JP6437062B2 - Duplex stainless steel and clad steel for clad steel - Google Patents

Duplex stainless steel and clad steel for clad steel Download PDF

Info

Publication number
JP6437062B2
JP6437062B2 JP2017154639A JP2017154639A JP6437062B2 JP 6437062 B2 JP6437062 B2 JP 6437062B2 JP 2017154639 A JP2017154639 A JP 2017154639A JP 2017154639 A JP2017154639 A JP 2017154639A JP 6437062 B2 JP6437062 B2 JP 6437062B2
Authority
JP
Japan
Prior art keywords
less
steel
stainless steel
duplex stainless
laminated material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017154639A
Other languages
Japanese (ja)
Other versions
JP2018028146A (en
Inventor
柘植 信二
信二 柘植
真和 川
真和 川
雄介 及川
雄介 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=61248272&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6437062(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Publication of JP2018028146A publication Critical patent/JP2018028146A/en
Application granted granted Critical
Publication of JP6437062B2 publication Critical patent/JP6437062B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、耐食性にすぐれた二相ステンレス鋼を合わせ材として用いたクラッド鋼に関し、化学輸送船のタンク類、海水淡水化機器、各種容器等として使用可能なクラッド鋼及び、前記クラッド鋼用の合わせ材として用いられる二相ステンレス鋼に関する。   The present invention relates to a clad steel using a duplex stainless steel having excellent corrosion resistance as a laminated material, a clad steel that can be used as a tank for a chemical transport ship, a seawater desalination device, various containers, and the like, and for the clad steel The present invention relates to a duplex stainless steel used as a bonding material.

クラッド鋼は母材と合わせ材により構成される。母材は炭素鋼などの相対的に安価な鋼が用いられ、強度・靱性などクラッド鋼の基本的な力学特性を担わされる。合わせ材は相対的に高価な鋼が用いられ、腐食環境に対する耐食性など、クラッド鋼の用途に適合する特殊機能性を担わされる。合わせ材をステンレス鋼としたクラッド鋼の用途として化学輸送船のタンク類があり、二重船殻の外側の炭素鋼と溶接接合される部位のタンク隔壁として多く用いられている。このクラッド鋼の合わせ材として一般に用いられているステンレス鋼は、SUS316Lをはじめとするオーステナイトステンレス鋼であり、二相ステンレス鋼を用いた適用例は少ない。   Clad steel is composed of a base material and a laminated material. The base material is a relatively inexpensive steel such as carbon steel, and is responsible for the basic mechanical properties of clad steel such as strength and toughness. A relatively expensive steel is used for the laminated material, and special functions suitable for the use of the clad steel, such as corrosion resistance against a corrosive environment, are taken. There is a chemical transport ship tank as an application of clad steel made of stainless steel as a laminated material, and it is often used as a tank bulkhead at a part to be welded and joined with carbon steel outside the double hull. The stainless steel generally used as a laminated material of this clad steel is austenitic stainless steel including SUS316L, and there are few application examples using a duplex stainless steel.

二相ステンレス鋼を合わせ材としたクラッド鋼の製造方法についての開示があり(特許文献1,2)、SUS304,SUS304L、SUS329J1やSUS329J3L、SUS329J4Lを合わせ材とした実施例が示されている。クラッド鋼を圧延ままで使用する場合、熱間圧延中の合わせ材に析出してくる炭化物やσ相といった合わせ材の耐食性を低下させる析出物を抑制することが必要であり、上記の特許文献に開示された製造方法では圧延温度の規制、圧延後の冷却方法の規制により合わせ材の耐食性と母材の強度・靱性を確保している。   There is a disclosure about a method for producing clad steel using a duplex stainless steel as a laminated material (Patent Documents 1 and 2), and examples in which SUS304, SUS304L, SUS329J1, SUS329J3L, and SUS329J4L are combined are shown. When using the clad steel as it is rolled, it is necessary to suppress precipitates that deteriorate the corrosion resistance of the laminated material such as carbide and σ phase that are precipitated on the laminated material during hot rolling. In the disclosed manufacturing method, the corrosion resistance of the laminated material and the strength and toughness of the base material are ensured by the regulation of the rolling temperature and the regulation of the cooling method after rolling.

熱間圧延中のσ相析出感受性を低下させる観点から、Si量を0.15%以下に低減した孔食発生温度数式規定で50℃以上となる二相ステンレス鋼の合わせ材およびそのクラッド鋼材が特許文献3に開示されており、特許文献1,2で示された内容と類似の圧延条件と組み合わせた製造方法が開示されている。   From the viewpoint of reducing the susceptibility to precipitation of σ phase during hot rolling, a laminated material of duplex stainless steel and its clad steel material, which has a pitting corrosion temperature of 50 ° C. or more as defined by a formula for reducing the amount of Si to 0.15% or less, A manufacturing method disclosed in Patent Document 3 and combined with rolling conditions similar to the contents shown in Patent Documents 1 and 2 is disclosed.

二相ステンレス鋼はCr,Moの含有量が高いという成分的特徴より、熱間でのσ相の析出感受性が高いというデメリットを有しており、上記3つの特許文献はその課題に対する対策を示したものである。   Duplex stainless steel has the demerit that it has high susceptibility to precipitation of sigma phase in the hot state due to its component characteristics of high Cr and Mo contents, and the above three patent documents show countermeasures against the problem. It is a thing.

二相ステンレス鋼はまた、Cr,Moの含有量が高いという成分的特徴より、耐孔食性が高いという特性を有する。合わせ材として用いた二相ステンレス鋼の耐孔食性を損なう要因としては、前出の熱間圧延中に析出した微小なσ相であったり、クロム窒化物であったりする。これら析出物はその周囲にCrの欠乏領域を形成し、孔食の起点となりうるものである。一方で、ステンレス鋼の耐孔食性を損なう介在物としては硫化物が挙げられる。耐孔食性を損なう代表的な硫化物としてはMnS、CaSが知られている。そこでステンレス鋼の耐孔食性を高める方法として、S含有量を低値に低減することが普遍的な成分設計として実行されている。   The duplex stainless steel also has a characteristic of high pitting corrosion resistance due to its component characteristics of high Cr and Mo contents. Factors that impair the pitting corrosion resistance of the duplex stainless steel used as a laminated material include a minute σ phase precipitated during the hot rolling described above and chromium nitride. These precipitates form a Cr-depleted region around the precipitate, and can be a starting point for pitting corrosion. On the other hand, as an inclusion that impairs the pitting corrosion resistance of stainless steel, sulfide can be cited. MnS and CaS are known as typical sulfides that impair pitting corrosion resistance. Therefore, as a method for increasing the pitting corrosion resistance of stainless steel, reducing the S content to a low value has been implemented as a universal component design.

二相ステンレス鋼は熱間加工性が乏しいステンレス鋼であり、S含有量を低減しても熱間圧延時に耳割れを発生することがある。そこで、熱間加工性対策として種々の方法が提案されており、S量を3ppm以下という極低値に低減する(特許文献4)、さらにCaを添加して鋼中のSをCaSとして固定するなどの方法があげられる(非特許文献1)。しかし、Caを添加する場合、前述した様に生成したCaSが孔食の起点となって耐孔食性を低下する場合があった。   Duplex stainless steel is a stainless steel with poor hot workability, and even if the S content is reduced, ear cracks may occur during hot rolling. Therefore, various methods have been proposed as a countermeasure for hot workability, the amount of S is reduced to an extremely low value of 3 ppm or less (Patent Document 4), and Ca is further added to fix S in steel as CaS. (Non-Patent Document 1). However, when Ca is added, the CaS produced as described above may become a starting point of pitting corrosion and may reduce pitting corrosion resistance.

また一方で、特許文献5には、AlとCaの添加量を適正に調整することによって、Caを含有する酸化物系介在物を生成させてステンレス鋼の耐孔食性を改善する方法が開示されている。しかし、特許文献5は、鋼中のSの含有量と介在物の生成との関係について開示も示唆もしていない。Sは原料から不可避に混入して鋼中のCaと反応するので、Caの添加によってCaSが生成されやすくなる。このように、Caを添加することによって、CaS等の硫化物系介在物が生成し、このCaS等が孔食の起点となって鋼の耐食性を損なうおそれがある。特許文献5には、CaSの形成による耐食性の低下という課題が開示も示唆もされていないので、特許文献5に開示されたステンレス鋼は、耐孔食性が十分に改善されているとは言えない。   On the other hand, Patent Document 5 discloses a method for improving the pitting corrosion resistance of stainless steel by appropriately adjusting the addition amounts of Al and Ca to generate oxide inclusions containing Ca. ing. However, Patent Document 5 does not disclose or suggest the relationship between the S content in steel and the formation of inclusions. Since S is inevitably mixed from the raw material and reacts with Ca in the steel, CaS is easily generated by the addition of Ca. Thus, by adding Ca, sulfide-based inclusions such as CaS are generated, and this CaS or the like may become a starting point of pitting corrosion and impair the corrosion resistance of the steel. Patent Document 5 does not disclose or suggest the problem of a decrease in corrosion resistance due to the formation of CaS. Therefore, the stainless steel disclosed in Patent Document 5 cannot be said to have sufficiently improved pitting corrosion resistance. .

また、本発明が対象とするクラッド鋼の合わせ材は熱間加工のまま使用されるが、特許文献5は、固溶化熱処理が行われているステンレス鋼のみを製品例として開示している。そのため、特許文献5に開示されたステンレス鋼を熱間加工のまま前記合わせ材として用いる場合、加工による転位の存在や他の析出物の影響が想定される。従って、特許文献5に記載のステンレス鋼をクラッド鋼の合わせ材として直接的に適用しても本発明の課題解決に至らなかった。   Moreover, although the laminated material of the clad steel which this invention makes object is used with hot processing, patent document 5 is disclosing only the stainless steel in which solution heat treatment is performed as a product example. Therefore, when the stainless steel disclosed in Patent Document 5 is used as the laminated material while being hot-worked, the presence of dislocations due to the work and the influence of other precipitates are assumed. Therefore, even if the stainless steel described in Patent Document 5 is directly applied as a laminated material of clad steel, the problem of the present invention has not been solved.

特開昭60−216984号公報JP-A-60-216984 特開昭62−110880号公報Japanese Patent Laid-Open No. 62-110880 特開2014−114466号公報JP 2014-114466 A 特開平1−219144号公報JP-A-1-219144 特公昭54−24364号公報Japanese Patent Publication No.54-24364

S. Tsuge. Effect of impurity and microalloying elements on the hot workability of duplex stainless steels. Proc. Int. Conf. on Stainless Steels, Chiba, Japan, 1991, p.799-806S. Tsuge.Effect of impurity and microalloying elements on the hot workability of duplex stainless steels.Proc. Int. Conf. On Stainless Steels, Chiba, Japan, 1991, p.799-806

本発明は、CaSに起因する耐食性の低下が防止され、且つ、溶体化熱処理を施さなくとも、熱間圧延ままであっても溶体化熱処理同等の耐食性や熱間加工性を有する二相ステンレス鋼と、当該二相ステンレス鋼を合わせ材として用いたクラッド鋼の提供を目的とする。   The present invention is a duplex stainless steel that is prevented from being deteriorated in corrosion resistance due to CaS, and has corrosion resistance and hot workability equivalent to solution heat treatment even when it is hot-rolled without being subjected to solution heat treatment. And it aims at provision of the clad steel which used the said duplex stainless steel as a bonding material.

本発明者らは上記課題を解決するために、本発明が対象とする二相ステンレス鋼についての解決策を明らかにするために、まず代表的な二相ステンレス鋼である22Cr−3Mo−6Ni−N系のSUS329J3L鋼を基本組成とし、熱間製造性を改善すると言われるAl、Ca、O、B等の含有量を変化させた溶解材を作成した。溶解実験では鋼中酸化物の組成を制御するために、一般的に用いられるMgOルツボに加えて、CaOルツボを用いること、脱酸・脱硫用に塩基度を変化させたフラックスを用い、フラックス添加量の変更、脱酸剤、脱硫剤の添加量、添加時期の変更、などを組み合わせて、種々の二相ステンレス鋼を溶解した。さらに同様な手法にて、他の基本組成の二相ステンレス鋼の溶製を追加した。   In order to solve the above-mentioned problems, the present inventors have first made 22Cr-3Mo-6Ni-, which is a typical duplex stainless steel, in order to clarify the solution for the duplex stainless steel targeted by the present invention. N-type SUS329J3L steel was used as a basic composition, and a melting material was produced in which the contents of Al, Ca, O, B, etc., which are said to improve hot productivity, were changed. In the melting experiment, in order to control the composition of oxides in steel, in addition to the commonly used MgO crucible, use a CaO crucible, use a flux with varying basicity for deoxidation and desulfurization, and add flux Various duplex stainless steels were dissolved by combining a change in amount, a deoxidizing agent, a desulfurizing agent addition amount, a change in addition time, and the like. Furthermore, in the same manner, melting of duplex stainless steel with other basic composition was added.

この溶解材を基に合わせ材に用いる二相ステンレス鋼の熱間加工性を熱間圧延時の耳割れ長さによって評価し、合わせ材の孔食発生温度と硬度をASTM G48塩化第二鉄試験とビッカース硬度測定によって求め、エネルギー分散型X線分光測定器を具備した走査型電子顕微鏡を用いて、前記合わせ材表層部に存在する酸化物の組成を求めた。   The hot workability of duplex stainless steel used as a bonding material based on this melted material is evaluated by the length of the ear cracks during hot rolling, and the pitting corrosion occurrence temperature and hardness of the bonding material are determined according to the ASTM G48 ferric chloride test. And Vickers hardness measurement, and using a scanning electron microscope equipped with an energy dispersive X-ray spectrometer, the composition of the oxide present in the surface layer of the laminated material was determined.

本発明者らは、上記の12mm厚の圧延材:12mm厚×180mm幅×600mm長の二相ステンレス鋼板の圧延定常部約400mm長さについて、それぞれ左右に発生した耳割れの最大長さをそれぞれ測定し、左右の最大長さの和を耳割れ長さとして集計した。この結果を上記の合わせ材表面の酸化物組成(Ca/Al)の測定値に対応させた結果が図1に示されている。   The inventors set the maximum length of the ear cracks generated on the left and right, respectively, for the above-mentioned rolled material of 12 mm thickness: about 400 mm length of the rolled regular portion of the duplex stainless steel plate of 12 mm thickness × 180 mm width × 600 mm length, respectively. The sum of the left and right maximum lengths was counted as the ear crack length. The result of making this result correspond to the measured value of the oxide composition (Ca / Al) on the surface of the laminated material is shown in FIG.

本開発で研究をおこなったクラッド合わせ材は熱間加工後に冷却された状態にあり、熱処理を施さない工程では内部歪みと微小な析出物や酸化物系介在物、硫化物系介在物を内包している。これら歪みと析出物、介在物の影響により、合わせ材の耐孔食性が支配されており、溶体加熱処理されたクラッド鋼と同等の耐孔食性を維持するには析出物及び介在物の量や形態、組成を高度に制御する必要があると本発明者らは考え、研究開発を進めた。その結果、クラッド合わせ材表層部に存在する最大径が5μm以上の大きさの酸化物系介在物中のCaとAlの重量比率(Ca/Al)の値が0.5〜3.5となる条件の二相ステンレス鋼を合わせ材とすることで、熱間圧延まま或いは冷間圧延ままの状態で、合わせ材素材の熱間加工性とクラッド鋼の合わせ材の耐孔食性が両立できることを知見した。   The clad laminated material studied in this development is in a cooled state after hot working, and includes internal strain and fine precipitates, oxide inclusions, and sulfide inclusions in the process without heat treatment. ing. The pitting corrosion resistance of the laminated material is governed by the effects of these strains, precipitates and inclusions. To maintain the same pitting corrosion resistance as that of the solution heat-treated clad steel, the amount of precipitates and inclusions The present inventors thought that it was necessary to highly control the form and composition, and proceeded with research and development. As a result, the value of the weight ratio of Ca to Al (Ca / Al) in the oxide inclusions having a maximum diameter of 5 μm or more existing in the clad laminated material surface layer portion is 0.5 to 3.5. Knowing that the condition duplex stainless steel is used as a laminated material, the hot workability of the laminated material and the pitting corrosion resistance of the laminated material of clad steel can be achieved in the state of hot rolling or cold rolling. did.

本発明者らは合わせ材の圧延時に耳割れが少なく、クラッド圧延後の合わせ材の孔食発生温度Aと孔食発生温度Bの差が小さい条件を見いだすべく、さらに種々の条件を変化させた溶製・鋳造・圧延実験をおこない、熱間加工性評価、耐孔食性評価を精力的におこなった。以上の実験を通じて、得られた知見をもとにして、本発明の完成に至った。   The inventors further changed various conditions in order to find a condition in which there is little ear cracking during rolling of the laminated material and the difference between the pitting corrosion occurrence temperature A and the pitting corrosion occurrence temperature B of the laminated material after clad rolling is small. Melting / casting / rolling experiments were conducted, and hot workability evaluation and pitting corrosion resistance evaluation were conducted energetically. Through the above experiments, the present invention was completed based on the obtained knowledge.

すなわち、本発明の要旨とするところは、以下の通りである。
(1)質量%で、C:0.03%以下、Si:0.05〜1.0%、Mn:0.1〜6.0%、P:0.05%以下、S:0.0001〜0.0014%、Cr:20.0〜28.0%、Ni:0.5〜9.0%、Mo:0.12〜5.0%、N:0.05〜0.35%、l:0.003〜0.05%、Ca:0.0005〜0.0040%、:0.001〜0.004%を含有し、残部がFeおよび不可避的不純物よりなり、鋼表面における最大径5μm以上の大きさの酸化物系介在物のCaとAlの重量比率(Ca/Al)が0.5以上3.5以下であることを特徴とするクラッド鋼用二相ステンレス鋼。
(2)更に質量%で、W:3.0%以下、Co:1.0%以下、Cu:3.0%以下、V:0.5%以下、Nb:0.15%以下、Ti:0.05%以下、B:0.0050%以下、Mg:0.0030%以下のうちの少なくとも1種を含むことを特徴とする(1)に記載のクラッド鋼用二相ステンレス鋼。
)上記(1)又は(2)の二相ステンレス鋼を合わせ材とし、母材を炭素鋼としたことを特徴とするクラッド鋼。
質量%で、C:0.03%以下、Si:0.05〜1.0%、Mn:0.1〜6.0%、P:0.05%以下、S:0.0001〜0.0014%、Cr:20.0〜28.0%、Ni:0.5〜9.0%、Mo:0.12〜5.0%、N:0.05〜0.35%、Al:0.002〜0.05%、O:0.001〜0.0052%を含有し、残部がFeおよび不可避的不純物よりなり、
前記合わせ材の組成に含まれる元素Cr、Mn、W、N、Moの含有量(%)との差が、Cr:−1.0%〜+1.0%、Mn:−1.0%〜+1.0%、W:−0.6%〜+0.6%、N:−0.06%〜+0.06%、Mo:−0.3%〜+0.3%の範囲内であり、下記(1)式で表される耐食性指数PREWが−1.0〜+1.0の範囲内にあり、Caが添加されていない組成を有し且つ固溶化熱処理された二相ステンレス鋼の孔食発生温度に対して、
前記合わせ材の孔食発生温度が−5℃以上高いことを特徴とする()に記載のクラッド鋼。
PREW=Cr+3.3(Mo+0.5W)+16N−Mn ・・・(1)
但し、式中の元素記号は当該元素の含有量(質量%)を意味し、元素が含まれないときは0を代入する。
(5)質量%で、C:0.03%以下、Si:0.05〜1.0%、Mn:0.1〜6.0%、P:0.05%以下、S:0.0001〜0.0014%、Cr:20.0〜28.0%、Ni:0.5〜9.0%、Mo:0.12〜5.0%、N:0.05〜0.35%、Al:0.002〜0.05%、O:0.001〜0.0052%を含有し、
更に質量%で、W:3.0%以下、Co:1.0%以下、Cu:3.0%以下、V:0.5%以下、Nb:0.15%以下、Ti:0.05%以下、B:0.0050%以下、Mg:0.0030%以下のうちの少なくとも1種を含み、残部がFeおよび不可避的不純物よりなり、
前記合わせ材の組成に含まれる元素Cr、Mn、W、N、Moの含有量(%)との差が、Cr:−1.0%〜+1.0%、Mn:−1.0%〜+1.0%、W:−0.6%〜+0.6%、N:−0.06%〜+0.06%、Mo:−0.3%〜+0.3%の範囲内であり、下記(1)式で表される耐食性指数PREWの差が−1.0〜+1.0の範囲内にあり、Caが添加されていない組成を有し且つ固溶化熱処理された二相ステンレス鋼の孔食発生温度に対して、
前記合わせ材の孔食発生温度が−5℃以上高いことを特徴とする(3)に記載のクラッド鋼。
PREW=Cr+3.3(Mo+0.5W)+16N−Mn ・・・(1)
但し、式中の元素記号は当該元素の含有量(質量%)を意味し、元素が含まれないときは0を代入する。
(6)質量%で、C:0.03%以下、Si:0.05〜1.0%、Mn:0.1〜6.0%、P:0.05%以下、S:0.0001〜0.0014%、Cr:20.0〜28.0%、Ni:0.5〜9.0%、Mo:0.12〜5.0%、N:0.05〜0.35%、Al:0.002〜0.05%、O:0.001〜0.0052%を含有し、残部がFeおよび不可避的不純物よりなり、
前記合わせ材の組成に含まれる元素Cr、Mn、W、N、Mの含有量(%)との差が、Cr:−1.0%〜+1.0%、Mn:−1.0%〜+1.0%、W:−0.6%〜+0.6%、N:−0.06%〜+0.06%、Mo:−0.3%〜+0.3%の範囲内であり、下記(1)式で表される耐食性指数PREWが−1.0〜+1.0の範囲内にあり、Caが添加されていない組成を有し且つ固溶化熱処理された二相ステンレス鋼の硬さに対して、
.05倍以上1.30倍以下の硬さを有することを特徴とする3)に記載のクラッド鋼。
PREW=Cr+3.3(Mo+0.5W)+16N−Mn ・・・(1)
但し、式中の元素記号は当該元素の含有量(質量%)を意味し、元素が含まれないときは0を代入する。
(7)質量%で、C:0.03%以下、Si:0.05〜1.0%、Mn:0.1〜6.0%、P:0.05%以下、S:0.0001〜0.0014%、Cr:20.0〜28.0%、Ni:0.5〜9.0%、Mo:0.12〜5.0%、N:0.05〜0.35%、Al:0.002〜0.05%、O:0.001〜0.0052%を含有し、
更に質量%で、W:3.0%以下、Co:1.0%以下、Cu:3.0%以下、V:0.5%以下、Nb:0.15%以下、Ti:0.05%以下、B:0.0050%以下、Mg:0.0030%以下のうちの少なくとも1種を含み、残部がFeおよび不可避的不純物よりなり、
前記合わせ材の組成に含まれる元素Cr、Mn、W、N、Moの含有量(%)との差が、Cr:−1.0%〜+1.0%、Mn:−1.0%〜+1.0%、W:−0.6%〜+0.6%、N:−0.06%〜+0.06%、Mo:−0.3%〜+0.3%の範囲内であり、下記(1)式で表される耐食性指数PREWの差が−1.0〜+1.0の範囲内にあり、Caが添加されていない組成を有し且つ固溶化熱処理された二相ステンレス鋼の硬さに対して、
1.05倍以上1.30倍以下の硬さを有することを特徴とする(3)に記載のクラッド鋼。
PREW=Cr+3.3(Mo+0.5W)+16N−Mn ・・・(1)
但し、式中の元素記号は当該元素の含有量(質量%)を意味し、元素が含まれないときは0を代入する。
(8)質量%で、C:0.03%以下、Si:0.05〜1.0%、Mn:0.1〜6.0%、P:0.05%以下、S:0.0001〜0.0014%、Cr:20.0〜28.0%、Ni:0.5〜9.0%、Mo:0.12〜5.0%、N:0.05〜0.35%、Al:0.002〜0.05%、O:0.001〜0.0052%を含有し、残部がFeおよび不可避的不純物よりなり、
前記合わせ材の組成に含まれる元素Cr、Mn、W、N、Moの含有量(%)との差が、Cr:−1.0%〜+1.0%、Mn:−1.0%〜+1.0%、W:−0.6%〜+0.6%、N:−0.06%〜+0.06%、Mo:−0.3%〜+0.3%の範囲内であり、下記(1)式で表される耐食性指数PREWの差が−1.0〜+1.0の範囲内にあり、Caが添加されていない組成を有し且つ固溶化熱処理された二相ステンレス鋼の孔食発生温度に対して、
前記合わせ材の孔食発生温度が−5℃以上高く、且つ、
前記二相ステンレス鋼の硬さに対して、1.05倍以上1.30倍以下の硬さを有することを特徴とする(3)に記載のクラッド鋼。
PREW=Cr+3.3(Mo+0.5W)+16N−Mn ・・・(1)
但し、式中の元素記号は当該元素の含有量(質量%)を意味し、元素が含まれないときは0を代入する。
(9)質量%で、C:0.03%以下、Si:0.05〜1.0%、Mn:0.1〜6.0%、P:0.05%以下、S:0.0001〜0.0014%、Cr:20.0〜28.0%、Ni:0.5〜9.0%、Mo:0.12〜5.0%、N:0.05〜0.35%、Al:0.002〜0.05%、O:0.001〜0.0052%を含有し、
更に質量%で、W:3.0%以下、Co:1.0%以下、Cu:3.0%以下、V:0.5%以下、Nb:0.15%以下、Ti:0.05%以下、B:0.0050%以下、Mg:0.0030%以下のうちの少なくとも1種を含み、残部がFeおよび不可避的不純物よりなり、
前記合わせ材の組成に含まれる元素Cr、Mn、W、N、Moの含有量(%)との差が、Cr:−1.0%〜+1.0%、Mn:−1.0%〜+1.0%、W:−0.6%〜+0.6%、N:−0.06%〜+0.06%、Mo:−0.3%〜+0.3%の範囲内であり、下記(1)式で表される耐食性指数PREWの差が−1.0〜+1.0の範囲内にあり、Caが添加されていない組成を有し且つ固溶化熱処理された二相ステンレス鋼の孔食発生温度に対して、
前記合わせ材の孔食発生温度が−5℃以上高く、且つ、
前記二相ステンレス鋼の硬さに対して、1.05倍以上1.30倍以下の硬さを有することを特徴とする(3)に記載のクラッド鋼。
PREW=Cr+3.3(Mo+0.5W)+16N−Mn ・・・(1)
但し、式中の元素記号は当該元素の含有量(質量%)を意味し、元素が含まれないときは0を代入する。
That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.03% or less, Si: 0.05-1.0%, Mn: 0.1-6.0%, P: 0.05% or less, S: 0.0001 -0.0014%, Cr: 20.0-28.0%, Ni: 0.5-9.0%, Mo: 0.12-5.0 % , N : 0.05-0.35 %, in containing 0.001 to 0.004%, the balance being Fe and unavoidable impurities, the steel surface: a l: 0.003~0.05%, Ca : 0.0005~0.0040%, O maximum diameter 5μm or more sizes Ca and Al in a weight ratio of oxide inclusions in (Ca / Al) clad steel duplex stainless steel which is characterized in that 0.5 to 3.5.
(2) Further, by mass%, W: 3.0% or less, Co: 1.0% or less, Cu: 3.0% or less, V: 0.5% or less, Nb: 0.15% or less, Ti: The duplex stainless steel for clad steel according to (1), comprising at least one of 0.05% or less, B: 0.0050% or less, and Mg: 0.0030% or less.
( 3 ) A clad steel characterized in that the duplex stainless steel of (1) or (2 ) above is used as a combination material, and the base material is carbon steel.
( 4 ) By mass%, C: 0.03% or less, Si: 0.05 to 1.0%, Mn: 0.1 to 6.0%, P: 0.05% or less, S: 0.0001 -0.0014%, Cr: 20.0-28.0%, Ni: 0.5-9.0%, Mo: 0.12-5.0%, N: 0.05-0.35%, Al: 0.002 to 0.05%, O: 0.001 to 0.0052%, the balance consists of Fe and inevitable impurities,
Differences from the contents (%) of elements Cr, Mn, W, N, and Mo contained in the composition of the laminated material are Cr: −1.0% to + 1.0%, Mn: −1.0% to + 1.0%, W: -0.6% to + 0.6%, N: -0.06% to + 0.06%, Mo: -0.3% to + 0.3%. Pitting corrosion occurrence of duplex stainless steel having a composition in which the corrosion resistance index PREW represented by the formula (1) is in a range of −1.0 to +1.0, Ca is not added, and heat treatment for solution. Against temperature
The clad steel according to ( 3 ), wherein the pitting corrosion temperature of the laminated material is higher by −5 ° C. or more.
PREW = Cr + 3.3 (Mo + 0.5W) + 16N-Mn (1)
However, the element symbol in a formula means content (mass%) of the said element, and 0 is substituted when an element is not contained.
(5) By mass%, C: 0.03% or less, Si: 0.05 to 1.0%, Mn: 0.1 to 6.0%, P: 0.05% or less, S: 0.0001 -0.0014%, Cr: 20.0-28.0%, Ni: 0.5-9.0%, Mo: 0.12-5.0%, N: 0.05-0.35%, Al: 0.002 to 0.05%, O: 0.001 to 0.0052%,
Further, by mass%, W: 3.0% or less, Co: 1.0% or less, Cu: 3.0% or less, V: 0.5% or less, Nb: 0.15% or less, Ti: 0.05 %, B: 0.0050% or less, Mg: at least one of 0.0030% or less, the balance consists of Fe and inevitable impurities,
Differences from the contents (%) of elements Cr, Mn, W, N, and Mo contained in the composition of the laminated material are Cr: −1.0% to + 1.0%, Mn: −1.0% to + 1.0%, W: -0.6% to + 0.6%, N: -0.06% to + 0.06%, Mo: -0.3% to + 0.3%. (1) A hole in a duplex stainless steel having a difference in corrosion resistance index PREW represented by the formula in the range of -1.0 to +1.0, having a composition to which Ca is not added, and subjected to solution heat treatment With respect to the eclipse temperature
The clad steel according to (3), wherein the pitting corrosion temperature of the laminated material is higher by −5 ° C. or more.
PREW = Cr + 3.3 (Mo + 0.5W) + 16N-Mn (1)
However, the element symbol in a formula means content (mass%) of the said element, and 0 is substituted when an element is not contained.
(6) By mass%, C: 0.03% or less, Si: 0.05-1.0%, Mn: 0.1-6.0%, P: 0.05% or less, S: 0.0001 -0.0014%, Cr: 20.0-28.0%, Ni: 0.5-9.0%, Mo: 0.12-5.0%, N: 0.05-0.35%, Al: 0.002 to 0.05%, O: 0.001 to 0.0052%, the balance consists of Fe and inevitable impurities,
Element Cr contained in the composition of the mating member, Mn, W, the difference of N, the content of M o and (percent), Cr: -1.0% ~ + 1.0 %, Mn: -1.0% ~ + 1.0%, W: -0.6% to + 0.6%, N: -0.06% to + 0.06%, Mo: -0.3% to + 0.3%. Hardness of duplex stainless steel having a composition in which corrosion resistance index PREW represented by the following formula (1) is within a range of −1.0 to +1.0, Ca is not added, and solution heat treatment is performed. Against
1 . Having a 05 times 1.30 times the hardness characterized Rukoto (3) clad steel according to.
PREW = Cr + 3.3 (Mo + 0.5W) + 16N-Mn (1)
However, the element symbol in a formula means content (mass%) of the said element, and 0 is substituted when an element is not contained.
(7) By mass%, C: 0.03% or less, Si: 0.05 to 1.0%, Mn: 0.1 to 6.0%, P: 0.05% or less, S: 0.0001 -0.0014%, Cr: 20.0-28.0%, Ni: 0.5-9.0%, Mo: 0.12-5.0%, N: 0.05-0.35%, Al: 0.002 to 0.05%, O: 0.001 to 0.0052%,
Further, by mass%, W: 3.0% or less, Co: 1.0% or less, Cu: 3.0% or less, V: 0.5% or less, Nb: 0.15% or less, Ti: 0.05 %, B: 0.0050% or less, Mg: at least one of 0.0030% or less, the balance consists of Fe and inevitable impurities,
Differences from the contents (%) of elements Cr, Mn, W, N, and Mo contained in the composition of the laminated material are Cr: −1.0% to + 1.0%, Mn: −1.0% to + 1.0%, W: -0.6% to + 0.6%, N: -0.06% to + 0.06%, Mo: -0.3% to + 0.3%. The difference in the corrosion resistance index PREW represented by the formula (1) is in the range of -1.0 to +1.0, the hardness of the duplex stainless steel having a composition to which Ca is not added and subjected to solution heat treatment. On the other hand,
The clad steel according to (3), having a hardness of 1.05 times or more and 1.30 times or less.
PREW = Cr + 3.3 (Mo + 0.5W) + 16N-Mn (1)
However, the element symbol in a formula means content (mass%) of the said element, and 0 is substituted when an element is not contained.
(8) By mass%, C: 0.03% or less, Si: 0.05-1.0%, Mn: 0.1-6.0%, P: 0.05% or less, S: 0.0001 -0.0014%, Cr: 20.0-28.0%, Ni: 0.5-9.0%, Mo: 0.12-5.0%, N: 0.05-0.35%, Al: 0.002 to 0.05%, O: 0.001 to 0.0052%, the balance consists of Fe and inevitable impurities,
Differences from the contents (%) of elements Cr, Mn, W, N, and Mo contained in the composition of the laminated material are Cr: −1.0% to + 1.0%, Mn: −1.0% to + 1.0%, W: -0.6% to + 0.6%, N: -0.06% to + 0.06%, Mo: -0.3% to + 0.3%. (1) A hole in a duplex stainless steel having a difference in corrosion resistance index PREW represented by the formula in the range of -1.0 to +1.0, having a composition to which Ca is not added, and subjected to solution heat treatment With respect to the eclipse temperature
The pitting corrosion occurrence temperature of the laminated material is higher than -5 ° C, and
The clad steel according to (3), which has a hardness of 1.05 times or more and 1.30 times or less of the hardness of the duplex stainless steel.
PREW = Cr + 3.3 (Mo + 0.5W) + 16N-Mn (1)
However, the element symbol in a formula means content (mass%) of the said element, and 0 is substituted when an element is not contained.
(9) By mass%, C: 0.03% or less, Si: 0.05-1.0%, Mn: 0.1-6.0%, P: 0.05% or less, S: 0.0001 -0.0014%, Cr: 20.0-28.0%, Ni: 0.5-9.0%, Mo: 0.12-5.0%, N: 0.05-0.35%, Al: 0.002 to 0.05%, O: 0.001 to 0.0052%,
Further, by mass%, W: 3.0% or less, Co: 1.0% or less, Cu: 3.0% or less, V: 0.5% or less, Nb: 0.15% or less, Ti: 0.05 %, B: 0.0050% or less, Mg: at least one of 0.0030% or less, the balance consists of Fe and inevitable impurities,
Differences from the contents (%) of elements Cr, Mn, W, N, and Mo contained in the composition of the laminated material are Cr: −1.0% to + 1.0%, Mn: −1.0% to + 1.0%, W: -0.6% to + 0.6%, N: -0.06% to + 0.06%, Mo: -0.3% to + 0.3%. (1) A hole in a duplex stainless steel having a difference in corrosion resistance index PREW represented by the formula in the range of -1.0 to +1.0, having a composition to which Ca is not added, and subjected to solution heat treatment With respect to the eclipse temperature
The pitting corrosion occurrence temperature of the laminated material is higher than -5 ° C, and
The clad steel according to (3), which has a hardness of 1.05 times or more and 1.30 times or less of the hardness of the duplex stainless steel.
PREW = Cr + 3.3 (Mo + 0.5W) + 16N-Mn (1)
However, the element symbol in a formula means content (mass%) of the said element, and 0 is substituted when an element is not contained.

本発明により、コストと耐食性のバランスの優れたクラッド鋼を熱間圧延まま或いは冷間圧延ままの状態で提供することができ、輸送船のタンク類、海水淡水化機器、各種容器等に利用可能であり、産業の発展に寄与するところは極めて大である。   According to the present invention, it is possible to provide clad steel with an excellent balance between cost and corrosion resistance in a state of hot rolling or cold rolling, and can be used for tanks of transport ships, seawater desalination equipment, various containers, etc. Therefore, the place that contributes to the development of the industry is extremely large.

SUS329J3Lを基本組成とする二相ステンレス鋼を用いて熱間圧延により製造された合わせ材表層の最大径5μm以上の大きさの酸化物系介在物のCaとAlの重量比率(Ca/Al)と前記合わせ材の12mm厚の鋼材に発生した耳割れ長さの関係を示すグラフである。The weight ratio (Ca / Al) of Ca and Al of oxide inclusions having a maximum diameter of 5 μm or more of the surface layer of the laminated material produced by hot rolling using duplex stainless steel having a basic composition of SUS329J3L It is a graph which shows the relationship of the ear crack length which generate | occur | produced in the steel material of thickness 12mm of the said laminated material. 二相ステンレス鋼合わせ材の表面に存在する酸化物系介在物を走査型電子顕微鏡で観察して得られた二次電子像とエネルギー分散型X線解析によって求めた最大径5μm以上の大きさの酸化物系介在物のCaとAlの重量比率(Ca/Al)と、その合わせ材の孔食発生温度との関係を示すグラフである。A secondary electron image obtained by observing oxide inclusions present on the surface of a duplex stainless steel laminated material with a scanning electron microscope and a maximum diameter of 5 μm or more obtained by energy dispersive X-ray analysis. It is a graph which shows the relationship between the weight ratio (Ca / Al) of Ca and Al of an oxide type inclusion, and the pitting corrosion generation temperature of the laminated material.

本発明においてクラッド鋼とは、母材と合わせ材により構成され、母材は強度・靱性などクラッド鋼の基本的な力学特性を担わされ、合わせ材は相対的に高価な鋼が用いられ、腐食環境に対する耐食性など、適用での特殊機能性を担わされた鋼である。尚、前記母材には炭素鋼などの相対的に安価な鋼が用いられ、特に限定されない。   In the present invention, the clad steel is composed of a base material and a laminated material, the base material is responsible for the basic mechanical properties of the clad steel, such as strength and toughness, and the laminated material is made of relatively expensive steel and is corroded. Steel with special functionality in application, such as corrosion resistance to the environment. The base material is made of relatively inexpensive steel such as carbon steel and is not particularly limited.

一般にクラッド鋼は、熱間加工や冷間加工により製造され、鋼板、鋼管、線材、鍛造材など種々の形態を有するものであり、本発明もこれら様々な形態のクラッド鋼を対象としている。加工によりクラッド鋼の寸法が決められた後に、最終的に焼鈍・酸洗、または焼鈍・研磨が施されるクラッド鋼も存在するが、熱間、冷間加工ままの状態で使用される経済的なクラッド鋼を本発明の主対象としている。   In general, clad steel is manufactured by hot working or cold working, and has various forms such as a steel plate, a steel pipe, a wire, a forged material, and the present invention is also intended for these various forms of clad steel. There are clad steels that are finally annealed, pickled, or annealed / polished after the dimensions of the clad steel are determined by processing, but they are economical to use in the state of hot and cold work. Clad steel is the main subject of the present invention.

以下に、先ず、本発明のクラッド鋼の合わせ材用二相ステンレス鋼の成分について説明する。なお、各成分の含有量は質量%を示す。   Below, the component of the duplex stainless steel for laminated materials of clad steel of this invention is demonstrated first. In addition, content of each component shows the mass%.

Cは、二相ステンレス鋼の耐食性を確保するために、0.03%以下の含有量に制限する。0.03%を越えて含有させると熱間圧延時にCr炭化物が生成して、耐食性,靱性が劣化する。   C limits the content to 0.03% or less in order to ensure the corrosion resistance of the duplex stainless steel. If the content exceeds 0.03%, Cr carbide is generated during hot rolling, and the corrosion resistance and toughness deteriorate.

Siは、脱酸のため0.05%以上添加する。しかしながら、1.0%を超えて添加すると靱性が劣化する。そのため、上限を1.0%に限定する。好ましい範囲は、0.2〜0.8%である。   Si is added at 0.05% or more for deoxidation. However, if it exceeds 1.0%, the toughness deteriorates. Therefore, the upper limit is limited to 1.0%. A preferable range is 0.2 to 0.8%.

Mnはオーステナイト相を増加させ靭性を改善する効果を有する。また窒化物の析出を抑制する効果を有するため本発明鋼材では積極的に添加することが好ましい。母材および溶接部の靱性のため0.1%以上添加する。しかしながら、6.0%を超えて添加すると耐食性および靭性が劣化する。そのため、上限を6.0%に限定する。好ましい含有量は0.3〜4%であり、さらに好ましくは0.5〜3%である。   Mn has the effect of increasing the austenite phase and improving toughness. Moreover, since it has the effect which suppresses precipitation of nitride, it is preferable to add actively with this invention steel material. Add 0.1% or more for toughness of base metal and weld. However, if it exceeds 6.0%, corrosion resistance and toughness deteriorate. Therefore, the upper limit is limited to 6.0%. The preferred content is 0.3 to 4%, more preferably 0.5 to 3%.

Pは原料から不可避に混入する元素であり、熱間加工性および靱性を劣化させるため、0.05%以下に限定する。好ましくは、0.03%以下である。   P is an element inevitably mixed from the raw material, and is limited to 0.05% or less in order to deteriorate hot workability and toughness. Preferably, it is 0.03% or less.

Sは原料から不可避に混入する元素であり、熱間加工性、靱性および耐食性をも劣化させるため、0.0014%以下に限定する。また、0.0001%未満に低減することは脱硫精錬のためのコストが高くなる。このため0.0001〜0.0014%と定めた。好ましくは、0.0002〜0.0006%である。   S is an element inevitably mixed from the raw material, and also deteriorates hot workability, toughness and corrosion resistance, so is limited to 0.0014% or less. Moreover, reducing to less than 0.0001% increases the cost for desulfurization refining. For this reason, it was determined as 0.0001 to 0.0014%. Preferably, it is 0.0002 to 0.0006%.

合わせ材二相ステンレス鋼のS量は、近年の製錬技術の進歩にともなって、0.001%以下に精錬されることが通常である。この場合、強力な硫化物生成元素を添加しない場合は、耐食性を阻害する硫化物を生成することは少なく、耐孔食性が高く維持される。一方で、本発明鋼では強力な硫化物生成元素であるCaを添加する。このため、鋼中Sの一部はCaと結びついてCaSを形成する。このCaSが孔食の起点とならないように酸化物組成を制御する本発明については酸化物の組成規定について述べる項で詳述する。   The amount of S in the duplex stainless steel is usually refined to 0.001% or less with the recent progress in smelting technology. In this case, when a strong sulfide-forming element is not added, sulfide that inhibits corrosion resistance is rarely generated, and pitting resistance is maintained high. On the other hand, in the steel of the present invention, Ca, which is a strong sulfide-forming element, is added. For this reason, a part of S in steel is combined with Ca to form CaS. The present invention for controlling the oxide composition so that this CaS does not become the starting point of pitting corrosion will be described in detail in the section describing the oxide composition rule.

Crは、二相ステンレス鋼の基本的な耐食性を確保するため20.0%以上含有させる。一方28.0%を超えて含有させるとフェライト相分率が増加し靭性および溶接部の耐食性を阻害する。このためCrの含有量を20.0%以上28.0%以下とした。好ましい含有量は20.5〜27.5%である。   Cr is contained in an amount of 20.0% or more in order to ensure the basic corrosion resistance of the duplex stainless steel. On the other hand, if the content exceeds 28.0%, the ferrite phase fraction increases and the toughness and the corrosion resistance of the weld zone are impaired. Therefore, the Cr content is set to 20.0% or more and 28.0% or less. A preferable content is 20.5 to 27.5%.

Niは、オーステナイト組織を安定にし、各種酸に対する耐食性、靭性を改善するため、0.5%以上含有させる。Ni含有量を増加することにより窒化物析出温度を低下させることが可能になる。一方高価な合金であり、合金元素節減型二相ステンレス鋼を対象とした本発明鋼ではコストの観点より9.0%以下の含有量に制限する。好ましい含有量は1.0〜8.0%であり、さらに好ましくは1.5〜7.5%である。   Ni is contained in an amount of 0.5% or more in order to stabilize the austenite structure and improve the corrosion resistance and toughness against various acids. By increasing the Ni content, the nitride precipitation temperature can be lowered. On the other hand, the steel according to the present invention, which is an expensive alloy and is intended for alloy element-saving duplex stainless steel, is limited to a content of 9.0% or less from the viewpoint of cost. The preferred content is 1.0 to 8.0%, more preferably 1.5 to 7.5%.

Moは、ステンレス鋼の耐食性を付加的に高める非常に有効な元素であり、必要に応じて含有させることができる。耐食性改善のためには0.2%以上含有させることが好ましい。より好ましい下限は1.5%超であり、更に好ましくは2.0%以上である。一方で高価な元素であり、本発明鋼では本鋼の合金コストを抑制する観点より5.0%の含有量を上限とする。より好ましい上限は4.0%であり、更に好ましくは3.5%である。   Mo is a very effective element that additionally increases the corrosion resistance of stainless steel, and can be contained as necessary. In order to improve corrosion resistance, it is preferable to contain 0.2% or more. A more preferable lower limit is more than 1.5%, and further preferably 2.0% or more. On the other hand, it is an expensive element, and in the steel of the present invention, the upper limit is 5.0% from the viewpoint of suppressing the alloy cost of the steel. A more preferable upper limit is 4.0%, still more preferably 3.5%.

Wは、Moと同様にステンレス鋼の耐食性を付加的に向上させる元素であり、必要に応じて添加することが出来る。本発明鋼において耐食性を高める目的のためには3.0%を上限に含有させる。   W, like Mo, is an element that additionally improves the corrosion resistance of stainless steel, and can be added as necessary. For the purpose of enhancing the corrosion resistance in the steel of the present invention, 3.0% is contained at the upper limit.

Coは、鋼の靭性と耐食性を高めるために有効な元素であり、必要に応じて添加する。尚、Coは、Niとともに含有させるのが好ましく、添加する場合、0.1%以上含有させることが好ましい。1.0%を越えて含有させると高価な元素であるためにコストに見合った効果が発揮されないようになるため上限を1.0%と定めた。添加する場合の好ましい含有量は0.1〜0.5%である。   Co is an element effective for enhancing the toughness and corrosion resistance of steel, and is added as necessary. In addition, it is preferable to contain Co with Ni, and when adding, it is preferable to contain 0.1% or more. If the content exceeds 1.0%, since it is an expensive element, an effect commensurate with the cost cannot be exhibited, so the upper limit was set to 1.0%. The preferable content in the case of adding is 0.1 to 0.5%.

Cuは、ステンレス鋼の酸に対する耐食性を高める元素であり、かつ靭性を改善する作用を有する元素であり、本発明では必要に応じて添加される。耐食性を高めるために0.1%以上含有させると良い。一方、3.0%を越えて含有させると熱間圧延時に固溶度を超えてεCuが析出し脆化を発生するので上限を3.0%とした。Cuを含有させる場合の好ましい含有量は0.5〜2.0%である。   Cu is an element that enhances the corrosion resistance of stainless steel to acids and has an effect of improving toughness. In the present invention, Cu is added as necessary. In order to improve corrosion resistance, it is good to contain 0.1% or more. On the other hand, if the content exceeds 3.0%, the solid solubility exceeds the solid solubility during hot rolling, and εCu precipitates to cause embrittlement, so the upper limit was made 3.0%. A preferable content when Cu is contained is 0.5 to 2.0%.

Nは、オーステナイト相に固溶して強度、耐食性を高める有効な元素である。このために0.05%以上含有させる。Nを増量することによりNiの節減が可能となるため、積極的に添加したい元素である。一方、その含有量の上限はNの固溶限度以内の制限する必要がある。Nの固溶限度はCr、Mn含有量に応じて高くなるが、本発明鋼においては0.35%を越えて含有させるとCr窒化物を析出して靭性および耐食性を阻害するようになるとともに熱間製造性を阻害するようになるため含有量の上限を0.35%とした。好ましい含有量は0.08〜0.32%である。   N is an effective element that improves the strength and corrosion resistance by dissolving in the austenite phase. For this reason, 0.05% or more is contained. Since it is possible to reduce Ni by increasing the amount of N, it is an element to be actively added. On the other hand, the upper limit of the content must be limited within the solid solubility limit of N. The solid solubility limit of N increases with the Cr and Mn contents. However, when the content of N exceeds 0.35% in the steel of the present invention, Cr nitride is precipitated and the toughness and corrosion resistance are impaired. In order to inhibit hot productivity, the upper limit of the content was set to 0.35%. A preferable content is 0.08 to 0.32%.

次にCrよりも窒化物の生成傾向が大きいV,Nb,Tiについて説明する。V,Nb,Tiは何れも必要に応じて添加することが出来、微量に含有させた場合には耐食性が向上する傾向を有する。   Next, V, Nb, and Ti, which have a greater tendency to form nitrides than Cr, will be described. V, Nb, and Ti can be added as necessary, and when contained in a very small amount, the corrosion resistance tends to be improved.

Vが形成する窒化物、炭化物は熱間加工および鋼材の冷却過程で生成し、耐食性を高める作用を有する。この理由として十分な確認はなされていないが、700℃以下でのクロム窒化物の生成速度を抑制する可能性が考えられる。この耐食性の改善のために0.05%以上含有させる。0.5%を超えて含有させると粗大なV系炭窒化物が生成し、靱性が劣化する。そのため、上限を0.5%に限定する。添加する場合の好ましい含有量は0.1〜0.3%の範囲である。   The nitrides and carbides formed by V are generated during the hot working and cooling of the steel material, and have the effect of increasing the corrosion resistance. Although sufficient confirmation has not been made for this reason, there is a possibility of suppressing the generation rate of chromium nitride at 700 ° C. or lower. In order to improve this corrosion resistance, 0.05% or more is contained. If the content exceeds 0.5%, coarse V-based carbonitrides are produced and the toughness deteriorates. Therefore, the upper limit is limited to 0.5%. The preferable content when added is in the range of 0.1 to 0.3%.

Nbが形成する窒化物、炭化物は熱間加工および鋼材の冷却過程で生成し、耐食性を高める作用を有する。この理由として十分な確認はなされていないが、700℃以下でのクロム窒化物の生成速度を抑制する可能性が考えられる。この耐食性の改善のために0.01%以上含有させる。一方過剰な添加は熱間圧延前の加熱時に未固溶析出物として析出するようになって靭性を阻害するようになるためその含有量の上限を0.15%と定めた。添加する場合の好ましい含有率範囲は、0.03%〜0.10%である。   Nitride and carbide formed by Nb are produced during the hot working and cooling of the steel material, and have the effect of enhancing the corrosion resistance. Although sufficient confirmation has not been made for this reason, there is a possibility of suppressing the generation rate of chromium nitride at 700 ° C. or lower. In order to improve the corrosion resistance, the content is 0.01% or more. On the other hand, excessive addition causes precipitation as an undissolved precipitate during heating before hot rolling, which impairs toughness, so the upper limit of its content was set to 0.15%. The preferable content range in the case of adding is 0.03% to 0.10%.

Tiは、極微量で酸化物、窒化物、硫化物を形成し鋼の凝固および高温加熱組織の結晶粒を微細化する元素である。またV、Nbと同様にクロム窒化物のクロムの一部に置換する性質も有する。0.003%以上の含有によりTiの析出物が形成されるようになる。一方0.05%を越えて二相ステンレス鋼に含有させると粗大なTiNが生成して鋼の靭性を阻害するようになる。このためその含有量の上限を0.05%と定めた。Tiの好適な含有率は0.005〜0.020%である。   Ti is an element that forms oxides, nitrides, and sulfides in an extremely small amount, and solidifies the steel and refines the crystal grains of the high-temperature heating structure. Further, like V and Nb, it also has a property of substituting for a part of chromium nitride chromium. A Ti precipitate is formed when the content is 0.003% or more. On the other hand, if it exceeds 0.05% and is contained in the duplex stainless steel, coarse TiN is generated and the toughness of the steel is inhibited. For this reason, the upper limit of the content was set to 0.05%. A suitable content of Ti is 0.005 to 0.020%.

Bは、鋼の熱間加工性を改善する元素であり、必要に応じて添加される。過剰な添加は逆に熱間加工性および靭性を低下するためその含有量の上限を0.0050%に定めた。   B is an element that improves the hot workability of steel and is added as necessary. On the contrary, excessive addition lowers hot workability and toughness, so the upper limit of the content was set to 0.0050%.

Alは、鋼の脱酸元素であり、鋼中の酸素を低減するために0.05%以上のSiとあわせて含有させる。本発明では、酸化物の組成を制御して熱間加工性と耐孔食性を高めるために必須であり、0.003%以上の含有が必要である。一方でAlはNとの親和力が比較的大きな元素であり、過剰に添加するとAlNを生じてステンレス鋼の靭性を阻害する。その程度はN含有量にも依存するが、Alが0.05%を越えると靭性低下が著しくなるためその含有量の上限を0.05%と定めた。好ましくは0.04%以下である。   Al is a deoxidizing element for steel, and is contained together with 0.05% or more of Si in order to reduce oxygen in the steel. In the present invention, it is essential for controlling the oxide composition to enhance hot workability and pitting corrosion resistance, and it is necessary to contain 0.003% or more. On the other hand, Al is an element having a relatively large affinity with N, and if added excessively, AlN is generated and inhibits the toughness of stainless steel. The degree depends on the N content, but when Al exceeds 0.05%, the toughness deteriorates remarkably, so the upper limit of the content is set to 0.05%. Preferably it is 0.04% or less.

Caは、本発明において鋼の熱間製造性のための重要な元素であり、鋼中のOとSを介在物として固定し、熱間製造性を改善するために含有させることが必要である。本発明鋼ではその目的のために0.0005%以上含有させる。但し、前述したように、Caの添加によってCaSを生成する問題があるので、過剰な添加は耐孔食性を低下させる。そのためその含有量の上限を0.0040%とした。   Ca is an important element for the hot manufacturability of steel in the present invention, and it is necessary to contain O and S in the steel as inclusions to improve the hot manufacturability. . In the steel of the present invention, 0.0005% or more is contained for that purpose. However, as described above, there is a problem that CaS is generated by the addition of Ca, so excessive addition reduces the pitting corrosion resistance. Therefore, the upper limit of the content is set to 0.0040%.

Mgは、鋼の熱間加工性の改善、凝固組織の微細化のために必要に応じて添加させる元素であり、本発明鋼では、添加する場合は0.0003%以上含有させると良い。また過剰な添加は耐孔食性を低下させる。そのためその含有量の上限を0.0030%とした。   Mg is an element that is added as necessary for improving the hot workability of the steel and refining the solidified structure. In the steel of the present invention, it is good to contain 0.0003% or more. Moreover, excessive addition reduces pitting corrosion resistance. Therefore, the upper limit of the content is set to 0.0030%.

Oは、不可避的不純物であり、非金属介在物の代表である酸化物を構成する重要な元素であり、その酸化物の組成制御はクラッド鋼の合わせ材として用いられる二相ステンレス鋼の熱間製造性および合わせ材の耐孔食性の改善にとって非常に重要である。酸化物の組成を制御する本発明では、酸素の含有量は0.001%以上にすることが必要であり、その含有量を0.001%以上に規定した。また粗大なクラスター状酸化物が生成すると表面疵の原因となる。このため、その含有量は低く制限する必要がある。このためO含有量の上限は0.004%以下と規定した。   O is an inevitable impurity and is an important element constituting oxides that are representative of non-metallic inclusions, and the composition control of the oxides is hot in a duplex stainless steel used as a clad steel laminate. It is very important for improvement of manufacturability and pitting corrosion resistance of laminated materials. In the present invention for controlling the composition of the oxide, the oxygen content needs to be 0.001% or more, and the content is specified to be 0.001% or more. In addition, the formation of coarse clustered oxides causes surface defects. For this reason, the content needs to be limited low. For this reason, the upper limit of O content was defined as 0.004% or less.

なお、本発明の効果を損なわない範囲において上記以外の元素を含有させてもよい。例えば、本発明のクラッド鋼用二相ステンレス鋼の熱間加工性の向上をさらに図るため、必要に応じてREMを添加することができる。REMは、ランタノイド系希土類元素の総称であり、鋼の熱間加工性を改善する作用を揺する元素である。REMとしてY、La,Ce,Ndなどの元素がある。熱間加工性の向上を図る目的で1種または2種以上添加することができる。いずれも過剰な添加は逆に熱間加工性および靭性を低下するためその含有量の上限をREMの合計量として0.10%とすることが良い。好ましい含有量は0.005〜0.05%である。   In addition, you may contain elements other than the above in the range which does not impair the effect of this invention. For example, in order to further improve the hot workability of the duplex stainless steel for clad steel of the present invention, REM can be added as necessary. REM is a general term for lanthanoid rare earth elements and is an element that shakes the effect of improving the hot workability of steel. REM includes elements such as Y, La, Ce, and Nd. One or more kinds can be added for the purpose of improving hot workability. In any case, excessive addition conversely reduces hot workability and toughness, so the upper limit of the content is preferably 0.10% as the total amount of REM. A preferable content is 0.005 to 0.05%.

次に、本発明のクラッド鋼の合わせ材用二相ステンレス鋼の鋼表面において測定対象となる酸化物系介在物について説明する。   Next, the oxide inclusions to be measured on the steel surface of the duplex stainless steel for clad steel of the present invention will be described.

酸化物系介在物中のCaとAlの重量比率(Ca/Al)は、本発明のクラッド鋼用二相ステンレス鋼の熱間加工性と耐食性を高める重要な指標であり、先に述べた研究開発により0.5〜3.5の範囲を定めた。   The weight ratio of Ca to Al (Ca / Al) in oxide inclusions is an important index for improving the hot workability and corrosion resistance of the duplex stainless steel for clad steel of the present invention. The range of 0.5 to 3.5 was determined by development.

また、クラッド鋼用二相ステンレス鋼の耐孔食性は、鋼材表面に存在する最大径が5μm以上の比較的大きな酸化物系介在物とその周囲に存在する硫化物に支配されている。Caを添加した二相ステンレス鋼では鋼中にCaSが存在し、腐食環境にて容易に溶解して孔食起点になりうる。しかし、Ca添加を必須元素とする本発明のクラッド鋼の合わせ材用二相ステンレス鋼においては、前述した最大径5μm以上の酸化物系介在物中のCaとAlの重量比率(Ca/Al)を0.5〜3.5に制御することにより、CaS等の硫化物を起点として孔食が発生することを防止し、高い耐孔食性を付与するものである。   Moreover, the pitting corrosion resistance of the duplex stainless steel for clad steel is dominated by relatively large oxide inclusions having a maximum diameter of 5 μm or more existing on the surface of the steel material and sulfide existing therearound. In the duplex stainless steel to which Ca is added, CaS is present in the steel and can easily dissolve in a corrosive environment to become a pitting corrosion origin. However, in the duplex stainless steel for clad steel according to the present invention containing Ca as an essential element, the weight ratio of Ca and Al in the oxide inclusions having a maximum diameter of 5 μm or more (Ca / Al). Is controlled to 0.5 to 3.5, pitting corrosion is prevented from occurring starting from sulfides such as CaS, and high pitting corrosion resistance is imparted.

その作用機構については十分に明らかになっていないが、CaSのような硫化物系介在物が溶解することにより発生した微小ピット中の液性が、鋼が溶解をはじめるようなpHが低い環境に至ったときに、適正な(Ca/Al)を持つ酸化物が溶解して液性をアルカリ側に持ち来すことにより鋼の溶解を抑制する作用が発生している可能性が一例として想定される。いくつかの想定される機構とは別に、本発明者らは(Ca/Al)が0.5未満であると、孔食の発生を抑制することができず、一方(Ca/Al)が3.5を越えると本鋼の熱間加工性の低下が起きやすくなる実験結果を得た。このため(Ca/Al)を0.5〜3.5と定めた。   Although its mechanism of action has not been fully clarified, the liquidity in the micro pits generated by the dissolution of sulfide inclusions such as CaS is a low pH environment where the steel begins to dissolve. As an example, there is a possibility that an action of suppressing dissolution of steel is generated by dissolving an appropriate (Ca / Al) oxide and bringing liquidity to the alkali side. The Apart from some assumed mechanisms, the inventors cannot suppress the occurrence of pitting corrosion when (Ca / Al) is less than 0.5, while (Ca / Al) is 3 When the value exceeds .5, experimental results have been obtained in which the hot workability of the steel is likely to deteriorate. For this reason, (Ca / Al) was set to 0.5 to 3.5.

酸化物系介在物のCaとAlの重量比率(Ca/Al)は、本発明において、以下のように決定される。まず、測定対象の試料の鋼表面の任意部分の5000μm×5000μmの範囲内において、鋼表層の検鏡面に存在する最大径5μm以上の介在物を光学顕微鏡にて確認した後に、走査型電子顕微鏡の試料室内に前記測定対象の試料を入れて、当該確認された介在物に対して電子線を照射し、反射されるX線のエネルギーを半導体検出器で分光等することで酸化物系介在物に含有されるCa/Alを求める。   In the present invention, the weight ratio of Ca and Al (Ca / Al) in the oxide inclusion is determined as follows. First, in the range of 5000 μm × 5000 μm of an arbitrary portion of the steel surface of the sample to be measured, the inclusion having a maximum diameter of 5 μm or more existing on the mirror surface of the steel surface layer is confirmed with an optical microscope, and then the scanning electron microscope is used. Place the sample to be measured in the sample chamber, irradiate the confirmed inclusions with an electron beam, and divide the energy of the reflected X-rays with a semiconductor detector to make oxide inclusions. Ca / Al contained is determined.

尚、前記したように電子線を介在物に照射すると、酸素、窒素、硫黄等のX線のエネルギーが分光されるので、これら分光強度の最大値を示す元素が酸素であれば、その分析点が酸化物であると判定することができる。   As described above, when the inclusions are irradiated with an electron beam, the energy of X-rays such as oxygen, nitrogen, sulfur and the like is dispersed, so if the element showing the maximum value of these spectral intensities is oxygen, the analysis point Can be determined to be an oxide.

Ca/Alの測定対象となる酸化物系介在物は、最大径5μm未満の単相の酸化物からなる一次粒子が凝集した二次粒子であっても良い。また、前記Ca/Alの測定は、一つの酸化物系介在物の検鏡面上の2箇所以上を分析し、それらを平均したCa/Alを当該酸化物系介在物の(Ca/Al)とする。分析する箇所は2、3箇所であっても良く、特に限定されない。これを5個以上の酸化物系介在物に対して行い、それらの平均値を最大径5μm以上の酸化物系介在物の(Ca/Al)とする。   The oxide inclusions to be measured for Ca / Al may be secondary particles in which primary particles composed of single-phase oxides having a maximum diameter of less than 5 μm are aggregated. In addition, the measurement of the Ca / Al is performed by analyzing two or more places on the specular surface of one oxide inclusion, and Ca / Al obtained by averaging them is defined as (Ca / Al) of the oxide inclusion. To do. The location to be analyzed may be two or three, and is not particularly limited. This is performed on five or more oxide inclusions, and the average value thereof is (Ca / Al) of oxide inclusions having a maximum diameter of 5 μm or more.

なお、前記酸化物系介在物がCaFなどの酸化物ではない化合物を含んでいても、酸化物の周囲に付着した複合介在物である場合もあり、このような場合は酸化物系介在物としてカウントする。また、前記酸化物系介在物がCa又はAlの何れか一方のみを含有するとされる系の酸化物からなる場合であっても、一般的にCaやAlが不可避混入する。そのため、酸化物系介在物の分析箇所においてCaやAlが0となることはない。 In addition, even if the oxide inclusion includes a compound which is not an oxide such as CaF 2 , it may be a composite inclusion attached around the oxide. In such a case, the oxide inclusion Count as. In addition, even when the oxide inclusions are made of an oxide of a system containing only one of Ca and Al, generally Ca and Al are inevitably mixed. Therefore, Ca and Al do not become 0 at the analysis site of oxide inclusions.

二相ステンレス鋼合わせ材表面に存在しうる酸化物系介在物としてCaO−Al系酸化物が代表的であるがその他には、MgO系酸化物が挙げられる。鋼中のMgは、るつぼなどのMgOを含有する耐火物や精錬用フラックスに含まれるMgOが、各種脱酸材等により還元され、鋼中に溶解していき、再び鋼中でMgOやMgO・Alとして析出するプロセスや、金属Mg、あるいはMg合金を添加した場合に生成する。 CaO—Al 2 O 3 -based oxides are typical examples of oxide-based inclusions that may be present on the surface of the duplex stainless steel laminated material, but other examples include MgO-based oxides. Mg in steel is refractory containing MgO such as crucible and MgO contained in refining flux is reduced by various deoxidizers and dissolved in steel, and again MgO, MgO. It is generated when a process of precipitation as Al 2 O 3 , metal Mg, or Mg alloy is added.

なお、酸化物系介在物中のCaとAlの重量比率を制御する手法としては、例えば、一般的に用いられるMgOルツボ等の耐火物製の容器に加えて、CaOルツボ等の耐火物製の容器を用いること、脱酸・脱硫用のフラックスの塩基度を変化させること、フラックスの添加量を変更すること、脱酸剤、脱硫剤の添加量や添加時期を変更すること、などが挙げられる。これらの何れか1種、もしくは、2種以上を組み合わせて制御しても良い。   As a method for controlling the weight ratio of Ca and Al in the oxide inclusions, for example, in addition to a commonly used refractory container such as a MgO crucible, a refractory such as a CaO crucible is used. Using containers, changing the basicity of the flux for deoxidation / desulfurization, changing the addition amount of the flux, changing the addition amount and addition timing of the deoxidizer and desulfurization agent, etc. . Any one of these or a combination of two or more may be controlled.

たとえば、酸化物系介在物の組成を所望の値に制御するために、以下のことを念頭に製造条件を設定することができる。酸化物系介在物の組成は鋼中のOおよびCa、Mg、Al、Si等の脱酸元素の活量に支配されている。塩基度の高いフラックスやCaOの割合の高い耐火物を用いるとOの活量が低下する。またCaO含有量の大きいフラックスを用いること、金属CaやCa合金を添加することはCaの活量を高める。実際には耐火物やフラックスに含まれる微量の水分により、鋼中の酸素の活量が上昇し、Alの割合の高い酸化物を生成することが多く、本発明が規定するCaOの割合が高い酸化物組成に制御するには、酸素源を取り除くための注意深い精錬工程が必要となる。   For example, in order to control the composition of oxide inclusions to a desired value, manufacturing conditions can be set with the following in mind. The composition of the oxide inclusions is governed by the activity of O and deoxidizing elements such as Ca, Mg, Al, and Si in the steel. If a flux with high basicity or a refractory with a high proportion of CaO is used, the activity of O decreases. Moreover, using a flux with a large CaO content and adding metal Ca or a Ca alloy increases the activity of Ca. Actually, a small amount of water contained in the refractory and the flux increases the activity of oxygen in the steel, often produces an oxide having a high Al ratio, and the ratio of CaO defined by the present invention is high. Controlling the oxide composition requires a careful refining process to remove the oxygen source.

次いで、本発明のクラッド鋼の耐孔食性及び表面硬さについて説明する。   Next, the pitting corrosion resistance and surface hardness of the clad steel of the present invention will be described.

(本発明のクラッド鋼板の耐孔食性)
本発明の二相ステンレス鋼は固溶化熱処理されていないにも関わらず、その耐食性は、耐食性に影響を与える元素含有量、及び、二相ステンレス鋼の耐食性指標として多く用いられているPREW式[Cr+3.3(Mo+0.5W)+16N−Mn]が同等程度である組成を有し、且つ固溶化熱処理された鋼と比べて遜色無い。尚、前記「同等程度」とは、前記耐食性に影響を与える元素に関して、ほぼ同じ含有量であり、前記PREW式で算出されるPREW値がほぼ同じであることを意味する。また、前記耐食性に影響を与える元素を同等程度含有し、前記PREW値が同等程度である鋼を「同等鋼」と定義する。
(Pitting corrosion resistance of the clad steel sheet of the present invention)
Although the duplex stainless steel of the present invention is not subjected to a solution heat treatment, its corrosion resistance is the element content that affects the corrosion resistance, and the PREW formula [ [Cr + 3.3 (Mo + 0.5W) + 16N-Mn] has a comparable composition and is comparable to a solution heat-treated steel. The “equivalent degree” means that the elements that affect the corrosion resistance have almost the same content, and the PREW values calculated by the PREW formula are almost the same. In addition, steel having the same level of elements that affect the corrosion resistance and having the same PREW value is defined as “equivalent steel”.

ここで、本発明において前記「耐食性に影響を与える元素」とは、上記PREW式を構成する各元素である。従って、本発明における「同等鋼」は、その組成を対象となる鋼の組成と比較して、元素Cr、Mn、W、N、Moの含有量の差が、Cr:−1.0%〜+1.0%、Mn:−1.0%〜+1.0%、W:−0.6%〜+0.6%、N:−0.06%〜+0.06%、Mo:−0.3%〜+0.3%の範囲内にあり、PREW式で算出されるPREW値に関して、−1.0〜+1.0の範囲内にある鋼である。   Here, in the present invention, the “elements affecting the corrosion resistance” are each element constituting the PREW formula. Therefore, the “equivalent steel” in the present invention has a difference in the content of the elements Cr, Mn, W, N, and Mo as compared with the composition of the target steel. + 1.0%, Mn: -1.0% to + 1.0%, W: -0.6% to + 0.6%, N: -0.06% to + 0.06%, Mo: -0.3 The steel is in the range of -1.0 to +1.0 with respect to the PREW value calculated by the PREW formula.

Ca無添加の鋼はCaS生成が無く、高い耐食性を示す。本発明のクラッド鋼の耐食性は、Ca無添加であって固溶化熱処理された同等鋼を用いたクラッド鋼と同等の耐食性を有する。すなわち、本発明のクラッド鋼の耐食性は、固溶化熱処理されていない状態の前記合わせ材(すなわち、本発明の二相ステンレス鋼)の孔食発生温度Aと、前記合わせ材の同等鋼であって且つCaが添加されていない組成を有し、固溶化熱処理された二相ステンレス鋼の孔食発生温度Bに対する差が−5℃以上(A−B≧−5)である。 Steel without Ca is free of CaS and exhibits high corrosion resistance. The corrosion resistance of the clad steel of the present invention is equivalent to that of clad steel using an equivalent steel that is Ca-free and solution heat treated. That is, the corrosion resistance of the clad steel of the present invention is the pitting corrosion occurrence temperature A of the laminated material (that is, the duplex stainless steel of the present invention) that is not subjected to solution heat treatment, and the equivalent steel of the laminated material. and has a composition Ca is not added, the difference with respect to pitting temperature B 0 of solid solution heat-treated duplex stainless steel is -5 ° C. or higher (a-B 0 ≧ -5) .

前記臨界孔食温度試験(ASTM G48法)は、6%濃度の塩化第二鉄に塩酸を加えた溶液中に試験片を浸漬し、試験温度を上昇させながら0.025mm以上の深さの孔食が発生した最低の温度を求める試験である。このうちE法は各温度で24h浸漬する試験であり、ステンレス鋼の耐孔食性を測定するためによく用いられる試験である。本発明が対象としている二相ステンレス鋼の耐孔食性は孔食発生温度が5℃付近から80℃程度の高温となる鋼種まで広い範囲となる。Caを添加した二相ステンレス鋼合わせ材中の酸化物の組成が好ましくなく、孔食の起点となり易い組成となっている場合や熱間圧延条件が好ましくなく、合わせ材中にσ相や窒化物がある程度以上析出している場合は孔食発生温度Aが本来の孔食発生温度Bに比べて10〜20℃程度低下する。孔食発生温度BはCaを添加しない二相ステンレス鋼の合わせ材を固溶化熱処理することにより求められる。   In the critical pitting temperature test (ASTM G48 method), a test piece is immersed in a solution of 6% ferric chloride and hydrochloric acid, and a hole having a depth of 0.025 mm or more is raised while raising the test temperature. This is a test to find the lowest temperature at which pitting occurs. Among these, the E method is a test immersed for 24 hours at each temperature, and is a test often used for measuring the pitting corrosion resistance of stainless steel. The pitting corrosion resistance of the duplex stainless steel targeted by the present invention is in a wide range from a steel type having a pitting corrosion temperature of about 5 ° C. to a high temperature of about 80 ° C. The composition of the oxide in the duplex stainless steel laminated material to which Ca is added is not preferred, and the composition tends to be the starting point of pitting corrosion or the hot rolling conditions are not preferred, and the σ phase and nitride are contained in the laminated material. Is deposited to some extent, the pitting corrosion occurrence temperature A is lower by about 10 to 20 ° C. than the original pitting corrosion occurrence temperature B. The pitting corrosion occurrence temperature B is obtained by performing a solution heat treatment on a laminated material of duplex stainless steel to which no Ca is added.

(本発明のクラッド鋼の表面硬さ)
本発明のクラッド鋼は、熱間圧延ままで最終製品にされるので、固溶化熱処理されているものよりも表面硬さを確保できる。そのため、本発明のクラッド鋼の表面硬さは、固溶化熱処理されていない状態の前記合わせ材(すなわち、本発明の二相ステンレス鋼)の硬さCが、前記合わせ材の同等鋼であってCaが添加されていない組成を有し、固溶化熱処理された二相ステンレス鋼の硬さDに対して1.05倍以上1.30倍以下である。尚、前記硬さCが前記硬さDの1.05倍未満の場合、固溶化処理された二相ステンレス鋼と同等の金属組織状態になるため、耐孔食性が不十分になる。また、前記硬さCが前記硬さDの1.30倍超になるように熱間圧延を行うと、加工歪みの影響や微小な析出物が生成するため、耐孔食性を“A−B≧−5”の状態に確保することが不可能となる。
(Surface hardness of the clad steel of the present invention)
Since the clad steel of the present invention is made into a final product while being hot-rolled, the surface hardness can be secured more than that subjected to solution heat treatment. Therefore, the surface hardness of the clad steel of the present invention is such that the hardness C of the laminated material (that is, the duplex stainless steel of the present invention) that has not been subjected to solution heat treatment is equivalent steel of the laminated material. It is 1.05 times or more and 1.30 times or less with respect to the hardness D 0 of the duplex stainless steel having a composition to which Ca is not added and subjected to solution heat treatment. When the hardness C is less than 1.05 times the hardness D 0 , the pitting corrosion resistance becomes insufficient because the metal structure is equivalent to that of the solution-treated duplex stainless steel. In addition, when hot rolling is performed so that the hardness C is more than 1.30 times the hardness D 0 , the effect of processing strain and fine precipitates are generated. It becomes impossible to ensure the state of B 0 ≧ −5 ″.

このように、本発明のクラッド鋼は、固溶化熱処理された合わせ材よりも、熱間圧延ままの状態の合わせ材の方が、表面硬さに優れることを特徴としている。硬さは表面硬度を求めることが好ましく、断面を樹脂埋め込みして測定しても良い。硬度測定方法はビッカース硬度、ロックウェル硬度、ブリネル硬度などが適用できる。   As described above, the clad steel of the present invention is characterized in that the laminated material in the state of hot rolling is superior in surface hardness to the laminated material subjected to solution heat treatment. The hardness is preferably obtained by determining the surface hardness, and may be measured by embedding a cross section with a resin. As a hardness measurement method, Vickers hardness, Rockwell hardness, Brinell hardness and the like can be applied.

本発明のクラッド鋼用二相ステンレス鋼を合わせ材として、既に開示されている適切な熱間圧延条件にて製造することができる。   The duplex stainless steel for clad steel of the present invention can be produced as a laminated material under the appropriate hot rolling conditions already disclosed.

以上、説明してきた本発明のクラッド鋼用二相ステンレス鋼は、合わせ材として熱間加工性及び耐孔食性が良好であるという特徴を有することで、本発明が対象とする産業分野において経済的なクラッド鋼を提供することができる。   As described above, the duplex stainless steel for clad steel according to the present invention described above is characterized in that it has good hot workability and pitting corrosion resistance as a laminated material, and is economical in the industrial field targeted by the present invention. Can provide a clad steel.

以下に実施例について記載する。本発明者らは25kgの真空溶解により、表1−1(本発明例)及び表1−2(比較例)に化学組成を示す供試鋼を作成した。MgOるつぼを主に用い、一部にCaOるつぼを使用した。また一部の溶解では塩基度を種々変更したCaO−Al−CaF系の精錬用フラックスを500〜1000gを種々タイミングで投入して、溶融保持し、脱酸平衡に近づくよう精錬した。なお表1−1及び表1−2に記載されている成分は残部がFeおよび不可避的不純物元素である。また表1−1及び表1−2に示した成分について含有量が記載されていない部分(符号が「−」で表示された部分)は該当する元素成分を意図的に添加していないため、測定を行っていないことを示す。 Examples are described below. The inventors prepared test steels having chemical compositions shown in Table 1-1 (invention example) and Table 1-2 (comparative example) by 25 kg of vacuum melting. An MgO crucible was mainly used, and a CaO crucible was partially used. In some dissolutions, 500 to 1000 g of CaO—Al 2 O 3 —CaF 2 refining fluxes with various changes in basicity were added at various timings, melted and held, and refined to approach deoxidation equilibrium. . The remainder of the components described in Table 1-1 and Table 1-2 is Fe and inevitable impurity elements. Moreover, since the part which content is not described about the component shown in Table 1-1 and Table 1-2 (part indicated by the sign "-") does not intentionally add the corresponding element component, Indicates that no measurement was performed.

溶解材を鋳造した鋳片から60mm厚×160mm幅×150mm長の圧延素材に機械加工し、圧延仕上温度850℃で12mm厚まで熱間圧延をおこなって左右に発生した耳割れの最大長さを観察し、溶解材の熱間加工性を評価した。すなわち、12mm厚×180mm幅×600mm長の二相ステンレス鋼板の圧延定常部約400mm長さについて、それぞれ左右に発生した耳割れの最大長さをそれぞれ測定し、左右の最大長さの和を耳割れ長さとして集計した。SUS329J3L系鋼種について、合わせ材表面の酸化物組成(Ca/Al)の値との対応関係を図1に示した。   The maximum length of the ear cracks generated on the left and right is machined from a slab cast from a melted material into a rolled material 60 mm thick x 160 mm wide x 150 mm long, hot rolled to a thickness of 12 mm at a rolling finishing temperature of 850 ° C. Observed and evaluated the hot workability of the melt. That is, the maximum length of the ear cracks generated on the left and right sides of each of the rolling regular portions of about 400 mm length of the duplex stainless steel sheet of 12 mm thickness × 180 mm width × 600 mm length is measured, and the sum of the left and right maximum lengths is calculated. It was counted as the crack length. FIG. 1 shows the correspondence between the SUS329J3L steel grade and the value of the oxide composition (Ca / Al) on the surface of the laminated material.

次いで、この鋼板表面の酸化スケールを研削により除去し、板厚68mmの炭素含有量が0.12%の炭素鋼と合わせて溶接組み立てをおこない、この溶接組み立て材を2枚セットで、合わせ材を内側として溶接組み立てし、160mm厚×170mm幅×300mm長のサンドイッチ型クラッド鋼板の素材を作成した。   Next, the oxidized scale on the surface of the steel plate is removed by grinding, and welding assembly is performed with a carbon steel having a plate thickness of 68 mm and a carbon content of 0.12%. Welded and assembled as the inner side, and made a material of a sandwich type clad steel plate of 160 mm thickness × 170 mm width × 300 mm length.

各クラッド鋼板の素材を1200℃に加熱した後、表2−1或いは表2−2に示す圧延仕上げ温度にて40mm厚まで圧延し、表2−1或いは表2−2に示す水冷開始温度からスプレー水冷をおこない、550℃で水冷停止した。圧延後にクラッド鋼板を2枚に分離し、板厚20mm(母材17mm、合わせ材3mm)の二相ステンレス鋼クラッド鋼板を得た。   After heating the material of each clad steel plate to 1200 ° C., it is rolled to a thickness of 40 mm at the rolling finishing temperature shown in Table 2-1 or Table 2-2, and from the water cooling start temperature shown in Table 2-1 or Table 2-2. Spray water cooling was performed, and water cooling was stopped at 550 ° C. After rolling, the clad steel plate was separated into two pieces to obtain a duplex stainless steel clad steel plate having a thickness of 20 mm (base material 17 mm, laminated material 3 mm).

このクラッド鋼板の合わせ材を機械加工によって取り出し、全表面をエメリー紙#120にて湿式で研磨した状態の、3mm厚×25mm幅×50mm長の孔食発生温度測定用試験片を各3ヶ採取するとともに、表面硬度用試験片を各1ヶを切りだした。   The clad steel sheet laminated material is taken out by machining, and 3 pieces each of 3 mm thick x 25 mm wide x 50 mm long pitting corrosion temperature measurement test specimens, which are wet-polished with emery paper # 120, are collected. At the same time, one surface hardness test piece was cut out.

合わせ材の耐孔食性の評価は、上記の全表面をエメリー紙#120にて湿式で研磨した状態の、3mm厚×25mm幅×50mm長の孔食発生温度測定用試験片をASTM G48のE法に従って、決められた温度にて24h浸漬し、発生した孔食の深さを測定した。0.025mm以上の深さの孔食が発生していない場合は、試験温度を5℃高めて次の試験を実施し、これを繰り返して試験片毎の孔食発生温度を求め、各3ヶの孔食発生温度のうち、最低の温度のものの値を孔食発生温度Aとした。SUS329J3L系合わせ材の孔食発生温度の結果を、合わせ材表面の酸化物系介在物の(Ca/Al)で整理した結果を図2に示した。   The pitting corrosion resistance of the laminated material was evaluated by measuring a test piece for measuring pitting corrosion temperature of 3 mm thickness × 25 mm width × 50 mm length of ASTM G48 in a state in which the entire surface was wet-polished with emery paper # 120. According to the method, it was immersed for 24 hours at a predetermined temperature, and the depth of the generated pitting corrosion was measured. When pitting corrosion of a depth of 0.025 mm or more has not occurred, the test temperature is increased by 5 ° C., the next test is performed, and this is repeated to obtain the pitting corrosion generating temperature for each test piece. The value of the lowest temperature among the pitting corrosion occurrence temperatures was defined as the pitting corrosion occurrence temperature A. FIG. 2 shows a result of arranging the results of the pitting corrosion occurrence temperature of the SUS329J3L-based laminated material with (Ca / Al) of the oxide-based inclusions on the surface of the laminated material.

また、表2−1及び表2−2に示すように、同等鋼毎に、Ca無添加の合わせ材を用いたクラッド鋼板を固溶化熱処理して得た合わせ材についても同様の方法で孔食発生温度Bを求めた。 In addition, as shown in Table 2-1 and Table 2-2, pitting corrosion is also carried out in the same manner for a laminated material obtained by solution heat treatment of a clad steel plate using a Ca-free laminated material for each equivalent steel. The generation temperature B0 was determined.

例えば、本発明例No.a1〜a3、a5〜a8及び比較例No.a0、a11〜a15は同等鋼の関係にある。そこで、比較例No.a0を固溶化熱処理して二相ステンレス鋼の合わせ材を製造し、次いで当該合わせ材を用いて前述した製法によりクラッド鋼板を製造し、製造されたクラッド鋼板を用いて前述した方法により、本発明例No.a1〜a3、a5〜a8及び比較例No.a0、a11〜a15に関する孔食発生温度Bを求めた。 For example, Invention Examples No. a1 to a3, a5 to a8 and Comparative Examples No. a0 and a11 to a15 are in the relationship of equivalent steel. Accordingly, the comparative example No. a0 is subjected to solution heat treatment to produce a duplex stainless steel laminated material, and then the clad steel plate is produced by the production method described above using the laminated material, and the clad steel plate produced as described above. by the method, the present invention example No.A1~a3, A5 to A8 and Comparative example No.A0, was determined pitting temperature B 0 about A11 to A15.

同等鋼b1〜b3及びb0、b11、b12の孔食発生温度Bは、比較例No.b0を合わせ材とするクラッド鋼板の孔食発生温度とされる。同様に、鋼番号c0〜c2は同等鋼であり、鋼番号d0〜d2は同等鋼である。また、鋼番号eとe0、鋼番号fとf0、鋼番号gとg0、鋼番号hとh0、鋼番号iとi0、鋼番号jとj0は、それぞれ同等鋼の関係にある。これらの同等鋼についても、鋼番号c0、d0、e0、f0、g0、h0、i0、j0を用いて、それぞれの同等鋼に関する孔食発生温度Bを求めた。尚、固溶化熱処理温度は鋼種毎の適正な温度に設定しており、1000〜1100℃の範囲にある。 Equivalent steel b1~b3 and b0, b11, pitting temperature B 0 of b12 is a pitting temperature of clad plate of the mating material of Comparative Example No.B0. Similarly, steel numbers c0 to c2 are equivalent steels, and steel numbers d0 to d2 are equivalent steels. Steel numbers e and e0, steel numbers f and f0, steel numbers g and g0, steel numbers h and h0, steel numbers i and i0, and steel numbers j and j0 are in the same steel relationship. For even these equivalent steel, with steel numbers c0, d0, e0, f0, g0, h0, i0, j0, was determined pitting temperature B 0 for each equivalent steel. The solution heat treatment temperature is set to an appropriate temperature for each steel type and is in the range of 1000 to 1100 ° C.

Figure 0006437062
Figure 0006437062

Figure 0006437062
Figure 0006437062

合わせ材表面の酸化物組成(Ca/Al)の値の測定は以下のようにおこなった。まず3mm厚×10mm幅×20mm長の試験片を機械加工により切り出し、表層部に対応する面を、酸化物、硫化物等の介在物が溶解しないようにし、ダイヤモンド砥粒にて鏡面研磨仕上げをおこなった。次いで、鋼表面の任意部分の5000μm×5000μmの範囲内において、鋼表層の検鏡面に存在する最大径5μm以上の介在物を光学顕微鏡にて確認した後に、走査型電子顕微鏡に試料を入れた。前記確認した介在物に対して電子線を照射し、反射されるX線のエネルギーを半導体検出器で分光することにより、軽元素を除く金属元素の重量比率を求め、上述した手法にて確認した5個以上の酸化物系介在物に含有されるCa/Alをそれぞれ求め、その平均値である(Ca/Al)を得た。その結果を表2−1及び表2−2に示す。尚、前記酸化物系介在物は酸化物、硫化物、一部に窒化物などが観察されたが、主体は展伸していないC系の酸化物であった。また、表2−2において(Ca/Al)が0.04以下の場合は0.0と表記している。   The value of the oxide composition (Ca / Al) on the surface of the laminated material was measured as follows. First, a test piece of 3 mm thickness x 10 mm width x 20 mm length is cut out by machining, the surface corresponding to the surface layer portion is prevented from dissolving inclusions such as oxides and sulfides, and mirror-polished with diamond abrasive grains. I did it. Next, in a 5000 μm × 5000 μm range of an arbitrary portion of the steel surface, inclusions having a maximum diameter of 5 μm or more present on the mirror surface of the steel surface layer were confirmed with an optical microscope, and then a sample was put into a scanning electron microscope. The confirmed inclusions were irradiated with an electron beam, and the energy of the reflected X-rays was dispersed with a semiconductor detector to obtain the weight ratio of the metal elements excluding the light elements, which was confirmed by the method described above. Ca / Al contained in five or more oxide inclusions was obtained, and the average value (Ca / Al) was obtained. The results are shown in Table 2-1 and Table 2-2. The oxide inclusions were observed to be oxides, sulfides, partially nitrides, etc., but were mainly C-based oxides that were not expanded. In Table 2-2, when (Ca / Al) is 0.04 or less, 0.0 is written.

表面硬度用試験片について表面をエメリー紙#600にて湿式研磨したのち、表面硬度Cを10kgのビッカース硬度にて測定した。また、孔食発生温度測定と同じ条件にて、同等鋼毎にCa無添加の合わせ材を用いたクラッド鋼板を固溶化熱処理材し、その後の合わせ材を同様に機械加工によって取り出し、同等鋼毎に表面硬度Dを測定した。以上の結果より(A−B)及び(C/D)を求めて表2−1及び表2−2の中に示した。 After the surface of the surface hardness test piece was wet-polished with emery paper # 600, the surface hardness C was measured with a Vickers hardness of 10 kg. Also, under the same conditions as the pitting corrosion occurrence temperature measurement, a clad steel plate using a Ca-free additive material for each equivalent steel is subjected to a solution heat treatment material, and the subsequent additive material is taken out by machining in the same manner. the surface hardness D 0 was measured. Based on the above results, (A-B 0 ) and (C / D 0 ) were determined and shown in Tables 2-1 and 2-2.

表2−1及び表2−2に示す実施例より、本発明が開示するクラッド鋼板の合わせ材用二相ステンレス鋼板は耳割れ長さが3mm以下であって熱間加工性が良好であり、クラッド鋼板合わせ材の孔食発生温度(A−B)が−5℃以上であって耐食性が良好であることが明らかである。また合わせ材の表面硬度がC/Dが1.05以上1.30以下の圧延加工ままの状態で、熱処理を施すこと無く良好な耐食性を有するため、最終焼鈍が省略でき、このため経済的なクラッド鋼板が提供できることが明らかである。 From the examples shown in Table 2-1 and Table 2-2, the duplex stainless steel sheet for the laminated material of the clad steel sheet disclosed by the present invention has an ear crack length of 3 mm or less and good hot workability, It is clear that the pitting corrosion occurrence temperature (A-B 0 ) of the clad steel sheet laminated material is −5 ° C. or higher and the corrosion resistance is good. Further, since the surface hardness of the laminated material is in the state of being rolled with C / D 0 being 1.05 or more and 1.30 or less, it has good corrosion resistance without being subjected to heat treatment, so that the final annealing can be omitted, which is economical. Clearly, a clad steel plate can be provided.

以上の実施例からわかるように、本発明により熱間加工性が良好で、クラッド鋼合わせ材の耐食性が改善され、経済的な二相ステンレス鋼を合わせ材としてクラッド鋼が得られることが明確となった。   As can be seen from the above examples, according to the present invention, it is clear that the hot workability is good, the corrosion resistance of the clad steel laminated material is improved, and the clad steel can be obtained using an economical duplex stainless steel as the laminated material. became.

Figure 0006437062
Figure 0006437062

Figure 0006437062
Figure 0006437062

本発明の二相ステンレス鋼は、熱間加工性が良好であり、合わせ材として適用した時の耐孔食性が優れており、耐食性とコストのバランスが優れるクラッド鋼であり、各分野において広く使用することができる。本発明により、二相ステンレス鋼を合わせ材とした耐食性が良好で安価なクラッド鋼を提供することが可能となり、輸送船のタンク類、海水淡水化機器、各種容器等として使用できるなど産業上寄与するところは極めて大である。   The duplex stainless steel of the present invention is a clad steel with good hot workability, excellent pitting corrosion resistance when applied as a laminated material, and excellent balance between corrosion resistance and cost, widely used in various fields can do. According to the present invention, it is possible to provide a clad steel having good corrosion resistance and a low price using a duplex stainless steel as a combined material, and can be used as a tank for a transport ship, seawater desalination equipment, various containers, etc. The place to do is extremely large.

Claims (9)

質量%で、C:0.03%以下、Si:0.05〜1.0%、Mn:0.1〜6.0%、P:0.05%以下、S:0.0001〜0.0014%、Cr:20.0〜28.0%、Ni:0.5〜9.0%、Mo:0.12〜5.0%、N:0.05〜0.35%、l:0.003〜0.05%、Ca:0.0005〜0.0040%、:0.001〜0.004%を含有し、残部がFeおよび不可避的不純物よりなり、鋼表面における最大径5μm以上の大きさの酸化物系介在物中のCaとAlの重量比率(Ca/Al)が0.5以上3.5以下であることを特徴とするクラッド鋼用二相ステンレス鋼。 In mass%, C: 0.03% or less, Si: 0.05-1.0%, Mn: 0.1-6.0%, P: 0.05% or less, S: 0.0001-0. 0014%, Cr: 20.0~28.0%, Ni: 0.5~9.0%, Mo: 0.12~ 5.0%, N: 0.05~0.35%, A l: 0.003 to 0.05%, Ca: 0.0005 to 0.0040%, O : 0.001 to 0.004%, the balance is made of Fe and inevitable impurities, and the maximum diameter on the steel surface is 5 μm. A duplex stainless steel for clad steel, wherein the weight ratio of Ca to Al (Ca / Al) in the oxide inclusions of the above size is 0.5 or more and 3.5 or less. 更に質量%で、W:3.0%以下、Co:1.0%以下、Cu:3.0%以下、V:0.5%以下、Nb:0.15%以下、Ti:0.05%以下、B:0.0050%以下、Mg:0.0030%以下のうちの少なくとも1種を含むことを特徴とする請求項1に記載のクラッド鋼用二相ステンレス鋼。Further, by mass%, W: 3.0% or less, Co: 1.0% or less, Cu: 3.0% or less, V: 0.5% or less, Nb: 0.15% or less, Ti: 0.05 2. The duplex stainless steel for clad steel according to claim 1, comprising at least one of:% or less, B: 0.0050% or less, and Mg: 0.0030% or less. 請求項1又は2に記載の二相ステンレス鋼を合わせ材とし、母材を炭素鋼としたことを特徴とするクラッド鋼。 A clad steel characterized in that the duplex stainless steel according to claim 1 or 2 is used as a laminated material, and a base material is carbon steel. 質量%で、C:0.03%以下、Si:0.05〜1.0%、Mn:0.1〜6.0%、P:0.05%以下、S:0.0001〜0.0014%、Cr:20.0〜28.0%、Ni:0.5〜9.0%、Mo:0.12〜5.0%、N:0.05〜0.35%、Al:0.002〜0.05%、O:0.001〜0.0052%を含有し、残部がFeおよび不可避的不純物よりなり、
前記合わせ材の組成に含まれる元素Cr、Mn、W、N、Moの含有量(%)との差が、Cr:−1.0%〜+1.0%、Mn:−1.0%〜+1.0%、W:−0.6%〜+0.6%、N:−0.06%〜+0.06%、Mo:−0.3%〜+0.3%の範囲内であり、下記(1)式で表される耐食性指数PREWの差が−1.0〜+1.0の範囲内にあり、Caが添加されていない組成を有し且つ固溶化熱処理された二相ステンレス鋼の孔食発生温度に対して、
前記合わせ材の孔食発生温度が−5℃以上高いことを特徴とする請求項に記載のクラッド鋼。
PREW=Cr+3.3(Mo+0.5W)+16N−Mn ・・・(1)
但し、式中の元素記号は当該元素の含有量(質量%)を意味し、元素が含まれないときは0を代入する。
In mass%, C: 0.03% or less, Si: 0.05-1.0%, Mn: 0.1-6.0%, P: 0.05% or less, S: 0.0001-0. 0014%, Cr: 20.0 to 28.0%, Ni: 0.5 to 9.0%, Mo: 0.12 to 5.0%, N: 0.05 to 0.35%, Al: 0 0.002 to 0.05%, O: 0.001 to 0.0052%, with the balance being Fe and inevitable impurities,
Differences from the contents (%) of elements Cr, Mn, W, N, and Mo contained in the composition of the laminated material are Cr: −1.0% to + 1.0%, Mn: −1.0% to + 1.0%, W: -0.6% to + 0.6%, N: -0.06% to + 0.06%, Mo: -0.3% to + 0.3%. (1) A hole in a duplex stainless steel having a difference in corrosion resistance index PREW represented by the formula in the range of -1.0 to +1.0, having a composition to which Ca is not added, and subjected to solution heat treatment With respect to the eclipse temperature
The clad steel according to claim 3 , wherein a pitting corrosion temperature of the laminated material is higher by -5 ° C or more.
PREW = Cr + 3.3 (Mo + 0.5W) + 16N-Mn (1)
However, the element symbol in a formula means content (mass%) of the said element, and 0 is substituted when an element is not contained.
質量%で、C:0.03%以下、Si:0.05〜1.0%、Mn:0.1〜6.0%、P:0.05%以下、S:0.0001〜0.0014%、Cr:20.0〜28.0%、Ni:0.5〜9.0%、Mo:0.12〜5.0%、N:0.05〜0.35%、Al:0.002〜0.05%、O:0.001〜0.0052%を含有し、In mass%, C: 0.03% or less, Si: 0.05-1.0%, Mn: 0.1-6.0%, P: 0.05% or less, S: 0.0001-0. 0014%, Cr: 20.0 to 28.0%, Ni: 0.5 to 9.0%, Mo: 0.12 to 5.0%, N: 0.05 to 0.35%, Al: 0 0.002 to 0.05%, O: 0.001 to 0.0052%,
更に質量%で、W:3.0%以下、Co:1.0%以下、Cu:3.0%以下、V:0.5%以下、Nb:0.15%以下、Ti:0.05%以下、B:0.0050%以下、Mg:0.0030%以下のうちの少なくとも1種を含み、残部がFeおよび不可避的不純物よりなり、Further, by mass%, W: 3.0% or less, Co: 1.0% or less, Cu: 3.0% or less, V: 0.5% or less, Nb: 0.15% or less, Ti: 0.05 %, B: 0.0050% or less, Mg: at least one of 0.0030% or less, the balance consists of Fe and inevitable impurities,
前記合わせ材の組成に含まれる元素Cr、Mn、W、N、Moの含有量(%)との差が、Cr:−1.0%〜+1.0%、Mn:−1.0%〜+1.0%、W:−0.6%〜+0.6%、N:−0.06%〜+0.06%、Mo:−0.3%〜+0.3%の範囲内であり、下記(1)式で表される耐食性指数PREWの差が−1.0〜+1.0の範囲内にあり、Caが添加されていない組成を有し且つ固溶化熱処理された二相ステンレス鋼の孔食発生温度に対して、  Differences from the contents (%) of elements Cr, Mn, W, N, and Mo contained in the composition of the laminated material are Cr: −1.0% to + 1.0%, Mn: −1.0% to + 1.0%, W: -0.6% to + 0.6%, N: -0.06% to + 0.06%, Mo: -0.3% to + 0.3%. (1) A hole in a duplex stainless steel having a difference in corrosion resistance index PREW represented by the formula in the range of -1.0 to +1.0, having a composition to which Ca is not added, and subjected to solution heat treatment With respect to the eclipse temperature
前記合わせ材の孔食発生温度が−5℃以上高いことを特徴とする請求項3に記載のクラッド鋼。The clad steel according to claim 3, wherein a pitting corrosion temperature of the laminated material is higher by -5 ° C or more.
PREW=Cr+3.3(Mo+0.5W)+16N−Mn ・・・(1)PREW = Cr + 3.3 (Mo + 0.5W) + 16N-Mn (1)
但し、式中の元素記号は当該元素の含有量(質量%)を意味し、元素が含まれないときは0を代入する。However, the element symbol in a formula means content (mass%) of the said element, and 0 is substituted when an element is not contained.
質量%で、C:0.03%以下、Si:0.05〜1.0%、Mn:0.1〜6.0%、P:0.05%以下、S:0.0001〜0.0014%、Cr:20.0〜28.0%、Ni:0.5〜9.0%、Mo:0.12〜5.0%、N:0.05〜0.35%、Al:0.002〜0.05%、O:0.001〜0.0052%を含有し、残部がFeおよび不可避的不純物よりなり、
前記合わせ材の組成に含まれる元素Cr、Mn、W、N、Moの含有量(%)との差が、Cr:−1.0%〜+1.0%、Mn:−1.0%〜+1.0%、W:−0.6%〜+0.6%、N:−0.06%〜+0.06%、Mo:−0.3%〜+0.3%の範囲内であり、下記(1)式で表される耐食性指数PREWの差が−1.0〜+1.0の範囲内にあり、Caが添加されていない組成を有し且つ固溶化熱処理された二相ステンレス鋼の硬さに対して、
.05倍以上1.30倍以下の硬さを有することを特徴とする請求項に記載のクラッド鋼。
PREW=Cr+3.3(Mo+0.5W)+16N−Mn ・・・(1)
但し、式中の元素記号は当該元素の含有量(質量%)を意味し、元素が含まれないときは0を代入する。
In mass%, C: 0.03% or less, Si: 0.05-1.0%, Mn: 0.1-6.0%, P: 0.05% or less, S: 0.0001-0. 0014%, Cr: 20.0 to 28.0%, Ni: 0.5 to 9.0%, Mo: 0.12 to 5.0%, N: 0.05 to 0.35%, Al: 0 0.002 to 0.05%, O: 0.001 to 0.0052%, with the balance being Fe and inevitable impurities,
Differences from the contents (%) of elements Cr, Mn, W, N, and Mo contained in the composition of the laminated material are Cr: −1.0% to + 1.0%, Mn: −1.0% to + 1.0%, W: -0.6% to + 0.6%, N: -0.06% to + 0.06%, Mo: -0.3% to + 0.3%. The difference in the corrosion resistance index PREW represented by the formula (1) is in the range of -1.0 to +1.0, the hardness of the duplex stainless steel having a composition to which Ca is not added and subjected to solution heat treatment. On the other hand,
1 . Clad steel according to claim 3, characterized in Rukoto that have a 1.30 times or less of the hardness of 05 times or more.
PREW = Cr + 3.3 (Mo + 0.5W) + 16N-Mn (1)
However, the element symbol in a formula means content (mass%) of the said element, and 0 is substituted when an element is not contained.
質量%で、C:0.03%以下、Si:0.05〜1.0%、Mn:0.1〜6.0%、P:0.05%以下、S:0.0001〜0.0014%、Cr:20.0〜28.0%、Ni:0.5〜9.0%、Mo:0.12〜5.0%、N:0.05〜0.35%、Al:0.002〜0.05%、O:0.001〜0.0052%を含有し、In mass%, C: 0.03% or less, Si: 0.05-1.0%, Mn: 0.1-6.0%, P: 0.05% or less, S: 0.0001-0. 0014%, Cr: 20.0 to 28.0%, Ni: 0.5 to 9.0%, Mo: 0.12 to 5.0%, N: 0.05 to 0.35%, Al: 0 0.002 to 0.05%, O: 0.001 to 0.0052%,
更に質量%で、W:3.0%以下、Co:1.0%以下、Cu:3.0%以下、V:0.5%以下、Nb:0.15%以下、Ti:0.05%以下、B:0.0050%以下、Mg:0.0030%以下のうちの少なくとも1種を含み、残部がFeおよび不可避的不純物よりなり、Further, by mass%, W: 3.0% or less, Co: 1.0% or less, Cu: 3.0% or less, V: 0.5% or less, Nb: 0.15% or less, Ti: 0.05 %, B: 0.0050% or less, Mg: at least one of 0.0030% or less, the balance consists of Fe and inevitable impurities,
前記合わせ材の組成に含まれる元素Cr、Mn、W、N、Moの含有量(%)との差が、Cr:−1.0%〜+1.0%、Mn:−1.0%〜+1.0%、W:−0.6%〜+0.6%、N:−0.06%〜+0.06%、Mo:−0.3%〜+0.3%の範囲内であり、下記(1)式で表される耐食性指数PREWの差が−1.0〜+1.0の範囲内にあり、Caが添加されていない組成を有し且つ固溶化熱処理された二相ステンレス鋼の硬さに対して、Differences from the contents (%) of elements Cr, Mn, W, N, and Mo contained in the composition of the laminated material are Cr: −1.0% to + 1.0%, Mn: −1.0% to + 1.0%, W: -0.6% to + 0.6%, N: -0.06% to + 0.06%, Mo: -0.3% to + 0.3%. The difference in the corrosion resistance index PREW represented by the formula (1) is in the range of -1.0 to +1.0, the hardness of the duplex stainless steel having a composition to which Ca is not added and subjected to solution heat treatment. On the other hand,
1.05倍以上1.30倍以下の硬さを有することを特徴とする請求項3に記載のクラッド鋼。The clad steel according to claim 3, having a hardness of 1.05 times or more and 1.30 times or less.
PREW=Cr+3.3(Mo+0.5W)+16N−Mn ・・・(1)PREW = Cr + 3.3 (Mo + 0.5W) + 16N-Mn (1)
但し、式中の元素記号は当該元素の含有量(質量%)を意味し、元素が含まれないときは0を代入する。However, the element symbol in a formula means content (mass%) of the said element, and 0 is substituted when an element is not contained.
質量%で、C:0.03%以下、Si:0.05〜1.0%、Mn:0.1〜6.0%、P:0.05%以下、S:0.0001〜0.0014%、Cr:20.0〜28.0%、Ni:0.5〜9.0%、Mo:0.12〜5.0%、N:0.05〜0.35%、Al:0.002〜0.05%、O:0.001〜0.0052%を含有し、残部がFeおよび不可避的不純物よりなり、In mass%, C: 0.03% or less, Si: 0.05-1.0%, Mn: 0.1-6.0%, P: 0.05% or less, S: 0.0001-0. 0014%, Cr: 20.0 to 28.0%, Ni: 0.5 to 9.0%, Mo: 0.12 to 5.0%, N: 0.05 to 0.35%, Al: 0 0.002 to 0.05%, O: 0.001 to 0.0052%, with the balance being Fe and inevitable impurities,
前記合わせ材の組成に含まれる元素Cr、Mn、W、N、Moの含有量(%)との差が、Cr:−1.0%〜+1.0%、Mn:−1.0%〜+1.0%、W:−0.6%〜+0.6%、N:−0.06%〜+0.06%、Mo:−0.3%〜+0.3%の範囲内であり、下記(1)式で表される耐食性指数PREWの差が−1.0〜+1.0の範囲内にあり、Caが添加されていない組成を有し且つ固溶化熱処理された二相ステンレス鋼の孔食発生温度に対して、Differences from the contents (%) of elements Cr, Mn, W, N, and Mo contained in the composition of the laminated material are Cr: −1.0% to + 1.0%, Mn: −1.0% to + 1.0%, W: -0.6% to + 0.6%, N: -0.06% to + 0.06%, Mo: -0.3% to + 0.3%. (1) A hole in a duplex stainless steel having a difference in corrosion resistance index PREW represented by the formula in the range of -1.0 to +1.0, having a composition to which Ca is not added, and subjected to solution heat treatment With respect to the eclipse temperature
前記合わせ材の孔食発生温度が−5℃以上高く、且つ、The pitting corrosion occurrence temperature of the laminated material is higher than -5 ° C, and
前記二相ステンレス鋼の硬さに対して、1.05倍以上1.30倍以下の硬さを有することを特徴とする請求項3に記載のクラッド鋼。The clad steel according to claim 3, wherein the clad steel has a hardness of 1.05 times or more and 1.30 times or less of the hardness of the duplex stainless steel.
PREW=Cr+3.3(Mo+0.5W)+16N−Mn ・・・(1)PREW = Cr + 3.3 (Mo + 0.5W) + 16N-Mn (1)
但し、式中の元素記号は当該元素の含有量(質量%)を意味し、元素が含まれないときは0を代入する。However, the element symbol in a formula means content (mass%) of the said element, and 0 is substituted when an element is not contained.
質量%で、C:0.03%以下、Si:0.05〜1.0%、Mn:0.1〜6.0%、P:0.05%以下、S:0.0001〜0.0014%、Cr:20.0〜28.0%、Ni:0.5〜9.0%、Mo:0.12〜5.0%、N:0.05〜0.35%、Al:0.002〜0.05%、O:0.001〜0.0052%を含有し、In mass%, C: 0.03% or less, Si: 0.05-1.0%, Mn: 0.1-6.0%, P: 0.05% or less, S: 0.0001-0. 0014%, Cr: 20.0 to 28.0%, Ni: 0.5 to 9.0%, Mo: 0.12 to 5.0%, N: 0.05 to 0.35%, Al: 0 0.002 to 0.05%, O: 0.001 to 0.0052%,
更に質量%で、W:3.0%以下、Co:1.0%以下、Cu:3.0%以下、V:0.5%以下、Nb:0.15%以下、Ti:0.05%以下、B:0.0050%以下、Mg:0.0030%以下のうちの少なくとも1種を含み、残部がFeおよび不可避的不純物よりなり、Further, by mass%, W: 3.0% or less, Co: 1.0% or less, Cu: 3.0% or less, V: 0.5% or less, Nb: 0.15% or less, Ti: 0.05 %, B: 0.0050% or less, Mg: at least one of 0.0030% or less, the balance consists of Fe and inevitable impurities,
前記合わせ材の組成に含まれる元素Cr、Mn、W、N、Moの含有量(%)との差が、Cr:−1.0%〜+1.0%、Mn:−1.0%〜+1.0%、W:−0.6%〜+0.6%、N:−0.06%〜+0.06%、Mo:−0.3%〜+0.3%の範囲内であり、下記(1)式で表される耐食性指数PREWの差が−1.0〜+1.0の範囲内にあり、Caが添加されていない組成を有し且つ固溶化熱処理された二相ステンレス鋼の孔食発生温度に対して、  Differences from the contents (%) of elements Cr, Mn, W, N, and Mo contained in the composition of the laminated material are Cr: −1.0% to + 1.0%, Mn: −1.0% to + 1.0%, W: -0.6% to + 0.6%, N: -0.06% to + 0.06%, Mo: -0.3% to + 0.3%. (1) A hole in a duplex stainless steel having a difference in corrosion resistance index PREW represented by the formula in the range of -1.0 to +1.0, having a composition to which Ca is not added, and subjected to solution heat treatment With respect to the eclipse temperature
前記合わせ材の孔食発生温度が−5℃以上高く、且つ、The pitting corrosion occurrence temperature of the laminated material is higher than -5 ° C, and
前記二相ステンレス鋼の硬さに対して、1.05倍以上1.30倍以下の硬さを有することを特徴とする請求項3に記載のクラッド鋼。The clad steel according to claim 3, wherein the clad steel has a hardness of 1.05 times or more and 1.30 times or less of the hardness of the duplex stainless steel.
PREW=Cr+3.3(Mo+0.5W)+16N−Mn ・・・(1)PREW = Cr + 3.3 (Mo + 0.5W) + 16N-Mn (1)
但し、式中の元素記号は当該元素の含有量(質量%)を意味し、元素が含まれないときは0を代入する。However, the element symbol in a formula means content (mass%) of the said element, and 0 is substituted when an element is not contained.
JP2017154639A 2016-08-10 2017-08-09 Duplex stainless steel and clad steel for clad steel Active JP6437062B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016158105 2016-08-10
JP2016158105 2016-08-10

