JP2012046789A - Steel material excellent in hydrogen-induced crack resistance - Google Patents
Steel material excellent in hydrogen-induced crack resistance Download PDFInfo
- Publication number
- JP2012046789A JP2012046789A JP2010189383A JP2010189383A JP2012046789A JP 2012046789 A JP2012046789 A JP 2012046789A JP 2010189383 A JP2010189383 A JP 2010189383A JP 2010189383 A JP2010189383 A JP 2010189383A JP 2012046789 A JP2012046789 A JP 2012046789A
- Authority
- JP
- Japan
- Prior art keywords
- rem
- steel material
- steel
- less
- inclusions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
本発明は、主にラインパイプの製造に用いる耐水素誘起割れ性に優れた鋼材に関するものである。 The present invention relates to a steel material excellent in resistance to hydrogen-induced cracking mainly used in the production of line pipes.
鋼板中に不可避不純物として含有する硫黄は、同じく鋼材中に強度発現元素として含有するマンガンと結合し、MnSを形成する。MnSは、圧延中に延伸し、その結果、硫化水素と水分を含む環境下で、水素誘起割れが発生する原因となる。また、延伸したMnSは、靭性をはじめとする材質が低下する原因となる。 Sulfur contained as an inevitable impurity in the steel sheet is combined with manganese contained in the steel material as a strength developing element to form MnS. MnS extends during rolling, and as a result, causes hydrogen-induced cracking in an environment containing hydrogen sulfide and moisture. In addition, the stretched MnS causes a deterioration in materials such as toughness.
MnSに起因する水素誘起割れの発生や、靭性の低下を防止するためには、鋼材中でのMnSの生成を抑制する必要があり、特に、連続鋳造鋳片の中心偏析部に生成する粗大MnSを抑制することが重要である。 In order to prevent the occurrence of hydrogen-induced cracking due to MnS and the decrease in toughness, it is necessary to suppress the generation of MnS in the steel material. In particular, coarse MnS generated in the central segregation part of the continuous cast slab. It is important to suppress this.
鋼板でのMnSの生成を抑制するためには、鋼中Sの含有量を低下し、連続鋳造時の中心偏析を低減する対策を講じることが有効である。さらに、鋼中にCa又はREM(希土類元素)を添加し、硫化物を、MnSではなく、CaSや、REMオキシサルファイドとして形成し、圧延中に硫化物が延伸することを抑制する方法が用いられる。 In order to suppress the formation of MnS in the steel sheet, it is effective to take measures to reduce the center segregation during continuous casting by reducing the content of S in the steel. Further, a method is used in which Ca or REM (rare earth element) is added to the steel, the sulfide is formed not as MnS, but as CaS or REM oxysulfide, and the sulfide is prevented from stretching during rolling. .
特許文献1には、S:0.0020%未満、Ca:0.0020%以上0.0050%未満を含有する、耐水素誘起割れ性の優れた鋼材が記載されている。また、特許文献2には、0.040%以下(かつ、0.008%以上)のREMを、0.005%以下に低減したS含有量に応じて、所定の範囲で含む耐水素誘起割れ性の優れた鋼材が記載されている。
さらに、特許文献3には、S:0.01%以下とし、3≦REM(%)/S(%)≦10の範囲でREMを含有する、耐水素誘起割れ性に優れたラインパイプ用鋼が記載されている。また、引用文献4には、S≦0.008%を含み、CaとREMのうち少なくとも1種以上を含有し、Ca:0.001%以上0.005%未満とし、REMは、少なくとも0.008%以上で、SとO含有量に応じて定まる範囲の量を含有する、耐水素誘起割れ性の優れた鋼材が記載されている。 Furthermore, in Patent Document 3, S: 0.01% or less, steel for line pipes having excellent resistance to hydrogen-induced cracking, containing REM in the range of 3 ≦ REM (%) / S (%) ≦ 10. Is described. Reference Document 4 includes S ≦ 0.008%, contains at least one of Ca and REM, Ca: 0.001% or more and less than 0.005%, and REM is at least 0.00. A steel material having an excellent resistance to hydrogen-induced cracking is described, containing 008% or more and an amount in a range determined according to the S and O contents.
特許文献1に記載のように、鋼中にCaを添加すると、硫化物をCaSとして、MnSの延伸を防止する効果は得られるが、靭性をはじめとする材質においては、満足する向上が見られないことが解った。また、鋼中にCaを多量に添加すると、連続鋳造時にノズル耐火物が溶損するという問題も発生する。
As described in
特許文献2〜4のように、鋼中にREMを添加すると、硫化物の形態制御による延伸防止効果は得られるが、連続鋳造時のノズル詰まりの発生傾向が増大し、さらに、鋼板内部に存在する介在物に起因する製品欠陥が増大することが解った。 As in Patent Documents 2 to 4, when REM is added to steel, the effect of preventing the stretching by controlling the form of sulfide is obtained, but the tendency of nozzle clogging during continuous casting increases, and it further exists inside the steel plate. It was found that product defects due to inclusions increased.
本発明は、ラインパイプ等の製造に用いる鋼材において、耐水素誘起割れ性や靭性を向上させ、製造の際に、連続鋳造浸漬ノズル耐火物の溶損及びノズル詰まりの発生を防止することができ、かつ、鋼板内部における介在物欠陥の発生を防止することができる耐水素誘起割れ性に優れた鋼材、及び、その製造方法を提供することを目的とする。 The present invention improves the resistance to hydrogen-induced cracking and toughness in steel materials used in the production of line pipes and the like, and can prevent the occurrence of melting damage and nozzle clogging of continuously cast immersion nozzle refractories during production. And it aims at providing the steel material excellent in the hydrogen-induced crack-proof property which can prevent generation | occurrence | production of the inclusion defect in a steel plate inside, and its manufacturing method.
鋼中にCaを添加すると、硫化物をCaSとすることで、MnSの延伸を防止する効果は得られるものの、添加したCaと、脱酸剤として添加したAlとにより、CaO−Al2O3系酸化物が形成される。 When Ca is added to the steel, the effect of preventing the extension of MnS can be obtained by changing the sulfide to CaS. However, the added Ca and Al added as a deoxidizer cause CaO—Al 2 O 3. A system oxide is formed.
このCaO−Al2O3系酸化物は低融点酸化物であり、圧延中に延伸するため、靭性をはじめとする材質が低下することが解った。また、REM添加鋼において、浸漬ノズルのノズル詰まり及び鋼板内部の介在物欠陥は、REM添加量が0.006質量%超の場合に発生することが解った。 This CaO—Al 2 O 3 -based oxide is a low-melting-point oxide and has been found to be deteriorated in materials such as toughness because it is stretched during rolling. Moreover, in REM addition steel, it turned out that the nozzle clogging of an immersion nozzle and the inclusion defect inside a steel plate generate | occur | produce when the amount of REM addition exceeds 0.006 mass%.
これに対し、MnS、又は、低融点のCaO−Al2O3系酸化物であっても、微細に分散すれば、圧延による延伸後の長さも短くなり、その結果、耐水素誘起割れ性に優れ、靭性低下を防止して靭性を確保した鋼材を製造することが可能であることが解った。 On the other hand, even if it is MnS or a low-melting point CaO—Al 2 O 3 -based oxide, if it is finely dispersed, the length after stretching by rolling is shortened, resulting in resistance to hydrogen-induced cracking. It has been found that it is possible to produce a steel material that is excellent and prevents toughness deterioration and ensures toughness.
本発明は、上記知見に基づいてなされたものであり、その要旨とするところは、以下のとおりである。 This invention is made | formed based on the said knowledge, The place made into the summary is as follows.
(1)質量%で、C:0.03〜0.10%、Si:0.1〜0.5%、Mn:0.8〜2.0%、P:0.030%以下、S:0.0025%以下、N:0.005%以下、sol.Al:0.010〜0.11%、Ca:0.0004〜0.0040%、希土類元素(REM):0.0003〜0.0060%、残部Fe及び不可避不純物からなる鋼鋳片を圧延して得られた鋼材であって、
(i)上記鋼材中に存在する介在物の最大円相当直径が30μmであり、
(ii)上記鋼材の圧延方向の断面視において、平均組成が、%Al2O3+%CaO+%REM2O3≧80%であり、かつ、(%REM)/(%Al+%Ca+%REM)≧0.5である領域の面積が全面積の40%以上である介在物が、介在物の個数割合で、50%以上存在している
ことを特徴とする耐水素誘起割れ性に優れた鋼材。
(1) By mass%, C: 0.03-0.10%, Si: 0.1-0.5%, Mn: 0.8-2.0%, P: 0.030% or less, S: 0.0025% or less, N: 0.005% or less, sol. A steel slab made of Al: 0.010 to 0.11%, Ca: 0.0004 to 0.0040%, rare earth element (REM): 0.0003 to 0.0060%, the balance Fe and inevitable impurities is rolled. Steel material obtained by
(I) The maximum equivalent circle diameter of inclusions present in the steel material is 30 μm,
(Ii) In a cross-sectional view of the steel material in the rolling direction, the average composition is% Al 2 O 3 +% CaO +% REM 2 O 3 ≧ 80% and (% REM) / (% Al +% Ca +% REM) ) Excellent in hydrogen-induced cracking resistance, characterized in that inclusions having an area of ≧ 0.5 that is 40% or more of the total area are present in a ratio of the number of inclusions of 50% or more. Steel material.
(2)質量%で、C:0.03〜0.10%、Si:0.1〜0.5%、Mn:0.8〜2.0%、P:0.030%以下、S:0.0025%以下、N:0.005%以下、sol.Al:0.010〜0.11%、Ca:0.0004〜0.0040%、希土類元素(REM):0.0003〜0.0060%、残部Fe及び不可避不純物からなる溶鋼を溶製するに際して、
(i)C、Si、Mn、P、S、Nの組成を調整した後、REM添加後の溶存酸素濃度が50ppm以上となるようにREMを添加し、その後、Al及びCaを添加して、上記成分組成の溶鋼を溶製し、
(ii)上記溶鋼を鋳造して鋼鋳片を製造し、次いで、圧延して鋼材を得る
ことを特徴とする耐水素誘起割れ性に優れた鋼材の製造方法。
(2) By mass%, C: 0.03-0.10%, Si: 0.1-0.5%, Mn: 0.8-2.0%, P: 0.030% or less, S: 0.0025% or less, N: 0.005% or less, sol. When melting molten steel composed of Al: 0.010 to 0.11%, Ca: 0.0004 to 0.0040%, rare earth element (REM): 0.0003 to 0.0060%, balance Fe and inevitable impurities ,
(I) After adjusting the composition of C, Si, Mn, P, S, N, REM is added so that the dissolved oxygen concentration after REM addition is 50 ppm or more, and then Al and Ca are added. Melting molten steel with the above composition,
(Ii) A method for producing a steel material excellent in resistance to hydrogen-induced cracking, wherein the molten steel is cast to produce a steel slab and then rolled to obtain a steel material.
本発明においては、圧延前の鋳片段階で、平均組成が、%Al2O3+%CaO+%REM2O3≧80%で、かつ、(%REM)/(%Al+%Ca+%REM)≧0.5である領域を含む介在物を、多数、鋼材中に生成、分散させて、その周囲に、MnS又は低融点のCaO−Al2O3系酸化物を生成させて、MnS又はCaO−Al2O3系酸化物を微細分散させることにより、MnS又はCaO−Al2O3系酸化物の粗大化を防止する。 In the present invention, at the slab stage before rolling, the average composition is% Al 2 O 3 +% CaO +% REM 2 O 3 ≧ 80% and (% REM) / (% Al +% Ca +% REM) A large number of inclusions including a region of ≧ 0.5 are generated and dispersed in the steel material, and MnS or a low-melting point CaO—Al 2 O 3 oxide is generated around the inclusions to form MnS or CaO. -al 2 O 3 based oxide by fine dispersion, to prevent the coarsening of MnS or CaO-Al 2 O 3 oxide.
即ち、平均組成が、%Al2O3+%CaO+%REM2O3≧80%で、かつ、(%REM)/(%Al+%Ca+%REM)≧0.5である領域を含む介在物を、MnS又はCaO−Al2O3系酸化物の晶出核として利用する。 That is, an inclusion including a region where the average composition is% Al 2 O 3 +% CaO +% REM 2 O 3 ≧ 80% and (% REM) / (% Al +% Ca +% REM) ≧ 0.5 Is used as a crystallization nucleus of MnS or CaO—Al 2 O 3 -based oxide.
これにより、本発明の圧延後の鋼材では、晶出核の効果により、それぞれの介在物粒径が微細化した介在物が延伸しているので、延伸後の介在物の最大径の長さは、大幅に短縮される。その結果、本発明によれば、耐水素誘起割れ性に優れ、かつ、靭性低下を防止して靭性を確保した鋼材を製造し、提供することができる。 Thereby, in the steel material after rolling of the present invention, due to the effect of crystallization nuclei, the inclusions with the respective refined inclusion particle diameters are stretched, so the maximum diameter length of the inclusions after stretching is , Greatly shortened. As a result, according to the present invention, it is possible to manufacture and provide a steel material that is excellent in hydrogen-induced crack resistance and that prevents toughness deterioration and ensures toughness.
本発明は、ラインパイプ等の製造に用いることができる耐水素誘起割れ性に優れた鋼材を対象とする。以下に、本発明の鋼材の成分組成を規定する根拠を説明する。特に断らない限り、%は質量%を意味する。 The present invention is directed to a steel material that is excellent in hydrogen-induced crack resistance and can be used in the production of line pipes and the like. Below, the basis which prescribes | regulates the component composition of the steel material of this invention is demonstrated. Unless otherwise specified,% means mass%.
C:0.03〜0.10%
ラインパイプ用鋼材等に適用できるための必要強度を得るため、Cは、0.03%以上とする。一方、Cが0.10%を超えると、靭性や溶接性が劣化するので、上限を0.10%とする。好ましい下限は0.043%であり、一方、好ましい上限は0.082%である。
C: 0.03-0.10%
C is set to 0.03% or more in order to obtain a necessary strength to be applicable to steel materials for line pipes. On the other hand, if C exceeds 0.10%, toughness and weldability deteriorate, so the upper limit is made 0.10%. A preferred lower limit is 0.043%, while a preferred upper limit is 0.082%.
Si:0.1〜0.5%
Siは、脱酸に必要な元素であり、通常は0.1%以上を添加するが、0.5%を超えると、靭性が劣化するので、上限を0.5%とする。好ましい下限は0.22%であり、一方、好ましい上限は0.37%である。
Si: 0.1 to 0.5%
Si is an element necessary for deoxidation, and usually 0.1% or more is added, but if it exceeds 0.5%, the toughness deteriorates, so the upper limit is made 0.5%. A preferred lower limit is 0.22%, while a preferred upper limit is 0.37%.
Mn:0.8〜2.0%
Mnは、強度を向上する元素であり、0.8%以上を添加するが、2.0%を超えると、溶接性が劣化するので、上限を2.0%とする。好ましい下限は1.08%であり、一方、好ましい上限は1.77%である。
Mn: 0.8 to 2.0%
Mn is an element that improves the strength, and 0.8% or more is added, but if it exceeds 2.0%, the weldability deteriorates, so the upper limit is made 2.0%. A preferred lower limit is 1.08%, while a preferred upper limit is 1.77%.
P:0.030%以下
Pは、鋼の靭性などに悪影響を与える不純物であるので、低いほど好ましいが、低燐化に要する費用との兼ね合いで、上限を0.030%とした。好ましい上限は、0.022%である。下限は、低いほど好ましいので、特に規定しない。
P: 0.030% or less P is an impurity that adversely affects the toughness of steel and the like, and is preferably as low as possible. However, the upper limit is set to 0.030% in view of the cost required for low phosphatization. A preferable upper limit is 0.022%. The lower limit is not particularly defined because it is preferably as low as possible.
S:0.0025%以下
MnSの生成を防止する観点から、S含有量は少ないほど好ましいので、下限は特に規定しない。ただし、二次精錬の負荷を大きくしても、Sを0.0005%より低くすることは、現実的に困難である。一方、Sが0.0025%を超えると、圧延時に延伸し易い単独MnSが一定以上に増加し、材質の低下が避けられないので、上限は0.0025%とする。好ましい上限は、0.0018%である。
S: 0.0025% or less From the viewpoint of preventing the formation of MnS, the lower the S content, the better. However, even if the secondary refining load is increased, it is practically difficult to make S lower than 0.0005%. On the other hand, if S exceeds 0.0025%, the single MnS that tends to be stretched during rolling increases to a certain level and deterioration of the material cannot be avoided, so the upper limit is made 0.0025%. A preferable upper limit is 0.0018%.
N:0.005%以下
Nが0.005%を超えると、Alが本発明の範囲内であっても、AlNが多量に生成し、靭性が劣化する懸念があるので、上限を0.005%とした。好ましい上限は、0.0029%である。一方、Nは少ないほど好ましいので、下限は特に規定しない。
N: 0.005% or less When N exceeds 0.005%, even if Al is within the range of the present invention, a large amount of AlN may be generated and the toughness may be deteriorated. %. A preferable upper limit is 0.0029%. On the other hand, since the smaller N is, the lower limit is not particularly specified.
sol.Al:0.010〜0.11%
本発明においては、CaとREMを添加して硫化物形態制御を行うため、鋼を十分に脱酸して、CaとREMの酸化を極力抑えることが重要である。このように、Alは脱酸元素として必要であり、sol.Alで0.010%以上含有することにより、十分な脱酸を行うことができる。ただし、0.11%を超えると、AlNが多量に生成し、靭性が劣化する懸念があるので、上限を0.11%とする。好ましい下限は0.023%であり、一方、好ましい上限は0.08%である。
sol. Al: 0.010 to 0.11%
In the present invention, since sulfide form control is performed by adding Ca and REM, it is important to sufficiently deoxidize steel to suppress oxidation of Ca and REM as much as possible. Thus, Al is necessary as a deoxidizing element. By containing 0.010% or more of Al, sufficient deoxidation can be performed. However, if it exceeds 0.11%, a large amount of AlN is generated and there is a concern that toughness deteriorates, so the upper limit is made 0.11%. A preferred lower limit is 0.023%, while a preferred upper limit is 0.08%.
sol.Alは、溶存Alのことであり、分析上、酸可溶Alである。Al2O3を形成していない溶存Alは酸に溶解し、Al2O3は酸に溶解しないことを利用して、溶存AlとAl2O3を分別して分析することができる。ちなみに、本発明の鋼材は、Alで十分に脱酸して得られるので、鋼中のトータル酸素量が低くなっており、例えば、0.0025%未満まで低下していることを例示できる。 sol. Al is dissolved Al, and is analytically acid-soluble Al. Dissolved Al and Al 2 O 3 can be separated and analyzed by utilizing the fact that dissolved Al that does not form Al 2 O 3 dissolves in acid and Al 2 O 3 does not dissolve in acid. Incidentally, since the steel material of the present invention is obtained by sufficiently deoxidizing with Al, the total amount of oxygen in the steel is low, and for example, it can be exemplified that it is reduced to less than 0.0025%.
Ca:0.0004〜0.0040%
Caは、Sを固定することに加えて、後述のREM添加により生成する晶出核の周囲に、CaO−Al2O3系酸化物を生成させるために添加する。ただし、Caが低すぎると、事実上、REMの単独添加となり、連続鋳造ノズル詰まりや、REM酸化物系の高比重介在物の堆積が生じるので、下限を0.0004%とする。
Ca: 0.0004 to 0.0040%
In addition to fixing S, Ca is added to generate a CaO—Al 2 O 3 -based oxide around the crystallization nuclei generated by the addition of REM described later. However, if Ca is too low, REM is effectively added alone and clogging of continuous casting nozzles and accumulation of REM oxide-based high specific gravity inclusions occur, so the lower limit is made 0.0004%.
一方、Caが0.0040%を超えると、粗大な低融点酸化物(主にCaO−Al2O3系酸化物)が多量に生成し、製品に内部欠陥を引き起こす。さらに、ノズル耐火物が溶損し易くなり、連続鋳造の操業が安定しないので、上限を0.0040%とする。好ましい下限は0.0018%であり、一方、好ましい上限は0.0033%である。 On the other hand, when Ca exceeds 0.0040%, a large amount of coarse low-melting point oxides (mainly CaO—Al 2 O 3 -based oxides) are generated, causing internal defects in the product. Furthermore, since the nozzle refractory is easily melted and the continuous casting operation is not stable, the upper limit is made 0.0040%. A preferred lower limit is 0.0018%, while a preferred upper limit is 0.0033%.
REM:0.0003〜0.0060%
REMは、希土類元素を意味し、Ce、La、Nd、Prから選ばれる1種以上の元素を含有する。添加方法としては、例えば、鋼中に、ミッシュメタルとして添加することが広く行われている。ここでは、これら含有する希土類元素の合計量を、REM量とする。
REM: 0.0003 to 0.0060%
REM means a rare earth element and contains one or more elements selected from Ce, La, Nd, and Pr. As an addition method, for example, adding as a misch metal in steel is widely performed. Here, the total amount of the rare earth elements contained is defined as the REM amount.
REMは、Sを固定することに加えて、MnSや、CaO−Al2O3系酸化物を微細分散させるための晶出核を生成するために添加する。ただし、REMが少な過ぎると、MnSや、CaO−Al2O3系酸化物を微細分散させるための晶出核を生成する効果が得られず、延伸酸化物による材質低下の問題が生じるので、下限を0.0003%とする。好ましい下限は0.0013%である。 In addition to fixing S, REM is added to generate crystallization nuclei for finely dispersing MnS and CaO—Al 2 O 3 -based oxides. However, if there is too little REM, the effect of generating crystallization nuclei for finely dispersing MnS and CaO—Al 2 O 3 -based oxides cannot be obtained, and the problem of material deterioration due to stretched oxides arises. The lower limit is made 0.0003%. A preferred lower limit is 0.0013%.
一方、REMが0.0060%を超えると、ノズル詰まりや、粗大なREM酸化物による内部欠陥が発生するので、上限を0.0060%とする。好ましい上限は0.0048%である。 On the other hand, if the REM exceeds 0.0060%, nozzle clogging and internal defects due to coarse REM oxide occur, so the upper limit is made 0.0060%. A preferred upper limit is 0.0048%.
本発明の鋼材を得るには、REM添加後の溶鋼中の溶存酸素を50ppm以上に制御することが重要である。即ち、本発明は、Al脱酸鋼を対象とするが、REM添加は、Al添加を全く行わないか、又は、Al添加を行っても、REM添加後の溶存酸素が50ppm以上残存するような予備脱酸にとどめた段階で行うことが特徴である。そして、REM添加後にAlを添加し、最終的なsol.Al濃度に調整する。 In order to obtain the steel material of the present invention, it is important to control the dissolved oxygen in the molten steel after REM addition to 50 ppm or more. That is, the present invention is directed to Al deoxidized steel, but REM addition does not add Al at all, or dissolved oxygen after REM addition remains at 50 ppm or more even if Al addition is performed. It is characterized in that it is performed at the stage where only preliminary deoxidation is performed. Then, Al is added after REM addition to adjust the final sol.Al concentration.
以下に、本発明における介在物分散の考え方を、ラボ実験結果に基づいて説明する。 Hereinafter, the concept of inclusion dispersion in the present invention will be described based on laboratory experiment results.
ラボ実験は、まず、電解鉄1kgを高周波誘導溶解炉で、Ar雰囲気で溶解した。溶解直後の溶存酸素は、300〜400ppmと高かった。次に、種々の量のAlを添加し、溶存酸素を様々の値に変化させてから、REMを添加した。REM添加後に溶存酸素量を測定し、その後、Alを添加し、最後に、CaをCa−Si合金を添加し、炉の電源を切って炉冷した。 In the laboratory experiment, 1 kg of electrolytic iron was first melted in an Ar atmosphere in a high frequency induction melting furnace. The dissolved oxygen immediately after dissolution was as high as 300 to 400 ppm. Next, various amounts of Al were added to change the dissolved oxygen to various values, and then REM was added. The amount of dissolved oxygen was measured after REM addition, then Al was added, and finally Ca was added with a Ca-Si alloy, and the furnace was turned off and cooled in the furnace.
得られた鋳片の成分組成は、REM=20〜25ppm、sol.Al=0.030〜0.035%、Ca=15〜20ppmであった。即ち、鋳片分析値は、一定の範囲に収まっており、REM添加後の溶存酸素量だけを変更して実験を行った。 The component composition of the obtained slab was REM = 20-25 ppm, sol. Al = 0.030-0.035% and Ca = 15-20 ppm. That is, the slab analysis value was within a certain range, and the experiment was conducted by changing only the dissolved oxygen amount after the addition of REM.
このようにして作製した鋳片の横断面をミクロ研磨し、光学顕微鏡で、倍率1000倍で50視野観察し、円相当直径1μm以上の介在物の個数とサイズを測定した。ここで、円相当直径1μm以上の介在物を対象としたのは、円相当直径1μm未満の小さな介在物は、耐水素誘起割れ性に影響を及ぼさないことを知見しているからである。 The cross section of the slab thus produced was micro-polished and observed with an optical microscope at 50 magnifications at 1000 magnifications, and the number and size of inclusions having an equivalent circle diameter of 1 μm or more were measured. The reason why inclusions with an equivalent circle diameter of 1 μm or more are used is that it is known that small inclusions with an equivalent circle diameter of less than 1 μm do not affect the resistance to hydrogen-induced cracking.
図1に、REM添加後の溶存酸素(ppm)と介在物個数(個/mm2)の関係を示し、図2に、REM添加後の溶存酸素(ppm)と最大MnS径(円相当直径の最大値(μm))の関係を示す。これらの関係から、REM添加後の溶存酸素が50ppm以上の時に、介在物個数が急激に増加すること(図1、参照)、また、介在物個数が増加するにしたがって介在物サイズが減少すること(図2、参照)、が判明した。 FIG. 1 shows the relationship between dissolved oxygen (ppm) after REM addition and the number of inclusions (pieces / mm 2 ), and FIG. 2 shows dissolved oxygen (ppm) after REM addition and the maximum MnS diameter (equivalent circle diameter). The relationship of the maximum value (μm) is shown. From these relationships, when the dissolved oxygen after REM addition is 50 ppm or more, the number of inclusions increases rapidly (see FIG. 1), and the inclusion size decreases as the number of inclusions increases. (See FIG. 2).
また、任意の20個の介在物組成をSEM−EDSで調査した結果、MnS、CaO−Al2O3系介在物、CaO−Al2O3−REM2O3系介在物のほか、MnSがCaO−Al2O3系介在物やCaO−Al2O3−REM2O3系介在物の周囲に付着した形態(MnSが一部又は全体を覆う)が観察された。CaO−Al2O3系介在物、CaO−Al2O3−REM2O3系介在物ではSを含有するものも観察された。 Moreover, as a result of investigating the composition of 20 arbitrary inclusions by SEM-EDS, in addition to MnS, CaO—Al 2 O 3 inclusions, CaO—Al 2 O 3 —REM 2 O 3 inclusions, MnS A form (MnS partially or entirely covered) was observed around the CaO—Al 2 O 3 inclusions and CaO—Al 2 O 3 —REM 2 O 3 inclusions. Some CaO—Al 2 O 3 inclusions and CaO—Al 2 O 3 —REM 2 O 3 inclusions containing S were also observed.
REM添加後の溶存酸素が50ppm以上で介在物個数が多い試料の場合、得られた鋼材では、介在物の個数割合で50%以上が、平均組成が%Al2O3+%CaO+%REM2O3≧80%で、かつ、(%REM)/(%Al+%Ca+%REM)≧0.5である領域(晶出相)が面積率で40%以上の介在物であった。 In the case of a sample in which dissolved oxygen after REM addition is 50 ppm or more and the number of inclusions is large, in the obtained steel material, the average composition is% Al 2 O 3 +% CaO +% REM 2 in terms of the number ratio of inclusions. The region where O 3 ≧ 80% and (% REM) / (% Al +% Ca +% REM) ≧ 0.5 (crystallization phase) was inclusions with an area ratio of 40% or more.
以上の実験結果を基に、本発明の技術思想を述べる。 Based on the above experimental results, the technical idea of the present invention will be described.
(1)[REM添加を行わず、AlとCa添加を行う場合]
Al添加(=Al脱酸)後の溶存酸素が低いためAl2O3の凝集合体が進行し、クラスターが生成される。このクラスターは粗大化する分、個数は減少する。そこにCaを添加すると、Al2O3クラスターを母体に、粗大なAl2O3−CaO系酸化物が生成する。
(1) [When Al and Ca are added without REM addition]
Since the dissolved oxygen after the addition of Al (= Al deoxidation) is low, agglomeration and coalescence of Al 2 O 3 proceeds and clusters are generated. The number of clusters decreases as they grow larger. When Ca is added thereto, a coarse Al 2 O 3 —CaO-based oxide is generated with an Al 2 O 3 cluster as a base.
前記溶鋼の凝固中にMnSが生成するが、単独で生成、又は、上記のAl2O3−CaO系酸化物に付着して生成する。付着場所となる介在物個数が少ないため、単独MnSが後述する本発明より多い。また、粗大なAl2O3−CaO系酸化物上にMnSが付着すると、介在物全体のサイズは、更に粗大となる。 MnS is generated during the solidification of the molten steel, but it is generated alone or attached to the Al 2 O 3 —CaO-based oxide. Since the number of inclusions that serve as attachment sites is small, the amount of single MnS is larger than that of the present invention described later. In addition, when MnS adheres on a coarse Al 2 O 3 —CaO-based oxide, the size of the entire inclusion becomes further coarse.
この鋳片を圧延した場合、単独MnSはもちろん、粗大Al2O3−CaO系酸化物上にMnSが付着した介在物も、Al2O3−CaO系酸化物は低融点酸化物であるため、延伸し易い。こうして大部分の介在物が長く延伸し、HIC起点が多くなる。 When this slab is rolled, not only single MnS but also inclusions in which MnS adheres on coarse Al 2 O 3 —CaO-based oxides, Al 2 O 3 —CaO-based oxides are low melting point oxides. Easy to stretch. In this way, most of the inclusions are stretched longer, and the HIC starting point is increased.
(2)[Al脱酸して溶存酸素を50ppm未満にした後、REM添加とCa添加を行なう場合]
Al脱酸時にAl2O3クラスターが生成し、その後、REMを添加した時に、単独のREM酸化物、又は、Al2O3−REM2O3酸化物が生成する。Al脱酸後の溶存酸素が低いため、REM添加後の介在物は分散し難く、凝集合体が進行し粗大化する。この様に、粗大化する結果、介在物個数は減少する。
(2) [When REM and Ca are added after deoxidizing Al to make dissolved oxygen less than 50 ppm]
Al 2 O 3 clusters are generated during Al deoxidation, and then when REM is added, a single REM oxide or Al 2 O 3 -REM 2 O 3 oxide is generated. Since the dissolved oxygen after Al deoxidation is low, inclusions after the addition of REM are difficult to disperse, and agglomeration and coalescence proceed and become coarse. In this way, as a result of coarsening, the number of inclusions decreases.
また、Ca添加により、既存の介在物がCaOを含有する組成に変化する。凝固中に生成するMnSは単独、又は、前記の粗大化した介在物上に付着して生成する。付着場所となる介在物数が少ないため、単独MnSが後述する本発明より多い。圧延時に単独MnSは容易に延伸するので、HIC性も良くない。 Moreover, the existing inclusion changes to the composition containing CaO by Ca addition. MnS produced during solidification is produced alone or on the coarse inclusions. Since the number of inclusions serving as attachment sites is small, the number of single MnS is larger than that of the present invention described later. Since single MnS is easily stretched during rolling, the HIC property is not good.
(3)[本発明;REM添加後の溶存酸素を50ppm以上に保ってから、Al脱酸とCa添加を行う場合]
REM添加時にREM酸化物が生成する。ここで、REM添加後の溶存酸素が高いため、REM酸化物の凝集合体が抑制され、微細分散する。
(3) [In the present invention, when the dissolved oxygen after REM addition is maintained at 50 ppm or more and then Al deoxidation and Ca addition are performed]
When REM is added, REM oxide is generated. Here, since dissolved oxygen after REM addition is high, aggregation and coalescence of REM oxides are suppressed and finely dispersed.
この傾向は、Al予備脱酸の有無に関わらず、REM添加後の溶存酸素が50ppm以上である限り、十分得られることが判明した。その後、Al脱酸を行うと、微細分散したREM酸化物を核にしてAl2O3が生成するので、Al2O3を微細分散させることができる。 It has been found that this tendency can be sufficiently obtained as long as the dissolved oxygen after the addition of REM is 50 ppm or more regardless of the presence or absence of Al preliminary deoxidation. Thereafter, when Al deoxidation is performed, Al 2 O 3 is produced with the finely dispersed REM oxide as a nucleus, so that Al 2 O 3 can be finely dispersed.
また、Ca添加後には、上記のREM酸化物を核とした比較的微細なAl2O3が、Al2O3−CaO系に改質される。そして、凝固中にMnSが単独、又は、上記酸化物の周囲に生成する。上記酸化物は微細分散しているため、その酸化物上に付着生成するMnSが大部分であり、単独MnSは少ない。従って、延伸が容易な単独MnSが少なく、耐HIC性も良好となる。 In addition, after Ca addition, relatively fine Al 2 O 3 having the REM oxide as a nucleus is modified into an Al 2 O 3 —CaO system. And during solidification, MnS is formed alone or around the oxide. Since the oxide is finely dispersed, most of the MnS deposited and formed on the oxide is small, and there is little single MnS. Therefore, there is little single MnS which is easy to stretch, and the HIC resistance is also good.
また、生成した介在物の平均組成が、断面視において、%Al2O3+%CaO+%REM2O3≧80%であり、かつ、(%REM)/(%Al+%Ca+%REM)≧0.5である領域(晶出相)は、圧延時にほとんど延伸しない。そのため、この様な領域を含む介在物の周囲にMnSが付着・生成しても、MnSを含めた介在物全体としては、延伸し難い。 Moreover, the average composition of the produced inclusions in the cross-sectional view is% Al 2 O 3 +% CaO +% REM 2 O 3 ≧ 80% and (% REM) / (% Al +% Ca +% REM) ≧ The region of 0.5 (crystallization phase) hardly stretches during rolling. Therefore, even if MnS adheres and forms around the inclusions including such a region, the whole inclusions including MnS are difficult to stretch.
本発明者らのラボ実験結果によれば、上記条件を満たす領域が合計で、MnSを含む介在物全体の面積率の40%以上を占めていれば、圧延後の鋼材中に存在する介在物の最大円相当直径が30μmであることが判明した。 According to the results of laboratory experiments conducted by the present inventors, inclusions present in the steel material after rolling as long as the areas satisfying the above conditions occupy 40% or more of the total area ratio of inclusions including MnS. The maximum equivalent circle diameter was found to be 30 μm.
本発明においては、必要に応じて、さらに、下記元素を含有すると好ましい。 In this invention, it is preferable to contain the following element further as needed.
Ti:0.05%以下
強度向上のためにTiを添加してもよい。ただし、Ti含有量が0.05%を超えると、角状のTiNが生成し、靭性が低下するので、上限を0.05%とした。
Ti: 0.05% or less Ti may be added to improve the strength. However, if the Ti content exceeds 0.05%, angular TiN is generated and the toughness decreases, so the upper limit was made 0.05%.
Nb:0.05%以下
強度向上のためにNbを添加してもよい。ただし、Nb含有量が0.05%を超えると、粗大なNb(C,N)が析出し、靭性の低下を招くので、上限を0.05%とした。
Nb: 0.05% or less Nb may be added to improve the strength. However, if the Nb content exceeds 0.05%, coarse Nb (C, N) precipitates and causes a decrease in toughness, so the upper limit was made 0.05%.
V:0.05%以下
強度向上のためにVを添加してもよい。ただし、V含有量が0.05%を超えると、粗大な析出物が生成し、靭性の低下を招くので、上限を0.05%とした。
V: 0.05% or less V may be added to improve the strength. However, if the V content exceeds 0.05%, coarse precipitates are generated and the toughness is reduced, so the upper limit was made 0.05%.
Cr:0.5%以下
強度向上のためにCrを添加してもよい。ただし、Cr含有量が0.5%を超えると、靭性の低下を招くので、上限を0.5%とした。
Cr: 0.5% or less Cr may be added to improve the strength. However, if the Cr content exceeds 0.5%, the toughness is reduced, so the upper limit was made 0.5%.
Mo:0.5%以下
強度向上のためにMoを添加してもよい。ただし、Mo含有量が0.5%を超えると、靭性の劣化を招くほか、経済的理由から、上限を0.5%とした。
Mo: 0.5% or less Mo may be added to improve the strength. However, if the Mo content exceeds 0.5%, the toughness is deteriorated and the upper limit is set to 0.5% for economic reasons.
B:0.0020%以下
焼入れ性、強度向上のためにBを添加してもよい。ただし、B含有量が0.0020%を超えると、靭性の劣化を招くので、上限を0.0020%とした。
B: 0.0020% or less B may be added to improve hardenability and strength. However, if the B content exceeds 0.0020%, deterioration of toughness is caused, so the upper limit was made 0.0020%.
Ni:0.5%以下
強度と靭性向上を目的にNiを添加してもよい。ただし、Ni含有量が0.5%を超えると、熱間加工性が低下するので、上限を0.5%とした。なお、トランプエレメントとして、一般に、鋼中に、0.01%程度のNiが含まれている。
Ni: 0.5% or less Ni may be added for the purpose of improving strength and toughness. However, when the Ni content exceeds 0.5%, the hot workability deteriorates, so the upper limit was made 0.5%. In addition, as a playing element, generally about 0.01% Ni is contained in steel.
Cu:0.5%以下
強度と靭性向上を目的にCuを添加してもよい。ただし、Cu含有量が0.5%を超えると、熱間加工性を損なうので、上限を0.5%とした。なお、トランプエレメントとして、一般に、鋼中に、0.01%程度のCuが含まれている。
Cu: 0.5% or less Cu may be added for the purpose of improving strength and toughness. However, if the Cu content exceeds 0.5%, the hot workability is impaired, so the upper limit was made 0.5%. In addition, as a playing element, generally about 0.01% of Cu is contained in steel.
次に、本発明の耐水素誘起割れ性に優れた鋼材の製造方法について説明する。高炉溶銑を原料とし、転炉精錬の後に、連続鋳造によって鋳片を製造する場合を例にとって説明する。 Next, a method for producing a steel material excellent in hydrogen-induced crack resistance according to the present invention will be described. A case where a slab is manufactured by continuous casting after blast furnace refining using blast furnace hot metal as a raw material will be described as an example.
本発明では、Sが0.0025%以下の低硫鋼を対象としているので、一般には、溶銑脱硫と溶鋼脱硫を併用する。転炉出鋼後にAlを添加して、溶鋼を予備脱酸してもよい。その後、二次精錬工程で溶鋼脱硫を行う場合には、CaO−CaF2を主成分とする脱硫剤を添加して、鋼材の要求に応じた脱硫処理を行う。 In the present invention, since low sulfur steel with S of 0.0025% or less is targeted, generally hot metal desulfurization and molten steel desulfurization are used in combination. Al may be added after the converter steel and the molten steel may be pre-deoxidized. Thereafter, when molten steel desulfurization is performed in the secondary refining process, a desulfurization agent containing CaO—CaF 2 as a main component is added to perform desulfurization treatment according to the requirements of the steel material.
REMは、これ以外の元素の組成を調整した後に、また、Al予備脱酸を行う場合は、予備脱酸で生じるAl2O3を浮上させる時間(例えば、5分以上)を取った後に、添加することが好ましい。 REM, after adjusting the composition of the other elements, and when preliminarily deoxidizing Al, after taking time (for example, 5 minutes or more) to float Al 2 O 3 generated by the preliminary deoxidation, It is preferable to add.
Al2O3が溶鋼中に多量に残存していると、その後に添加するREMが、Al2O3の還元に消費され、Sの固定に使われる割合が低下し、MnSの生成を十分に防止できなくなるからである。また、Al予備脱酸を行う場合、REM添加後の溶存酸素濃度が50ppm以上とすることができる範囲で行うことが重要である。 If a large amount of Al 2 O 3 remains in the molten steel, the REM added after that will be consumed for the reduction of Al 2 O 3 , and the ratio used for fixing S will be reduced, and the generation of MnS will be sufficient. This is because it cannot be prevented. Moreover, when performing Al preliminary deoxidation, it is important to carry out in the range which can make the dissolved oxygen concentration after REM addition 50 ppm or more.
その後、AlとCaを添加する。Alは溶存酸素を脱酸するために添加するので、Al2O3が溶鋼中に生成する。ここでのAl2O3の生成量は、あまり多くないので、CaをAlと同時に添加しても、CaがAl2O3の還元に消費される量も少なく、問題にはならない。ただし、Al2O3を浮上させる時間(例えば、5分以上)を取った後に、Caを添加すると、CaがAl2O3の還元に消費される量をより減少できるので好ましい。 Thereafter, Al and Ca are added. Since Al is added to deoxidize dissolved oxygen, Al 2 O 3 is generated in the molten steel. Since the amount of Al 2 O 3 produced here is not so large, even if Ca is added simultaneously with Al, the amount of Ca consumed for the reduction of Al 2 O 3 is small, which is not a problem. However, it is preferable to add Ca after allowing the Al 2 O 3 to float (for example, 5 minutes or more) because the amount of Ca consumed for the reduction of Al 2 O 3 can be further reduced.
ちなみに、Caは、蒸気圧が高いので、歩留を上げるために、Ca−Si合金や、Ca−Ni合金等の形で添加することが一般的である。これらの合金添加では、それぞれの合金ワイヤー添加を用いてもよい。REMは、Fe−Si−REM合金や、ミッシュメタルの形で添加すればよい。 Incidentally, since Ca has a high vapor pressure, it is generally added in the form of a Ca—Si alloy, a Ca—Ni alloy or the like in order to increase the yield. In addition of these alloys, addition of each alloy wire may be used. REM may be added in the form of Fe-Si-REM alloy or misch metal.
以上により溶製された溶鋼を、連続鋳造機を用いて鋳片を製造し、その後、熱間圧延工程で圧延されて、本発明の鋼材を得ることができる。 The molten steel melted as described above is manufactured into a slab using a continuous casting machine, and then rolled in a hot rolling process to obtain the steel material of the present invention.
高炉溶銑を原料として用い、溶銑予備処理工程で、トーピードカー中の溶銑に、CaOを主成分とする脱硫剤を吹き込み、予備脱硫を行った。この溶銑を、溶鋼量300トンの上底吹き転炉で脱炭処理した。転炉出鋼後に、溶湯中にAlを添加して溶鋼を予備脱酸した。その後、二次精錬工程で溶鋼脱硫を行い、CaO−CaF2を主成分とする脱硫剤を添加して、目標S含有量に応じた脱硫処理を行った。 Blast furnace hot metal was used as a raw material, and in the hot metal preliminary treatment step, a desulfurization agent mainly composed of CaO was blown into the hot metal in the torpedo car to perform preliminary desulfurization. This hot metal was decarburized in an upper bottom blowing converter with a molten steel amount of 300 tons. After the converter steel, Al was added to the molten metal to pre-deoxidize the molten steel. Thereafter, molten steel desulfurization was performed in the secondary refining process, and a desulfurizing agent containing CaO—CaF 2 as a main component was added to perform desulfurization treatment according to the target S content.
REMは、種々の元素の組成を調整した後、さらに、Al予備脱酸で生じるAl2O3を浮上させるため、5分以上の時間を取った後に添加した。その後、AlとCaを添加した。Caは、蒸気圧が高いため、歩留を上げるために、Ca−Si合金の形で添加した。REMはミッシュメタルの形で添加した。 After adjusting the composition of various elements, REM was added after a time of 5 minutes or more in order to float Al 2 O 3 generated by Al preliminary deoxidation. Thereafter, Al and Ca were added. Since Ca has a high vapor pressure, Ca was added in the form of a Ca—Si alloy in order to increase the yield. REM was added in the form of misch metal.
連続鋳造により、厚み240mmの鋳片とした。その後、鋳片を、1250℃×1時間の条件で加熱し、仕上げ温度850℃の条件で、板厚12mmまで厚板圧延を行った。圧下比は20である。 A slab having a thickness of 240 mm was obtained by continuous casting. Thereafter, the slab was heated under the condition of 1250 ° C. × 1 hour, and the plate was rolled to a plate thickness of 12 mm under the condition of a finishing temperature of 850 ° C. The reduction ratio is 20.
連続鋳造において、タンディッシュから鋳型に溶鋼を注入するための浸漬ノズルの評価を行った。1ヒート(300トン)鋳造後のノズル内面に、介在物層又は介在物を含んだ地金層が、10mm以上、付着していた場合には、ノズル詰まり「有り」とし、それ以外を「無」とした。 In continuous casting, an immersion nozzle for injecting molten steel from a tundish into a mold was evaluated. If the inclusion layer or a metal layer including inclusions is 10 mm or more on the inner surface of the nozzle after casting for 1 heat (300 tons), the nozzle clogging is “Yes”, and the others are “No”. "
製造した鋼材について、介在物の長さを調査した。圧延方向と平行な断面において、光学顕微鏡で、倍率400倍(ただし、介在物形状を詳細に測定する際は、倍率1000倍)で、厚み方向12mm×長手方向10mmの範囲を観察した。圧延方向と平行な断面で観察したのは、この断面が、介在物が最も長く伸延しているからである。 About the manufactured steel materials, the length of the inclusion was investigated. In a cross section parallel to the rolling direction, an optical microscope was used to observe a range of thickness direction 12 mm × longitudinal direction 10 mm at a magnification of 400 times (however, when the inclusion shape was measured in detail, the magnification was 1000 times). The reason for observing the cross section parallel to the rolling direction is that the inclusion is elongated the longest in this cross section.
介在物の組成については、操作型電子顕微鏡(SEM)で、円相当径が1μm以上である介在物を30個観察し、SEMに付属するEDS等の組成分析装置で分析した。SEM像では、介在物内部に組成が異なる領域があれば、明暗差で識別することができるので、領域ごとの組成を分析することができる。 Regarding the composition of inclusions, 30 inclusions having a circle-equivalent diameter of 1 μm or more were observed with a manipulation electron microscope (SEM) and analyzed with a composition analyzer such as EDS attached to the SEM. In the SEM image, if there is a region having a different composition inside the inclusion, it can be identified by the difference in brightness, so that the composition of each region can be analyzed.
そこで、介在物ごとに、平均組成が、%Al2O3+%CaO+%REM2O3≧80%であり、かつ、(%REM)/(%Al+%Ca+%REM)≧0.5である領域(晶出相)の面積割合を求めし、この面積割合が40%以上の介在物について、介在物総数に占める個数割合を求めた。 Therefore, for each inclusion, the average composition is% Al 2 O 3 +% CaO +% REM 2 O 3 ≧ 80% and (% REM) / (% Al +% Ca +% REM) ≧ 0.5 The area ratio of a certain region (crystallized phase) was determined, and the number ratio of the inclusions with an area ratio of 40% or more to the total number of inclusions was determined.
鋼材の耐水素誘起割れ性については、NACE(National Association of Corrosion Engineers)TM0284−2003に規定される方法に従って評価した。試験片は、厚さ10mm、幅20mm、長さ100mmのものを、圧延方向と平行に、各鋼材から10個採取した。試験片は、101.325kPaの硫化水素を飽和させた25℃の(0.5%酢酸+5%食塩)水溶液中に96時間浸漬した。 The resistance to hydrogen-induced cracking of steel was evaluated according to the method specified in NACE (National Association of Corrosion Engineers) TM0284-2003. Ten test pieces having a thickness of 10 mm, a width of 20 mm, and a length of 100 mm were collected from each steel material in parallel with the rolling direction. The test piece was immersed for 96 hours in a 25 ° C. (0.5% acetic acid + 5% sodium chloride) aqueous solution saturated with 101.325 kPa of hydrogen sulfide.
試験後、各試験片に発生した水素誘起割れの面積を超音波探傷法により測定し、割れ面積率を算出した。試験片1個あたりの割れ面積率は、(各試験片に発生した割れ面積/試験片面積)×100(%)であり、試験片面積は20mm×100mmである。10個の試験片の割れ面積率の平均値が1%以上の場合は×、1%未満の場合を○と評価した。 After the test, the area of hydrogen induced cracks generated in each test piece was measured by an ultrasonic flaw detection method, and the crack area ratio was calculated. The crack area ratio per test piece is (crack area generated in each test piece / test piece area) × 100 (%), and the test piece area is 20 mm × 100 mm. When the average value of the cracked area ratios of 10 test pieces was 1% or more, x was evaluated as ○ when the average value was less than 1%.
連続鋳造鋳片の下面側に堆積した介在物起因の内部欠陥については、鋼材の圧延方向と平行な断面を光学顕微鏡で観察し、長さ50μm超の介在物(形状によらず、延伸、塊状、クラスター上のいずれも)が観察された場合は×とし、それ以外の場合は○として評価した。 For internal defects caused by inclusions accumulated on the lower surface side of the continuous cast slab, the cross section parallel to the rolling direction of the steel material was observed with an optical microscope, and inclusions with a length exceeding 50 μm (stretched, lump-like regardless of shape) , All on the cluster) were evaluated as x, otherwise it was evaluated as ◯.
製造条件及び製造結果を表1及び表2(表1の続き)に示す。本発明範囲から外れる数値にアンダーラインを付している。 Production conditions and production results are shown in Table 1 and Table 2 (continuation of Table 1). Numerical values that fall outside the scope of the present invention are underlined.
表1及び2の発明例1〜15は、本発明条件を満足する鋼材である。平均組成が、%Al2O3+%CaO+%REM2O3≧80%で、かつ、(%REM)/(%Al+%Ca+%REM)≧0.5である領域(晶出相)が面積率で40%以上の介在物が、介在物総数に対する割合で、いずれも、50%以上であった。圧延方向に平行な断面における介在物の最大長さは、いずれも、30μm以下であり、内部欠陥、及び、耐HIC性の評価は「○」であった。そして、ノズル詰まりは無く、評価は「無」であった。 Invention Examples 1 to 15 in Tables 1 and 2 are steel materials that satisfy the conditions of the present invention. A region (crystallization phase) in which the average composition is% Al 2 O 3 +% CaO +% REM 2 O 3 ≧ 80% and (% REM) / (% Al +% Ca +% REM) ≧ 0.5 Inclusions with an area ratio of 40% or more were 50% or more in proportion to the total number of inclusions. The maximum length of inclusions in a cross section parallel to the rolling direction was 30 μm or less, and the evaluation of internal defects and HIC resistance was “◯”. The nozzle was not clogged, and the evaluation was “none”.
表1及び2の比較例1〜8は比較例であり、本発明範囲から外れた条件を含んでいる。比較例1〜5は、REM添加後の溶存酸素が50ppm未満であった。その結果、平均組成が、%Al2O3+%CaO+%REM2O3≧80%で、かつ、(%REM)/(%Al+%Ca+%REM)≧0.5である領域(晶出相)が面積率で40%以上の介在物が、介在物総数に対する割合で50%未満であり、介在物が微細分散していないことを示している。 Comparative Examples 1 to 8 in Tables 1 and 2 are comparative examples and include conditions outside the scope of the present invention. In Comparative Examples 1 to 5, the dissolved oxygen after the addition of REM was less than 50 ppm. As a result, the region where the average composition is% Al 2 O 3 +% CaO +% REM 2 O 3 ≧ 80% and (% REM) / (% Al +% Ca +% REM) ≧ 0.5 (crystallization) Inclusions whose phase ratio is 40% or more in area ratio is less than 50% in proportion to the total number of inclusions, indicating that the inclusions are not finely dispersed.
また、介在物最大長さは50μmを超えており、その結果、内部欠陥と耐HIC性は、ともに「×」であった。比較例6は、REM量が少ないため、介在物が延伸し、最大長さは50μmを超え、内部欠陥と耐HIC性は、ともに「×」であった。比較例7と8は、REM量が過剰なため、ノズル詰まりが生じ、内部欠陥も「×」であった。 In addition, the maximum length of inclusions exceeded 50 μm, and as a result, both internal defects and HIC resistance were “x”. In Comparative Example 6, since the amount of REM was small, the inclusions were stretched, the maximum length exceeded 50 μm, and both internal defects and HIC resistance were “x”. In Comparative Examples 7 and 8, since the amount of REM was excessive, nozzle clogging occurred and the internal defect was “x”.
前述したように、本発明によれば、耐水素誘起割れ性に優れ、かつ、靭性低下を防止して靭性を確保した鋼材を製造し、提供することができる。よって、本発明は、鉄鋼産業において利用可能性が高いものである。 As described above, according to the present invention, it is possible to manufacture and provide a steel material that has excellent resistance to hydrogen-induced cracking and that has ensured toughness by preventing a decrease in toughness. Therefore, the present invention has high applicability in the steel industry.
Claims (2)
(i)上記鋼材中に存在する介在物の最大円相当直径が30μmであり、
(ii)上記鋼材の圧延方向の断面視において、平均組成が、%Al2O3+%CaO+%REM2O3≧80%であり、かつ、(%REM)/(%Al+%Ca+%REM)≧0.5である領域の面積が全面積の40%以上である介在物が、介在物の個数割合で、50%以上存在している
ことを特徴とする耐水素誘起割れ性に優れた鋼材。 In mass%, C: 0.03-0.10%, Si: 0.1-0.5%, Mn: 0.8-2.0%, P: 0.030% or less, S: 0.0025 % Or less, N: 0.005% or less, sol. A steel slab made of Al: 0.010 to 0.11%, Ca: 0.0004 to 0.0040%, rare earth element (REM): 0.0003 to 0.0060%, the balance Fe and inevitable impurities is rolled. Steel material obtained by
(I) The maximum equivalent circle diameter of inclusions present in the steel material is 30 μm,
(Ii) In a cross-sectional view of the steel material in the rolling direction, the average composition is% Al 2 O 3 +% CaO +% REM 2 O 3 ≧ 80% and (% REM) / (% Al +% Ca +% REM) ) Excellent in hydrogen-induced cracking resistance, characterized in that inclusions having an area of ≧ 0.5 that is 40% or more of the total area are present in a ratio of the number of inclusions of 50% or more. Steel material.
(i)C、Si、Mn、P、S、Nの組成を調整した後、REM添加後の溶存酸素濃度が50ppm以上となるようにREMを添加し、その後、Al及びCaを添加して、上記成分組成の溶鋼を溶製し、
(ii)上記溶鋼を鋳造して鋼鋳片を製造し、次いで、圧延して鋼材を得る
ことを特徴とする耐水素誘起割れ性に優れた鋼材の製造方法。 In mass%, C: 0.03-0.10%, Si: 0.1-0.5%, Mn: 0.8-2.0%, P: 0.030% or less, S: 0.0025 % Or less, N: 0.005% or less, sol. When melting molten steel composed of Al: 0.010 to 0.11%, Ca: 0.0004 to 0.0040%, rare earth element (REM): 0.0003 to 0.0060%, balance Fe and inevitable impurities ,
(I) After adjusting the composition of C, Si, Mn, P, S, N, REM is added so that the dissolved oxygen concentration after REM addition is 50 ppm or more, and then Al and Ca are added. Melting molten steel with the above composition,
(Ii) A method for producing a steel material excellent in resistance to hydrogen-induced cracking, wherein the molten steel is cast to produce a steel slab and then rolled to obtain a steel material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010189383A JP5541002B2 (en) | 2010-08-26 | 2010-08-26 | Steel with excellent resistance to hydrogen-induced cracking |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010189383A JP5541002B2 (en) | 2010-08-26 | 2010-08-26 | Steel with excellent resistance to hydrogen-induced cracking |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012046789A true JP2012046789A (en) | 2012-03-08 |
JP5541002B2 JP5541002B2 (en) | 2014-07-09 |
Family
ID=45901970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010189383A Active JP5541002B2 (en) | 2010-08-26 | 2010-08-26 | Steel with excellent resistance to hydrogen-induced cracking |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5541002B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013190750A1 (en) * | 2012-06-18 | 2013-12-27 | Jfeスチール株式会社 | Thick, high-strength, sour-resistant line pipe and method for producing same |
WO2014010150A1 (en) * | 2012-07-09 | 2014-01-16 | Jfeスチール株式会社 | Thick-walled high-strength sour-resistant line pipe and method for producing same |
WO2014175377A1 (en) * | 2013-04-24 | 2014-10-30 | 新日鐵住金株式会社 | Low-oxygen-purified steel and low-oxygen-purified steel product |
WO2020071219A1 (en) * | 2018-10-01 | 2020-04-09 | 日本製鉄株式会社 | Seamless steel pipe suitable for use in sour environment |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001020033A (en) * | 1999-07-07 | 2001-01-23 | Kawasaki Steel Corp | Non-heattreated high tensile strength steel excellent in toughness of base material and weld heat-affected zone |
-
2010
- 2010-08-26 JP JP2010189383A patent/JP5541002B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001020033A (en) * | 1999-07-07 | 2001-01-23 | Kawasaki Steel Corp | Non-heattreated high tensile strength steel excellent in toughness of base material and weld heat-affected zone |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2013190750A1 (en) * | 2012-06-18 | 2016-02-08 | Jfeスチール株式会社 | Thick and high strength sour line pipe and method for manufacturing the same |
CN104364406B (en) * | 2012-06-18 | 2016-09-28 | 杰富意钢铁株式会社 | Thick section and high strength acid resistance line pipe and manufacture method thereof |
WO2013190750A1 (en) * | 2012-06-18 | 2013-12-27 | Jfeスチール株式会社 | Thick, high-strength, sour-resistant line pipe and method for producing same |
CN104364406A (en) * | 2012-06-18 | 2015-02-18 | 杰富意钢铁株式会社 | Thick, high-strength, sour-resistant line pipe and method for producing same |
JPWO2014010150A1 (en) * | 2012-07-09 | 2016-06-20 | Jfeスチール株式会社 | Thick and high strength sour line pipe and method for manufacturing the same |
WO2014010150A1 (en) * | 2012-07-09 | 2014-01-16 | Jfeスチール株式会社 | Thick-walled high-strength sour-resistant line pipe and method for producing same |
CN105164294A (en) * | 2013-04-24 | 2015-12-16 | 新日铁住金株式会社 | Low-oxygen-purified steel and low-oxygen-purified steel product |
WO2014175377A1 (en) * | 2013-04-24 | 2014-10-30 | 新日鐵住金株式会社 | Low-oxygen-purified steel and low-oxygen-purified steel product |
CN105164294B (en) * | 2013-04-24 | 2017-08-04 | 新日铁住金株式会社 | Hypoxemia clean steel and the pure product made from steel of hypoxemia |
US10526686B2 (en) | 2013-04-24 | 2020-01-07 | Nippon Steel Corporation | Low-oxygen clean steel and low-oxygen clean steel product |
WO2020071219A1 (en) * | 2018-10-01 | 2020-04-09 | 日本製鉄株式会社 | Seamless steel pipe suitable for use in sour environment |
JPWO2020071219A1 (en) * | 2018-10-01 | 2021-09-02 | 日本製鉄株式会社 | Seamless steel pipe suitable for use in sour environment |
JP6996641B2 (en) | 2018-10-01 | 2022-02-04 | 日本製鉄株式会社 | Seamless steel pipe suitable for use in sour environments |
Also Published As
Publication number | Publication date |
---|---|
JP5541002B2 (en) | 2014-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5540982B2 (en) | Steel with excellent resistance to hydrogen-induced cracking | |
JP5428705B2 (en) | High toughness steel plate | |
JP5262075B2 (en) | Method for producing steel for pipes with excellent sour resistance | |
JP4957872B2 (en) | Steel for steel pipes with excellent resistance to sulfide stress cracking | |
JP4673343B2 (en) | Stainless steel sheet excellent in corrosion resistance, weldability and surface properties and method for producing the same | |
TWI761096B (en) | Stainless steel for metal foil, stainless steel foil, and method for manufacturing the same | |
JP2010116611A (en) | Method for manufacturing low-sulfur thick steel plate excellent in haz toughness at the time of inputting large amount of heat | |
JP6116286B2 (en) | Ferritic stainless steel with less heat generation | |
JP6999475B2 (en) | Highly Si-containing austenitic stainless steel with excellent manufacturability | |
JP5541002B2 (en) | Steel with excellent resistance to hydrogen-induced cracking | |
TWI752837B (en) | Stainless steel, stainless steel material, and method for manufacturing stainless steel | |
JP2020002406A (en) | Manufacturing method of steel | |
JP7230454B2 (en) | Steel materials for seamless steel pipes | |
JP2005307234A (en) | Ferritic stainless steel sheet having excellent ridging resistance and surface characteristic and method for manufacturing the same | |
JP2020084281A (en) | steel sheet | |
JP2008266706A (en) | Method for continuously casting ferritic stainless steel slab | |
JP7533816B1 (en) | Steel plate, its manufacturing method, and steel pipe | |
KR102103392B1 (en) | Refining method and steel material | |
JP7533817B1 (en) | Steel plate, its manufacturing method, and steel pipe | |
CN116171334B (en) | Precipitation hardening martensitic stainless steel having excellent fatigue resistance | |
JP6086036B2 (en) | Steel plate with excellent weld heat-affected zone toughness and its melting method | |
JP2001011528A (en) | Method for melting steel excellent in hydrogen induced cracking resistance | |
RU2223342C1 (en) | Steel | |
JP3629955B2 (en) | High tensile steel plate with excellent deformability | |
RU2480532C1 (en) | Tube workpiece from alloyed steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120809 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131008 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140408 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140421 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5541002 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |