JP7042057B2 - Stainless steel materials and welded structural members with excellent slag spot generation suppression ability and their manufacturing methods - Google Patents

Stainless steel materials and welded structural members with excellent slag spot generation suppression ability and their manufacturing methods Download PDF

Info

Publication number
JP7042057B2
JP7042057B2 JP2017206555A JP2017206555A JP7042057B2 JP 7042057 B2 JP7042057 B2 JP 7042057B2 JP 2017206555 A JP2017206555 A JP 2017206555A JP 2017206555 A JP2017206555 A JP 2017206555A JP 7042057 B2 JP7042057 B2 JP 7042057B2
Authority
JP
Japan
Prior art keywords
cao
mno
slag
stainless steel
mass ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017206555A
Other languages
Japanese (ja)
Other versions
JP2019077925A (en
Inventor
靖弘 江原
一成 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Stainless Steel Corp filed Critical Nippon Steel Stainless Steel Corp
Priority to JP2017206555A priority Critical patent/JP7042057B2/en
Priority to PCT/JP2018/018480 priority patent/WO2019082427A1/en
Priority to CN201880068466.1A priority patent/CN112218965A/en
Priority to KR1020207014455A priority patent/KR102391566B1/en
Priority to TW107118141A priority patent/TWI694160B/en
Publication of JP2019077925A publication Critical patent/JP2019077925A/en
Application granted granted Critical
Publication of JP7042057B2 publication Critical patent/JP7042057B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • B23K31/027Making tubes with soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • B23K35/3086Fe as the principal constituent with Cr as next major constituent containing Ni or Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、アーク溶接ビードに生じる溶接欠陥の一種である「スラグスポット」あるいは「ブラックスポット」と呼ばれる欠陥を発生させにくいステンレス鋼材に関する。また、その鋼材を用いた溶接構造部材、およびその製造法に関する。 The present invention relates to a stainless steel material that does not easily generate defects called "slag spots" or "black spots", which are a type of welding defects that occur in arc weld beads. Further, the present invention relates to a welded structural member using the steel material and a manufacturing method thereof.

ステンレス鋼材を母材に用いてアーク溶接を行うと、溶接ビード上に酸化物の凝集体が点在した「スラグスポット」と呼ばれる欠陥が生じることがある。図1に、非特許文献1に掲載されているスラグスポットが生じた溶接ビードの外観写真を引用して例示する。非特許文献の記載によれば、スラグスポットは、溶接ビード上に数mmから数cm間隔で島状あるいは点状に残留浮上する微小なスラグであるとされる。アーク溶接時に溶融池に侵入した空気中の酸素が、鋼材中の微量成分であるAl、Ca、Ti等の活性元素と反応してスラグスポットとして残留すると考えられ、特に、溶融池の十分なガスシールドが難しい高速度TIG溶接でスラグスポットの発生が顕著になる傾向があるという。 When arc welding is performed using a stainless steel material as a base material, defects called "slag spots" in which oxide aggregates are scattered on the weld bead may occur. FIG. 1 exemplifies by quoting an external photograph of a weld bead in which a slag spot is generated, which is published in Non-Patent Document 1. According to the description in the non-patent document, the slag spot is a minute slag that remains and floats on the weld bead in the form of islands or dots at intervals of several mm to several cm. It is considered that oxygen in the air that has entered the molten pool during arc welding reacts with active elements such as Al, Ca, and Ti, which are trace components in the steel material, and remains as slag spots. It is said that slag spots tend to be noticeable in high-speed TIG welding, which is difficult to shield.

図2には、TIG溶接により造管した鋼管の溶接ビード上に見られたスラグスポットの外観を例示する。この写真中に見られる長径1.0mm以上の大きさのスラグスポットのビード長さ方向1m当たりの個数(以下、「ビード長さ方向個数密度」という。)は0.7個/mである。 FIG. 2 illustrates the appearance of the slag spot seen on the weld bead of the steel pipe formed by TIG welding. The number of slag spots having a major axis of 1.0 mm or more per 1 m in the bead length direction (hereinafter referred to as “number density in the bead length direction”) seen in this photograph is 0.7 pieces / m.

溶接ビードにスラグスポットが多発すると、例えば以下のような問題がある。
(i)溶接ビード部の美観を損ねる。(ii)除去のためにビード表面研磨などの煩雑な手入れが必要となる場合がある。(iii)溶接鋼管の製造では、鋼管内面の溶接ビードを圧下してビートの高さを低くしてから内面研磨を施す用途もある。スラグスポットは裏ビード側にも生じることがあり、その場合には、鋼管内面のビード部を圧下した際にスラグスポットが押し込まれてビードの金属面に凹みが形成され、後の研磨工程で研磨残り(未研磨部)が生じる。(iv)スラグスポットを構成する異物とビードの金属表面の間で隙間腐食が生じる場合がある。(v)溶接鋼管の場合、内面ビード上に生成したスラグスポットが鋼管使用中に脱落し、中を流れる流体への異物混入の原因となり得る。(vi)アーク溶接時にスラグスポットの原因となる異物が溶融池内に凝集してくると、アークが不安定となり、ビード形状が乱れやすい。
したがって、アーク溶接の母材として使用したときにスラグスポットの発生が顕著に抑制できるステンレス鋼材の開発が待たれている。
If slag spots frequently occur on the weld bead, there are the following problems, for example.
(I) The appearance of the weld bead is spoiled. (Ii) Cumbersome maintenance such as bead surface polishing may be required for removal. (Iii) In the manufacture of welded steel pipes, there is also an application in which the weld bead on the inner surface of the steel pipe is pressed to lower the height of the beat and then the inner surface is polished. Slag spots may also occur on the back bead side, in which case the slag spots are pushed in when the bead portion on the inner surface of the steel pipe is pressed down to form a dent on the metal surface of the bead, which is polished in a later polishing process. Remaining (unpolished part) is generated. (Iv) Gap corrosion may occur between the foreign matter constituting the slag spot and the metal surface of the bead. (V) In the case of a welded steel pipe, the slag spots generated on the inner bead may fall off during use of the steel pipe, causing foreign matter to enter the fluid flowing through the pipe. (Vi) If foreign matter that causes slag spots aggregates in the molten pool during arc welding, the arc becomes unstable and the bead shape tends to be disturbed.
Therefore, the development of a stainless steel material that can remarkably suppress the generation of slag spots when used as a base material for arc welding is awaited.

特許文献1、2には、易酸化性元素であるAl、Ti、Si、Caの含有量を最適化した鋼組成に調整することによってスラグスポット(ブラックスポット)の生成を低減したフェライト系ステンレス鋼が開示されている。しかし、発明者らの調査によれば、鋼組成の調整のみではスラグスポットの抑制効果は限定的であり、さらなる改善の余地が残されている。 Patent Documents 1 and 2 describe ferritic stainless steels in which the formation of slag spots (black spots) is reduced by adjusting the contents of the easily oxidizing elements Al, Ti, Si, and Ca to an optimized steel composition. Is disclosed. However, according to the investigation by the inventors, the effect of suppressing the slag spot is limited only by adjusting the steel composition, and there is room for further improvement.

特許文献3には、被覆管用オーステナイト系Fe-Ni-Cr合金において、加工割れの起点となる溶接部表面の異物を低減することが記載されている。溶接物表面に付着する異物はAl、Ti、Si、Ca、Mg等の酸化物や窒化物を主体とするものであり、母材中に存在する非金属介在物は一般に高融点であるため、溶接時に溶融せず溶融金属の表面に浮上して凝集し、凝固する際、そのまま表面に残存して凹凸を形成すると教示されている(段落0035)。また、溶接部表面に付着した異物は、母材中に存在する非金属介在物に由来するものであるという(段落0038)。特許文献3に開示の技術では、Al、Ti、Siの量を極力低減することに加えて、他の介在物構成元素であるCa、Mg、NおよびOを低減することによって母材中に存在する介在物の個数を低減し、それによって溶接金属表面に観察される異物の低減を図っている(段落0039)。しかしながら、発明者らの検討によれば、ステンレス鋼材中に存在する非金属介在物の数を単に低減するだけでは、例えば食品加工ラインや半導体製造設備で使用される溶接鋼管に要求されような、極めて異物(スラグスポット)の少ないアーク溶接ビードを安定して得ることは難しい。また、ステンレス鋼材中に存在する非金属介在物の量を大幅に低減することは、製鋼工程での負荷を増大させ、鋼材コストの上昇を招く。したがって、介在物の存在量を低減するという手法に頼らずにスラグスポットの低減を図ることができる、新たな手法の開発が望まれる。 Patent Document 3 describes that in an austenitic Fe—Ni—Cr alloy for a cladding tube, it is possible to reduce foreign matter on the surface of a welded portion which is a starting point of processing cracks. The foreign matter adhering to the surface of the weld is mainly composed of oxides and nitrides such as Al, Ti, Si, Ca and Mg, and the non-metal inclusions present in the base metal generally have a high melting point. It is taught that it does not melt during welding but floats on the surface of the molten metal and aggregates, and when it solidifies, it remains on the surface as it is to form irregularities (paragraph 0035). Further, it is said that the foreign matter adhering to the surface of the weld is derived from the non-metal inclusions present in the base metal (paragraph 0038). In the technique disclosed in Patent Document 3, in addition to reducing the amounts of Al, Ti, and Si as much as possible, they are present in the base metal by reducing Ca, Mg, N, and O, which are other inclusion constituent elements. The number of inclusions is reduced, thereby reducing the amount of foreign matter observed on the surface of the weld metal (paragraph 0039). However, according to the studies of the inventors, simply reducing the number of non-metal inclusions present in the stainless steel material is extremely foreign matter, for example, as required for welded steel pipes used in food processing lines and semiconductor manufacturing equipment. It is difficult to stably obtain an arc welded bead with few (slag spots). Further, significantly reducing the amount of non-metal inclusions present in the stainless steel material increases the load in the steelmaking process and leads to an increase in the steel material cost. Therefore, it is desired to develop a new method capable of reducing slag spots without relying on the method of reducing the abundance of inclusions.

特開2010-202973号公報Japanese Unexamined Patent Publication No. 2010-202973 特開2012-36444号公報Japanese Unexamined Patent Publication No. 2012-36444 特開2014-84493号公報Japanese Unexamined Patent Publication No. 2014-84493

ステンレス協会編「ステンレス鋼便覧第3版」、日刊工業新聞社、1995年、p.1030-1031"Stainless Steel Handbook 3rd Edition" edited by Stainless Steel Association, Nikkan Kogyo Shimbun, 1995, p.1030-1031

アーク溶接ビードのスラグスポットを低減する上で有効な溶接法として、溶接ワイヤを電極に使用する方法や、溶加材を添加する方法が挙げられる。フラックス入りの溶接ワイヤを使用することも有効である。一方で、TIG溶接など、非溶極式の電極を用いるアーク溶接も広く行われており、溶加材を使用しないことも多い。
本発明は、溶接ワイヤや溶加材の使用に頼ることなく、非溶極式のアーク溶接法を採用した場合でも、オーステナイト系、フェライト系を問わず種々のステンレス鋼種でスラグスポットの発生が安定して顕著に抑制できる技術を提供しようというものである。
As an effective welding method for reducing the slag spot of the arc welding bead, there are a method of using a welding wire for an electrode and a method of adding a filler material. It is also effective to use a welded wire containing flux. On the other hand, arc welding using non-melting type electrodes such as TIG welding is also widely performed, and filler metal is often not used.
The present invention stabilizes the generation of slag spots in various stainless steel grades regardless of austenitic or ferritic stainless steel, even when a non-welded arc welding method is adopted without relying on the use of welding wires or filler metal. The aim is to provide a technology that can be significantly suppressed.

発明者らは詳細な研究の結果、ステンレス鋼母材中に存在する非金属介在物の量を低減することに加え、特に酸化物系介在物の組成を制御するという手法を採用することにより、上記課題が達成できることを知見した。本明細書では、以下の発明を開示する。 As a result of detailed research, the inventors have adopted a method of controlling the composition of oxide-based inclusions in addition to reducing the amount of non-metal inclusions present in the stainless steel base material. It was found that the above problems can be achieved. The following inventions are disclosed herein.

[1]質量%で、C:0.005~0.100%、Si:0.10~3.00%、Mn:0.10~6.50%、P:0.001~0.050%、S:0.0001~0.0200%、Ni:0~20.00%、Cr:10.50~26.00、Mo:0~2.50%、Cu:0~3.50%、Nb:0~0.500%、V:0~0.500%、Zr:0~0.500%、W:0~0.500%、Co:0~0.500、B:0~0.020、N:0.005~0.200%、Ti:0~0.050%、Al:0~0.100%、Ca:0~0.0010%、Mg:0~0.0010%、REM(Yを除く希土類元素):0~0.050%、Y:0~0.050%、O:0.0030~0.0150%、残部Feおよび不可避的不純物からなる化学組成を有し、Mnを含有する酸化物系介在物が存在し、酸化物系介在物中のSi、MnおよびCaの含有量をそれぞれSiO2、MnOおよびCaOの質量割合に換算した場合の介在物組成において、金属組織中に観察される酸化物系介在物の平均CaO/(SiO2+MnO+CaO)質量比が0.40以下、平均CaO/MnO質量比が15.0以下であるステンレス鋼材。
[2]上記[1]に記載のステンレス鋼材からなるアーク溶接用母材。
[3]上記[1]に記載のステンレス鋼材からなるアーク溶接造管用鋼板母材。
[4]上記[1]に記載の鋼材を母材に用いたアーク溶接構造部材。
[5]上記[1]に記載の鋼材を母材に用いたアーク溶接鋼管。
[6]上記[1]に記載のステンレス鋼材を母材に用いて、溶加材を添加せずに非溶極式のアーク溶接を行う溶接構造部材の製造法。
[7]上記[1]に記載のステンレス鋼材である鋼板を母材に用いて、溶加材を添加せずに非溶極式のアーク溶接にて溶接鋼管とする、溶接鋼管の製造法。
[1] In terms of mass%, C: 0.005 to 0.10%, Si: 0.10 to 3.00%, Mn: 0.10 to 6.50%, P: 0.001 to 0.050%. , S: 0.0001 to 0.0200%, Ni: 0 to 20.00%, Cr: 10.50 to 26.00, Mo: 0 to 2.50%, Cu: 0 to 3.50%, Nb : 0 to 0.50%, V: 0 to 0.50%, Zr: 0 to 0.50%, W: 0 to 0.50%, Co: 0 to 0.50, B: 0 to 0.020 , N: 0.005 to 0.200%, Ti: 0 to 0.050%, Al: 0 to 0.10%, Ca: 0 to 0.0010%, Mg: 0 to 0.0010%, REM ( Rare earth elements excluding Y): 0 to 0.050%, Y: 0 to 0.050%, O: 0.0030 to 0.0150%, having a chemical composition consisting of the balance Fe and unavoidable impurities, and Mn. Oxide-based inclusions are present, and in the composition of inclusions when the contents of Si, Mn, and Ca in the oxide-based inclusions are converted into the mass ratios of SiO 2 , MnO, and CaO, respectively, in the metal structure. A stainless steel material having an average CaO / (SiO 2 + MnO + CaO) mass ratio of 0.40 or less and an average CaO / MnO mass ratio of 15.0 or less observed in.
[2] A base material for arc welding made of the stainless steel material according to the above [1].
[3] A steel plate base material for arc welding pipe making made of the stainless steel material according to the above [1].
[4] An arc welded structural member using the steel material according to the above [1] as a base material.
[5] An arc welded steel pipe using the steel material according to the above [1] as a base material.
[6] A method for manufacturing a welded structural member in which the stainless steel material according to the above [1] is used as a base material and non-melting type arc welding is performed without adding a fillering material.
[7] A method for manufacturing a welded steel pipe, in which a steel plate which is a stainless steel material according to the above [1] is used as a base material, and a welded steel pipe is formed by non-melting electrode type arc welding without adding a filler metal.

ここで、上記の各鋼成分の含有量は、鋼中に存在する当該元素のトータル含有量である。したがって、一部が酸化物として存在する金属元素や酸素の含有量は、酸化物として存在する量を含んでいる。酸化物系介在物の平均CaO/(SiO2+MnO+CaO)質量比、平均CaO/MnO質量比は、以下のようにして求めることができる。アーク溶接構造部材は、アーク溶接により形成された溶接部を有する部材である。同様に、アーク溶接鋼管は、アーク溶接により形成された溶接部を有する鋼管である。これらの溶接部は、「溶加材無添加の溶接部」(すなわち、溶加材を添加せずに形成された溶接部)とすることができる。 Here, the content of each of the above steel components is the total content of the element present in the steel. Therefore, the content of the metal element or oxygen that is partially present as an oxide includes the amount that is present as an oxide. The average CaO / (SiO 2 + MnO + CaO) mass ratio and the average CaO / MnO mass ratio of the oxide-based inclusions can be obtained as follows. The arc welded structural member is a member having a welded portion formed by arc welding. Similarly, an arc welded steel pipe is a steel pipe having a welded portion formed by arc welding. These welds can be "welded portions without the filler material added" (that is, weld portions formed without the filler metal added).

〔平均CaO/(SiO2+MnO+CaO)質量比、平均CaO/MnO質量比の求め方〕
鋼材の断面についてSEM観察を行い、断面内に存在する酸化物系介在物の粒子から無作為に30個以上の粒子を選択してEDX(エネルギー分散型X線分析)により組成分析を行う。個々の粒子について、Si、Mn、Ca、Al、Mg、Ti、CrおよびFeの含有率をそれぞれ酸化物SiO2、MnO、CaO、Al23、MgO、TiO2、Cr23およびFeOの質量割合に換算し、これら8種類の酸化物に占めるSiO2、MnOおよびCaOの質量割合を、それぞれ当該粒子のSiO2含有量(質量%)、MnO含有量(質量%)およびCaO含有量(質量%)とする。個々の粒子のSiO2含有量、MnO含有量およびCaO含有量をそれぞれ相加平均することにより、全測定粒子についてのSiO2、MnOおよびCaOの平均含有量(質量%)を算出する。下記(1)式の各酸化物の化学式の箇所に、当該酸化物の前記平均含有量(質量%)の値を代入することにより、平均CaO/(SiO2+MnO+CaO)質量比が定まる。同様に、下記(2)式の各酸化物の化学式の箇所に、当該酸化物の前記平均含有量(質量%)の値を代入することにより、平均CaO/MnO質量比が定まる。
CaO/(SiO2+MnO+CaO) …(1)
CaO/MnO …(2)
[How to obtain the average CaO / (SiO 2 + MnO + CaO) mass ratio and the average CaO / MnO mass ratio]
SEM observation is performed on the cross section of the steel material, and 30 or more particles are randomly selected from the particles of the oxide-based inclusions existing in the cross section, and the composition is analyzed by EDX (energy dispersive X-ray analysis). For each particle, the content of Si, Mn, Ca, Al, Mg, Ti, Cr and Fe is the oxide SiO 2 , MnO, CaO, Al 2 O 3 , MgO, TiO 2 , Cr 2 O 3 and FeO, respectively. The mass ratios of SiO 2 , MnO and CaO in these eight types of oxides are the SiO 2 content (mass%), MnO content (mass%) and CaO content of the particles, respectively. (% by mass). By arithmetically averaging the SiO 2 content, MnO content, and CaO content of the individual particles, the average content (mass%) of SiO 2 , MnO, and CaO for all the measured particles is calculated. By substituting the value of the average content (mass%) of the oxide into the chemical formula of each oxide of the following formula (1), the average CaO / (SiO 2 + MnO + CaO) mass ratio is determined. Similarly, the average CaO / MnO mass ratio is determined by substituting the value of the average content (mass%) of the oxide into the chemical formula of each oxide of the following formula (2).
CaO / (SiO 2 + MnO + CaO)… (1)
CaO / MnO ... (2)

本発明によれば、ステンレス鋼材のアーク溶接においてスラグスポットの発生を安定して顕著に抑制することが可能になった。この技術はオーステナイト系、フェライト系を問わず種々のステンレス鋼種に適用でき、特に溶加材を添加せずに行うTIG溶接で効果が大きい。 According to the present invention, it has become possible to stably and remarkably suppress the generation of slag spots in arc welding of stainless steel materials. This technique can be applied to various stainless steel grades regardless of whether it is austenitic or ferritic, and is particularly effective in TIG welding performed without adding a filler material.

非特許文献1に掲載されているスラグスポットが生じた溶接ビードの外観写真の引用。A quotation of an external photograph of a weld bead with a slag spot, which is published in Non-Patent Document 1. TIG溶接により造管した鋼管の溶接ビード上に見られたスラグスポットの外観写真。External photograph of the slag spot seen on the weld bead of the steel pipe made by TIG welding. 酸化物系介在物の平均CaO/(SiO2+MnO+CaO)質量比とスラグスポット発生率の関係を示したグラフ。The graph which showed the relationship between the average CaO / (SiO 2 + MnO + CaO) mass ratio of oxide-based inclusions, and the slag spot generation rate. 酸化物系介在物の平均CaO/MnO質量比とスラグスポット発生率の関係を示したグラフ。The graph which showed the relationship between the average CaO / MnO mass ratio of oxide-based inclusions, and the slag spot generation rate. 図4の平均CaO/MnO質量比が低い領域を拡大表示したグラフ。The graph which magnified and displayed the region where the average CaO / MnO mass ratio of FIG. 4 is low. 鋼材中のトータル酸素含有量と酸化物系介在物の平均CaO/MnO質量比の関係を示したグラフ。The graph which showed the relationship between the total oxygen content in a steel material and the average CaO / MnO mass ratio of oxide-based inclusions. 図6の平均CaO/MnO質量比が低い領域を拡大表示したグラフ。The graph which magnified and displayed the region where the average CaO / MnO mass ratio of FIG. 6 is low. 鋼材中のトータル酸素含有量とスラグスポット発生率の関係を示したグラフ。The graph which showed the relationship between the total oxygen content in a steel material and the slag spot generation rate. 精錬時のスラグ塩基度とスラグスポット発生率の関係を示したグラフ。A graph showing the relationship between slag basicity and slag spot occurrence rate during refining.

〔鋼の成分組成〕
本発明では、オーステナイト系やフェライト系を問わず、種々の鋼種が適用対象となる。発明者らの検討によれば、以下の組成範囲において後述の介在物組成制御によるスラグスポットの抑止効果が得られる。
質量%で、C:0.005~0.100%、Si:0.10~3.00%、Mn:0.10~6.50%、P:0.001~0.050%、S:0.0001~0.0200%、Ni:0~20.00%、Cr:10.50~26.00、Mo:0~2.50%、Cu:0~3.50%、Nb:0~0.500%、V:0~0.500%、Zr:0~0.500%、W:0~0.500%、Co:0~0.500、B:0~0.020、N:0.005~0.200%、Ti:0~0.050%、Al:0~0.100%、Ca:0~0.0010%、Mg:0~0.0010%、REM(Yを除く希土類元素):0~0.050%、Y:0~0.050%、O:0.0030~0.0150%、残部Feおよび不可避的不純物。
[Steel composition]
In the present invention, various steel types are applicable regardless of whether they are austenitic or ferritic. According to the studies by the inventors, the effect of suppressing slag spots by controlling the composition of inclusions described later can be obtained in the following composition range.
By mass%, C: 0.005 to 0.10%, Si: 0.10 to 3.00%, Mn: 0.10 to 6.50%, P: 0.001 to 0.050%, S: 0.0001 to 0.0200%, Ni: 0 to 20.00%, Cr: 10.50 to 26.00, Mo: 0 to 2.50%, Cu: 0 to 3.50%, Nb: 0 to 0.50%, V: 0 to 0.50%, Zr: 0 to 0.50%, W: 0 to 0.50%, Co: 0 to 0.50, B: 0 to 0.020, N: 0.005 to 0.200%, Ti: 0 to 0.050%, Al: 0 to 0.10%, Ca: 0 to 0.0010%, Mg: 0 to 0.0010%, REM (excluding Y) Rare earth elements): 0 to 0.050%, Y: 0 to 0.050%, O: 0.0030 to 0.0150%, balance Fe and unavoidable impurities.

鋼材中のP、Sの含有量は一般に低い方が好ましいが、過剰な脱燐、脱硫は製鋼の負荷を高め不経済となるので、ここではP、S含有量が上記範囲の鋼を対象とする。Ni、Mo、Cu、Nb、V、Zr、W、Co、B、Ti、Al、Ca、Mg、REM(Yを除く希土類元素)、Yは任意含有元素である。これらは、鋼材の熱間加工性や各種特性を改善するためにステンレス鋼に適宜添加される一般的な元素であり、上記範囲内の含有量であれば、酸化物系介在物の平均CaO/MnO質量比が後述の所定範囲に制御されている限り、アーク溶接ビードのスラグスポット抑止効果を阻害するものではない。Ti、Al、については、含有量が過剰であると介在物組成に悪影響を及ぼすことがあり、スラグスポットの発生原因となり得るので、Tiは0.050%以下、Alは0.100%以下にそれぞれ制限される。Tiは0.010%未満、Alは0.007%以下の含有量範囲となるように成分調整することがより好ましい。Al含有量を十分に低減するには、精錬においてSi脱酸を行うことが望ましい。 Generally, it is preferable that the content of P and S in the steel material is low, but excessive dephosphorization and desulfurization increase the load of steelmaking and become uneconomical. do. Ni, Mo, Cu, Nb, V, Zr, W, Co, B, Ti, Al, Ca, Mg, REM (rare earth elements excluding Y), and Y are optional contained elements. These are general elements that are appropriately added to stainless steel in order to improve the hot workability and various properties of steel materials, and if the content is within the above range, the average CaO / of oxide-based inclusions As long as the MnO mass ratio is controlled within a predetermined range described later, it does not hinder the slag spot suppressing effect of the arc weld bead. Regarding Ti and Al, if the content is excessive, it may adversely affect the composition of inclusions and may cause the generation of slag spots. Therefore, Ti is 0.050% or less and Al is 0.100% or less. Each is restricted. It is more preferable to adjust the components so that the content of Ti is less than 0.010% and that of Al is 0.007% or less. In order to sufficiently reduce the Al content, it is desirable to perform Si deoxidation in refining.

〔酸化物系介在物の組成〕
ステンレス鋼材を母材に用いたアーク溶接ビードに生じるスラグスポットの発生要因としては、以下のパターンが考えられる。
(パターン1)母材中の易酸化性元素(Al、Ca、Ti等)がガスシールドの不十分であった箇所で酸化物を形成してビード上に残留する。
(パターン2)母材中に存在する解離温度の高い非金属介在物がアークの掃引に随伴して凝集浮上し、ある程度凝集粒子が大きくなるとアークの掃引から取り残されてビード上に残留する。
発明者らの検討によると、ガスシールドを十分に行った場合であってもスラグスポットは発生することから、スラグスポットの発生を安定して顕著に抑制するためには上記パターン2の発生要因を克服することが必要である。上記パターン1の発生要因については母材の鋼組成において易酸化性元素等の含有量を上述の範囲に制限することによって解消できる。
[Composition of oxide-based inclusions]
The following patterns can be considered as factors that generate slag spots in arc weld beads using stainless steel as the base material.
(Pattern 1) Easy-oxidizing elements (Al, Ca, Ti, etc.) in the base metal form an oxide at a portion where the gas shield is insufficient and remain on the bead.
(Pattern 2) Non-metal inclusions having a high dissociation temperature present in the base metal aggregate and float with the sweep of the arc, and when the aggregated particles become large to some extent, they are left behind from the sweep of the arc and remain on the bead.
According to the study by the inventors, slag spots are generated even when the gas shield is sufficiently performed. Therefore, in order to stably and remarkably suppress the generation of slag spots, the cause of the above pattern 2 is considered. It is necessary to overcome it. The cause of the pattern 1 can be eliminated by limiting the content of easily oxidizing elements and the like in the steel composition of the base metal to the above range.

上記パターン2の発生要因対策としては母材中の介在物制御が重要となる。非金属介在物のうち、スラグスポットの原因となるのは解離温度が高い酸化物系介在物である。上述の鋼組成を有するステンレス鋼の場合、鋼材中に存在する酸化物系介在物の代表的な構成成分としてSiO2、MnO、CaO、Al23、MgOなどが挙げられる。これらのうち、CaOは解離温度が高いため溶接時にも還元されず酸化物のまま存在する。これがアークの熱で溶融した金属の中で凝集合体すると、冷却後にスラグスポットとして現れる。一方、MnOやSiO2は解離温度が比較的低いため、酸化物を構成するMnやSiは溶接時に還元されてメタルとなり、溶融金属中に溶解しやすい。そのためMnOやSiO2はスラグスポットの発生要因にはなりにくい。 Control of inclusions in the base metal is important as a countermeasure against the cause of the above pattern 2. Among the non-metal inclusions, the ones that cause slag spots are oxide-based inclusions having a high dissociation temperature. In the case of stainless steel having the above-mentioned steel composition, SiO 2 , MnO, CaO, Al 2 O 3 , MgO and the like can be mentioned as typical constituents of oxide-based inclusions present in the steel material. Of these, CaO has a high dissociation temperature, so it is not reduced even during welding and remains as an oxide. When this aggregates and coalesces in the metal melted by the heat of the arc, it appears as a slag spot after cooling. On the other hand, since MnO and SiO 2 have a relatively low dissociation temperature, Mn and Si constituting the oxide are reduced during welding to become a metal, which is easily dissolved in the molten metal. Therefore, MnO and SiO 2 are unlikely to cause slag spots.

発明者らは上述の鋼組成範囲にある種々のステンレス鋼種について、鋼材中に含まれている酸化物系介在物の組成を詳細に調べた。その結果、一般的なステンレス鋼材中に存在する酸化物系介在物の多くは、SiO2およびCaOの含有量が多いタイプのものであることがわかった。また、精錬条件を変えることによって、介在物のCaO含有量を減少させ、代わりにMnO含有量を増加させるという介在物の組成制御が可能であることも確かめられた。さらに、介在物組成においてSiO2、CaOと共存するMnOの含有量を増加させていくと、CaOが存在しているにもかかわらず、スラグスポットの発生が顕著に抑制されることが明らかとなった。以下において、SiO2およびCaOの含有量が多い一般的なタイプの酸化物系介在物を便宜上「SiO2-CaOタイプ」と呼び、介在物の組成制御によりCa濃度の減少およびMn濃度の増加を図ったタイプの酸化物系介在物を便宜上「SiO2-MnO-CaOタイプ」と呼ぶ。 The inventors have investigated in detail the composition of oxide-based inclusions contained in the steel material for various stainless steel grades in the above-mentioned steel composition range. As a result, it was found that most of the oxide-based inclusions present in general stainless steel materials are of the type having a high content of SiO 2 and CaO. It was also confirmed that by changing the refining conditions, it is possible to control the composition of the inclusions by reducing the CaO content of the inclusions and increasing the MnO content instead. Furthermore, it was clarified that when the content of MnO coexisting with SiO 2 and CaO was increased in the inclusion composition, the generation of slag spots was remarkably suppressed despite the presence of CaO. rice field. In the following, a general type of oxide-based inclusions having a high content of SiO 2 and CaO will be referred to as “SiO 2 -CaO type” for convenience, and the Ca concentration will decrease and the Mn concentration will increase by controlling the composition of the inclusions. The oxide-based inclusions of the planned type are referred to as "SiO 2 -MnO-CaO type" for convenience.

金属酸化物は温度が上昇すると一般に金属と酸素に解離する。例えばエリンガムダイヤグラムにおいて酸素分圧を10-12atmと仮定した場合の解離温度を見積もると、SiO2:約1530℃、MnO:約1380℃、CaO:約2100℃、Al23:約2020℃となる。SiO2-CaOタイプの介在物を、できるだけSiO2-MnO-CaOタイプに変えること、すなわち介在物の組成を相対的にSiO2-MnO-CaOタイプ優位とすることが、スラグスポットの抑制に有利となる。なお、Al23は解離温度が高いが、上述の鋼組成に調整されている鋼材ではAl23の存在量が少ないため、スラグスポットの発生要因にはなりにくい。 Metal oxides generally dissociate into metal and oxygen as the temperature rises. For example, when estimating the dissociation temperature when the oxygen partial pressure is assumed to be 10 -12 atm in the Ellingham diagram, SiO 2 : about 1530 ° C., MnO: about 1380 ° C., CaO: about 2100 ° C., Al 2 O 3 : about 2020. It becomes ℃. Changing the SiO 2 -CaO type inclusions to the SiO 2 -MnO-CaO type as much as possible, that is, making the composition of the inclusions relatively dominant in the SiO 2 -MnO-CaO type is advantageous for suppressing slag spots. It becomes. Although Al 2 O 3 has a high dissociation temperature, it is unlikely to cause slag spots because the abundance of Al 2 O 3 is small in the steel material adjusted to the above-mentioned steel composition.

介在物組成におけるSiO2-CaOタイプとSiO2-MnO-CaOタイプの相対的な優位性を定量的に表す指標として、本発明では「平均CaO/MnO質量比」を採用する。この値が小さいほど、相対的にSiO2-MnO-CaOタイプ優位の介在物組成であると評価でき、スラグスポットの発生抑制に有利となる。平均CaO/MnO質量比は上述した方法で求めることができる。詳細な検討の結果、鋼組成が上述の範囲に調整されているステンレス鋼において、平均CaO/MnO質量比が15.0以下であるとき、従来のステンレス鋼材と比べスラグスポットの顕著な低減効果が認められる。平均CaO/MnO質量比が10.0以下であることがより好ましく、6.0以下に管理してもよい。 In the present invention, the "average CaO / MnO mass ratio" is adopted as an index for quantitatively expressing the relative superiority of the SiO 2-CaO type and the SiO 2 - MnO-CaO type in the inclusion composition. The smaller this value is, the more it can be evaluated that the inclusion composition is relatively dominant in the SiO 2 -MnO-CaO type, which is advantageous in suppressing the generation of slag spots. The average CaO / MnO mass ratio can be determined by the method described above. As a result of detailed examination, in the stainless steel whose steel composition is adjusted to the above range, when the average CaO / MnO mass ratio is 15.0 or less, the effect of significantly reducing the slag spot is remarkable as compared with the conventional stainless steel material. Is recognized. The average CaO / MnO mass ratio is more preferably 10.0 or less, and may be controlled to 6.0 or less.

一方、酸化物系介在物中のMnO含有量が高い場合でも、CaO含有量が過度に高いと、スラグスポットの発生抑制効果が十分に得られない。検討の結果、平均CaO/(SiO2+MnO+CaO)質量比が0.40以下である介在物組成とすることが望ましい。平均CaO/(SiO2+MnO+CaO)質量比は上述した方法で求めることができる。 On the other hand, even when the MnO content in the oxide-based inclusions is high, if the CaO content is excessively high, the effect of suppressing the generation of slag spots cannot be sufficiently obtained. As a result of the examination, it is desirable that the inclusion composition has an average CaO / (SiO 2 + MnO + CaO) mass ratio of 0.40 or less. The average CaO / (SiO 2 + MnO + CaO) mass ratio can be determined by the method described above.

〔介在物の組成制御〕
酸化物系介在物の平均CaO/(SiO2+MnO+CaO)質量比、および平均CaO/MnO質量比が適正化された上述のステンレス鋼材は、一般的なステンレス鋼の溶製設備を利用して製造することができる。代表的にはVODプロセスおよびAODプロセスが挙げられる。いずれにおいても、まず、含Cr溶鉄に酸素を吹き込む脱炭を施し、Cr酸化物含有スラグを湯面上に有する溶鋼(C含有量は例えば0.20%以下)を常法にて製造する。この段階の溶鋼は酸素を吹き込む脱炭を終えた溶鋼であるから、易酸化性元素Si、Ti、Al、Ca、Mgなどは、溶鋼中から酸化除去されている。すなわち、溶鋼中にはSi、Ti、Al、Ca、Mgはほとんど存在していない。また、溶鋼中に多量に含まれるCrもその一部が酸化され、Cr酸化物として溶鋼の湯面上にスラグを形成している。一方、溶鋼中には脱炭のために吹き込んだ酸素が多量に溶存している。そのため、鋳造前には脱酸を行う必要がある。脱酸剤としてAlではなくFeSi合金を使用して、最終的な成分調整を行う。
[Control of composition of inclusions]
The above-mentioned stainless steel material in which the average CaO / (SiO 2 + MnO + CaO) mass ratio of the oxide-based inclusions and the average CaO / MnO mass ratio are optimized is manufactured by utilizing a general stainless steel melting facility. be able to. Typical examples include a VOD process and an AOD process. In either case, first, the Cr-containing molten iron is decarburized by blowing oxygen, and molten steel having Cr oxide-containing slag on the molten metal surface (C content is, for example, 0.20% or less) is produced by a conventional method. Since the molten steel at this stage is a molten steel that has been decarburized by blowing oxygen, the easily oxidizable elements Si, Ti, Al, Ca, Mg and the like are oxidized and removed from the molten steel. That is, Si, Ti, Al, Ca, and Mg are hardly present in the molten steel. Further, a part of Cr contained in the molten steel is also oxidized to form slag on the molten steel surface as Cr oxide. On the other hand, a large amount of oxygen blown in for decarburization is dissolved in the molten steel. Therefore, it is necessary to deoxidize before casting. The final component adjustment is performed using a FeSi alloy instead of Al as the deoxidizing agent.

酸化物系介在物の平均CaO/(SiO2+MnO+CaO)質量比を0.40以下に維持しながら平均CaO/MnO質量比を十分に低減するためには、脱酸および最終的な成分調整を行う際に、例えば以下の3点を満たすように精錬を行うことが極めて有効であることがわかった。 In order to sufficiently reduce the average CaO / MnO mass ratio while maintaining the average CaO / (SiO 2 + MnO + CaO) mass ratio of the oxide-based inclusions at 0.40 or less, deoxidation and final component adjustment are performed. At that time, it was found that it is extremely effective to perform refining so as to satisfy the following three points, for example.

(1)鋼中の酸素含有量(酸化物として存在する酸素も含めたトータル酸素含有量)が0.0030%(30ppm)以上となるように精錬を行う。酸素含有量が0.0030%を下回ると平均CaO/MnO質量比を安定して15.0以下とするような精錬が難しくなる。平均CaO/MnO質量比を10.0以下、あるいは6.0以下にまで大きく低減させたい場合には酸素含有量を0.0040%(40ppm)以上となるように調整することがより好ましい。ただし、酸素含有量が多くなりすぎるとCr酸化物含有量の多い介在物が多量に生成し、製品品質の低下を招く要因となる。酸素含有量は0.0150%(150ppm)以下に制限され、0.0100%(100ppm)以下とすることがより好ましい。0.0060%(60ppm)以下に管理してもよい
(2)Ca含有量が例えば0.20%以下の高純度FeSi合金を用いてSi脱酸を行う。
(3)スラグ塩基度CaO/SiO2を1.20~1.60の範囲に調整する。
(1) Refining is performed so that the oxygen content in the steel (total oxygen content including oxygen existing as an oxide) is 0.0030% (30 ppm) or more. When the oxygen content is less than 0.0030%, it becomes difficult to refine the average CaO / MnO mass ratio so as to be stable at 15.0 or less. When it is desired to greatly reduce the average CaO / MnO mass ratio to 10.0 or less or 6.0 or less, it is more preferable to adjust the oxygen content to 0.0040% (40 ppm) or more. However, if the oxygen content is too high, a large amount of inclusions having a high Cr oxide content are generated, which causes deterioration of product quality. The oxygen content is limited to 0.0150% (150 ppm) or less, more preferably 0.0100% (100 ppm) or less. It may be controlled to 0.0036% (60 ppm) or less. (2) Si deoxidation is performed using a high-purity FeSi alloy having a Ca content of, for example, 0.20% or less.
(3) Adjust the slag basicity CaO / SiO 2 to the range of 1.20 to 1.60.

VODプロセスを利用して、表1に示すステンレス鋼を溶製し、連続鋳造スラブを得た。最終的な精錬過程で、鋼中のトータル酸素含有量、脱酸剤のFeSi合金の種類、およびスラグ塩基度(CaO/SiO2)の条件を変えて、介在物制御を試みた。表2中にそれぞれの条件を示してある。表2中の酸素含有量は、表1の値を再掲したものである。脱酸剤であるFeSi合金としては、不純物量が少ない高純度品と、通常品を使用した。高純度品はCa含有量が0.20質量%以下に低減されたものである。通常品のCa含有量は約0.5~1.5質量%である。スラグ塩基度は、スラグから採取したサンプルを分析して求めた。 Using the VOD process, the stainless steels shown in Table 1 were melted to obtain continuously cast slabs. In the final refining process, inclusion control was attempted by changing the conditions of total oxygen content in steel, type of FeSi alloy of deoxidizer, and slag basicity (CaO / SiO 2 ). Each condition is shown in Table 2. The oxygen content in Table 2 is a reprint of the values in Table 1. As the FeSi alloy as the deoxidizing agent, a high-purity product having a small amount of impurities and a normal product were used. The high-purity product has a Ca content reduced to 0.20% by mass or less. The Ca content of the normal product is about 0.5 to 1.5% by mass. The slag basicity was determined by analyzing a sample taken from the slag.

得られた連続鋳造スラブを用いて、熱間圧延、冷間圧延を含む工程で板厚0.5~1.5mmの冷延焼鈍鋼板を得た。この冷延焼鈍鋼板の圧延方向および板厚方向に平行な断面(L断面)についてSEM(走査型電子顕微鏡)観察を行い、SEMに付属のEDX(エネルギー分散型X線分析)にて酸化物系介在物の組成分析を行った。無作為に選択した30個の酸化物系介在物の測定値に基づいて、前掲の「平均CaO/(SiO2+MnO+CaO)質量比、平均CaO/MnO質量比の求め方」に従い、平均CaO/(SiO2+MnO+CaO)質量比および平均CaO/MnO質量比を求めた。結果を表2中に示してある。 Using the obtained continuously cast slab, a cold-rolled annealed steel sheet having a plate thickness of 0.5 to 1.5 mm was obtained in a process including hot rolling and cold rolling. SEM (scanning electron microscope) observation was performed on the cross section (L cross section) parallel to the rolling direction and the plate thickness direction of this cold-rolled annealed steel sheet, and the oxide system was observed by the EDX (energy dispersive X-ray analysis) attached to the SEM. The composition of inclusions was analyzed. Based on the measured values of 30 oxide-based inclusions selected at random, the average CaO / (mean CaO / (SiO 2 + MnO + CaO) mass ratio, how to obtain the average CaO / MnO mass ratio" described above. SiO 2 + MnO + CaO) mass ratio and average CaO / MnO mass ratio were determined. The results are shown in Table 2.

各冷延焼鈍鋼板を素材に用いて、TIG溶接にて通常の条件で溶接鋼管を製造した。管の外径は25~51mmの範囲にある。溶接に際し溶加材は添加していない。得られた鋼管製品から無作為にサンプルを抜き出し、連続する長さ50m以上の溶接ビードについてスラグスポットの発生を調査した。長径(粒子の最も長い部分の直径)が1.0mm以上であるスラグスポットの数をカウントし、1mあたりの上記スラグスポットの発生個数をスラグスポット発生率(個/m)とした。上記サイズのスラグスポット発生率が0.30個/m以下であれば、従来より大幅にスラグスポットの発生が抑制されていると評価することができる。したがって、スラグスポット発生率が0.30個/m以下のものを合格と判定した。
これらの結果を表2に示す。
Welded steel pipes were manufactured under normal conditions by TIG welding using each cold-rolled annealed steel sheet as a material. The outer diameter of the tube is in the range of 25-51 mm. No filler metal was added during welding. Samples were randomly sampled from the obtained steel pipe products, and the occurrence of slag spots was investigated for continuous weld beads having a length of 50 m or more. The number of slag spots having a major axis (diameter of the longest part of the particles) of 1.0 mm or more was counted, and the number of slag spots generated per 1 m was defined as the slag spot generation rate (pieces / m). If the slag spot generation rate of the above size is 0.30 pieces / m or less, it can be evaluated that the generation of slag spots is significantly suppressed as compared with the conventional case. Therefore, those having a slag spot generation rate of 0.30 pieces / m or less were judged to be acceptable.
These results are shown in Table 2.

