造方法がいずれも好適に利用でき、スラブ等
の圧延用鋼素材に鋳造される。つぎに、鋼素材中に微細
分散する酸化物系介在物の組成限定理由について説明す
る。微細分散される酸化物系介在物は、Ti酸化物を主体
とし、重量%で、Ti酸化物:90%以下、Al203 :70%以
下、Ca酸化物とREM 酸化物の合計:5 〜50%からなる介
在物組成を有する。
The molten steel is then suitably cast by any of the conventionally known casting methods such as a continuous casting method and an ingot casting method, and is cast into a rolling steel material such as a slab. Next, the reasons for limiting the composition of the oxide-based inclusions that are finely dispersed in the steel material will be described. Oxide inclusions that are finely dispersed, as a main component Ti oxides, by weight%, Ti oxide: 90% or less, Al 2 0 3: 70% or less, the total of Ca oxide and REM oxides: 5 It has an inclusion composition of ~ 50%.

【0029】Ti酸化物:90%以下 Ti酸化物は、溶接熱影響部でのオーステナイト粒の粗大
化を抑制する結晶粒ピン止め効果を有する。このため、
本発明では、酸化物系介在物をTi酸化物を主体とする組
成とする。しかし、酸化物系介在物中のTi酸化物の濃度
が90%を超えると、酸化物系介在物の融点が高温とな
り、浸漬ノズル壁への介在物の付着が起きやすくなり、
ノズル詰まりが発生しやすくなる。このため、酸化物系
介在物中のTi酸化物の濃度を90%以下に限定する。な
お、酸化物系介在物中のTi酸化物の濃度が50%未満では
結晶粒ピン止め効果が少なくなるため、酸化物系介在物
中のTi酸化物の濃度を50%以上とするのが好ましい。な
お、本発明でいう、Ti酸化物はTiO2、Ti2O3 等が好適で
あるが、なかでもTi2O3 とするのが好ましい。
Ti oxide: 90% or less Ti oxide has a crystal grain pinning effect of suppressing coarsening of austenite grains in the heat affected zone. For this reason,
In the present invention, the oxide-based inclusion has a composition mainly composed of Ti oxide. However, when the concentration of the Ti oxide in the oxide-based inclusions exceeds 90%, the melting point of the oxide-based inclusions becomes high, and the inclusions of the inclusions easily adhere to the immersion nozzle wall,
Nozzle clogging is likely to occur. For this reason, the concentration of Ti oxide in the oxide-based inclusions is limited to 90% or less. When the concentration of Ti oxide in the oxide-based inclusions is less than 50%, the effect of pinning the crystal grains is reduced, so that the concentration of Ti oxide in the oxide-based inclusions is preferably set to 50% or more. . The Ti oxide referred to in the present invention is preferably TiO 2 , Ti 2 O 3 or the like, and among them, Ti 2 O 3 is particularly preferred.

【0030】Al203 :70%以下 Al203 は、大形クラスター介在物を形成しやすく、酸化
物系介在物の均一、微細分散を阻害する。このため、本
発明では酸化物系介在物中のAl203 濃度をできるだけ低
減するのが好ましい。酸化物系介在物中のAl203 濃度が
70%を超えると、介在物の溶鋼との濡れ性を低下させ、
さらにはノズル詰まりが顕著となる。このようなことか
ら、酸化物系介在物中のAl203 濃度は70%以下とする。
Al 2 O 3 : 70% or less Al 2 O 3 easily forms large cluster inclusions and hinders uniform and fine dispersion of oxide-based inclusions. Therefore, in the present invention, it is preferable to reduce the Al 2 O 3 concentration in the oxide-based inclusions as much as possible. Al 2 O 3 concentration in oxide-based inclusions
When it exceeds 70%, the wettability of inclusions with molten steel is reduced,
Furthermore, nozzle clogging becomes remarkable. For these reasons, the Al 2 O 3 concentration in the oxide-based inclusions is set to 70% or less.

【0031】Ca酸化物とREM 酸化物の合計:5 〜50% 本発明では、酸化物系介在物の融点を低下させるため、
酸化物系介在物中にCa酸化物(CaO )+REM 酸化物の合
計で5%以上含有させる。Ca酸化物(CaO )+REM 酸化
物濃度が5%未満では、介在物の融点が高く、鋳込み時
のノズル内面に付着しやすくなりノズル閉塞の原因とな
る。また、Ca、REM は、Sと結合して硫化物を形成しや
すいため、酸化物系介在物中のCa酸化物(CaO )+REM
酸化物の濃度が50%を超えて高くなると、介在物が液相
状態でSを含有しやすくなり、介在物周囲にCaS 、REM
硫化物が形成される。このため、介在物の粗大化を招き
酸化物系介在物の結晶粒ピン止め能が低下するととも
に、鋼材の発錆が顕著となる。また、REM 酸化物の比重
は、他の酸化物に比べて大きいために、このREM 酸化物
が50wt%を超えると介在物の溶鋼中での浮上性が悪くな
り、鋼中の全酸素濃度が高くなって鋼板の清浄性を悪化
させる。このようなことから、酸化物系介在物中のCa酸
化物+REM 酸化物を、合計で5〜50%の範囲に限定し
た。
The total of Ca oxide and REM oxide: 5 to 50% In the present invention, in order to lower the melting point of oxide-based inclusions,
A total of 5% or more of Ca oxide (CaO) + REM oxide is contained in the oxide-based inclusions. If the Ca oxide (CaO 2) + REM oxide concentration is less than 5%, the melting point of the inclusions is high, and the inclusions tend to adhere to the inner surface of the nozzle during casting, causing nozzle blockage. In addition, since Ca and REM are easily bonded to S to form sulfides, Ca oxide (CaO) + REM in oxide-based inclusions
If the oxide concentration exceeds 50%, the inclusions tend to contain S in the liquid state, and CaS, REM
Sulfides are formed. For this reason, the inclusions are coarsened, the crystal pinning ability of the oxide-based inclusions is reduced, and the rusting of the steel material becomes remarkable. Also, since the specific gravity of REM oxide is larger than other oxides, if this REM oxide exceeds 50 wt%, the levitation of inclusions in molten steel will deteriorate, and the total oxygen concentration in the steel will decrease. It becomes high and deteriorates the cleanliness of the steel sheet. For these reasons, the total content of Ca oxide and REM oxide in the oxide-based inclusions is limited to the range of 5 to 50%.

【0032】また、本発明では、介在物の量は、光学顕
微鏡による清浄度試験、あるいは抽出残渣の定量によっ
て、また、介在物の組成は、走査型電子顕微鏡(SE
M)を用い、EDXによる定量分析という手順で、測定
するものとする。酸化物系介在物の組成を、上記した範
囲に調整するには、TiあるいはTi合金を用いて脱酸した
後に、Fe、Al、Si、Tiのうちの少なくともいずれか1種
を含有し、かつ、Caを10wt%未満、Ce、La等のREM を5
wt%未満の範囲で含有する介在物組成調整用合金を添加
すればよい。
In the present invention, the amount of inclusions is determined by a cleanness test using an optical microscope or the amount of extraction residue is determined. The composition of the inclusions is determined by a scanning electron microscope (SE).
M), and measurement is performed by a procedure called quantitative analysis using EDX. To adjust the composition of the oxide-based inclusions to the above range, after deoxidation using Ti or Ti alloy, Fe, Al, Si, contains at least one of Ti, and , Ca less than 10wt%, REM of Ce, La etc.
An alloy for adjusting the composition of inclusions contained in a range of less than wt% may be added.

【0033】本発明では、上記した介在物組成を有し、
さらに、特定範囲の大きさの酸化物系介在物を適正個数
分散させる。本発明では、円相当径200nm 以上のTi酸化
物を、1×103 個/mm2 以上1×10 5 個/mm2 未満分散
させる。酸化物系介在物が、圧延工程および溶接工程に
おいて、フェライトの生成核として作用し、母材靱性、
溶接熱影響部靱性を向上させるためには、円相当径で20
0nm 以上の大きさが必要となり、しかも円相当径200nm
以上の大きさの酸化物系介在物が適切量分散しているこ
とが肝要となる。
According to the present invention, there is provided the above-mentioned inclusion composition,
In addition, an appropriate number of oxide-based inclusions
Disperse. In the present invention, Ti oxide having an equivalent circle diameter of 200 nm or more is used.
Object 1 × 10ThreePieces / mmTwoMore than 1 × 10 FivePieces / mmTwoLess dispersion
Let it. Oxide-based inclusions in rolling and welding processes
In addition, it acts as a ferrite formation nucleus,
In order to improve the toughness of the heat affected zone, the equivalent
A size of 0 nm or more is required, and the equivalent circle diameter is 200 nm
Make sure that oxide inclusions of the above size are dispersed in appropriate amounts.
Is essential.

【0034】円相当径200nm 以上の酸化物系介在物の個
数が、1×103 個/mm2 未満の場合には、生成するフェ
ライトの数が少なく、母材および溶接熱影響部における
フェライト粒微細化の効果が不十分であり、また、円相
当径200nm 以上の酸化物系介在物の個数が、1×105
/mm2 以上の場合には、母材および溶接熱影響部におけ
る靱性が劣化する。このため、本発明では、円相当径20
0nm 以上の酸化物系介在物を1×103 個/mm2 以上1×
105 個/mm2 未満分散させる。
When the number of oxide-based inclusions having an equivalent circle diameter of 200 nm or more is less than 1 × 10 3 / mm 2 , the number of generated ferrite is small, and the ferrite grains in the base material and the weld heat-affected zone are small. If the effect of miniaturization is insufficient and the number of oxide-based inclusions having an equivalent circle diameter of 200 nm or more is 1 × 10 5 / mm 2 or more, the toughness in the base metal and the weld heat affected zone is reduced. Deteriorates. For this reason, in the present invention, the circle equivalent diameter 20
Oxide inclusions of 0 nm or more 1 × 10 3 / mm 2 or more 1 ×
Disperse less than 10 5 pieces / mm 2 .

【0035】なお、酸化物系介在物の同定およびその円
相当径は、透過型電子顕微鏡による分析および観察によ
り測定するものとする。上記した酸化物系介在物の分散
形態は、TiおよびO量の制御、およびCa、REM量を調整
することにより得られる。上記したように調整された鋼
素材は、ついで、1000〜1250℃の温度範囲に再加熱さ
れ、あるいは再加熱することなく、熱間圧延を施され
て、鋼板等とされるのが好ましい。
The identification of oxide-based inclusions and the equivalent circle diameter thereof are measured by analysis and observation with a transmission electron microscope. The dispersion form of the oxide-based inclusions described above can be obtained by controlling the amounts of Ti and O, and adjusting the amounts of Ca and REM. The steel material adjusted as described above is then preferably reheated to a temperature range of 1000 to 1250 ° C., or is subjected to hot rolling without reheating to obtain a steel plate or the like.

【0036】加熱温度:1000〜1250℃ 加熱温度が、1000℃未満では、完全にオーステナイト化
しない場合があるため、再加熱による均質化の効果が十
分に得られない。一方、加熱温度が、1250℃を超える
と、オーステナイト粒が著しく粗大化し、圧延後の組織
が粗大となり、靭性が低下する。このため、加熱温度は
1000〜1250℃の範囲に限定するのが好ましい。なお、好
ましくは1050〜1200℃である。なお、再加熱することな
く圧延する場合は、鋳込後、鋼素材の温度が低下しすぎ
ないうちに圧延を開始する必要があり、少なくとも900
℃以上の温度を有することが好ましい。
Heating temperature: 1000-1250 ° C. If the heating temperature is lower than 1000 ° C., the austenite may not be completely formed, so that the effect of homogenization by reheating cannot be sufficiently obtained. On the other hand, when the heating temperature exceeds 1250 ° C., the austenite grains become extremely coarse, the structure after rolling becomes coarse, and the toughness decreases. Therefore, the heating temperature is
Preferably, it is limited to the range of 1000 to 1250 ° C. In addition, preferably it is 1050-1200 degreeC. When rolling without reheating, after casting, it is necessary to start rolling before the temperature of the steel material is excessively lowered, and at least 900
It is preferred to have a temperature of at least ℃.

【0037】熱間圧延は、つぎの条件で行うのが好まし
い。 1000℃以下の温度域での累積圧下量:30%以上 1000℃以下の温度域における圧下量の増加は、オーステ
ナイト粒への歪導入によるフェライト粒微細化により、
母材の機械的性質を向上させる。このような効果は、10
00℃以下の温度域での累積圧下量が30%以上で、累積圧
下量に応じ顕著となる。このため、1000℃以下の温度域
での累積圧下量を30%以上に限定するのが好ましい。
The hot rolling is preferably performed under the following conditions. Cumulative reduction in temperature range below 1000 ℃: 30% or more Increase in reduction in temperature range below 1000 ℃ is due to refinement of ferrite grains by introducing strain into austenite grains.
Improve the mechanical properties of the base material. These effects are 10
When the cumulative rolling reduction in the temperature range of 00 ° C. or less is 30% or more, it becomes remarkable according to the cumulative rolling reduction. For this reason, it is preferable to limit the cumulative rolling reduction in the temperature range of 1000 ° C. or less to 30% or more.

【0038】熱間圧延終了温度:700 ℃以上 熱間圧延終了温度が低温になるにしたがい、圧延加工に
よりオーステナイト粒に導入される歪(転位)が粒内に
蓄積される割合が増加し、それにより変態後の組織への
転位の受け継ぎ量が著しく増加するため、強度が増加す
る。しかし、熱間圧延終了温度を700 ℃未満としても強
度の増加傾向は飽和するうえ、変形抵抗の増加により圧
延能率が低下する。このため、本発明では、圧延終了温
度を700 ℃以上に限定するのが好ましい。
Hot rolling end temperature: 700 ° C. or more As the hot rolling end temperature becomes lower, the rate at which strains (dislocations) introduced into austenite grains by rolling are accumulated in the grains increases. As a result, the amount of dislocation transferred to the structure after transformation is significantly increased, and the strength is increased. However, even if the hot-rolling end temperature is less than 700 ° C., the tendency of the increase in strength is saturated, and the rolling efficiency decreases due to an increase in deformation resistance. Therefore, in the present invention, it is preferable to limit the rolling end temperature to 700 ° C. or higher.

【0039】本発明では、熱間圧延後、空冷するか、あ
るいはさらに加速冷却を施してもよい。熱間圧延後、加
速冷却することにより、生成する組織が微細化し、なお
一層の靱性改善が図れる。加速冷却条件は、冷却速度:
1〜30℃/s 、冷却停止温度:650 ℃以下とするのが好
ましい。
In the present invention, after hot rolling, air cooling or accelerated cooling may be performed. By performing accelerated cooling after hot rolling, the resulting structure is refined, and the toughness can be further improved. The accelerated cooling conditions are as follows:
It is preferable that the cooling temperature is 1 to 30 ° C / s and the cooling stop temperature is 650 ° C or less.

【0040】冷却速度が1℃/s未満では、組織のなお
一層の微細化は得られず加速冷却する効果が少ない。ま
た、30℃/sを超える冷却速度は工業的に実現するのが
困難である。このため、加速冷却の冷却速度は1〜30℃
/s の範囲とするのが好ましい。また、冷却停止温度が
650 ℃を超えると、加速冷却の効果が小さく靭性改善効
果が小さい。このため、冷却停止温度を650 ℃以下とす
るのが好ましい。
If the cooling rate is less than 1 ° C./s, the structure cannot be further refined, and the effect of accelerated cooling is small. Further, a cooling rate exceeding 30 ° C./s is difficult to realize industrially. Therefore, the cooling rate of accelerated cooling is 1 to 30 ° C.
/ S. Also, the cooling stop temperature
If it exceeds 650 ° C., the effect of accelerated cooling is small and the effect of improving toughness is small. For this reason, the cooling stop temperature is preferably set to 650 ° C. or lower.

【0041】[0041]

【実施例】表1に示す組成の鋼を電気炉で溶製した。な
お、酸化物系介在物の組成は、主として、Ti/Alのバラ
ンスと、Ca、REM の添加量を変化して調整した。また、
ノズルを用いて取鍋から溶鋼を鋳型内に注入し鋼素材と
した。鋳造中のノズル内の介在物の付着状況について、
鋳造後ノズル内を目視観察して介在物の付着の有無も調
査した。また、円相当径200nm 以上の酸化物系酸化物は
Ti量およびO量の制御により分散個数を調整した。
EXAMPLES Steel having the composition shown in Table 1 was melted in an electric furnace. The composition of the oxide inclusions was adjusted mainly by changing the balance of Ti / Al and the addition amounts of Ca and REM. Also,
Molten steel was injected into the mold from a ladle using a nozzle to obtain a steel material. Regarding the state of adhesion of inclusions in the nozzle during casting,
After the casting, the inside of the nozzle was visually observed to check for the presence of inclusions. In addition, oxide oxides with a circle equivalent diameter of 200 nm or more
The dispersion number was adjusted by controlling the Ti amount and the O amount.

【0042】なお、比較例として、酸化物系介在物の組
成を本発明範囲から外れて、Ti酸化物を多くするには、
Al脱酸せず、かつTi/Alを大きく、CaO 、REM 酸化物を
多くするには、CaあるいはREM の添加量を多くし、Al2O
3 を多くするには、Ti/Alを小さくすることによった。
これら鋼素材に、表2に示す条件の熱間圧延と、圧延後
冷却を施し、厚鋼板とした。
As a comparative example, to make the composition of the oxide-based inclusions out of the scope of the present invention and increase the amount of Ti oxide,
In order not to deoxidize Al, increase Ti / Al, and increase CaO and REM oxides, increase the amount of Ca or REM added and increase the amount of Al 2 O
3 was increased by reducing Ti / Al.
These steel materials were subjected to hot rolling under the conditions shown in Table 2 and cooling after rolling to obtain thick steel plates.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】 [Table 2]

【0045】これら厚鋼板について、組織調査、母材特
性、および溶接熱影響部特性について調査した。組織調
査として、母材のフェライト粒径、厚鋼板中の酸化物系
介在物の介在物組成、円相当径200nm 以上の酸化物系介
在物の個数について調査した。酸化物系介在物の同定、
個数およびその円相当径は、透過型電子顕微鏡による分
析および観察によった。また、酸化物系介在物の組成の
分析方法は、走査型電子顕微鏡(SEM)による観察と
SEMに付属するEDXによる定量分析法によった。
With respect to these thick steel plates, a structure investigation, a base metal characteristic, and a characteristic of a weld heat affected zone were examined. As a microstructure investigation, the ferrite grain size of the base metal, the inclusion composition of oxide-based inclusions in the thick steel plate, and the number of oxide-based inclusions having a circle equivalent diameter of 200 nm or more were investigated. Identification of oxide inclusions,
The number and the equivalent circle diameter were determined by analysis and observation with a transmission electron microscope. The composition of the oxide-based inclusions was analyzed by a scanning electron microscope (SEM) and a quantitative analysis by EDX attached to the SEM.

【0046】母材特性として、各厚鋼板の、板厚1/4 部
より引張試験片並びにシャルピー衝撃試験片を採取し、
母材の引張特性および靱性(シャルピー吸収エネルギ
ー)を評価した。また、溶接熱影響部(HAZ)特性と
して、再現熱サイクル試験を実施し、評価した。再現熱
サイクル試験は、各厚鋼板の1/4 部より圧延方向と直角
方向に12mm厚×75mm×80mmの試験片を採取し、これに高
周波加熱装置により、入熱100kJ/cmのサブマージアーク
溶接の粗粒域HAZの受ける熱サイクルをシュミレート
した熱サイクル(最高加熱温度1400℃)を付与し、シャ
ルピー衝撃試験片を採取し、−40℃におけるシャルピー
吸収エネルギー(vE-40 )を求めた。
As a base material characteristic, a tensile test specimen and a Charpy impact test specimen were sampled from a quarter of the thickness of each thick steel plate.
The tensile properties and toughness (Charpy absorbed energy) of the base material were evaluated. Further, as a heat affected zone (HAZ) characteristic, a reproducible heat cycle test was performed and evaluated. In the reproducible heat cycle test, a 12 mm thick x 75 mm x 80 mm test piece was sampled from a quarter of each thick steel plate in a direction perpendicular to the rolling direction, and submerged arc welding with a heat input of 100 kJ / cm was performed using a high-frequency heating device. A thermal cycle (maximum heating temperature of 1400 ° C.) simulating the thermal cycle received by the coarse grain area HAZ was applied, a Charpy impact test specimen was collected, and the Charpy absorbed energy at −40 ° C. (vE -40 ) was determined.

【0047】これらの結果を表3に示す。Table 3 shows the results.

【0048】[0048]

【表3】 [Table 3]

【0049】本発明例は、鋳込時のノズル詰まり発生も
なく製造でき、しかも、母材が、引張強さTSが500MPa
以上という高強度と、−40℃でのシャルピー吸収エネル
ギーvE-40 が300 J以上という高靱性を有し、さらにH
AZの−40℃でのシャルピー吸収エネルギーvE-40 が15
0 J以上という優れたHAZ靱性を有している。これに
対し、本発明の範囲が外れる比較例は、母材靱性、溶接
熱影響部靱性のいずれかが低下し、あるいはノズル詰ま
りが発生している。
The example of the present invention can be manufactured without occurrence of nozzle clogging at the time of casting, and the base material has a tensile strength TS of 500 MPa.
High strength and a high toughness with a Charpy absorbed energy vE -40 at −40 ° C. of 300 J or more.
AZ has Charpy absorbed energy at -40 ° C of vE- 40 of 15
It has excellent HAZ toughness of 0 J or more. On the other hand, in the comparative examples out of the range of the present invention, either the base metal toughness or the weld heat affected zone toughness is reduced, or nozzle clogging occurs.

【0050】[0050]

【発明の効果】本発明によれば、鋳込み時ノズル詰まり
の発生もなく、母材靱性および溶接部靱性を兼ね備えた
非調質高張力鋼材を安定して製造でき、産業上の格段の
効果を奏する。
According to the present invention, a non-heat treated high-strength steel material having both base metal toughness and weld toughness can be stably manufactured without occurrence of nozzle clogging at the time of casting. Play.

【図面の簡単な説明】[Brief description of the drawings]

【図1】酸化物系介在物組成の好適範囲を示す3元状態
図である。
FIG. 1 is a ternary phase diagram showing a preferred range of an oxide-based inclusion composition.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K032 AA01 AA02 AA04 AA05 AA08 AA11 AA14 AA15 AA16 AA19 AA21 AA22 AA23 AA27 AA29 AA31 AA35 AA36 AA40 BA01 BA02 CA02 CA03 CC02 CC03 CC04 CD02 CD03 CD05  ────────────────────────────────────────────────── ─── Continued on the front page F-term (reference)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.01〜0.18%、 Si:0.02〜0.60%、 Mn:0.60〜2.00%、 P:0.030 %以下、 S:0.015 %以下、 Ti:0.005 〜0.08%、 REM :0.0010〜0.0200%、 Ca:0.0010〜0.0200%、 Al:(Ti%)/5以下 を含有し、残部Feおよび不可避的不純物からなり、下記
(1)式で定義されるCeq が0.36〜0.45%である鋼組成
を有し、かつ、重量%で、Ti酸化物:90%以下、Ca酸化
物およびREM 酸化物の合計:5〜50%、Al2O3 :70%以
下からなる介在物組成を有する酸化物系介在物を200nm
以上の円相当直径を有するものの個数で1×103 個/mm
2 以上1×105 個/mm2 未満分散させたことを特徴とす
る母材および溶接熱影響部靱性に優れた非調質高張力鋼
材。 記 Ceq (%) =C+Si/24 +Mn/6+Ni/40 +Cr/5+Mo/4+V/14 ……(1) ここに、C、Si、Mn、Ni、Cr、Mo、V:各元素の含有量
(重量%)
1. In weight%, C: 0.01 to 0.18%, Si: 0.02 to 0.60%, Mn: 0.60 to 2.00%, P: 0.030% or less, S: 0.015% or less, Ti: 0.005 to 0.08%, REM : 0.0010-0.0200%, Ca: 0.0010-0.0200%, Al: (Ti%) / 5 or less, with the balance being Fe and unavoidable impurities, and the Ceq defined by the following formula (1) being 0.36-0.45% Inclusion composition having a steel composition of: 90% or less by weight, Ti oxide: 90% or less, total of Ca oxide and REM oxide: 5 to 50%, Al 2 O 3 : 70% or less by weight% Oxide-based inclusions with
1 × 10 3 pieces / mm with the above circle equivalent diameter
A base material and a non-heat-treated, high-strength steel material excellent in toughness of a heat-affected zone of a weld, characterized by being dispersed in 2 or more and less than 1 × 10 5 / mm 2 . Ceq (%) = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1) where, C, Si, Mn, Ni, Cr, Mo, V: content of each element (weight) %)
【請求項2】 前記鋼組成に加えてさらに、重量%で、
V:0.03〜0.15%を含有することを特徴とする請求項1
に記載の母材および溶接熱影響部靱性に優れた非調質高
張力鋼。
2. In addition to the steel composition, further in weight%
V: 0.03 to 0.15% is contained.
A non-heat-treated high-strength steel excellent in toughness of the base metal and the weld heat-affected zone according to the above.
【請求項3】前記鋼組成に加えてさらに、重量%で、C
u:0.02〜1.5 %、Ni:0.02〜0.06%、Cr:0.05〜0.50
%、Mo:0.02〜0.50%、Nb:0.003 〜0.020 %のうちの
1種または2種以上を含有することを特徴とする請求項
1または2に記載の母材および溶接熱影響部靱性に優れ
た非調質高張力鋼材。
3. In addition to the steel composition, in addition to the steel composition,
u: 0.02 to 1.5%, Ni: 0.02 to 0.06%, Cr: 0.05 to 0.50
%, Mo: 0.02 to 0.50%, Nb: 0.003 to 0.020%, one or two or more of which are excellent in the toughness of the base metal and the weld heat affected zone according to claim 1 or 2. Non-heat treated high tensile steel.
【請求項4】 前記鋼組成に加えてさらに、重量%で、
B:0.0002〜0.0020%を含有することを特徴とする請求
項1ないし3のいずれかに記載の母材および溶接熱影響
部靱性に優れた非調質高張力鋼材。
4. In addition to the steel composition, further in weight%
B: A non-heat-treated, high-strength steel material having excellent toughness in a heat affected zone and a base material according to any one of claims 1 to 3, wherein the steel material contains 0.0002 to 0.0020%.
JP19341199A 1999-07-07 1999-07-07 Non-tempered high-tensile steel with excellent base material and weld heat-affected zone toughness Expired - Fee Related JP4144123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19341199A JP4144123B2 (en) 1999-07-07 1999-07-07 Non-tempered high-tensile steel with excellent base material and weld heat-affected zone toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19341199A JP4144123B2 (en) 1999-07-07 1999-07-07 Non-tempered high-tensile steel with excellent base material and weld heat-affected zone toughness

Publications (2)

Publication Number Publication Date
JP2001020033A true JP2001020033A (en) 2001-01-23
JP4144123B2 JP4144123B2 (en) 2008-09-03

Family

ID=16307519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19341199A Expired - Fee Related JP4144123B2 (en) 1999-07-07 1999-07-07 Non-tempered high-tensile steel with excellent base material and weld heat-affected zone toughness

Country Status (1)

Country Link
JP (1) JP4144123B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241890A (en) * 2001-02-20 2002-08-28 Nippon Steel Corp High toughness non-refining steel for hot forging
JP2002363687A (en) * 2001-06-06 2002-12-18 Kawasaki Steel Corp Steel for high heat input welding and method for refining steel for high heat input welding
JP2008264802A (en) * 2007-04-17 2008-11-06 Nippon Steel Corp Method of continuous casting
JP2010168644A (en) * 2008-12-22 2010-08-05 Kobe Steel Ltd Thick steel plate excellent in toughness of welding heat-affected zone
JP2010222652A (en) * 2009-03-24 2010-10-07 Kobe Steel Ltd Thick steel plate having excellent toughness in weld heat affected zone and excellent low temperature base metal toughness
EP1486580B1 (en) * 2002-02-27 2012-03-07 Nippon Steel Corporation Atmosphere corrosion resisting steel plate having high strength and excellent bending formability and method for production thereof
JP2012046789A (en) * 2010-08-26 2012-03-08 Nippon Steel Corp Steel material excellent in hydrogen-induced crack resistance

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241890A (en) * 2001-02-20 2002-08-28 Nippon Steel Corp High toughness non-refining steel for hot forging
JP4564189B2 (en) * 2001-02-20 2010-10-20 新日本製鐵株式会社 High toughness non-tempered steel for hot forging
JP2002363687A (en) * 2001-06-06 2002-12-18 Kawasaki Steel Corp Steel for high heat input welding and method for refining steel for high heat input welding
JP4608813B2 (en) * 2001-06-06 2011-01-12 Jfeスチール株式会社 Steel material for large heat input welding and method for melting steel for large heat input welding
EP1486580B1 (en) * 2002-02-27 2012-03-07 Nippon Steel Corporation Atmosphere corrosion resisting steel plate having high strength and excellent bending formability and method for production thereof
JP2008264802A (en) * 2007-04-17 2008-11-06 Nippon Steel Corp Method of continuous casting
JP2010168644A (en) * 2008-12-22 2010-08-05 Kobe Steel Ltd Thick steel plate excellent in toughness of welding heat-affected zone
JP2010222652A (en) * 2009-03-24 2010-10-07 Kobe Steel Ltd Thick steel plate having excellent toughness in weld heat affected zone and excellent low temperature base metal toughness
JP2012046789A (en) * 2010-08-26 2012-03-08 Nippon Steel Corp Steel material excellent in hydrogen-induced crack resistance

Also Published As

Publication number Publication date
JP4144123B2 (en) 2008-09-03

Similar Documents

Publication Publication Date Title
JP4022958B2 (en) High toughness thick steel plate with excellent weld heat affected zone toughness and method for producing the same
KR101892839B1 (en) Steel plate and method of producing same
KR20210127736A (en) Steel and its manufacturing method
JP2010106298A (en) Method for manufacturing thick steel plate excellent in weldability and ductility in plate thickness direction
JP3890748B2 (en) High strength steel plate with excellent stretch flangeability and delayed fracture resistance
JP5477089B2 (en) Manufacturing method of high strength and high toughness steel
CN108456832B (en) Ultra-high strength cold rolled steel sheet having excellent bending workability and method for manufacturing same
JP5708349B2 (en) Steel with excellent weld heat affected zone toughness
JP4981262B2 (en) Manufacturing method of low yield ratio steel for low temperature with excellent weld toughness
EP1052303A2 (en) High tensile strength steel product for high heat input welding, having excellent toughness in heat-affected zone
JP4144123B2 (en) Non-tempered high-tensile steel with excellent base material and weld heat-affected zone toughness
JPWO2019050010A1 (en) Steel sheet and manufacturing method thereof
JP4998365B2 (en) Ultra-low carbon steel sheet and manufacturing method thereof
JP7207199B2 (en) Steel material and its manufacturing method
JP4144121B2 (en) Non-tempered high strength steel with excellent toughness of base metal and weld heat affected zone
KR100856306B1 (en) Ferritic stainless steel having excellent low temperature formability of welded zone
JP6308148B2 (en) Ultra-high heat input welding heat-affected zone toughness excellent low-yield-ratio high-strength steel sheet for building structures and manufacturing method thereof
JP2007177303A (en) Steel having excellent ductility and its production method
JP3644398B2 (en) Manufacturing method of non-tempered thick high-tensile steel sheet with excellent weld heat-affected zone toughness
JP2000104116A (en) Production of steel excellent in strength and toughness
JP2002371338A (en) Steel superior in toughness at laser weld
JP4039223B2 (en) Thick steel plate with excellent super tough heat input weld heat affected zone toughness and method for producing the same
JP2006241508A (en) HT490MPa CLASS REFRACTORY STEEL FOR WELDED STRUCTURE HAVING EXCELLENT GALVANIZING CRACK RESISTANCE IN WELD ZONE AND ITS PRODUCTION METHOD
JPH07278736A (en) Steel products having excellent toughness of weld heat affected zone
JP3502809B2 (en) Method of manufacturing steel with excellent toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140627

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees