JP4673343B2 - Stainless steel sheet excellent in corrosion resistance, weldability and surface properties and method for producing the same - Google Patents

Stainless steel sheet excellent in corrosion resistance, weldability and surface properties and method for producing the same Download PDF

Info

Publication number
JP4673343B2
JP4673343B2 JP2007149845A JP2007149845A JP4673343B2 JP 4673343 B2 JP4673343 B2 JP 4673343B2 JP 2007149845 A JP2007149845 A JP 2007149845A JP 2007149845 A JP2007149845 A JP 2007149845A JP 4673343 B2 JP4673343 B2 JP 4673343B2
Authority
JP
Japan
Prior art keywords
mass
stainless steel
steel plate
cao
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007149845A
Other languages
Japanese (ja)
Other versions
JP2007277727A (en
Inventor
秀和 轟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP2007149845A priority Critical patent/JP4673343B2/en
Publication of JP2007277727A publication Critical patent/JP2007277727A/en
Application granted granted Critical
Publication of JP4673343B2 publication Critical patent/JP4673343B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、耐食性、溶接性および表面性状に優れるステンレス鋼とその製造方法に関するものである。 The present invention corrosion-resistant, stainless steel plate having excellent weldability and surface properties and a manufacturing method thereof.

Fe−Ni−Cr系のステンレス鋼は、高耐食性合金として厨房機器をはじめ、化学プラントなどに広く利用されている。しかしながら、このステンレス鋼の表面に存在する非金属介在物は、錆などの腐食の起点となり、その腐食の速さは、非金属介在物の組成や量によって変化することが知られている。また、非金属介在物は、その組成によっては表面疵を発生させることがあり、とくにその組成がアルミナの場合に顕著となる。   Fe-Ni-Cr stainless steel is widely used as a highly corrosion-resistant alloy in kitchen equipment, chemical plants, and the like. However, it is known that the nonmetallic inclusions present on the surface of the stainless steel serve as a starting point for corrosion such as rust, and the speed of the corrosion varies depending on the composition and amount of the nonmetallic inclusions. In addition, nonmetallic inclusions may cause surface defects depending on the composition, particularly when the composition is alumina.

この問題に対し、例えば、特許文献1には、溶鋼中に少量のAlまたはSiを添加して予備脱酸を行った後、Tiを添加して脱酸を行うことにより介在物の形態を制御し、さらに適量のCaを添加することによって、表面疵を引き起こさず、耐食性にも悪影響を与えない介在物に制御する技術が開示されている(特許文献1参照。)。しかし、この従来技術の方法では、添加したTiがNと結合して硬質のTiNを形成し、ストリンガーと呼ばれる表面疵を発生し易いという問題があった。また、AlおよびCaの添加は、溶接性に悪影響を与えるという問題もあった。
特開2000−1759号公報
To deal with this problem, for example, in Patent Document 1, after a small amount of Al or Si is added to molten steel and preliminary deoxidation is performed, the form of inclusions is controlled by adding Ti and performing deoxidation. In addition, a technique is disclosed in which an appropriate amount of Ca is added to control inclusions that do not cause surface flaws and do not adversely affect corrosion resistance (see Patent Document 1). However, this prior art method has a problem that the added Ti bonds with N to form hard TiN, and surface flaws called stringers are likely to occur. In addition, the addition of Al and Ca has a problem of adversely affecting weldability.
JP 2000-1759 A

上記のように、鋼中に含まれる非金属介在物の量や組成によっては、十分な耐食性や溶接性が得られないことがある。また、介在物組成がアルミナとなると、クラスターに起因した表面庇を発生させてしまう。さらに、Tiを添加してこれらの問題を回避しようとすると、ストリンガーを発生し易いという問題点があった。   As described above, depending on the amount and composition of the nonmetallic inclusions contained in the steel, sufficient corrosion resistance and weldability may not be obtained. In addition, when the inclusion composition is alumina, surface defects due to the clusters are generated. Furthermore, when trying to avoid these problems by adding Ti, there is a problem that stringers are easily generated.

本発明の目的は、耐食性、溶接性および表面性状に優れたステンレス鋼を提供するとともに、該ステンレス鋼を汎用の生産設備を用いて安価に製造する方法を提案することにある。 An object of the present invention, corrosion resistance, while providing excellent stainless steel plate weldability and surface quality, is to propose a method of inexpensively manufactured using a general-purpose production equipment the stainless steel plate.

発明者らは、上記従来技術の抱える問題点を解決するため、とくにステンレス鋼に含まれる非金属介在物の量および組成が、ステンレス鋼の耐食性、溶接性および表面性状に与える影響について、以下の検討を行った。 Inventors for solving the problems of the above prior art, the amount and composition of non-metallic inclusions especially contained in a stainless steel plate, the corrosion resistance of stainless steel plate, the effect on weldability and surface quality, The following examination was conducted.

まず、実験室にてマグネシアるつぼあるいはアルミナるつぼを用いて、Fe−18mass%Cr−8mass%Ni合金を溶解し、この溶鋼中に、CaO−SiO−Al−MgO−F系スラグを添加した後、Si,Mn,Al,CaおよびMgのうちのいずれか1種または2種以上を添加して脱酸を行った後、鋳造し、種々の介在物組成を有する鋼塊を得た。この鋼塊を鍛造し、熱間圧延した後、さらに冷間圧延し、板厚3mmの鋼板とした。この鋼板から試験片を採取し、耐食性および溶接性を調査した。 First, an Fe-18 mass% Cr-8 mass% Ni alloy is melted in a laboratory using a magnesia crucible or an alumina crucible, and CaO—SiO 2 —Al 2 O 3 —MgO—F slag is dissolved in the molten steel. After the addition, any one or more of Si, Mn, Al, Ca and Mg was added and deoxidized, and then cast to obtain steel ingots having various inclusion compositions. . This ingot was forged and hot-rolled, and then cold-rolled to obtain a steel plate having a thickness of 3 mm. Test pieces were collected from this steel sheet and investigated for corrosion resistance and weldability.

耐食性は、上記試験片を、#600研磨仕上げした後、脱脂し、JIS Z2371に準拠した条件(50℃)で塩水噴霧試験(SST)を4時間行い、発錆の有無を調べた。   For the corrosion resistance, the above test piece was polished and finished with # 600, then degreased, and subjected to a salt spray test (SST) for 4 hours under conditions (50 ° C.) in accordance with JIS Z2371, to check for rusting.

また、溶接性は、上記試験片を電流値:120A、溶接速度:200mm/分の条件でTIG溶接を行い、ビード上に発生した黒点の有無により溶接性を評価した。この黒点は、ビード上に生成した酸化物欠陥であり、この欠陥が存在すると、その部位の耐食性を劣化させたり、外観不良を引き起こしたりする。また、この試験と同時に、目視により表面疵の発生有無も調査した。   Further, the weldability was evaluated by performing TIG welding on the test piece under the conditions of a current value of 120 A and a welding speed of 200 mm / min, and the presence or absence of black spots generated on the beads. This black spot is an oxide defect generated on the bead, and when this defect exists, the corrosion resistance of the part is deteriorated or an appearance defect is caused. Simultaneously with this test, the presence or absence of surface flaws was also examined visually.

上記試験の結果、発明者らは、非金属介在物が、CaO−SiO−Al−MgO−MnO系酸化物(シリケート)からなる組成である場合には、耐食性、溶接性および表面性状が共に優れるステンレス鋼が得られることを知見した。 Results of the test, the inventors have found that when non-metallic inclusions, a C aO-SiO 2 -Al 2 O 3 -MgO-MnO based oxide (silicate) or Ranaru composition, corrosion resistance, weldability It was also found that stainless steel with excellent surface properties can be obtained.

また、Caの含有量が0.01mass%を超えると、介在物の組成がCaO単体となり、耐食性が劣化すると同時に、溶接時に黒点が発生することがわかった。その原因は、耐食性については、CaOが水溶性で不安定であるため、また、溶接性については、CaO系介在物が溶融池で浮上して集中するためと考えられた。さらに、鋼中のCa濃度は、O濃度とも関連があり、Oが0.0001mass%未満と低くなると、Caが0.01mass%を超えてしまうこともわかった。   In addition, it was found that when the Ca content exceeds 0.01 mass%, the composition of inclusions becomes CaO alone, and the corrosion resistance deteriorates, and at the same time, black spots are generated during welding. The cause is considered to be that CaO is water-soluble and unstable in terms of corrosion resistance, and that in terms of weldability, CaO-based inclusions float and concentrate in the molten pool. Furthermore, the Ca concentration in the steel is also related to the O concentration, and it was also found that when the O becomes lower than 0.0001 mass%, the Ca exceeds 0.01 mass%.

また、鋼中のAl濃度が0.1mass%を超えると、介在物の組成がAl(アルミナ)となってクラスターを形成し、表面欠陥を発生すると共に、溶接時に黒点を発生させることがわかった。 Also, if the Al concentration in the steel exceeds 0.1 mass%, the composition of inclusions becomes Al 2 O 3 (alumina), forming clusters, generating surface defects, and generating black spots during welding. I understood.

さらに、O濃度が0.01mass%を超えて高くなると、JIS G0555に規定された清浄度が0.05を超えてしまうため、鋼板表面の介在物量が多くなって耐食性を劣化させることがわかった。また、Sを0.0002mass%未満に下げ過ぎると、溶接時の溶け込み性を悪くすることもわかった。   Furthermore, it was found that when the O concentration is higher than 0.01 mass%, the cleanliness specified in JIS G0555 exceeds 0.05, so that the amount of inclusions on the steel sheet surface increases and the corrosion resistance deteriorates. . It has also been found that if S is lowered to less than 0.0002 mass%, the penetration property during welding is deteriorated.

本発明は、上記知見に基づいて開発されたものであって、C≦0.1mass%、Si:0.01〜2.0mass%、Mn:0.01〜3.0mass%、Cr:13.0〜26.0mass%、Ni:2.0〜30.0mass%、Mo:0.01〜5.0mass%、Co≦3mass%、Al:0.001〜0.1mass%、S:0.0002〜0.02mass%、Mg:0.00005〜0.01mass%、Ca:0.00005〜0.01mass%、O:0.0050〜0.01mass%、N:0.01〜0.3mass%、残部がFeおよび不可避的不純物からなるステンレス鋼において、該ステンレス鋼中に含まれる非金属介在物が、CaO:1〜40mass%以下、SiO :10〜70mass%、Al :5〜40mass%、MgO:0.1〜25mass%、MnO:0.1〜2.5mass%からなり、Cr とFeOが合計で20mass%以下含まれるCaO−SiO−Al−MgO−MnO系酸化物からなることを特徴とする耐食性、溶接性および表面性状に優れるステンレス鋼である。 This invention was developed based on the said knowledge, Comprising: C <= 0.1mass%, Si: 0.01-2.0mass%, Mn: 0.01-3.0mass%, Cr: 13. 0 to 26.0 mass%, Ni: 2.0 to 30.0 mass%, Mo: 0.01 to 5.0 mass%, Co ≦ 3 mass%, Al: 0.001 to 0.1 mass%, S: 0.0002 -0.02 mass%, Mg: 0.00005-0.01 mass%, Ca: 0.00005-0.01 mass%, O: 0.0050-0.01 mass%, N: 0.01-0.3 mass%, in a stainless steel plate the balance of Fe and unavoidable impurities, non-metallic inclusions contained in the stainless steel plate in the, CaO: 1~40mass% or less, SiO 2: 10~70mass%, l 2 O 3: 5~40mass%, MgO: 0.1~25mass%, MnO: consists 0.1~2.5mass%, CaO-SiO 2 to Cr 2 O 3 and FeO is contained less 20 mass% in total corrosion, characterized in that it consists -Al 2 O 3 -MgO-MnO based oxide, a stainless steel plate having excellent weldability and surface properties.

本発明のステンレス鋼において、前記CaO−SiO−Al−MgO−MnO系酸化物は、鋳造後のスラブ中または鋼塊中にガラス質として存在することが好ましい。 In a stainless steel plate of the present invention, before Symbol CaO-SiO 2 -Al 2 O 3 -MgO-MnO based oxide is preferably present as a glassy in slab or ingot in after casting.

また、本発明のステンレス鋼における鋼中の非金属介在物は、JIS G0555に規定されたB系およびC系の形態であり、かつ、JIS G0555に規定された清浄度が0.05以下であることが好ましい。 Further, non-metallic inclusions in the steel in a stainless steel plate of the present invention is in the form of a B system and C system defined in JIS G0555, and, at a defined cleanliness in JIS G0555 is 0.05 or less Preferably there is.

また、本発明は、上記ステンレス鋼を製造するに当たり、電気炉に原料を装入して溶解し、AODおよび/またはVODにおいてArまたは窒素と酸素とを吹精して脱炭し、その後、石灰石および蛍石を投入して、CaO:30〜80mass%、SiO ≦20mass%、Al :5〜40mass%、MgO:1〜30mass%およびF≦20mass%の組成を有するCaO−SiO−Al−MgO−F系スラグを形成し、さらにAlまたはAlおよびフェロシリコンを投入してクロム還元、脱酸および脱硫を行った後、連続鋳造法または普通造塊法によりスラブとすることを特徴とする耐食性、溶接性および表面性状に優れるステンレス鋼の製造方法を提案する。 Further, the present invention is that when manufacturing the stainless steel plate, and dissolved by charging raw materials into an electric furnace, and decarburization by吹精the Ar or nitrogen and oxygen in the AOD and / or VOD, then, limestone and fluorite was charged, CaO: 30~80mass%, SiO 2 ≦ 20mass%, Al 2 O 3: 5~40mass%, MgO: CaO-SiO having a composition of 1~30Mass% and F ≦ 20 mass% 2- Al 2 O 3 —MgO—F-based slag is formed, and after addition of Al or Al and ferrosilicon to perform chromium reduction, deoxidation and desulfurization, slabs are formed by a continuous casting method or a normal ingot-making method. corrosion resistance characterized by, proposes a method for producing a stainless steel plate having excellent weldability and surface properties.

なお、本発明の前記普通造塊法は、鋳造して得た鋼塊を熱間鍛造してスラブとする方法であることが好ましい。   The ordinary ingot forming method of the present invention is preferably a method in which a steel ingot obtained by casting is hot forged into a slab.

本発明によれば、優れた耐食性を有すると共に、溶接性および表面性状にも優れた特性を有するステンレス鋼を、汎用の製造設備を用いて安価に製造することができ、産業上極めて有効な効果が期待できる。 According to the present invention, has excellent corrosion resistance, the stainless steel plate having excellent characteristics in weldability and surface properties, it can be produced inexpensively by using a general-purpose production equipment, extremely effective industrially The effect can be expected.

まず、本発明に係るステンレス鋼の各成分組成を、上記範囲に限定した理由について説明する。
C≦0.1mass%
Cは、オーステナイト安定化元素であるが、多量に存在すると、CrおよびMo等と結合して炭化物を形成し、母材に含まれる固溶CrおよびMo量を低下させ、耐食性を劣化させる。そのため、C含有量は0.1mass%以下とした。なお、好ましくは0.08mass%以下であり、より好ましくは0.07mass%以下である。
First, the reason why each component composition of the stainless steel according to the present invention is limited to the above range will be described.
C ≦ 0.1 mass%
C is an austenite stabilizing element, but if present in a large amount, it combines with Cr and Mo to form carbides, lowers the amount of solid solution Cr and Mo contained in the base material, and degrades corrosion resistance. Therefore, the C content is set to 0.1 mass% or less. In addition, Preferably it is 0.08 mass% or less, More preferably, it is 0.07 mass% or less.

Si:0.01〜2.0mass%
Siは、耐酸性ならびに耐孔食性の向上に有効であると共に、脱酸にも有効な元素である。しかしながら、Si含有量が0.01mass%未満では、その効果が十分に得られず、一方、2.0mass%を超えて存在すると、Fe,Cr,(Mo)から構成されるシグマ相の生成を促し、脆化を引き起こすほか、溶接性を低下させる。そのため、Si含有量は、0.01〜2.0mass%と規定した。なお、好ましくは0.02〜1.8mass%であり、より好ましくは0.03〜1.7mass%である。
Si: 0.01-2.0 mass%
Si is an element effective for improving acid resistance and pitting corrosion resistance, and also effective for deoxidation. However, when the Si content is less than 0.01 mass%, the effect is not sufficiently obtained. On the other hand, when the Si content exceeds 2.0 mass%, generation of a sigma phase composed of Fe, Cr, (Mo) is not achieved. Promotes and causes embrittlement, and reduces weldability. Therefore, the Si content is defined as 0.01 to 2.0 mass%. In addition, Preferably it is 0.02-1.8 mass%, More preferably, it is 0.03-1.7 mass%.

Mn:0.01〜3.0mass%
Mnは、脱酸に有効な元素である。Mn含有量が0.01mass%未満では、その効果が十分に得られず、逆に、3.0mass%を超えて存在すると、Siと同様にシグマ相の生成を促進し、脆化を招く。そのため、Mn含有量は0.01〜3.0mass%と規定した。なお、好ましくは0.02〜2.5mass%であり、より好ましくは0.03〜2.0mass%である。
Mn: 0.01 to 3.0 mass%
Mn is an element effective for deoxidation. If the Mn content is less than 0.01 mass%, the effect is not sufficiently obtained. Conversely, if the Mn content exceeds 3.0 mass%, the formation of a sigma phase is promoted similarly to Si, leading to embrittlement. Therefore, the Mn content is defined as 0.01 to 3.0 mass%. In addition, Preferably it is 0.02-2.5 mass%, More preferably, it is 0.03-2.0 mass%.

Cr:13.0〜26.0mass%
Crは、耐食性を確保するために必要不可欠な不動態皮膜を、鋼板表面に形成させる元素であり、耐酸性、耐孔食性、耐隙間腐食性ならびに耐応力腐食割れ性を改善するための母材の構成成分として、最も重要な元素である。しかしながら、Cr含有量が、13.0mass%未満では十分な耐食性が得られない。逆に、含有量が25mass%を超えると、シグマ相を生成し脆化を招く。以上の理由から、Cr含有量は13.0〜26.0mass%と規定した。なお、好ましくは15.0〜25.5mass%であり、より好ましくは16.0〜25.0mass%である。
Cr: 13.0-26.0 mass%
Cr is an element that forms a passive film, which is indispensable to ensure corrosion resistance, on the surface of a steel sheet, and is a base material for improving acid resistance, pitting corrosion resistance, crevice corrosion resistance, and stress corrosion cracking resistance Is the most important element. However, if the Cr content is less than 13.0 mass%, sufficient corrosion resistance cannot be obtained. Conversely, if the content exceeds 25 mass%, a sigma phase is generated and embrittlement occurs. For the above reasons, the Cr content is defined as 13.0 to 26.0 mass%. In addition, Preferably it is 15.0-25.5 mass%, More preferably, it is 16.0-25.0 mass%.

Ni:2.0〜30.0mass%
Niは、塩化物を含む溶液環境における耐孔食性、耐隙間腐食性ならびに耐応力腐食割れ性を改善する効果を有する。その効果を得るためには、2.0mass%以上が必要である。しかし、その効果は、30.0mass%以下の添加で十分であり、それ以上ではコスト上昇を招くため好ましくない。そこで、Ni含有量は、2.0〜30.0mass%と規定した。なお、好ましくは3.0〜25.0mass%であり、より好ましくは4.0〜23.0mass%である。
Ni: 2.0-30.0 mass%
Ni has an effect of improving pitting corrosion resistance, crevice corrosion resistance and stress corrosion cracking resistance in a solution environment containing chloride. In order to acquire the effect, 2.0 mass% or more is required. However, the effect of adding 30.0% by mass or less is sufficient, and beyond that, the cost is increased, which is not preferable. Therefore, the Ni content is defined as 2.0 to 30.0 mass%. In addition, Preferably it is 3.0-25.0 mass%, More preferably, it is 4.0-23.0 mass%.

S:0.0002〜0.02mass%
Sは、溶接時の溶け込み性を向上させる有効な元素である。しかし、含有量が多すぎると、Mnと結合してMnSを生成し、耐食性および熱間加工性を低下させる。そのため、S含有量は0.0002〜0.02mass%の範囲内とした。なお、好ましくは0.0005〜0.015mass%であり、より好ましくは0.001〜0.01mass%である。
S: 0.0002 to 0.02 mass%
S is an effective element that improves the penetration at the time of welding. However, when there is too much content, it will couple | bond with Mn and will produce | generate MnS and will reduce corrosion resistance and hot workability. Therefore, the S content is set in the range of 0.0002 to 0.02 mass%. In addition, Preferably it is 0.0005-0.015 mass%, More preferably, it is 0.001-0.01 mass%.

Al:0.001〜0.1mass%
Alは、脱酸に必要不可欠な元素である。Al含有量が0.001mass%未満では、酸素濃度の上昇を招き(O>0.01mass%)、JIS G0555に規定された清浄度が0.05を超えて高くなり、耐食性とくに耐孔食性を低下させる。しかし、0.1mass%を超えて含有すると、黒点を発生して溶接性を低下させるばかりか、介在物の組成がアルミナとなり、クラスター起因の表面庇を発生させる。そのため、Alの含有量は0.001〜0.1mass%と規定した。なお、好ましくは0.003〜0.08mass%であり、より好ましくは0.005〜0.05mass%である。
Al: 0.001 to 0.1 mass%
Al is an indispensable element for deoxidation. If the Al content is less than 0.001 mass%, the oxygen concentration will increase (O> 0.01 mass%), the cleanliness specified in JIS G0555 will be higher than 0.05, and corrosion resistance, especially pitting corrosion resistance will be increased. Reduce. However, if the content exceeds 0.1 mass%, not only black spots are generated and weldability is deteriorated, but also the composition of inclusions becomes alumina, and surface defects due to clusters are generated. Therefore, the content of Al is defined as 0.001 to 0.1 mass%. In addition, Preferably it is 0.003-0.08 mass%, More preferably, it is 0.005-0.05 mass%.

Mg:0.00005〜0.01mass%
Mgは、鋼中の非金属介在物の組成を、耐食性に悪影響のない成分系、すなわちMgO・Al、MgOあるいはCaO−SiO−Al−MgO−MnO系酸化物に制御するために有用な元素である。その効果は、含有量が0.00005mass%未満では得られず、逆に、0.01mass%を超えて含有させると、連続鋳造機のノズル閉塞を引き起こし、操業を阻害する。さらに、鋼中にMg起因の気泡欠陥をもたらすという問題もある。そのため、Mg含有量は0.00005〜0.01mass%と規定した。好ましくは0.0001〜0.005mass%であり、より好ましくは0.0001〜0.002mass%である。さらに好ましくは0.0002〜0.002mass%である。
Mg: 0.00005 to 0.01 mass%
Mg controls the composition of non-metallic inclusions in steel to a component system that does not adversely affect corrosion resistance, that is, MgO.Al 2 O 3 , MgO or CaO—SiO 2 —Al 2 O 3 —MgO—MnO oxide It is a useful element to do. The effect cannot be obtained if the content is less than 0.00005 mass%. Conversely, if the content exceeds 0.01 mass%, nozzle clogging of a continuous casting machine is caused and operation is hindered. Furthermore, there is also a problem of causing bubble defects due to Mg in the steel. Therefore, Mg content was prescribed | regulated as 0.00005-0.01 mass%. Preferably it is 0.0001-0.005 mass%, More preferably, it is 0.0001-0.002 mass%. More preferably, it is 0.0002 to 0.002 mass%.

Ca:0.00005〜0.01mass%
Caは、Mgと同様、鋼中の非金属介在物の組成を、耐食性に悪影響を与えない成分系、すなわちCaO−Al系酸化物あるいはCaO−SiO−Al−MgO−MnO系酸化物に制御するために必要な元素である。その効果は、含有量が0.00005mass%未満では得られず、逆に0.01mass%を超えて存在すると、CaO単体からなる介在物を生成し、耐食性および溶接性を劣化させる。そのため、Ca含有量は0.00005〜0.01mass%の範囲内と規定した。好ましくは0.0001〜0.005mass%、より好ましくは0.0001〜0.002mass%である。さらに好ましくは0.0002〜0.002mass%である。
Ca: 0.00005 to 0.01 mass%
Ca, like Mg, is a component system that does not adversely affect the corrosion resistance of the composition of nonmetallic inclusions in steel, that is, CaO—Al 2 O 3 oxide or CaO—SiO 2 —Al 2 O 3 —MgO—. It is an element necessary for controlling the MnO-based oxide. The effect cannot be obtained when the content is less than 0.00005 mass%. Conversely, when the content exceeds 0.01 mass%, inclusions composed of simple CaO are generated, and the corrosion resistance and weldability are deteriorated. Therefore, the Ca content is specified to be in the range of 0.00005 to 0.01 mass%. Preferably it is 0.0001-0.005 mass%, More preferably, it is 0.0001-0.002 mass%. More preferably, it is 0.0002 to 0.002 mass%.

O:0.0050〜0.01mass%
Oは、鋼中に0.01mass%を超えて存在すると、非金属介在物の量が著しく増加し、JIS G0555に規定された清浄度が0.05を超え、耐孔食性を低下させる。逆に、含有量が0.0001mass%未満になると、スラグ中に存在するCaOが還元されて溶鋼中のCa濃度が0.01mass%を超えるため、CaO介在物が形成されて耐食性および溶接性に悪影響を及ぼす。そのため、O濃度は適正値に制御しなければならず、本発明では0.0050〜0.01mass%の範囲内と規定した。好ましくは0.0050〜0.008mass%である。
O: 0.0050 to 0.01 mass%
If O is present in the steel in an amount exceeding 0.01 mass%, the amount of non-metallic inclusions is remarkably increased, the cleanliness specified in JIS G0555 exceeds 0.05, and the pitting corrosion resistance is reduced. On the contrary, when the content is less than 0.0001 mass%, CaO present in the slag is reduced and the Ca concentration in the molten steel exceeds 0.01 mass%, so that CaO inclusions are formed, resulting in corrosion resistance and weldability. Adversely affect. For this reason, the O concentration must be controlled to an appropriate value, and in the present invention, it is defined within the range of 0.0050 to 0.01 mass%. Preferably it is 0.0050-0.008 mass%.

なお、本発明においては、上記必須成分の他に、Moおよび/またはNを、鋼板の耐食性の改善を目的として添加しても良い。その際の各添加量は、以下の範囲内とすることが好ましい。   In the present invention, in addition to the above essential components, Mo and / or N may be added for the purpose of improving the corrosion resistance of the steel sheet. In this case, the respective addition amounts are preferably within the following ranges.

Mo:0.01〜5.0mass%
Moは、耐酸性、耐応力腐食割れ性、耐隙間腐食性ならびに耐孔食性といった耐食性を確保するために重要な元素であるため、鋼中に0.01mass%以上含有されていることが好ましい。しかしながら、Mo含有量が高すぎると、シグマ相の生成を促進させ、母材の脆化を招く。そのため、Mo含有量は、0.01〜5.0mass%と規定した。好ましくは0.01〜4.8mass%であり、より好ましくは0.02〜4.5mass%である。
Mo: 0.01-5.0 mass%
Since Mo is an important element for ensuring corrosion resistance such as acid resistance, stress corrosion cracking resistance, crevice corrosion resistance and pitting corrosion resistance, it is preferably contained in the steel in an amount of 0.01 mass% or more. However, if the Mo content is too high, the generation of the sigma phase is promoted and the base material becomes brittle. Therefore, the Mo content is defined as 0.01 to 5.0 mass%. Preferably it is 0.01-4.8 mass%, More preferably, it is 0.02-4.5 mass%.

N:0.01〜0.3mass%
Nは、耐食性の向上に有効な成分であり、0.01mass%以上含有させた場合に、その効果が得られる。しかし、0.3mass%を超えて含有させることは、Nの溶鋼への溶解限に近づくことから精錬時間が著しく長くなり、コストの上昇を招く。そのため、N含有量は0.01〜0.3mass%と規定した。なお、好ましくは0.01〜0.25mass%であり、より好ましくは0.02〜0.20mass%である。
N: 0.01-0.3 mass%
N is a component effective for improving corrosion resistance, and the effect is obtained when it is contained in an amount of 0.01 mass% or more. However, if the content exceeds 0.3 mass%, the refining time becomes remarkably long because it approaches the melting limit of N in molten steel, resulting in an increase in cost. Therefore, the N content is defined as 0.01 to 0.3 mass%. In addition, Preferably it is 0.01-0.25 mass%, More preferably, it is 0.02-0.20 mass%.

また、本発明においては、Pおよび/またはTiを含有することができる。しかし、これらの含有量は低いほどよく、下記の範囲内で添加することができる。   In the present invention, P and / or Ti can be contained. However, these contents are preferably as low as possible, and can be added within the following range.

P≦0.05mass%
Pは、耐食性を低下させるほか、熱間加工性も低下させる有害元素である。このため、P含有量は低いほど好ましく、0.05mass%以下することが好ましい。なお、より好ましくは0.04mass%以下であり、さらに好ましくは0.035mass%以下である。
P ≤ 0.05 mass%
P is a harmful element that reduces corrosion resistance and hot workability. For this reason, the P content is preferably as low as possible, and is preferably 0.05 mass% or less. In addition, More preferably, it is 0.04 mass% or less, More preferably, it is 0.035 mass% or less.

さらに、本発明においては、熱間加工性を改善する目的で、B、CeおよびLaのうちの1種または2種以上を0.01mass%以下の範囲で添加しても構わない。   Furthermore, in the present invention, one or more of B, Ce and La may be added within a range of 0.01 mass% or less for the purpose of improving hot workability.

また、本発明では、非金属介在物を、耐食性、溶接性および表面性状に悪影響を与えないものとするためには、該非金属介在物が、CaO−SiO−Al−MgO−MnO系酸化物から構成されていることを必須の要件としている。この介在物は、基本的に、アルミナのような大型のクラスターを形成しないため、鋼板の表面性状には悪影響を与えることがなく、また、この介在物は、腐食水溶液に対し、不溶性で安定であるため、局部電池を形成しないかあるいは介在物から腐食物質を発生しないことから耐食性を劣化させることもない。 In the present invention, in order to prevent the nonmetallic inclusions from adversely affecting the corrosion resistance, weldability, and surface properties, the nonmetallic inclusions are CaO—SiO 2 —Al 2 O 3 —MgO—MnO. It is an essential requirement to be composed of a system oxide. Since this inclusion basically does not form a large cluster like alumina, it does not adversely affect the surface properties of the steel sheet, and this inclusion is insoluble and stable in corrosive aqueous solutions. Therefore, the corrosion resistance is not deteriorated because a local battery is not formed or a corrosive substance is not generated from inclusions.

上記非金属介在物が上記特性を有するためには、CaO−SiO−Al−MgO−MnO系酸化物の性状は、以下の条件を満たすことが好ましい。
CaO−SiO−Al−MgO−MnO系酸化物は、結晶化するとCaO単体を晶出し、耐食性を劣化させるため、その性状は、ガラス質であることが望ましい。そのためには、CaO−SiO−Al−MgO−MnO系酸化物の組成は、連続鋳造後のスラブあるいは普通造塊工程で得られる鋼塊の冷却速度(0.1〜10,000℃/sec)で、ガラス化する組成であることが好ましい。この条件を満たすためには、上記介在物を構成する各酸化物の組成は、CaO:1〜40mass%、SiO:10〜70mass%、Al:5〜40mass%、MgO:0.1〜25mass%およびMnO:0.1〜2.5mass%の範囲内にあることが好ましい。また、この複合酸化物には、CrとFeOが合計で20mass%程度以下含まれていてもガラス化には影響しない。
In order for the non-metallic inclusions to have the above characteristics, the properties of the CaO—SiO 2 —Al 2 O 3 —MgO—MnO-based oxide preferably satisfy the following conditions.
Since the CaO—SiO 2 —Al 2 O 3 —MgO—MnO-based oxide crystallizes and crystallizes CaO alone and deteriorates the corrosion resistance, its properties are preferably glassy. For this purpose, the composition of the CaO—SiO 2 —Al 2 O 3 —MgO—MnO-based oxide is set so that the cooling rate (0.1 to 10,000) of the slab after continuous casting or the steel ingot obtained in the ordinary ingot forming process is obtained. (° C./sec), and a composition that vitrifies is preferable. To satisfy this condition, the composition of the oxides forming the above inclusions, CaO: 1~40mass%, SiO 2 : 10~70mass%, Al 2 O 3: 5~40mass%, MgO: 0. 1~25Mass% and MnO: is preferably in the range of 0.1 to 2.5 mass%. Moreover, even if this composite oxide contains about 20 mass% or less of Cr 2 O 3 and FeO in total, vitrification is not affected.

また、本発明の鋼が耐食性、溶接性および表面性状に優れた特性を有するためには、板厚10mm程度以下に圧延された鋼板中に存在する介在物は、JIS G0555に規定されたB系およびC系の形態から構成されており、かつJIS G0555に規定された鋼板の清浄度は0.05以下であることが好ましい。以下に、その理由を示す。   In addition, in order for the steel of the present invention to have characteristics excellent in corrosion resistance, weldability and surface properties, inclusions present in a steel sheet rolled to a thickness of about 10 mm or less are B-series specified in JIS G0555. It is preferable that the cleanliness of the steel sheet is 0.05 or less, as defined in JIS G0555. The reason is shown below.

介在物形態
熱間圧延または冷間圧延された鋼板中に存在する非金属介在物は、MnSのように、JIS G0555に規定されたA系介在物として存在すると、耐食性に悪影響を及ぼす。そのため、本発明では、鋼中の非金属介在物は、JIS G0555に規定されたB系あるいはC系の形態を示すものに限定する。
Inclusion Form When non-metallic inclusions present in a hot-rolled or cold-rolled steel sheet are present as A-based inclusions defined in JIS G0555, such as MnS, the corrosion resistance is adversely affected. Therefore, in this invention, the nonmetallic inclusion in steel is limited to what shows the type of B system or C system prescribed | regulated to JISG0555.

清浄度:0.05以下
JIS G0555に規定された鋼の清浄度は、0.05を超えて高くなると、孔食の起点を著しく増加させ、耐孔食性を低下させる要因となる。そのため、本発明にかかるステンレス鋼においては、清浄度を0.05以下、好ましくは0.045以下、より好ましくは0.04以下と規定した。
Cleanliness: 0.05 or less When the cleanliness of steel specified in JIS G0555 exceeds 0.05, the starting point of pitting corrosion is remarkably increased and the pitting corrosion resistance is reduced. Therefore, in the stainless steel according to the present invention, the cleanliness is defined as 0.05 or less, preferably 0.045 or less, more preferably 0.04 or less.

次に、本発明にかかるステンレス鋼の製造方法について説明する。
基本的に、上記の通り規定した成分からなるステンレス鋼の製造方法であり、原料を電気炉に装入して溶解し、AODおよび/またはVODにおいて、Arまたは窒素と酸素とを吹精して脱炭精錬した後、石灰石および蛍石を添加してスラグを形成し、さらにAlまたはAlおよびフェロシリコンを投入してクロム還元、脱酸および脱硫した後、連続鋳造法または普通造塊法によりスラブとすることを特徴とする耐食性、溶接性および表面性状に優れたステンレス鋼の製造方法である。なお、本発明では、普通鋳造法において、鋳塊からスラブを得る方法は、熱間鍛造法を用いる。また、上記スラブを、熱間圧延し、あるいはさらに冷間圧延することにより、所望の板厚の耐食性、溶接性および表面性状に優れたステンレス鋼板を得ることができる。以下、具体的に説明する。
Next, a method for manufacturing the stainless steel plate according to the present invention.
Basically, a method for producing a stainless steel plate consisting of components defined as above, the raw material was dissolved was charged into an electric furnace, the AOD and / or VOD, and吹精the Ar or nitrogen and oxygen After decarburizing and refining, limestone and fluorite are added to form slag, and further, Al or Al and ferrosilicon are added to perform chromium reduction, deoxidation and desulfurization, and then by continuous casting method or ordinary ingot casting method. It is a manufacturing method of stainless steel excellent in corrosion resistance, weldability and surface properties, characterized by being a slab. In the present invention, a hot forging method is used as a method for obtaining a slab from an ingot in a normal casting method. Moreover, the said slab is hot-rolled or cold-rolled further, and the stainless steel plate excellent in the corrosion resistance of the desired board thickness, weldability, and surface property can be obtained. This will be specifically described below.

溶解原料は、とくに限定はしないが、例えばフェロニッケル、純ニッケル、フェロクロム、クロム、鉄屑、ステンレス屑、Fe−Ni合金屑から、適宜選択することが好ましい。とくに、Ni源(フェロニッケル、ステンレス屑、Fe−Ni合金屑、純ニッケル)は、Coを含有していることが多いが、CoはNiとほぼ等価であるので、本発明では、3%程度以下であれば、含有していても構わない。このように、本発明では、比較的安価なNi源を使用することが可能であるため、コスト的に有利である。一方、Pは、精錬過程で除去が困難であるため、本発明で規定した範囲となるように、上記溶解原料を選択することが好ましい。   The melting raw material is not particularly limited, but is preferably selected as appropriate from, for example, ferronickel, pure nickel, ferrochrome, chromium, iron scrap, stainless steel scrap, and Fe—Ni alloy scrap. In particular, Ni sources (ferronickel, stainless steel scrap, Fe—Ni alloy scrap, pure nickel) often contain Co, but Co is almost equivalent to Ni, so in the present invention, it is about 3%. It may be contained as long as it is below. Thus, in the present invention, a relatively inexpensive Ni source can be used, which is advantageous in terms of cost. On the other hand, since it is difficult to remove P during the refining process, it is preferable to select the melting raw material so that it falls within the range defined in the present invention.

原料を電気炉等で溶解した後は、AODおよび/またはVODにおいて、Arまたは窒素と酸素とを吹精して脱炭精錬を行い、Cを0.03mass%以下とする。ここで、AOD炉、VOD鍋あるいは取鍋に使用する耐火物は、スラグ中に適正なMgO濃度を供給し、介在物を先述した組成に制御するため、さらには、形成するスラグに対して十分な耐溶損性を付与するという観点から、MgO−C、Al−MgO−C、ドロマイトおよびマグネシアクロムれんがから適宜選択することが好ましい。 After melting the raw material in an electric furnace or the like, decarburization refining is performed by blowing Ar or nitrogen and oxygen in AOD and / or VOD, and C is set to 0.03 mass% or less. Here, the refractory used in the AOD furnace, VOD pan or ladle supplies the appropriate MgO concentration in the slag and controls the inclusions to the above-described composition. From the viewpoint of imparting good melt resistance, it is preferable to select appropriately from MgO—C, Al 2 O 3 —MgO—C, dolomite and magnesia chromium brick.

その後、スラグ相に移行した有価金属であるCrの酸化物を、AlまたはAlおよびフェロシリコンを投入することにより、クロム還元して回収する。なお、AlまたはAlおよびフェロシリコンは、石灰石および螢石を投入してスラグ形成した際に、AlおよびSiがそれぞれ、Al:0.001〜0.1mass%、Si:0.01〜1.5mass%の範囲内となるように投入することが好ましい。この理由は、これらの脱酸剤(AlまたはSi)が、前記のとおりCr酸化物の脱酸剤として働くと共に、スラグ中に存在するCaOあるいはMgOを還元し、CaあるいはMgとして溶鋼中に回収するためであり、この時、スラグ上に脱酸剤を投入することで、CaおよびMgの還元をより容易にすることができるからである。なお、CaまたはMgの含有量が、本発明に規定する範囲内に満たない場合には、Ca−Si、Ca−AlおよびNi−Mg等の副原料を適宜添加しても構わない。   Thereafter, the oxide of Cr, which is a valuable metal that has shifted to the slag phase, is recovered by chromium reduction by introducing Al or Al and ferrosilicon. In addition, when Al or Al and ferrosilicon are slag formed by adding limestone and meteorite, Al and Si are Al: 0.001 to 0.1 mass%, Si: 0.01 to 1.5 mass, respectively. It is preferable to add so that it may become in the range of%. This is because these deoxidizers (Al or Si) act as a deoxidizer for Cr oxide as described above, and reduce CaO or MgO present in the slag and recover it in molten steel as Ca or Mg. This is because the reduction of Ca and Mg can be facilitated by introducing a deoxidizer onto the slag. In addition, when content of Ca or Mg is less than the range prescribed | regulated to this invention, you may add suitably auxiliary materials, such as Ca-Si, Ca-Al, and Ni-Mg.

また、前記スラグ組成は、CaO−SiO−Al−MgO−F系であることが好ましく、その組成範囲は、溶鋼中のAl,CaおよびMgを本発明において規定する濃度範囲内に制御するのに好適な組成、例えば、CaO:30〜80mass%、SiO≦20mass%、Al:5〜40mass%、MgO:1〜30mass%およびF≦20mass%であることが好ましい。その他の成分として、FeO,S,PおよびTiOを合計で5%以下の範囲で含んでもよい。また、耐火物はマグネシア系であるので、耐火物保護のために、スラグ中にマグネシア煉瓦屑を適宜添加しても構わない。 The slag composition is preferably a CaO—SiO 2 —Al 2 O 3 —MgO—F system, and the composition range is within the concentration range defined in the present invention for Al, Ca and Mg in molten steel. composition suitable for controlling, for example, CaO: 30~80mass%, SiO 2 ≦ 20mass%, Al 2 O 3: 5~40mass%, MgO: is preferably 1~30Mass% and F ≦ 20 mass%. As other components, FeO, S, P and TiO 2 may be included in a total range of 5% or less. In addition, since the refractory is a magnesia-based material, magnesia brick waste may be appropriately added to the slag in order to protect the refractory.

その後、ArあるいはNガスを吹きこみ、攪拌することによって、脱酸および脱硫を行い、O濃度を0.0001〜0.01mass%の範囲内に、S濃度を0.0002〜0.02mass%の範囲内に制御する。なお、O濃度が0.0001mass%未満に低下すると、前記のとおりCaO介在物が生成し、耐食性および溶接性に悪影響を与える。そのため、O濃度は、スラグ中のCaO濃度が80mass%を超えないように制御することが好ましい。この方法によれば、スラグ塩基度が高くなり過ぎて、脱酸が進行し過ぎることも抑制することができる。また、S濃度については、基本的にスラグを使って脱硫し、0.02mass%以下まで低下させる。しかしながら、前記のとおりS濃度が0.0002mass%未満に低下してしまうと、溶接時の溶け込み性を悪化させるため、FeSなどのS源を適量添加して調整することが好ましい。   Thereafter, deoxidation and desulfurization are performed by blowing Ar or N gas and stirring, so that the O concentration is within the range of 0.0001 to 0.01 mass%, and the S concentration is 0.0002 to 0.02 mass%. Control within range. When the O concentration is reduced to less than 0.0001 mass%, CaO inclusions are generated as described above, which adversely affects corrosion resistance and weldability. Therefore, the O concentration is preferably controlled so that the CaO concentration in the slag does not exceed 80 mass%. According to this method, it is possible to suppress the slag basicity from becoming too high and deoxidation to proceed excessively. The S concentration is basically desulfurized using slag and is reduced to 0.02 mass% or less. However, as described above, when the S concentration is reduced to less than 0.0002 mass%, the penetration property during welding is deteriorated. Therefore, it is preferable to adjust by adding an appropriate amount of an S source such as FeS.

このようにして成分および非金属介在物組成を制御した溶鋼を、連続鋳造法あるいは普通造塊法により鋳造する。なお、連続鋳造法の場合、縦型連続鋳造機にて鋳込むことが好ましい。これは、本鋼種は、高温強度が比較的高いため、湾曲部を含むタイプの連続鋳造機では、スラブ割れを起こす危険性があるからである。また、この際の溶鋼の過熱度は、その製造性を考慮し、連続鋳造法の場合は10〜60℃、普通造塊法の場合は30〜150℃とすることが好ましい。また、連続鋳造法におけるタンディッシュ内および普通造塊法におけるインゴット内は、Al,MgおよびCaといった溶鋼中の活性成分の酸化を防止するため、ArあるいはNガスでシールすることが好ましい。なお、普通造塊法の場合には、鋳造して得た鋼塊を熱間鍛造してスラブとすることが好ましい。また、スラブから鋼板を得るために行う熱間圧延および冷間圧延は、常法により行うことができる。   Thus, the molten steel which controlled the component and the nonmetallic inclusion composition is cast by a continuous casting method or a normal ingot casting method. In the case of continuous casting, it is preferable to cast using a vertical continuous casting machine. This is because this steel type has a relatively high high-temperature strength, and therefore there is a risk of causing slab cracking in a continuous casting machine including a curved portion. Further, the superheat degree of the molten steel at this time is preferably 10 to 60 ° C. in the case of the continuous casting method and 30 to 150 ° C. in the case of the ordinary ingot casting method in consideration of its manufacturability. Further, the inside of the tundish in the continuous casting method and the ingot in the ordinary ingot casting method are preferably sealed with Ar or N gas in order to prevent oxidation of active components in molten steel such as Al, Mg and Ca. In the case of the ordinary ingot-making method, it is preferable that a steel ingot obtained by casting is hot forged into a slab. Moreover, the hot rolling and cold rolling performed in order to obtain a steel plate from a slab can be performed by a conventional method.

容量60トンの電気炉により、フェロニッケル、純ニッケル、フェロクロム、鉄屑、ステンレス屑、Fe−Ni合金屑を原料として溶解後、AODにて酸化精錬を行った後、石灰石および螢石を投入し、CaO−SiO−Al−MgO−F系スラグを生成させ、さらに、アルミニウムおよび/またはフェロシリコンを投入し、クロム還元、脱酸および脱硫を行った後、連続鋳造により、あるいは普通造塊法にて得た鋳塊を熱間鍛造することによりスラブとした。なお、一部のチャージでは、VODのみで精錬を行った。その後、このスラブを熱間圧延し、冷間圧延して板厚3mmの鋼板とした。 After melting ferronickel, pure nickel, ferrochrome, iron scrap, stainless steel scrap, and Fe-Ni alloy scrap as raw materials in an electric furnace with a capacity of 60 tons, oxidative refining is performed with AOD, and then limestone and meteorite are added. , CaO—SiO 2 —Al 2 O 3 —MgO—F-based slag is generated, aluminum and / or ferrosilicon is added, chromium reduction, deoxidation and desulfurization are performed, and then continuous casting or normal An ingot obtained by the ingot-making method was hot forged to obtain a slab. In some cases, refining was performed only with VOD. Thereafter, the slab was hot-rolled and cold-rolled to obtain a steel plate having a thickness of 3 mm.

このようにして得られた冷延鋼板について、以下の評価を行った。
(1)化学成分:鋼板から切り出したサンプル中のOおよびNについては、酸素・窒素同時分析装置(不活性ガス−インパルス加熱溶融法:堀場製作所製
EMGA−520)を用いて、また、CおよびSについては、炭素・硫黄同時分析装置(酸素気流中燃焼−赤外線吸収法:堀場製作所製EMIA−520)を用いて、その他の元素については、蛍光X線分析装置を用いて分析を行った。
The cold rolled steel sheet thus obtained was evaluated as follows.
(1) Chemical components: For O and N in the sample cut out from the steel plate, oxygen and nitrogen simultaneous analyzer (inert gas-impulse heating melting method: EMGA-520 manufactured by Horiba, Ltd.), C and S was analyzed using a simultaneous carbon / sulfur analyzer (combustion in oxygen stream-infrared absorption method: EMIA-520 manufactured by Horiba, Ltd.), and other elements were analyzed using a fluorescent X-ray analyzer.

(2)非金属介在物組成:鋼板から切り出したサンプルを鏡面研磨し、EDSを用いて介在物をランダムに20点定量分析した。 (2) Nonmetallic inclusion composition: A sample cut out from a steel plate was mirror-polished, and inclusions were randomly analyzed 20 points using EDS.

(3)介在物の形態および清浄度:光学顕微鏡によって圧延方向に平行な断面を400倍で60視野の観察し、「JIS G0555」に準拠して測定した。 (3) Form of inclusions and cleanliness: A cross section parallel to the rolling direction was observed with an optical microscope at a magnification of 400 and 60 fields of view, and measured according to “JIS G0555”.

(4)表面性状:コイルの表裏面の全長を目視により観察し、表面欠陥数をカウントした。 (4) Surface properties: The total length of the front and back surfaces of the coil was observed visually, and the number of surface defects was counted.

(5)耐食性試験:試験片を#600研磨仕上後、脱脂し、「JIS Z2371」に準拠した条件(50℃)で塩水噴霧試験(SST)を4時間行い、発錆の有無を調査した。 (5) Corrosion resistance test: The test piece was degreased after # 600 polishing, and a salt spray test (SST) was conducted for 4 hours under conditions (50 ° C.) in accordance with “JIS Z2371” to investigate the presence or absence of rusting.

(6)溶接性:電流120A、溶接速度200mm/分の条件でTIG溶接し、ビード上に発生した黒点の有無を目視により評価した。 (6) Weldability: TIG welding was performed under the conditions of an electric current of 120 A and a welding speed of 200 mm / min, and the presence or absence of black spots generated on the beads was visually evaluated.

鋼板成分の分析結果を表1に、非金属介在物組成および介在物の形態、清浄度の測定結果を表2に、そして、表面性状、耐食性試験、溶接性の調査結果を表3に示す。表1〜3の結果によれば、本発明例No.は、すべて本発明の規定した組成範囲を満足しており、表面性状、耐食性および溶接性ともに問題はなかった。一方、比較例では、いずれか1項以上が規定した組成範囲を外れていたため、表面疵が多数発生したり、要求される耐食性が得られなかったり、あるいは溶接時に黒点の発生が認められた。さらに、一部では製造性が著しく悪く、製品が得られないチャージ(No.17)もあった。 Table 1 shows the analysis results of the steel plate components, Table 2 shows the measurement results of the composition of non-metallic inclusions, the form of inclusions, and the cleanliness, and Table 3 shows the investigation results of the surface properties, corrosion resistance test, and weldability. According to the results of Tables 1 to 3, Example No. No. 9 satisfied the composition range defined by the present invention, and there were no problems in terms of surface properties, corrosion resistance and weldability. On the other hand, in the comparative example, any one or more of the terms was outside the specified composition range, so that many surface flaws were generated, the required corrosion resistance was not obtained, or black spots were observed during welding. Furthermore, in some cases, manufacturability was remarkably poor and there was a charge (No. 17) in which a product could not be obtained.

Figure 0004673343
Figure 0004673343

Figure 0004673343
Figure 0004673343

Figure 0004673343
Figure 0004673343

Claims (5)

C≦0.1mass%、Si:0.01〜2.0mass%、Mn:0.01〜3.0mass%、Cr:13.0〜26.0mass%、Ni:2.0〜30.0mass%、Mo:0.01〜5.0mass%、Co≦3mass%、Al:0.001〜0.1mass%、S:0.0002〜0.02mass%、Mg:0.00005〜0.01mass%、Ca:0.00005〜0.01mass%、O:0.0050〜0.01mass%、N:0.01〜0.3mass%、残部がFeおよび不可避的不純物からなるステンレス鋼において、該ステンレス鋼中に含まれる非金属介在物が、CaO:1〜40mass%以下、SiO :10〜70mass%、Al :5〜40mass%、MgO:0.1〜25mass%、MnO:0.1〜2.5mass%からなり、Cr とFeOが合計で20mass%以下含まれるCaO−SiO−Al−MgO−MnO系酸化物からなることを特徴とする耐食性、溶接性および表面性状に優れるステンレス鋼C ≦ 0.1 mass%, Si: 0.01 to 2.0 mass%, Mn: 0.01 to 3.0 mass%, Cr: 13.0 to 26.0 mass%, Ni: 2.0 to 30.0 mass% , Mo: 0.01-5.0 mass%, Co ≦ 3 mass%, Al: 0.001-0.1 mass%, S: 0.0002-0.02 mass%, Mg: 0.00005-0.01 mass%, Ca: 0.00005~0.01mass%, O: 0.0050~0.01mass %, N: 0.01~0.3mass%, in a stainless steel plate the balance of Fe and unavoidable impurities, said stainless steel non-metallic inclusions contained in the plates, CaO: 1~40mass% or less, SiO 2: 10~70mass%, Al 2 O 3: 5~40mass%, MgO: 0.1~2 5 mass%, MnO: 0.1 to 2.5 mass%, and comprising CaO—SiO 2 —Al 2 O 3 —MgO—MnO-based oxide containing 20 mass% or less of Cr 2 O 3 and FeO in total. corrosion, wherein, weldability and stainless steel plate having excellent surface properties. 前記CaO−SiO−Al−MgO−MnO系酸化物は、鋳造後のスラブ中または鋼塊中にガラス質として存在することを特徴とする請求項1に記載のステンレス鋼The CaO-SiO 2 -Al 2 O 3 -MgO-MnO based oxide, stainless steel plate according to claim 1, characterized in that present as glassy in slab or ingot in after casting. 上記ステンレス鋼における鋼中の非金属介在物は、JIS G0555に規定されたB系およびC系の形態であり、かつ、JIS G0555に規定された清浄度が0.05以下であることを特徴とする請求項1または2に記載のステンレス鋼Wherein the non-metallic inclusions in the steel in the stainless steel plate is in the form of a B system and C system defined in JIS G0555, and defined cleanliness in JIS G0555 is 0.05 or less stainless steel plate according to claim 1 or 2,. 請求項1〜のいずれか1項に記載のステンレス鋼を製造するに当たり、電気炉に原料を装入して溶解し、AODおよび/またはVODにおいてArまたは窒素と酸素とを吹精して脱炭し、その後、石灰石および蛍石を投入して、CaO:30〜80mass%、SiO ≦20mass%、Al :5〜40mass%、MgO:1〜30mass%およびF≦20mass%の組成を有するCaO−SiO−Al−MgO−F系スラグを形成し、さらにAlまたはAlおよびフェロシリコンを投入してクロム還元、脱酸および脱硫を行った後、連続鋳造法または普通造塊法によりスラブとすることを特徴とする耐食性、溶接性および表面性状に優れるステンレス鋼の製造方法。 In producing the stainless steel plate according to any one of claims 1 to 3 raw material was dissolved was charged into an electric furnace, and吹精the Ar or nitrogen and oxygen in the AOD and / or VOD decarburized, then, limestone and fluorite was charged, CaO: 30~80mass%, SiO 2 ≦ 20mass%, Al 2 O 3: 5~40mass%, MgO: the 1~30Mass% and F ≦ 20 mass% After forming a CaO—SiO 2 —Al 2 O 3 —MgO—F-based slag having a composition and further introducing Al or Al and ferrosilicon to perform chromium reduction, deoxidation and desulfurization, a continuous casting method or ordinary corrosion, characterized in that a slab by ingot making method, the production method of the stainless steel plate having excellent weldability and surface properties. 前記普通造塊法は、鋳造して得た鋼塊を熱間鍛造してスラブとする方法であることを特徴とする請求項に記載のステンレス鋼の製造方法。 The ordinary Zokatamariho method for manufacturing a stainless steel plate according to claim 4, characterized in that the cast-obtained steel ingot is a method for the hot forging to the slab.
JP2007149845A 2007-06-06 2007-06-06 Stainless steel sheet excellent in corrosion resistance, weldability and surface properties and method for producing the same Expired - Lifetime JP4673343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007149845A JP4673343B2 (en) 2007-06-06 2007-06-06 Stainless steel sheet excellent in corrosion resistance, weldability and surface properties and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007149845A JP4673343B2 (en) 2007-06-06 2007-06-06 Stainless steel sheet excellent in corrosion resistance, weldability and surface properties and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002314639A Division JP4025171B2 (en) 2002-10-29 2002-10-29 Stainless steel having excellent corrosion resistance, weldability and surface properties and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007277727A JP2007277727A (en) 2007-10-25
JP4673343B2 true JP4673343B2 (en) 2011-04-20

Family

ID=38679453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007149845A Expired - Lifetime JP4673343B2 (en) 2007-06-06 2007-06-06 Stainless steel sheet excellent in corrosion resistance, weldability and surface properties and method for producing the same

Country Status (1)

Country Link
JP (1) JP4673343B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5853281B2 (en) * 2011-03-25 2016-02-09 日新製鋼株式会社 Austenitic stainless steel sheet with excellent surface gloss
JP5616283B2 (en) * 2011-04-25 2014-10-29 日本冶金工業株式会社 Fe-Ni-Cr-Mo alloy and method for producing the same
WO2013027253A1 (en) * 2011-08-22 2013-02-28 日本冶金工業株式会社 Boron-containing stainless steel having excellent hot workability and excellent surface properties
JP6066412B2 (en) * 2013-03-27 2017-01-25 日本冶金工業株式会社 Fe-Ni-Cr alloy having excellent surface properties and method for producing the same
JP6146908B2 (en) * 2013-10-09 2017-06-14 日本冶金工業株式会社 Stainless steel with excellent surface properties and its manufacturing method
JP7042057B2 (en) * 2017-10-25 2022-03-25 日鉄ステンレス株式会社 Stainless steel materials and welded structural members with excellent slag spot generation suppression ability and their manufacturing methods
JP7156041B2 (en) * 2019-01-10 2022-10-19 日本製鉄株式会社 Melting method of high Al content steel
CN110373600B (en) * 2019-07-26 2021-07-09 石钢京诚装备技术有限公司 Smelting process method of high-aluminum sulfur-containing calcium-controlling steel
JP6762414B1 (en) * 2019-12-27 2020-09-30 日本冶金工業株式会社 Stainless steel with excellent surface properties and its manufacturing method
US20230115048A1 (en) * 2020-02-27 2023-04-13 Nippon Steel Stainless Steel Corporation Stainless steel with good mirror polishability and method for producing same
CN112063801B (en) * 2020-09-17 2022-08-23 浦项(张家港)不锈钢股份有限公司 Stainless steel and preparation method thereof
CN113355606B (en) * 2021-06-11 2022-07-12 河北普阳钢铁有限公司 Alloy steel for ocean platform and machining process thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0361322A (en) * 1989-07-28 1991-03-18 Nippon Steel Corp Production of austenitic stainless steel excellent in drawability and cold rollability
JPH08134528A (en) * 1994-11-02 1996-05-28 Sumitomo Metal Ind Ltd Production of extra low carbon steel
JPH08337852A (en) * 1995-04-21 1996-12-24 Ugine Savoie Austenitic stainless steel for wire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0361322A (en) * 1989-07-28 1991-03-18 Nippon Steel Corp Production of austenitic stainless steel excellent in drawability and cold rollability
JPH08134528A (en) * 1994-11-02 1996-05-28 Sumitomo Metal Ind Ltd Production of extra low carbon steel
JPH08337852A (en) * 1995-04-21 1996-12-24 Ugine Savoie Austenitic stainless steel for wire

Also Published As

Publication number Publication date
JP2007277727A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
JP4673343B2 (en) Stainless steel sheet excellent in corrosion resistance, weldability and surface properties and method for producing the same
JP4824640B2 (en) Duplex stainless steel and manufacturing method thereof
JP5950306B2 (en) Fe-Ni-Cr alloy superior in sulfuric acid corrosion resistance, intergranular corrosion resistance and surface properties, and method for producing the same
JP6146908B2 (en) Stainless steel with excellent surface properties and its manufacturing method
JP4025171B2 (en) Stainless steel having excellent corrosion resistance, weldability and surface properties and method for producing the same
JP6869142B2 (en) Stainless steel sheet and its manufacturing method
CN115917013A (en) Stainless steel for metal foil, stainless steel foil and method for producing same
JP6603033B2 (en) High Mn content Fe-Cr-Ni alloy and method for producing the same
JP5616283B2 (en) Fe-Ni-Cr-Mo alloy and method for producing the same
JP2019178363A (en) AUSTENITIC STAINLESS STEEL WITH HIGH CONTENT OF Si, HAVING EXCELLENT MANUFACTURABILITY
JP6222806B2 (en) High corrosion resistance duplex stainless steel with excellent brittleness resistance
CN115244199B (en) Stainless steel, stainless steel material, and method for producing stainless steel
JP4025170B2 (en) Stainless steel excellent in corrosion resistance, weldability and surface properties and method for producing the same
JP6903182B1 (en) Ni-Cr-Al-Fe alloy with excellent surface properties and its manufacturing method
CN113046616B (en) Stainless steel excellent in surface properties and method for producing same
JP6526307B1 (en) Ni-Cr-Nb-Fe-based alloy excellent in internal quality and hot workability and method for producing the same
JP7223210B2 (en) Precipitation hardening martensitic stainless steel sheet with excellent fatigue resistance
CN116806273A (en) Nickel alloy with excellent surface properties and method for producing same
JPWO2020004496A1 (en) Steel manufacturing method
JP7205618B2 (en) steel
WO2016052639A1 (en) Stainless steel material
WO2022138194A1 (en) Precipitation-hardened martensitic stainless steel having excellent fatigue-resistance characteristics
WO2024085002A1 (en) Fe-Cr-Ni-BASED ALLOY HAVING EXCELLENT SURFACE PROPERTIES, AND METHOD FOR MANUFACTURING SAME
JP2022163586A (en) HIGH Ni ALLOY EXCELLENT IN WELD HOT CRACKING RESISTANCE
US20230115048A1 (en) Stainless steel with good mirror polishability and method for producing same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110120

R150 Certificate of patent or registration of utility model

Ref document number: 4673343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term