JP4824640B2 - Duplex stainless steel and manufacturing method thereof - Google Patents

Duplex stainless steel and manufacturing method thereof Download PDF

Info

Publication number
JP4824640B2
JP4824640B2 JP2007170628A JP2007170628A JP4824640B2 JP 4824640 B2 JP4824640 B2 JP 4824640B2 JP 2007170628 A JP2007170628 A JP 2007170628A JP 2007170628 A JP2007170628 A JP 2007170628A JP 4824640 B2 JP4824640 B2 JP 4824640B2
Authority
JP
Japan
Prior art keywords
mass
cao
steel
stainless steel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007170628A
Other languages
Japanese (ja)
Other versions
JP2009007638A (en
Inventor
雄一 神戸
秀和 轟
裕 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP2007170628A priority Critical patent/JP4824640B2/en
Publication of JP2009007638A publication Critical patent/JP2009007638A/en
Application granted granted Critical
Publication of JP4824640B2 publication Critical patent/JP4824640B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、二相ステンレス鋼およびその製造方法に関し、特に、腐食環境下においても高い耐食性が要求される部位に用いられる鋼板、鋼管、棒線、鋳造品、鍛造品などの素材として好適な、耐食性と熱間加工性に優れる二相ステンレス鋼とその安価な製造方法に関するものである。   The present invention relates to a duplex stainless steel and a method for producing the same, and particularly suitable as a material for a steel plate, a steel pipe, a bar wire, a cast product, a forged product, and the like used for a portion that requires high corrosion resistance even in a corrosive environment. The present invention relates to a duplex stainless steel excellent in corrosion resistance and hot workability and its inexpensive manufacturing method.

二相ステンレス鋼は、フェライト相とオーステナイト相の2相組織からなる、フェライト系ステンレス鋼とオーステナイト系ステンレス鋼が有する優れた機械的特性と耐食性の双方を兼ね備えたステンレス鋼である。このステンレス鋼は、特に、耐食性に優れることから、石油化学プラントや海水取扱機器等の腐食性の高いガスが発生し、設備の腐食が問題となる分野に広く用いられている。   Duplex stainless steel is a stainless steel having both the excellent mechanical properties and corrosion resistance of ferritic stainless steel and austenitic stainless steel, which are composed of a two-phase structure of a ferrite phase and an austenitic phase. Since this stainless steel is particularly excellent in corrosion resistance, it is widely used in fields in which highly corrosive gas is generated, such as petrochemical plants and seawater handling equipment, where corrosion of equipment is a problem.

二相ステンレス鋼の耐食性は、一般に、下記(1)式;
Cr+3.3(Mo+0.5W)+16N ・・・(1)
で表される数値で評価することができ、この値が高いほど優れた耐食性を示すことが知られている。そして、上記式を満たすよう合金設計することにより、鋼の成分組成そのものによって、優れた耐食性を有する二相ステンレス鋼を得ることができるとされている。例えば、特許文献1には、上記(1)式を満たすようMoとWの含有量を高めた、耐食性に優れる高強度二相ステンレス鋼が開示されている。
The corrosion resistance of duplex stainless steel is generally expressed by the following formula (1):
Cr + 3.3 (Mo + 0.5W) + 16N (1)
It is known that the higher the value, the better the corrosion resistance. By designing the alloy so as to satisfy the above formula, it is said that a duplex stainless steel having excellent corrosion resistance can be obtained by the component composition of the steel itself. For example, Patent Document 1 discloses a high-strength duplex stainless steel with excellent corrosion resistance, in which the contents of Mo and W are increased so as to satisfy the above formula (1).

二相ステンレス鋼の耐食性を向上させる他の技術としては、例えば、特許文献2には、合金成分を適正範囲に制御するとともに、非金属介在物の種類を適正化することで、耐食性の向上を図る技術が、また、特許文献3には、合金設計を適正に行うことに加えて、鋼板表層部に窒素を吸収したオーステナイト富化層を形成することによって耐食性を高めた二相ステンレス鋼が開示されている。   As another technique for improving the corrosion resistance of the duplex stainless steel, for example, Patent Document 2 discloses that the corrosion resistance is improved by controlling the alloy components within an appropriate range and by optimizing the types of non-metallic inclusions. Patent Document 3 discloses a duplex stainless steel that has improved corrosion resistance by forming an austenite-enriched layer that absorbs nitrogen in the steel sheet surface layer in addition to properly designing the alloy. Has been.

一方、二相ステンレス鋼は、化学プラント等においては、配管用部材としても用いられるため、薄鋼板等に加工する必要がある。斯かる薄鋼板は、一般に、所定の成分組成に調整した鋼スラブを、加熱後、熱間圧延して中間製品である熱延板とし、その後、必要に応じて、焼鈍・酸洗や冷間圧延、仕上焼鈍等を組み合わせることで製造される。ここで、上記熱間圧延における鋼の加工性が劣る場合には、圧延中に板破断を起こしたり、表面欠陥を発生したりして、生産性の低下や歩留りの低下によるコスト上昇、製品の品質低下を招くことになる。したがって、二相ステンレス鋼は、熱間での加工性にも優れたものであることが必要である。   On the other hand, duplex stainless steel is also used as a piping member in chemical plants and the like, and therefore needs to be processed into a thin steel plate or the like. Such a thin steel sheet is generally a steel slab adjusted to a predetermined component composition, heated and then hot-rolled into a hot-rolled sheet as an intermediate product, and then annealed, pickled or cold-rolled as necessary. Manufactured by combining rolling and finish annealing. Here, when the workability of the steel in the above hot rolling is inferior, the plate breaks during the rolling or the surface defect occurs, resulting in an increase in cost due to a decrease in productivity or a decrease in yield, The quality will be reduced. Therefore, the duplex stainless steel needs to be excellent in hot workability.

二相ステンレス鋼の熱間加工性を改善する技術については、例えば、特許文献4には、固溶Sを低減し、あるいはCaやREM添加により固溶Sを硫化物として固定し、さらに、適量のCuを添加して熱間加工性を改善する技術が開示されている。また、特許文献5には、Sと同様、Pも熱間加工性を劣化させることから、Ndを添加してPを固定して、熱間加工性を向上する技術が開示されている。
特開平05−132741号公報 特開2004−149833号公報 特開2004−353041号公報 特開平06−330243号公報 特開2007−084837号公報
Regarding the technology for improving the hot workability of duplex stainless steel, for example, in Patent Document 4, solid solution S is reduced, or solid solution S is fixed as sulfide by addition of Ca or REM, and further, an appropriate amount A technique for improving the hot workability by adding Cu is disclosed. Patent Document 5 discloses a technique for improving hot workability by adding Nd and fixing P since P also degrades hot workability as in S.
JP 05-132741 A JP 2004-149833 A JP 2004-353041 A Japanese Patent Laid-Open No. 06-330243 JP 2007-084837 A

二相ステンレス鋼の耐食性は、上記(1)式からわかるように、Cr,Mo,WおよびNの含有量が高いほど良好となる。しかし、CrやMo,Wは、高価な金属であるため、その含有量を高めることは、製造コストの上昇を招くことになる。また、Nは、安価に入手できる元素であるが、大気圧下で溶解する場合には、溶存可能なN量には限度がある。さらに、大気圧下で、Nの平衡濃度を超えて溶解させるためには、加圧溶解などの特殊な設備が必要となる。しかも、鋼中のN濃度が高まるにつれて鋼の強度も高まるため、加工することが難しくなる。   As can be seen from the above equation (1), the corrosion resistance of the duplex stainless steel becomes better as the contents of Cr, Mo, W and N are higher. However, since Cr, Mo, and W are expensive metals, increasing their content causes an increase in manufacturing cost. N is an element that can be obtained at low cost, but there is a limit to the amount of N that can be dissolved when it is dissolved under atmospheric pressure. Furthermore, special equipment such as pressure dissolution is required to dissolve the N concentration exceeding the equilibrium concentration under atmospheric pressure. Moreover, since the strength of the steel increases as the N concentration in the steel increases, it becomes difficult to process.

また、鋼板表層に、耐食性に優れた層を形成させる技術は、特殊な熱処理を施す必要があるため、工程増加に伴う製造コストの上昇や製造日数の長期化を招く。   Moreover, since the technique which forms the layer excellent in corrosion resistance in the steel plate surface layer needs to perform special heat processing, it raises the manufacturing cost accompanying the process increase, and prolongs the manufacturing days.

また、熱間加工性を向上するために、CaやREMを添加する技術は、原料コストの上昇を招くうえ、Ca添加によってCaO含有介在物が生成するため、耐食性の低下を招くおそれがある。また、S濃度を低減するには、脱酸を強化する必要があるが、脱酸剤であるAlを多量に添加すると、Ca濃度が上昇するため、Ca添加と同様、耐食性の低下を招くおそれがある。   Moreover, in order to improve hot workability, the technique of adding Ca or REM leads to an increase in raw material cost, and since CaO-containing inclusions are generated by the addition of Ca, there is a possibility that the corrosion resistance is lowered. Further, in order to reduce the S concentration, it is necessary to strengthen the deoxidation. However, if a large amount of Al, which is a deoxidizer, is added, the Ca concentration increases. There is.

そこで、本発明は、従来技術が抱えている上記問題点に鑑みてなされたものであって、その目的は、従来の二相ステンレス鋼の成分組成のままでも、従来の二相ステンレス鋼よりも優れた耐食性(特に耐孔食性)と優れた熱間加工性とを兼ね備えた二相ステンレス鋼を提供するとともに、その有利な製造方法を提案することにある。   Therefore, the present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is more than that of the conventional duplex stainless steel even if the component composition of the conventional duplex stainless steel remains as it is. The object is to provide a duplex stainless steel having both excellent corrosion resistance (particularly pitting corrosion resistance) and excellent hot workability, and to propose an advantageous manufacturing method thereof.

発明者らは、二相ステンレス鋼の内部に存在する非金属介在物(以降、単に「介在物」と略記することもある。)に着目し、全非金属介在物を構成する介在物の種類および組成が耐食性に及ぼす影響について詳細な調査を行った。その結果、二相ステンレス鋼中の全非金属介在物中に含まれるCaO含有介在物のCaO濃度が高く、全非金属介在物に占めるCaO含有介在物の個数比率が高く、かつ、全非金属介在物のCaO濃度が高い場合には、CaO含有介在物からCa成分が水溶液中に溶出して母材金属と介在物との間に隙間を形成し、この隙間を起点として孔食が発生して耐食性を劣化させること、従って、耐孔食性を向上させるためには、鋼中に含まれるCa濃度を0.0005mass%以下に低減し、個々のCaO含有介在物におけるCaO濃度を40mass%以下にするとともに、全非金属介在物に占めるCaO含有介在物の個数比率を40%以下、全非金属介在物におけるCaO濃度を10mass%以下にする必要があることを見出した。   The inventors pay attention to nonmetallic inclusions (hereinafter sometimes simply referred to as “inclusions”) present in the duplex stainless steel, and the types of inclusions constituting all nonmetallic inclusions. A detailed investigation was conducted on the effect of the composition on the corrosion resistance. As a result, the CaO-containing inclusions contained in all non-metallic inclusions in the duplex stainless steel have a high CaO concentration, the number ratio of CaO-containing inclusions in all non-metallic inclusions is high, and all non-metallic inclusions. When the inclusion has a high CaO concentration, the Ca component is eluted from the CaO-containing inclusion into the aqueous solution to form a gap between the base metal and the inclusion, and pitting corrosion occurs from this gap. In order to improve the corrosion resistance and thus improve the pitting corrosion resistance, the Ca concentration contained in the steel is reduced to 0.0005 mass% or less, and the CaO concentration in individual CaO-containing inclusions is set to 40 mass% or less. In addition, the present inventors have found that the number ratio of CaO-containing inclusions in all nonmetallic inclusions needs to be 40% or less and the CaO concentration in all nonmetallic inclusions needs to be 10 mass% or less.

発明者らは、さらに、耐孔食性の向上と並行して、熱間加工性の向上をも達成するために検討を重ねた。その結果、二相ステンレス鋼の精錬時に形成するスラグを、CaO/Al:3〜10、CaO/SiO:3〜15、MgO:3〜20mass%からなるCaO−SiO−MgO−Al−F系スラグとし、鋼中のAl濃度を0.001〜0.05mass%の範囲に制御することによって、Ca濃度を0.0005mass%以下とすると共に、S濃度を0.0015mass%以下とすることによって、耐食性を劣化させることなく、熱間加工性を向上できることを見出し、本発明を完成させた。 The inventors further studied in order to achieve improvement in hot workability in parallel with improvement in pitting corrosion resistance. As a result, the slag formed during refining of the duplex stainless steel is CaO—SiO 2 —MgO— composed of CaO / Al 2 O 3 : 3 to 10, CaO / SiO 2 : 3 to 15, MgO: 3 to 20 mass%. By making the Al 2 O 3 -F-based slag and controlling the Al concentration in the steel in the range of 0.001 to 0.05 mass%, the Ca concentration is 0.0005 mass% or less and the S concentration is 0.0015 mass. It has been found that the hot workability can be improved without deteriorating the corrosion resistance by setting the ratio to not more than%, and the present invention has been completed.

すなわち、本発明は、C:0.030mass%以下、Si:0.01〜1mass%、Mn:0.01〜2mass%、P:0.040mass%以下、S:0.0015mass%以下、Ni:3〜10mass%、Cr:20〜28mass%、Mo:2〜5mass%、N:0.05〜0.40mass%、Al:0.001〜0.05mass%、Mg:0.0001〜0.0050mass%、Ca:0.0005mass%以下、O:0.0001〜0.0050mass%、残部がFeおよび不可避的不純物からなる成分組成の鋼であって、鋼中に含まれる非金属介在物が、MgO・Al、Al、MgO、MnO−Al系酸化物、CaO濃度が40mass%以下のCaO−Al系酸化物のうちの1種または2種以上からなり、全非金属介在物に対するCaO−Al系酸化物の個数比率が40%以下、全非金属介在物におけるCaO濃度が10mass%以下であり、60℃、20%NaCl水溶液中における孔食電位Vc’10が600mV(vsSCE)以上であることを特徴とする二相ステンレス鋼である。 That is, the present invention is C: 0.030 mass% or less, Si: 0.01-1 mass%, Mn: 0.01-2 mass%, P: 0.040 mass% or less, S: 0.0015 mass% or less, Ni: 3 to 10 mass%, Cr: 20 to 28 mass%, Mo: 2 to 5 mass%, N: 0.05 to 0.40 mass%, Al: 0.001 to 0.05 mass%, Mg: 0.0001 to 0.0050 mass %, Ca: 0.0005 mass% or less, O: 0.0001 to 0.0050 mass%, the balance is a steel having a component composition consisting of Fe and inevitable impurities, and the nonmetallic inclusions contained in the steel are MgO. · Al 2 O 3, Al 2 O 3, MgO, MnO-Al 2 O 3 based oxide, CaO concentration 40 mass% or less of the CaO-Al 2 O 3 based oxide Consists of one or more of the total number ratio of CaO-Al 2 O 3 based oxide to non-metallic inclusions is 40% or less, CaO concentration in the total non-metallic inclusions is not more than 10 mass%, A duplex stainless steel characterized in that the pitting corrosion potential Vc ′ 10 in a 20% NaCl aqueous solution at 60 ° C. is 600 mV (vs SCE) or more.

本発明の二相ステンレス鋼は、上記成分組成に加えてさらに、W:0.01〜1mass%、Cu:0.01〜1mass%、V:0.01〜1mass%、Co:0.01〜1mass%、Nb:0.01〜1mass%、Ti:0.01〜1mass%およびB:0.001〜0.010mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。   In addition to the above component composition, the duplex stainless steel of the present invention may further include W: 0.01 to 1 mass%, Cu: 0.01 to 1 mass%, V: 0.01 to 1 mass%, Co: 0.01 to 1 mass%, Nb: 0.01 to 1 mass%, Ti: 0.01 to 1 mass%, and B: 0.001 to 0.010 mass%, or one or more types selected from .

また、本発明は、上記二相ステンレス鋼を製造するに当たり、電気炉でCr:20〜30mass%、Ni:3〜10mass%およびMo:2〜5mass%を含有するCr−Ni−Mo系の鋼を溶製し、その鋼をAOD処理、VOD処理およびAOD処理後VOD処理する方法のいずれかの方法で精錬する際に、脱炭処理後、石灰、蛍石、Alおよびフェロシリコンを投入して、CaO/Al:3〜10、CaO/SiO:3〜15、MgO:3〜20mass%であるCaO−SiO−MgO−Al−F系スラグを形成し、Cr還元、脱酸、脱硫および成分調整することを特徴とする二相ステンレス鋼の製造方法を提案する。 Further, the present invention provides a Cr—Ni—Mo steel containing Cr: 20 to 30 mass%, Ni: 3 to 10 mass%, and Mo: 2 to 5 mass% in an electric furnace in producing the duplex stainless steel. When the steel is refined by any of the methods of AOD treatment, VOD treatment and AOD treatment, after decarburization, lime, fluorite, Al and ferrosilicon are added. , CaO / Al 2 O 3: 3~10, CaO / SiO 2: 3~15, MgO: CaO-SiO 2 is 3~20mass% -MgO-Al 2 O 3 -F -based slag is formed, Cr reduction A method for producing a duplex stainless steel characterized by deoxidation, desulfurization and component adjustment is proposed.

本発明の二相ステンレス鋼の製造方法は、上記精錬した鋼を、連続鋳造または普通造塊して鋼スラブとすることを特徴とする。   The method for producing a duplex stainless steel according to the present invention is characterized in that the refined steel is continuously cast or normally ingoted into a steel slab.

本発明によれば、耐食性、特に、耐孔食性に優れると共に熱間加工性にも優れる二相ステンレス鋼を安価に製造することができる。したがって、本発明の二相ステンレス鋼は、石油化学プラントや海水取扱設備など、孔食の発生が懸念される環境下で使用される薄板や鋼管などの素材として好適に用いることができる。   ADVANTAGE OF THE INVENTION According to this invention, the duplex stainless steel which is excellent in corrosion resistance, especially pitting corrosion resistance, and is excellent also in hot workability can be manufactured at low cost. Therefore, the duplex stainless steel of the present invention can be suitably used as a material such as a thin plate or a steel pipe used in an environment where the occurrence of pitting corrosion is a concern, such as a petrochemical plant or a seawater handling facility.

本発明に係る耐食性と熱間加工性に優れる二相ステンレス鋼が有すべき成分組成について説明する。
C:0.030mass%以下
Cは、溶接時の鋭敏化を誘発し、耐食性を低下させる元素であるので、少ないほど好ましい。しかし、Cの過度の低減は、強度の低下と共に、製造コストの上昇を招く。そこで、本発明においては、Cの含有量を0.030mass%以下とする。好ましくは、0.025mass%以下である。
The component composition that the duplex stainless steel excellent in corrosion resistance and hot workability according to the present invention should have will be described.
C: 0.030 mass% or less Since C is an element that induces sensitization during welding and reduces corrosion resistance, the smaller the amount, the better. However, excessive reduction of C causes an increase in manufacturing cost as well as a decrease in strength. Therefore, in the present invention, the C content is set to 0.030 mass% or less. Preferably, it is 0.025 mass% or less.

Si:0.01〜1mass%
Siは、脱酸剤として添加される成分であり、0.01mass%以上の添加が必要である。しかし、過剰な添加は、その効果が飽和するとともに、強度の上昇や延性の低下を招くほか、σ相やχ相などの金属間化合物の析出を助長し、耐食性を低下させるので、Siは1mass%以下とする。好ましいSi含有量は0.01〜0.5mass%の範囲である。
Si: 0.01-1 mass%
Si is a component added as a deoxidizer, and it is necessary to add 0.01 mass% or more. However, excessive addition causes saturation of the effect, and leads to an increase in strength and a decrease in ductility, and also promotes the precipitation of intermetallic compounds such as σ phase and χ phase and decreases the corrosion resistance. Therefore, Si is 1 mass. % Or less. A preferable Si content is in the range of 0.01 to 0.5 mass%.

Mn:0.01〜2mass%
Mnは、オーステナイト生成元素であるため、オーステナイト相とフェライト相の比率を調整し、二相ステンレス鋼の耐食性と加工性を改善するのに有効な成分であり、本発明では、0.01mass%以上添加する。しかし、Mnの過剰な添加は、σ相やχ相などの金属間化合物の析出を助長し、耐食性の低下を招くので、Mn含有量の上限は2mass%とする。好ましいMn含有量は0.05〜1.5mass%の範囲である。
Mn: 0.01-2 mass%
Since Mn is an austenite-forming element, it is an effective component for adjusting the ratio of the austenite phase and the ferrite phase and improving the corrosion resistance and workability of the duplex stainless steel. In the present invention, 0.01 mass% or more Added. However, excessive addition of Mn promotes the precipitation of intermetallic compounds such as σ phase and χ phase and causes a decrease in corrosion resistance. Therefore, the upper limit of the Mn content is set to 2 mass%. A preferable Mn content is in the range of 0.05 to 1.5 mass%.

P:0.040mass%以下
Pは、不純物として不可避的に混入する元素であり、結晶粒界に偏析しやすく、耐食性や熱間加工性の低下を招くため、少ないほど好ましい。しかし、Pの含有量の過度の低減は、製造コストの上昇をもたらすため、上限は0.040mass%とする。好ましくは0.030mass%以下である。
P: 0.040 mass% or less P is an element that is inevitably mixed in as an impurity, and is easily segregated at the crystal grain boundary and causes a decrease in corrosion resistance and hot workability. However, excessive reduction of the P content causes an increase in manufacturing cost, so the upper limit is made 0.040 mass%. Preferably it is 0.030 mass% or less.

S:0.0015mass%以下
Sは、Pと同様、不可避的に混入する元素であり、結晶粒界に偏析しやすく、耐食性や熱間加工性を低下させるため、少ないほど好ましい。特に、Sの含有量が0.0015mass%を超えると、熱間加工性に対する有害性が顕著となるため、上限を0.0015mass%とする。好ましくは0.0010mass%以下である。
S: 0.0015 mass% or less S, like P, is an element that is inevitably mixed, and is preferably segregated at the crystal grain boundary and decreases corrosion resistance and hot workability. In particular, if the S content exceeds 0.0015 mass%, the harmfulness to hot workability becomes significant, so the upper limit is set to 0.0015 mass%. Preferably it is 0.0010 mass% or less.

Ni:3〜10mass%
Niは、オーステナイト生成元素であり、フェライト生成元素であるCrやMoを多量に含有する本発明のステンレス鋼では、フェライト相/オーステナイト相の二相組織とし、高い耐食性を付与するため、3mass%以上の添加が必要である。しかし、10mass%を超える添加は、過度のオーステナイト相の増加とフェライト相の減少を招いて、二相組織を維持することが難しくなる。そこで、Ni含有量は3〜10mass%とする。好ましくは、4〜8mass%の範囲である。
Ni: 3 to 10 mass%
Ni is an austenite-forming element, and in the stainless steel of the present invention containing a large amount of ferrite-forming elements such as Cr and Mo, it has a two-phase structure of ferrite phase / austenite phase and imparts high corrosion resistance to 3 mass% or more. Must be added. However, addition exceeding 10 mass% causes an excessive increase in austenite phase and a decrease in ferrite phase, making it difficult to maintain a two-phase structure. Therefore, the Ni content is 3 to 10 mass%. Preferably, it is in the range of 4-8 mass%.

Cr:20〜28mass%
Crは、フェライト生成元素であり、耐食性を向上させる元素でもあるので、積極的に添加する。本発明において、所期した優れた耐食性を得るためには、20mass%以上含有させる必要がある。しかし、28mass%を超えると、σ相やχ相などの金属間化合物の生成を助長し、かえって耐食性を低下させる。また、フェライト相の過度の増加を招き、二相組織を維持するのが難しくなる。よって、本発明では、Cr含有量は20〜28mass%とする。好ましくは21〜27mass%の範囲、さらに好ましくは22〜26mass%の範囲である。
Cr: 20-28 mass%
Since Cr is a ferrite-forming element and an element that improves corrosion resistance, it is positively added. In the present invention, in order to obtain the expected excellent corrosion resistance, it is necessary to contain 20 mass% or more. However, if it exceeds 28 mass%, the formation of intermetallic compounds such as σ phase and χ phase is promoted, and the corrosion resistance is reduced. In addition, the ferrite phase is excessively increased, and it becomes difficult to maintain a two-phase structure. Therefore, in this invention, Cr content shall be 20-28 mass%. Preferably it is the range of 21-27 mass%, More preferably, it is the range of 22-26 mass%.

Mo:2〜5mass%
Moは、耐食性を向上させる有用な元素である。その効果を得るためには、2mass%以上添加する必要がある。しかし、5mass%を超えて添加すると、金属間化合物の析出を助長し、却って耐食性や熱間加工性を低下させるので、上限は5mass%とする。好ましいくMo含有量は2.5〜4.0mass%である。
Mo: 2-5 mass%
Mo is a useful element that improves the corrosion resistance. In order to acquire the effect, it is necessary to add 2 mass% or more. However, if added in excess of 5 mass%, precipitation of intermetallic compounds is promoted and, on the contrary, corrosion resistance and hot workability are reduced, so the upper limit is made 5 mass%. The Mo content is preferably 2.5 to 4.0 mass%.

N:0.05〜0.40mass%
Nは、強力なオーステナイト生成元素であると共に、耐食性を向上させる効果のある有用な元素であるため、本発明では積極的に添加する。N含有量が0.05mass%未満では、フェライト生成元素であるCrやMoが多量に添加された鋼ではオーステナイト相の生成が不十分となるほか、耐食性の向上効果も期待できない。一方、N含有量が0.40mass%を超えると、オーステナイト相が増加し過ぎて、二相ステンレス鋼の範囲から逸脱してしまうのに加えて、Nの溶鋼への溶解限に近づくことから精錬時間が著しく長くなることから、コストの上昇を招く。よって、本発明では、N含有量の上限を0.40mass%とする。好ましいN含有量は0.10〜0.30mass%の範囲である。
N: 0.05-0.40 mass%
N is a powerful austenite-forming element and is a useful element that has an effect of improving corrosion resistance, so it is positively added in the present invention. If the N content is less than 0.05 mass%, the steel to which a large amount of Cr or Mo, which is a ferrite-forming element, is added is not sufficient to generate an austenite phase, and the effect of improving corrosion resistance cannot be expected. On the other hand, if the N content exceeds 0.40 mass%, the austenite phase increases too much, and in addition to deviating from the range of the duplex stainless steel, refining because N approaches the melting limit of molten steel. Since the time is remarkably long, the cost increases. Therefore, in the present invention, the upper limit of the N content is set to 0.40 mass%. The preferred N content is in the range of 0.10 to 0.30 mass%.

Al:0.001〜0.05mass%
Alは、有効な脱酸元素であるとともに、鋼中に生成する非金属介在物をAlやMgO・Alに制御するのに必要な成分である。また、脱酸によって脱硫を促進し、Sを低減し、熱間加工性を向上する効果を有する。それらの効果を得るためには、0.001mass%以上添加する必要がある。しかし、Al添加量が0.05mass%を超えると、脱酸の効果が飽和するだけでなく、金属間化合物の析出を助長したり、スラグ中のCaOを還元して、溶鋼中のCa濃度の上昇を招き、CaO含有介在物の生成を促し、耐食性の低下を招いたりする。よって、本発明では、Alの上限を0.05mass%とする。好ましいAl含有量は、0.005〜0.03mass%の範囲である。
Al: 0.001 to 0.05 mass%
Al is an effective deoxidizing element and is a component necessary for controlling non-metallic inclusions generated in the steel to Al 2 O 3 or MgO · Al 2 O 3 . In addition, desulfurization is promoted by deoxidation, S is reduced, and hot workability is improved. In order to obtain these effects, it is necessary to add 0.001 mass% or more. However, if the Al addition amount exceeds 0.05 mass%, not only the deoxidation effect is saturated, but also precipitation of intermetallic compounds is promoted, or CaO in the slag is reduced to reduce the Ca concentration in the molten steel. It causes an increase, promotes the formation of CaO-containing inclusions, and causes a decrease in corrosion resistance. Therefore, in the present invention, the upper limit of Al is set to 0.05 mass%. A preferable Al content is in the range of 0.005 to 0.03 mass%.

Mg:0.0001〜0.0050mass%
Mgは、熱間加工性の向上に有効な元素であると共に、鋼中の介在物の組成をMgO・AlやMgOとするのに必要な元素である。それらの効果を得るためには、0.0001mass%以上添加する必要がある。しかし、Mgを過剰に添加すると、かえって、熱間加工性を劣化させるので、Mg含有量の上限は0.0050mass%とする。
Mg: 0.0001 to 0.0050 mass%
Mg is an element effective for improving hot workability, and is an element necessary for making the composition of inclusions in steel MgO.Al 2 O 3 and MgO. In order to obtain these effects, it is necessary to add 0.0001 mass% or more. However, if Mg is added excessively, the hot workability is rather deteriorated, so the upper limit of the Mg content is set to 0.0050 mass%.

Ca:0.0005mass%以下
Caは、CaO含有介在物を生成させる元素であり、耐食性を高めることを主眼とする本発明においては、少ないほど好ましい。しかし、Caは、精錬工程において、スラグや耐火物中のCaOが還元されることによっても混入し、CaOを含まない耐火物等を用いた製造プロセスを採用することは、現状では、実質的に困難であることから、Caの混入は不可避である。そこで、本発明では、所望の孔食電位を得るために許容できる混入限度である0.0005mass%を上限とする。
Ca: 0.0005 mass% or less Ca is an element that generates CaO-containing inclusions, and in the present invention whose main purpose is to improve corrosion resistance, the smaller the Ca, the more preferable. However, in the refining process, Ca is mixed even when CaO in slag and refractory is reduced, and at present, adopting a manufacturing process using a refractory that does not contain CaO is substantially effective. Since it is difficult, mixing of Ca is inevitable. Therefore, in the present invention, the upper limit is 0.0005 mass%, which is an allowable mixing limit for obtaining a desired pitting corrosion potential.

O:0.0001〜0.0050mass%
Oは、Al,Mg,Ca,Mnなどと反応して、酸化物系の介在物(非金属介在物)を生成する。特に、O濃度が0.0050mass%を超えると、鋼中に酸化物系の介在物が多数生成され、この介在物が増加することで、鋼の耐食性の劣化や熱間加工性の劣化を招き、所望の孔食電位や健全な熱延板が得られなくなる。一方、O濃度が0.0001mass%を下回ると、CaO介在物が生成され、耐食性の劣化を招く。そこで、本発明ではO濃度の下限は0.0001mass%とする。
O: 0.0001 to 0.0050 mass%
O reacts with Al, Mg, Ca, Mn and the like to generate oxide inclusions (non-metallic inclusions). In particular, when the O concentration exceeds 0.0050 mass%, a large number of oxide-based inclusions are generated in the steel, and this inclusion increases, resulting in deterioration of the corrosion resistance and hot workability of the steel. Thus, a desired pitting corrosion potential and a healthy hot-rolled plate cannot be obtained. On the other hand, when the O concentration is less than 0.0001 mass%, CaO inclusions are generated, leading to deterioration of corrosion resistance. Therefore, in the present invention, the lower limit of the O concentration is set to 0.0001 mass%.

本発明の二相ステンレス鋼は、上記必須とする成分以外に、必要に応じて、下記の成分を添加することができる。
W:0.01〜1mass%、Cu:0.01〜1mass%、V:0.01〜1mass%、Co:0.01〜1mass%、Nb:0.01〜1mass%およびTi:0.01〜1mass%のうちから選ばれる1種または2種以上
これらの元素は、耐食性向上に有効な元素であり、その効果を得るためには、それぞれ0.01mass%以上添加するのが好ましい。しかし、1mass%を超えて添加すると、σ相やχ相などの金属間化合物の析出を助長し、耐食性を劣化させることに加えて、熱間加工性を劣化させる。そこで、それぞれの上限は1mass%とするのが好ましい。より好ましくは、それぞれ0.05〜0.5mass%の範囲である。
In addition to the essential components described above, the following components can be added to the duplex stainless steel of the present invention as necessary.
W: 0.01 to 1 mass%, Cu: 0.01 to 1 mass%, V: 0.01 to 1 mass%, Co: 0.01 to 1 mass%, Nb: 0.01 to 1 mass%, and Ti: 0.01 One element or two or more elements selected from ˜1 mass% These elements are effective elements for improving the corrosion resistance, and in order to obtain the effect, each element is preferably added in an amount of 0.01 mass% or more. However, if added in excess of 1 mass%, precipitation of intermetallic compounds such as σ phase and χ phase is promoted, and in addition to deterioration of corrosion resistance, hot workability is deteriorated. Therefore, the upper limit of each is preferably set to 1 mass%. More preferably, it is the range of 0.05-0.5 mass%, respectively.

B:0.001〜0.010mass%
Bは、熱間加工性の向上に極めて有効な元素である。しかし、0.001mass%未満ではその効果は小さい。一方、過剰に添加すると、かえって熱間加工性を害することになる。よって、本発明では、Bを添加する場合には、熱間加工性を阻害しない範囲である0.010mass%を上限とするのが好ましい。より好ましくは、0.001〜0.005mass%の範囲である。
B: 0.001 to 0.010 mass%
B is an extremely effective element for improving hot workability. However, the effect is small if it is less than 0.001 mass%. On the other hand, if added excessively, hot workability is adversely affected. Therefore, in this invention, when adding B, it is preferable to make 0.010 mass% which is a range which does not inhibit hot workability into an upper limit. More preferably, it is the range of 0.001-0.005 mass%.

鋼中の非金属介在物
本発明の二相ステンレス鋼は、優れた耐食性および熱間加工性を付与するため、鋼中に存在する非金属介在物を適正範囲に制御する、具体的には、鋼中の非金属介在物を、MgO・Al、Al、MgO、MnO−Al系酸化物およびCaO濃度が40mass%以下のCaO−Al系酸化物のいずれか1種または2種以上から構成され、かつ、その内のCaO−Al系酸化物の個数比率が全非金属介在物に対して40%以下、全非金属介在物の平均CaO濃度が10mass%以下に制御することが必要である。以下、その理由について説明する。
Non-metallic inclusions in steel The duplex stainless steel of the present invention controls the non-metallic inclusions present in the steel within an appropriate range in order to impart excellent corrosion resistance and hot workability. the non-metallic inclusions in steel, of MgO · Al 2 O 3, Al 2 O 3, MgO, MnO-Al 2 O 3 based oxide and CaO concentration 40 mass% or less of CaO-Al 2 O 3 based oxide The number ratio of CaO—Al 2 O 3 -based oxides composed of any one or two or more of them is 40% or less with respect to all nonmetallic inclusions, and the average CaO of all nonmetallic inclusions It is necessary to control the concentration to 10 mass% or less. The reason will be described below.

Al、MgO、MgO・Al、MnO−Al系酸化物
これらの酸化物系の介在物(非金属介在物)は、Al脱酸を実施した際に生成される脱酸生成物である。本発明の二相ステンレス鋼は、熱間加工性を向上させるために、Mgを0.0001〜0.0050mass%の範囲で添加しているため、Al,Mgの含有量が多い場合には、AlやMgO,MgO・Alの酸化物系の介在物が生成され、逆に、Al,Mgの含有量が共に低い場合は、MnO−Al系の介在物が生成される。これらの酸化物系の介在物は、CaOを含有していないため、耐食性を悪化させることはない。したがって、本発明に所期した孔食電位(耐孔食性)を得るためには、鋼中に含まれる介在物は、基本的にこれらの介在物からなるものとするのが好ましい。
Al 2 O 3 , MgO, MgO.Al 2 O 3 , MnO—Al 2 O 3 -based oxides These oxide-based inclusions (non-metallic inclusions) are generated when Al deoxidation is performed. Deoxidation product. In the duplex stainless steel of the present invention, Mg is added in the range of 0.0001 to 0.0050 mass% in order to improve hot workability. Therefore, when the content of Al and Mg is large, Oxide inclusions such as Al 2 O 3 and MgO, MgO.Al 2 O 3 are generated. Conversely, when both the contents of Al and Mg are low, MnO—Al 2 O 3 inclusions Generated. Since these oxide inclusions do not contain CaO, the corrosion resistance is not deteriorated. Therefore, in order to obtain the pitting potential (pitting corrosion resistance) as intended in the present invention, it is preferable that the inclusions contained in the steel basically consist of these inclusions.

CaO濃度40mass%以下のCaO−Al系酸化物
CaOを含有する酸化物系の介在物は、そのCa成分が水に溶解し、鋼の耐孔食性を低下させるため、基本的には、存在すること自体好ましくない。本発明では、上述したように、Ca含有量を0.0005mass%以下としている。しかし、Caの含有量を0.0005mass%以下に低減しても、CaOを含有するCaO−Al系酸化物が少数ながら生成される。そこで、発明者らは、このCaO含有介在物が、耐孔食性に及ぼす影響について調査した結果、CaO−Al系介在物に含まれるCaO濃度が40mass%以下であれば、Ca成分の溶出が少なく、耐孔食性に及ぼす悪影響も小さいことを知見した。そこで、本発明では、非金属介在物中にCaO−Al系介在物が存在する場合でも、その介在物は、CaO濃度が40mass%以下のものであることを必要とする。
CaO-Al 2 O 3 type oxide with CaO concentration of 40 mass% or less The oxide inclusions containing CaO are basically dissolved in water because the Ca component dissolves in water and reduces the pitting corrosion resistance of steel. The existence itself is not preferable. In the present invention, as described above, the Ca content is set to 0.0005 mass% or less. However, even if the Ca content is reduced to 0.0005 mass% or less, a small number of CaO—Al 2 O 3 -based oxides containing CaO are produced. Therefore, the inventors investigated the influence of the CaO-containing inclusions on pitting corrosion resistance. As a result, if the CaO concentration contained in the CaO-Al 2 O 3 -based inclusions is 40 mass% or less, It was found that there was little elution and the adverse effect on pitting corrosion resistance was small. Therefore, in the present invention, even when a CaO—Al 2 O 3 -based inclusion is present in the nonmetallic inclusion, the inclusion needs to have a CaO concentration of 40 mass% or less.

CaO−Al系酸化物の個数比率40%以下
上述したように、鋼中への微量Caの混入は避けられないため、CaO−Al系酸化物が僅かながら生成される。このCaO−Al系の介在物の悪影響は、その介在物中のCaO濃度を低減することで、ある程度無害化することができる。しかし、発明者らは、耐孔食性をより改善するには、CaO含有量を低減することに加えて、その存在個数をも低減することが重要であることを見出した。そこで、本発明では、CaO−Al系介在物の個数比率を、全非金属介在物の個数に対して40%以下に制限する。
CaO—Al 2 O 3 Oxide Number Ratio of 40% or Less As described above, since a slight amount of Ca is unavoidably mixed in steel, CaO—Al 2 O 3 oxide is slightly generated. The adverse effect of this CaO—Al 2 O 3 inclusion can be made harmless to some extent by reducing the CaO concentration in the inclusion. However, the inventors have found that in order to further improve the pitting corrosion resistance, in addition to reducing the CaO content, it is important to reduce the number of the existence. Therefore, in the present invention, the number ratio of CaO—Al 2 O 3 inclusions is limited to 40% or less with respect to the total number of nonmetallic inclusions.

全非金属介在物のCaO濃度10mass%以下
上述したように、CaOを含有する介在物の存在は、耐食性を確保する観点からは好ましくない。発明者らの調査によれば、二相ステンレス鋼に含まれる介在物は、様々な種類の介在物から構成されているが、鋼中に含まれる全ての非金属介在物中のCaO濃度を平均したとき、その値が10mass%を超えると、Ca成分の水中への溶け出しによって孔食電位の低下が見られるようになることを見出した。そこで、本発明では、全非金属介在物に占めるCaO濃度を10mass%以下と規定することとした。
CaO concentration of all non-metallic inclusions is 10 mass% or less As described above, the presence of inclusions containing CaO is not preferable from the viewpoint of ensuring corrosion resistance. According to the inventors' investigation, the inclusions contained in the duplex stainless steel are composed of various types of inclusions, but the average CaO concentration in all non-metallic inclusions contained in the steel is averaged. When the value exceeds 10 mass%, it has been found that the pitting potential is lowered due to the dissolution of the Ca component into water. Therefore, in the present invention, the CaO concentration in all non-metallic inclusions is defined as 10 mass% or less.

孔食電位:600mV以上
本発明に係る二相ステンレス鋼は、鋼中の非金属介在物を、上述した適性な組成のものに制御することによって、優れた耐孔食性を実現したものである。その結果、本発明の二相ステンレス鋼は、JIS G0577に規定された孔食電位測定試験で、60℃、20%NaClの水溶液中で測定したときの孔食電位Vc’10が600mV以上という高い耐孔食性を示す。さらに、非金属介在物の平均CaO濃度を9mass%以下に低減することによって、孔食電位Vc’10が900mV以上という極めて高い孔食電位とすることも可能である。
Pitting corrosion potential: 600 mV or more The duplex stainless steel according to the present invention realizes excellent pitting corrosion resistance by controlling the nonmetallic inclusions in the steel to have the above-mentioned suitable composition. As a result, duplex stainless steel of the present invention, a defined pitting potential measurement test in JIS G0577, as high as 60 ° C., the pitting potential Vc when measured in an aqueous solution of 20% NaCl '10 is more than 600mV Shows pitting corrosion resistance. Furthermore, by reducing the average CaO concentration of nonmetallic inclusions to 9 mass% or less, the pitting potential Vc ′ 10 can be set to an extremely high pitting potential of 900 mV or more.

従来、通常の二相ステンレス鋼では耐えられないような腐食環境、例えば、海水環境や化学プラント等で用いられる部材の材料としては、NiやCr濃度を高めたスーパーステンレス鋼などが使用されていた。しかし、Ni,Crとも高価であるため、含有量の増加はコストの大幅な上昇をもたらす。この点、本発明の二相ステンレス鋼では、高価な金属を過剰に添加することなく、鋼中の介在物を適正に制御することにより、耐食性、特に耐孔食性を向上することができるので、製造コストの上昇を招くことがない。したがって、本発明の二相ステンレス鋼は、従来のスーパーステンレス鋼の代替材として、好適に用いることができる。   Conventionally, as a material of a member used in a corrosive environment that cannot be endured by ordinary duplex stainless steel, for example, seawater environment or chemical plant, super stainless steel with increased Ni or Cr concentration has been used. . However, since both Ni and Cr are expensive, an increase in content causes a significant increase in cost. In this regard, the duplex stainless steel of the present invention can improve corrosion resistance, particularly pitting corrosion resistance, by appropriately controlling the inclusions in the steel without excessively adding expensive metals, There is no increase in manufacturing cost. Therefore, the duplex stainless steel of the present invention can be suitably used as an alternative to conventional super stainless steel.

二相ステンレス鋼の製造方法
次に、本発明に係る二相ステンレス鋼の製造方法について説明する。
本発明の二相ステンレス鋼の製造方法は、電気炉等にステンレス鋼の原料を装入し、溶解して、Cr:20〜30mass%、Ni:3〜10mass%、Mo:2〜5mass%を含有するCr−Ni−Mo鋼を溶製し、次いで、AOD処理、VOD処理およびAOD処理後VOD処理する方法のいずれかの方法を用いて、脱炭し、石灰、蛍石、Alおよびフェロシリコン等を添加して、CaO−SiO−MgO−Al−F系スラグを形成し、Cr還元、脱酸および脱硫し、さらに、鋼の成分組成を上述した所定の範囲に最終調整することを特徴とする製造である。上記鋼は、その後、連続鋳造法で鋳造するか、あるいは、普通造塊法で鋳塊としたのち鍛造あるいは分塊圧延することにより鋼スラブとする。ここで、上記CaO−SiO−MgO−Al−F系スラグは、以下に説明するように、CaO/Al:3〜10、CaO/SiO:3〜15、MgO:3〜20mass%の条件を満たすことが必要である。
Next, a method for producing a duplex stainless steel according to the present invention will be described.
The method for producing the duplex stainless steel of the present invention is to charge a raw material of stainless steel into an electric furnace or the like and melt it to obtain Cr: 20 to 30 mass%, Ni: 3 to 10 mass%, Mo: 2 to 5 mass%. Decomposition, lime, fluorite, Al, and ferrosilicon using any one of AOD treatment, VOD treatment, and AOD treatment followed by VOD treatment by melting Cr-Ni-Mo steel containing Etc. are added to form CaO—SiO 2 —MgO—Al 2 O 3 —F-based slag, Cr reduction, deoxidation and desulfurization, and the steel component composition is finally adjusted to the predetermined range described above. It is the manufacture characterized by this. Thereafter, the steel is cast by a continuous casting method, or is made into an ingot by a normal ingot casting method and then forged or split rolled to form a steel slab. Here, the CaO—SiO 2 —MgO—Al 2 O 3 —F-based slag is composed of CaO / Al 2 O 3 : 3 to 10, CaO / SiO 2 : 3 to 15, MgO: It is necessary to satisfy the condition of 3 to 20 mass%.

CaO/Al:3〜10
溶鋼を効率よく脱酸、脱硫するためには、上記CaO−SiO−MgO−Al−F系スラグのCaO/Al比を3〜10の範囲に制御する必要がある。この比が3未満では、Alの活量が高く、十分な脱酸、脱硫を行うことができなくなるため、鋼中のS濃度およびO濃度を本発明の範囲に制御することが難しくなる。一方、スラグ中のCaO濃度が高くなり、CaO/Al比が10を超えると、CaOが還元されて、溶鋼中のCa濃度が高くなり、本発明の範囲を超えてしまう。よって、本発明では、スラグのCaO/Al比を3〜10の範囲に制御する。好ましくは、4〜8の範囲である。
なお、上記CaO/Al比に制御するため、CaO成分として、石灰または蛍石、Al成分として、脱酸剤であるAlの酸化により生成されるアルミナを使用するのが好ましい。また、Al成分として、アルミナまたはライムアルミネート原料を使用してもよい。
CaO / Al 2 O 3 : 3 to 10
In order to efficiently deoxidize and desulfurize molten steel, it is necessary to control the CaO / Al 2 O 3 ratio of the CaO—SiO 2 —MgO—Al 2 O 3 —F-based slag to a range of 3 to 10. If this ratio is less than 3 , the activity of Al 2 O 3 is high, and sufficient deoxidation and desulfurization cannot be performed. Therefore, it is difficult to control the S concentration and O concentration in the steel within the range of the present invention. Become. On the other hand, when the CaO concentration in the slag increases and the CaO / Al 2 O 3 ratio exceeds 10, CaO is reduced, and the Ca concentration in the molten steel increases, exceeding the range of the present invention. Therefore, in the present invention, to control the CaO / Al 2 O 3 ratio of the slag in the range of 3-10. Preferably, it is the range of 4-8.
In order to control the CaO / Al 2 O 3 ratio, it is preferable to use lime or fluorite as the CaO component and alumina produced by oxidation of Al as a deoxidizer as the Al 2 O 3 component. . Further, the Al 2 O 3 component may be used alumina or lime aluminate material.

CaO/SiO:3〜15
溶鋼を脱酸、脱硫するためには、上記CaO−SiO−MgO−Al−F系スラグのCaO/SiO比を3〜15の範囲に制御する必要がある。この比が3未満では、相対的にSiOの活量が高くなるため、十分な脱酸、脱硫を行うことができなくなり、鋼中のS濃度およびO濃度を本発明の範囲に制御することが難しくなる。一方、スラグ中のCaO濃度が高くなり、CaO/SiO比が15を超えると、CaOが還元されて、溶鋼中のCa濃度が高くなるのに加えて、スラグの流動性が悪くなり、脱酸、脱硫が効率的に進まなくなるため、鋼中のCa濃度、S濃度およびO濃度を本発明の範囲に制御することが難しくなる。よって、本発明では、スラグのCaO/SiO比を3〜15の範囲に制御する。好ましくは、4〜12の範囲である。
なお、上記CaO/SiO比に制御するため、CaO成分として、石灰または蛍石、SiO成分として、脱酸剤であるSiの酸化により生成されるシリカを使用するのが好ましい。また、SiO成分として、珪砂を使用してもよい。
CaO / SiO 2: 3~15
In order to deoxidize and desulfurize molten steel, it is necessary to control the CaO / SiO 2 ratio of the CaO—SiO 2 —MgO—Al 2 O 3 —F-based slag to a range of 3 to 15. If the ratio is less than 3, the SiO 2 activity is relatively high, so that sufficient deoxidation and desulfurization cannot be performed, and the S concentration and O concentration in the steel are controlled within the range of the present invention. Becomes difficult. On the other hand, when the CaO concentration in the slag increases and the CaO / SiO 2 ratio exceeds 15, in addition to the reduction of CaO and the increase in the Ca concentration in the molten steel, the fluidity of the slag deteriorates and the slag is removed. Since acid and desulfurization do not proceed efficiently, it becomes difficult to control the Ca concentration, S concentration and O concentration in the steel within the range of the present invention. Therefore, in the present invention, to control the CaO / SiO 2 ratio of the slag in the range of 3-15. Preferably, it is the range of 4-12.
In order to control the CaO / SiO 2 ratio, it is preferable to use lime or fluorite as the CaO component and silica produced by oxidation of Si as a deoxidizer as the SiO 2 component. Silica sand may be used as the SiO 2 component.

MgO:3〜20mass%
スラグ中のMgOは、溶鋼中に含まれるMg濃度を適正範囲に制御するために必要な成分である。また、MgOは、スラグに含有することで、スラグの融点を下げて、滓化を促進する働きもある。斯かる効果を得るためには、スラグ中のMgOは3mass%以上であることが必要である。一方、MgO濃度が20mass%を超えると、逆に、スラグの融点が高くなって、流動性が悪くなり、脱酸、脱硫が効率的に進まなくなるため、本発明が規定するS濃度、O濃度を実現することが難しくなる。よって、本発明では、スラグ中のMgO濃度を3〜20mass%の範囲とする。好ましくは、4〜15mass%の範囲である。
なお、スラグ中のMgOは、AOD処理および/またはVOD処理する際に使用されるドロマイトレンガやマグクロレンガがスラグ中に溶出することで、上記所定の範囲にほぼ収まるが、より適正な範囲に制御するために、ドロマイトレンガやマグクロレンガの廃レンガを添加しても構わない。
MgO: 3 to 20 mass%
MgO in the slag is a component necessary for controlling the Mg concentration contained in the molten steel within an appropriate range. Moreover, MgO also has the function which lowers melting | fusing point of slag and promotes hatching by containing in slag. In order to acquire such an effect, MgO in slag needs to be 3 mass% or more. On the other hand, if the MgO concentration exceeds 20 mass%, on the contrary, the melting point of the slag becomes high, the fluidity deteriorates, and deoxidation and desulfurization do not proceed efficiently. It becomes difficult to realize. Therefore, in this invention, MgO density | concentration in slag is made into the range of 3-20 mass%. Preferably, it is in the range of 4 to 15 mass%.
In addition, MgO in the slag is almost within the predetermined range as dolomite bricks and magcro bricks used in the AOD treatment and / or VOD treatment are eluted into the slag, but are controlled to a more appropriate range. For this reason, waste bricks such as dolomite bricks and magcro bricks may be added.

ステンレス屑、鉄屑、フェロニッケル、フェロクロム、純Ni、Fe−Ni合金屑およびモリブデン等のステンレス鋼原料を容量60tonの電気炉に装入して溶解し、Cr:20〜30mass%、Ni:3〜10mass%、Mo:2〜5mass%であるCr−Ni−Mo鋼を溶製し、次いで、表1に示したように、AOD処理、VOD処理およびAOD処理後VOD処理する方法のいずれかの方法を用いて、ArガスまたはNガスと酸素ガスで吹精して脱炭した後、石灰、蛍石、Alおよびフェロシリコンを添加して表1に示した組成を有するスラグを形成し、Cr還元、脱酸および脱硫し、最終的に鋼の成分を調整し、表2に示したNo.1〜14の成分組成を有する溶鋼を得、次いで、この溶鋼を普通造塊法で鋳塊としたのち鍛造あるいは分塊圧延する、または、連続鋳造法で鋳造することにより鋼スラブとした。ここで、表1のNo.1〜9は発明例を、また、No.10〜14は比較例を示したものである。   Stainless steel raw materials such as stainless steel scrap, iron scrap, ferronickel, ferrochrome, pure Ni, Fe-Ni alloy scrap and molybdenum are charged into an electric furnace with a capacity of 60 tons and melted, Cr: 20-30 mass%, Ni: 3 10% by mass, Mo: 2-5% by mass Cr-Ni-Mo steel is melted, and then, as shown in Table 1, AOD treatment, VOD treatment, and any one of the methods of VOD treatment after AOD treatment After decarburization by blowing with Ar gas or N gas and oxygen gas using the method, lime, fluorite, Al and ferrosilicon are added to form slag having the composition shown in Table 1, Cr Reduction, deoxidation and desulfurization were carried out, and finally the components of the steel were adjusted. A molten steel having a component composition of 1 to 14 was obtained, and then the molten steel was made into an ingot by the ordinary ingot casting method and then forged or split rolled, or cast by a continuous casting method to obtain a steel slab. Here, no. Nos. 1 to 9 are invention examples, and 10-14 show the comparative examples.

Figure 0004824640
Figure 0004824640

Figure 0004824640
Figure 0004824640

次いで、上記各種の鋼スラブを加熱炉にて1100〜1200℃の温度に加熱・均熱してから熱間圧延し、板厚5.5mmの熱延板とし、その後、この熱延板を焼鈍・酸洗し、冷間圧延し、仕上焼鈍して板厚が1〜3mmの冷延板(製品)とした。   Next, the above-mentioned various steel slabs were heated and soaked at a temperature of 1100 to 1200 ° C. in a heating furnace, and then hot-rolled to form a hot-rolled sheet having a thickness of 5.5 mm. Pickling, cold rolling, and finish annealing were performed to obtain a cold rolled sheet (product) having a sheet thickness of 1 to 3 mm.

上記のようにして得た発明例および比較例の熱延板、冷延板のそれぞれについて以下の調査を行った。
<鋼の成分分析>
冷延板について、蛍光X線分析にて、鋼の成分組成を定量分析した。
<非金属介在物の組成>
EDS(エネルギー分散型分析装置)を用いて、各熱延板中に存在する非金属介在物を任意に10箇所ずつ選んで定量分析し、非金属介在物の成分分析と種類分けを行った。
<孔食電位の測定>
冷延板から採取した試験片(板厚×25mm×20mm)の表面を、SiC#800研磨紙で湿式研磨した後、約1cmの測定面を残してシリコーンシーラントで全面を被覆し、さらに、孔食電位の測定直前に、SiC#600研磨紙で表面を湿式研磨した。次いで、その試験片を、60℃の温度に保持した20%NaCl水溶液中に10分間浸漬した後、自然電位からアノード方向に20mV/minの掃引速度で分極し、電流密度が10μA/cmを超えた最も高い電位を孔食電位Vc’10として求めた。なお、この孔食電位の測定では、参照電極として、飽和カロメル電極(SCE)を用い、その他の条件は、JIS G0577(2005)に準じた。
<熱延板表面の欠陥有無>
熱延板の表面を目視にて観察し、表面欠陥の有無を調査した。
The following investigation was conducted for each of the hot-rolled sheet and the cold-rolled sheet of the invention example and the comparative example obtained as described above.
<Component analysis of steel>
About the cold-rolled sheet, the component composition of steel was quantitatively analyzed by fluorescent X-ray analysis.
<Composition of non-metallic inclusions>
Using an EDS (energy dispersive analyzer), 10 non-metallic inclusions present in each hot-rolled sheet were arbitrarily selected and quantitatively analyzed, and component analysis and classification of the non-metallic inclusions were performed.
<Measurement of pitting potential>
After wet-polishing the surface of the test piece (plate thickness × 25 mm × 20 mm) collected from the cold-rolled plate with SiC # 800 abrasive paper, the entire surface is covered with a silicone sealant leaving a measurement surface of about 1 cm 2 , Immediately before measuring the pitting potential, the surface was wet-polished with SiC # 600 abrasive paper. Next, the test piece was immersed in a 20% NaCl aqueous solution maintained at a temperature of 60 ° C. for 10 minutes, and then polarized from the natural potential toward the anode at a sweep rate of 20 mV / min, and the current density was 10 μA / cm 2 . the highest potential in excess was determined as the pitting potential Vc '10. In this pitting corrosion potential measurement, a saturated calomel electrode (SCE) was used as a reference electrode, and other conditions were in accordance with JIS G0577 (2005).
<Heat-rolled plate surface defects>
The surface of the hot-rolled sheet was visually observed to investigate the presence of surface defects.

上記結果を表3および表4に示した。これらの表から、鋼精錬時におけるスラグ組成、鋼の化学成分(成分組成)および非金属介在物の組成のいずれもが本発明の範囲内にあるNo.1〜9の二相ステンレス鋼板(発明例1〜9)は、熱間加工性に優れているうえ、孔食電位、Vc’10も600mVを超えており、優れた耐孔食性を備えていることがわかる。一方、No.10〜14の比較例(比較例1〜5)の二相ステンレス鋼板は、鋼の化学成分、スラグ組成および非金属介在物の組成のいずれか1以上の項目が本発明の範囲を逸脱しており、その結果、熱延板に表面欠陥が発生して、次工程に進捗できないもの(比較例4)が得られたり、孔食電位Vc’10が低かったりして、所期した耐孔食性が得られていないことがわかる。 The results are shown in Tables 3 and 4. From these tables, the slag composition at the time of steel refining, the chemical composition (component composition) of steel, and the composition of nonmetallic inclusions are all within the scope of the present invention. 1-9 of duplex stainless steel (Inventive Example 1-9) immediately, are excellent in hot workability, the pitting potential, Vc '10 has also exceeded 600 mV, has excellent pitting resistance I understand that. On the other hand, no. In the duplex stainless steel plates of Comparative Examples 10 to 14 (Comparative Examples 1 to 5), any one or more items of the chemical composition of the steel, the slag composition, and the composition of the nonmetallic inclusions depart from the scope of the present invention. As a result, a surface defect is generated in the hot-rolled sheet, so that a material that cannot proceed to the next process (Comparative Example 4) is obtained, or the pitting corrosion potential Vc ′ 10 is low. It can be seen that is not obtained.

Figure 0004824640
Figure 0004824640

Figure 0004824640
Figure 0004824640

本発明の二相ステンレス鋼は、耐孔食性および熱間加工性に優れているため、石油化学プラントや海水取扱機器のほか、水道水殺菌用次亜塩素酸ナトリウムの貯蔵タンクやパルプの漂白装置といった次亜塩素酸塩水溶液を貯蔵したり使用したりする容器や装置にも好適に用いることができる。   Since the duplex stainless steel of the present invention is excellent in pitting corrosion resistance and hot workability, in addition to petrochemical plants and seawater handling equipment, sodium hypochlorite storage tanks and pulp bleaching equipment for tap water sterilization Such a hypochlorite aqueous solution can be suitably used for containers and devices for storing and using.

Claims (4)

C:0.030mass%以下、
Si:0.01〜1mass%、
Mn:0.01〜2mass%、
P:0.040mass%以下、
S:0.0015mass%以下、
Ni:3〜10mass%、
Cr:20〜28mass%、
Mo:2〜5mass%、
N:0.05〜0.40mass%、
Al:0.001〜0.05mass%、
Mg:0.0001〜0.0050mass%、
Ca:0.0005mass%以下、
O:0.0001〜0.0050mass%、
残部がFeおよび不可避的不純物からなる成分組成の鋼であって、
鋼中に含まれる非金属介在物が、MgO・Al、Al、MgO、MnO−Al系酸化物、CaO濃度が40mass%以下のCaO−Al系酸化物のうちの1種または2種以上からなり、全非金属介在物に対するCaO−Al系酸化物の個数比率が40%以下、全非金属介在物におけるCaO濃度が10mass%以下であり、60℃、20%NaCl水溶液中における孔食電位Vc’10が600mV(vsSCE)以上であることを特徴とする二相ステンレス鋼。
C: 0.030 mass% or less,
Si: 0.01-1 mass%,
Mn: 0.01-2 mass%,
P: 0.040 mass% or less,
S: 0.0015 mass% or less,
Ni: 3 to 10 mass%,
Cr: 20 to 28 mass%,
Mo: 2 to 5 mass%,
N: 0.05-0.40 mass%,
Al: 0.001 to 0.05 mass%,
Mg: 0.0001 to 0.0050 mass%,
Ca: 0.0005 mass% or less,
O: 0.0001 to 0.0050 mass%,
The balance is steel with a component composition consisting of Fe and inevitable impurities,
Non-metallic inclusions contained in the steel, MgO · Al 2 O 3, Al 2 O 3, MgO, MnO-Al 2 O 3 based oxide, CaO concentration 40 mass% or less of the CaO-Al 2 O 3 based oxide The number ratio of CaO—Al 2 O 3 -based oxide to all nonmetallic inclusions is 40% or less, and the CaO concentration in all nonmetallic inclusions is 10 mass% or less. A duplex stainless steel having a pitting corrosion potential Vc ′ 10 in a 20% NaCl aqueous solution at 60 ° C. of 600 mV (vs SCE) or more.
上記成分組成に加えてさらに、W:0.01〜1mass%、Cu:0.01〜1mass%、V:0.01〜1mass%、Co:0.01〜1mass%、Nb:0.01〜1mass%、Ti:0.01〜1mass%およびB:0.001〜0.010mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1に記載の二相ステンレス鋼。 In addition to the above component composition, W: 0.01 to 1 mass%, Cu: 0.01 to 1 mass%, V: 0.01 to 1 mass%, Co: 0.01 to 1 mass%, Nb: 0.01 to The duplex stainless steel according to claim 1, comprising one or more selected from 1 mass%, Ti: 0.01 to 1 mass%, and B: 0.001 to 0.010 mass%. steel. 請求項1または2に記載の二相ステンレス鋼を製造するに当たり、電気炉でCr:20〜30mass%、Ni:3〜10mass%およびMo:2〜5mass%を含有するCr−Ni−Mo系の鋼を溶製し、その鋼をAOD処理、VOD処理およびAOD処理後VOD処理する方法のいずれかの方法で精錬する際に、脱炭処理後、石灰、蛍石、Alおよびフェロシリコンを投入して、CaO/Al:3〜10、CaO/SiO:3〜15、MgO:3〜20mass%であるCaO−SiO−MgO−Al−F系スラグを形成し、Cr還元、脱酸、脱硫および成分調整することを特徴とする二相ステンレス鋼の製造方法。 In producing the duplex stainless steel according to claim 1 or 2, a Cr-Ni-Mo system containing Cr: 20-30 mass%, Ni: 3-10 mass%, and Mo: 2-5 mass% in an electric furnace. When steel is melted and refined by any of the methods of AOD treatment, VOD treatment, and AOD treatment followed by VOD treatment, lime, fluorite, Al, and ferrosilicon are added after decarburization treatment. CaO / Al 2 O 3 : 3 to 10; CaO / SiO 2 : 3 to 15; MgO: 3 to 20 mass% CaO—SiO 2 —MgO—Al 2 O 3 —F based slag is formed, Cr A method for producing a duplex stainless steel, characterized by reduction, deoxidation, desulfurization, and component adjustment. 上記精錬した鋼を、連続鋳造または普通造塊して鋼スラブとすることを特徴とする請求項3に記載の二相ステンレス鋼の製造方法。 The method for producing a duplex stainless steel according to claim 3, wherein the refined steel is continuously cast or normally ingoted to form a steel slab.
JP2007170628A 2007-06-28 2007-06-28 Duplex stainless steel and manufacturing method thereof Active JP4824640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007170628A JP4824640B2 (en) 2007-06-28 2007-06-28 Duplex stainless steel and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007170628A JP4824640B2 (en) 2007-06-28 2007-06-28 Duplex stainless steel and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009007638A JP2009007638A (en) 2009-01-15
JP4824640B2 true JP4824640B2 (en) 2011-11-30

Family

ID=40323012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007170628A Active JP4824640B2 (en) 2007-06-28 2007-06-28 Duplex stainless steel and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4824640B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082633A1 (en) 2009-01-16 2010-07-22 旭硝子株式会社 Fluorine-containing elastic copolymer, process for the production thereof, and crosslinked rubber articles
JP5616283B2 (en) * 2011-04-25 2014-10-29 日本冶金工業株式会社 Fe-Ni-Cr-Mo alloy and method for producing the same
JP5883761B2 (en) * 2012-10-05 2016-03-15 株式会社神戸製鋼所 Duplex stainless steel and duplex stainless steel pipe
JP5950306B2 (en) * 2012-11-26 2016-07-13 日本冶金工業株式会社 Fe-Ni-Cr alloy superior in sulfuric acid corrosion resistance, intergranular corrosion resistance and surface properties, and method for producing the same
JP6437062B2 (en) * 2016-08-10 2018-12-12 新日鐵住金ステンレス株式会社 Duplex stainless steel and clad steel for clad steel
US11512374B2 (en) 2017-03-30 2022-11-29 Nippon Steel Stainless Steel Corporation Duplex stainless steel and manufacturing method thereof
JP6937190B2 (en) * 2017-08-22 2021-09-22 日本冶金工業株式会社 Ni-Cr-Mo-Nb alloy and its manufacturing method
JP7109333B2 (en) * 2018-10-12 2022-07-29 日鉄ステンレス株式会社 Resource-saving duplex stainless steel with excellent corrosion resistance
AU2019389490B2 (en) * 2018-11-30 2022-06-23 Jfe Steel Corporation Duplex Stainless Steel Seamless Pipe and Method for Manufacturing Same
CN115244199B (en) * 2020-02-27 2023-10-20 日铁不锈钢株式会社 Stainless steel, stainless steel material, and method for producing stainless steel
CN113817895A (en) * 2020-06-19 2021-12-21 江苏新马新材料开发有限公司 Manufacturing process method of 2205 dual-phase steel
JPWO2022210651A1 (en) * 2021-03-31 2022-10-06

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762171B2 (en) * 1989-07-28 1995-07-05 新日本製鐵株式会社 Method for producing austenitic stainless steel excellent in wire drawability and cold rollability
JP2500162B2 (en) * 1991-11-11 1996-05-29 住友金属工業株式会社 High strength duplex stainless steel with excellent corrosion resistance
JP4025171B2 (en) * 2002-10-29 2007-12-19 日本冶金工業株式会社 Stainless steel having excellent corrosion resistance, weldability and surface properties and method for producing the same

Also Published As

Publication number Publication date
JP2009007638A (en) 2009-01-15

Similar Documents

Publication Publication Date Title
JP4824640B2 (en) Duplex stainless steel and manufacturing method thereof
JP4673343B2 (en) Stainless steel sheet excellent in corrosion resistance, weldability and surface properties and method for producing the same
CN108368573B (en) High-strength stainless steel sheet having excellent fatigue characteristics and method for producing same
JP6146908B2 (en) Stainless steel with excellent surface properties and its manufacturing method
JP5950306B2 (en) Fe-Ni-Cr alloy superior in sulfuric acid corrosion resistance, intergranular corrosion resistance and surface properties, and method for producing the same
JP6869142B2 (en) Stainless steel sheet and its manufacturing method
JP6842257B2 (en) Fe-Ni-Cr-Mo alloy and its manufacturing method
JP5616283B2 (en) Fe-Ni-Cr-Mo alloy and method for producing the same
JP6603033B2 (en) High Mn content Fe-Cr-Ni alloy and method for producing the same
JP4025171B2 (en) Stainless steel having excellent corrosion resistance, weldability and surface properties and method for producing the same
JP6222806B2 (en) High corrosion resistance duplex stainless steel with excellent brittleness resistance
US20230077707A1 (en) Stainless steel, stainless steel material, and method for producing stainless steel
KR20220125344A (en) Stainless steel for metal foil, stainless steel foil and manufacturing method thereof
JP4025170B2 (en) Stainless steel excellent in corrosion resistance, weldability and surface properties and method for producing the same
CN115667563B (en) Precipitation hardening martensitic stainless steel sheet excellent in fatigue resistance
JP6191783B2 (en) Stainless steel
JP3440061B2 (en) Fe-Ni-based alloy sheet for low-temperature materials having excellent corrosion resistance and method for producing the same
JP7009666B1 (en) Ni—Cr—Mo alloy for welded pipes with excellent workability and corrosion resistance
JP6823221B1 (en) Highly corrosion resistant austenitic stainless steel and its manufacturing method
TW202132588A (en) Ferritic stainless steel
KR20220126754A (en) Stainless steel with excellent mirror polishing properties and manufacturing method therefor
JP2015010248A (en) Two-phase stainless steel for urea plant
CN115466909A (en) Austenitic stainless steel, preparation process and application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100115

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110831

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110908

R150 Certificate of patent or registration of utility model

Ref document number: 4824640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250