Publications (2)

Publication Number Publication Date
JP2018028146A JP2018028146A (en) 2018-02-22
JP6437062B2 true JP6437062B2 (en) 2018-12-12

Family

ID=61248272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017154639A Active JP6437062B2 (en) 2016-08-10 2017-08-09 Duplex stainless steel and clad steel for clad steel

Country Status (1)

Country Link
JP (1) JP6437062B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7005396B2 (en) * 2018-03-14 2022-01-21 日鉄ステンレス株式会社 Ferrite-austenite two-phase stainless steel sheet for automobile fasteners
JP6961518B2 (en) * 2018-03-14 2021-11-05 日鉄ステンレス株式会社 Ferrite / austenite two-phase stainless steel plate for tank band and tank band and spot welding method using this
US11692252B2 (en) 2018-03-30 2023-07-04 Jfe Steel Corporation Duplex stainless clad steel plate and method of producing same
EP3778960B1 (en) * 2018-03-30 2023-12-27 NIPPON STEEL Stainless Steel Corporation Duplex stainless-clad steel plate and production method thereof
WO2019189707A1 (en) * 2018-03-30 2019-10-03 Jfeスチール株式会社 Two-phase stainless-clad steel sheet and method for manufacturing same
JP7266976B2 (en) * 2018-07-27 2023-05-01 日鉄ステンレス株式会社 Ferrite-Austenite Duplex Stainless Steel Sheet with Excellent Strength and Corrosion Resistance at Spot Welds and Manufacturing Method Thereof
JP7109333B2 (en) * 2018-10-12 2022-07-29 日鉄ステンレス株式会社 Resource-saving duplex stainless steel with excellent corrosion resistance
CN111230406A (en) * 2018-11-28 2020-06-05 无锡市新峰管业有限公司 Duplex stainless steel pipe in marine environment and machining method thereof
CN109532144B (en) * 2018-11-29 2021-01-12 宝山钢铁股份有限公司 Super duplex stainless steel composite steel plate and manufacturing method thereof
KR102514911B1 (en) 2019-03-29 2023-03-27 닛테츠 스테인레스 가부시키가이샤 Clad steel sheet and its manufacturing method
CN109852900B (en) * 2019-03-29 2021-07-30 山东钢铁集团日照有限公司 600 MPa-grade hot-galvanized dual-phase steel with different yield ratios and production method thereof
JP7442270B2 (en) * 2019-03-29 2024-03-04 日鉄ステンレス株式会社 Clad steel plate and its manufacturing method
WO2021157465A1 (en) 2020-02-06 2021-08-12 Jfeスチール株式会社 Dual-phase stainless clad steel and method for manufacturing same
WO2021157466A1 (en) 2020-02-06 2021-08-12 Jfeスチール株式会社 Dual-phase stainless clad steel and method for manufacturing same
WO2021166353A1 (en) * 2020-02-19 2021-08-26 Jfeスチール株式会社 Duplex-stainless-steel-clad steel sheet and method for manufacturing same
CN111118498B (en) * 2020-03-06 2022-02-18 贵州大学 TRIP steel coating for 304 stainless steel surface laser cladding and cladding method
CN115335174B (en) * 2020-03-25 2023-10-20 日铁不锈钢株式会社 Welded structure, welded structure made of stainless steel, welded container made of stainless steel, and stainless steel
CN112195466B (en) * 2020-10-14 2021-12-21 燕山大学 One-time cladding preparation method of shock-resistant high-hardness laser cladding layer
CN112195465B (en) * 2020-10-14 2021-11-05 燕山大学 Method for preparing high-temperature-resistant high-hardness laser cladding layer from stepped-granularity alloy powder

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3312401B2 (en) * 1992-11-04 2002-08-05 大同特殊鋼株式会社 Calcium free-cutting stainless steel
JP4025171B2 (en) * 2002-10-29 2007-12-19 日本冶金工業株式会社 Stainless steel having excellent corrosion resistance, weldability and surface properties and method for producing the same
EP1867748A1 (en) * 2006-06-16 2007-12-19 Industeel Creusot Duplex stainless steel
JP4824640B2 (en) * 2007-06-28 2011-11-30 日本冶金工業株式会社 Duplex stainless steel and manufacturing method thereof
JP2010070812A (en) * 2008-09-19 2010-04-02 Nippon Steel & Sumikin Stainless Steel Corp Free-cutting austenitic stainless steel wire rod excellent in cold forgeability, and manufacturing method therefor
JP5406233B2 (en) * 2011-03-02 2014-02-05 新日鐵住金ステンレス株式会社 Clad steel plate made of duplex stainless steel and method for producing the same
JP6004700B2 (en) * 2012-03-30 2016-10-12 新日鐵住金ステンレス株式会社 Clad steel plate made of duplex stainless steel and method for producing the same
JP6116286B2 (en) * 2013-02-25 2017-04-19 新日鐵住金ステンレス株式会社 Ferritic stainless steel with less heat generation
WO2014148540A1 (en) * 2013-03-19 2014-09-25 新日鐵住金ステンレス株式会社 Clad steel plate having as mating material duplex stainless steel having good linear heating performance, and method for manufacturing same

Also Published As

Publication number Publication date
JP2018028146A (en) 2018-02-22

Similar Documents

Publication Publication Date Title
JP6437062B2 (en) Duplex stainless steel and clad steel for clad steel
JP5072285B2 (en) Duplex stainless steel
JP5773098B1 (en) Ferritic-martensitic duplex stainless steel and method for producing the same
JP5511208B2 (en) Alloy-saving duplex stainless steel material with good corrosion resistance and its manufacturing method
CN110225989B (en) Duplex stainless steel clad steel and method for producing same
WO2013058274A1 (en) Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
EP2476771B1 (en) Two-phase stainless steel
WO2019189871A1 (en) Two-phase stainless-clad steel sheet and production method thereof
US20120003116A1 (en) Austenitic stainless steel
JP2019052349A (en) Nickel-based alloy
JP2012193432A (en) Two phase stainless steel for chemical tanker excellent in performance in linear heating
KR102520119B1 (en) Welded structure and its manufacturing method
JP6222806B2 (en) High corrosion resistance duplex stainless steel with excellent brittleness resistance
JP6036645B2 (en) Ferritic-martensitic duplex stainless steel with excellent low-temperature toughness and method for producing the same
WO2017188284A1 (en) Untempered steel for induction hardening
JP5329632B2 (en) Duplex stainless steel, duplex stainless steel cast, and duplex stainless steel
GB2131832A (en) Steel material exhibiting superior hydrogen cracking resistance in a wet sour gas environment
WO2015064077A1 (en) Ferrite-martensite two-phase stainless steel, and method for producing same
JP7285050B2 (en) Ferrite-Austenite Duplex Stainless Steel Sheet and Welded Structure, and Manufacturing Method Therefor
WO2015151521A1 (en) Welded joint
CN113631732A (en) Duplex stainless steel welded joint and method for manufacturing same
JP2021143407A (en) Duplex stainless steel and manufacturing method thereof
JP6191783B2 (en) Stainless steel
JP2018135601A (en) Two-phase stainless steel and two-phase stainless steel pipe prepared therewith
JP5329634B2 (en) Duplex stainless steel, duplex stainless steel cast, and duplex stainless steel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181113

R150 Certificate of patent or registration of utility model

Ref document number: 6437062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250