Figure 0007042057000001
Figure 0007042057000001

Figure 0007042057000002
Figure 0007042057000002

鋼組成が本発明規定範囲を満たし、かつ酸化物系介在物の平均CaO/(SiO2+MnO+CaO)質量比および平均CaO/MnO質量比が本発明規定範囲に制御された本発明例のものは、スラグスポットの発生が非常に少ない。 Examples of the present invention in which the steel composition satisfies the specified range of the present invention and the average CaO / (SiO 2 + MnO + CaO) mass ratio and the average CaO / MnO mass ratio of the oxide-based inclusions are controlled within the specified range of the present invention are Very few slag spots occur.

これに対し、比較例であるNo.21~23は精錬時のスラグ塩基度が高かったので酸化物系介在物の平均CaO/MnO質量比が高くなり、スラグスポットの発生が多かった。No.24~26は鋼中のトータル酸素含有量が低すぎ、かつ精錬時のスラグ塩基度が高かったので酸化物系介在物の平均CaO/MnO質量比が他の例より著しく高くなり、スラグスポットの抑制効果は得られなかった。No.27~30は脱酸剤であるFeSi合金に「通常品」を使用したので所望の介在物制御ができず、酸化物系介在物の平均CaO/MnO質量比が高くなってスラグスポットの発生が多かった。 On the other hand, in Comparative Examples Nos. 21 to 23, the slag basicity at the time of refining was high, so that the average CaO / MnO mass ratio of the oxide-based inclusions was high, and slag spots were frequently generated. In Nos. 24 to 26, the total oxygen content in the steel was too low and the slag basicity at the time of refining was high, so that the average CaO / MnO mass ratio of the oxide-based inclusions was significantly higher than in the other examples, and the slag. No spot-suppressing effect was obtained. In Nos. 27 to 30, since the "normal product" was used for the FeSi alloy as the deoxidizing agent, the desired inclusions could not be controlled, and the average CaO / MnO mass ratio of the oxide-based inclusions became high, so that the slag spots had a high mass ratio. There were many outbreaks.

図3に、各例について酸化物系介在物の平均CaO/(SiO2+MnO+CaO)質量比とスラグスポット発生率の関係を示す。黒丸プロットは脱酸剤のFeSi合金として「高純度品」を使用した例、白丸プロットは「通常品」を使用した例である(以下の図4~図9において同様)。また、図4、図5に、各例について酸化物系介在物の平均CaO/MnO質量比とスラグスポット発生率の関係を示す。図5は、図4の平均CaO/MnO質量比が低い領域を拡大表示したものである。酸化物系介在物の平均CaO/(SiO2+MnO+CaO)質量比を0.40以下、かつ平均CaO/MnO質量比を15.0以下に制御することにより、スラグスポット発生抑制効果が顕著に向上することがわかる。 FIG. 3 shows the relationship between the average CaO / (SiO 2 + MnO + CaO) mass ratio of oxide-based inclusions and the slag spot generation rate for each example. The black circle plot is an example in which a "high-purity product" is used as the FeSi alloy of the deoxidizer, and the white circle plot is an example in which a "normal product" is used (the same applies to FIGS. 4 to 9 below). Further, FIGS. 4 and 5 show the relationship between the average CaO / MnO mass ratio of oxide-based inclusions and the slag spot generation rate for each example. FIG. 5 is an enlarged view of the region where the average CaO / MnO mass ratio of FIG. 4 is low. By controlling the average CaO / (SiO 2 + MnO + CaO) mass ratio of the oxide-based inclusions to 0.40 or less and the average CaO / MnO mass ratio to 15.0 or less, the effect of suppressing the generation of slag spots is remarkably improved. You can see that.

図6、図7に、各例について鋼材中のトータル酸素含有量と酸化物系介在物の平均CaO/MnO質量比の関係を示す。図7は、図6の平均CaO/MnO質量比が低い領域を拡大表示したものである。酸素含有量を0.0030%以上にすることが酸化物系介在物の平均CaO/MnO質量比を低く制御する上で極めて有効であることがわかる。 6 and 7 show the relationship between the total oxygen content in the steel material and the average CaO / MnO mass ratio of the oxide-based inclusions for each example. FIG. 7 is an enlarged view of the region where the average CaO / MnO mass ratio of FIG. 6 is low. It can be seen that setting the oxygen content to 0.0030% or more is extremely effective in controlling the average CaO / MnO mass ratio of the oxide-based inclusions to be low.

図8に、各例について鋼材中のトータル酸素含有量とスラグスポット発生率の関係を示す。脱酸剤のFeSi合金に「高純度品」を使用し、酸素含有量を0.0030%以上にすることが、スラグスポットの発生抑制に効果的であることがわかる。 FIG. 8 shows the relationship between the total oxygen content in the steel material and the slag spot generation rate for each example. It can be seen that using a "high-purity product" for the FeSi alloy of the deoxidizer and increasing the oxygen content to 0.0030% or more is effective in suppressing the generation of slag spots.

図9に、精錬時のスラグ塩基度とスラグスポット発生率の関係を示す。脱酸剤のFeSi合金に「高純度品」を使用し、スラグ塩基度を1.20~1.60の範囲に調整することが、スラグスポットの発生抑制に効果的であることがわかる。 FIG. 9 shows the relationship between the slag basicity and the slag spot generation rate during refining. It can be seen that using a "high-purity product" for the FeSi alloy of the deoxidizer and adjusting the slag basicity in the range of 1.20 to 1.60 is effective in suppressing the generation of slag spots.

Claims (7)

質量%で、C:0.005~0.100%、Si:0.10~3.00%、Mn:0.10~6.50%、P:0.001~0.050%、S:0.0001~0.0200%、Ni:0~20.00%、Cr:10.50~26.00、Mo:0~2.50%、Cu:0~3.50%、Nb:0~0.500%、V:0~0.500%、Zr:0~0.500%、W:0~0.500%、Co:0~0.500、B:0~0.020、N:0.005~0.200%、Ti:0~0.050%、Al:0~0.100%、Ca:0~0.0010%、Mg:0~0.0010%、REM(Yを除く希土類元素):0~0.050%、Y:0~0.050%、O:0.0030~0.0150%、残部Feおよび不可避的不純物からなる化学組成を有し、Mnを含有する酸化物系介在物が存在し、酸化物系介在物中のSi、MnおよびCaの含有量をそれぞれSiO2、MnOおよびCaOの質量割合に換算した場合の介在物組成において、金属組織中に観察される酸化物系介在物の平均CaO/(SiO2+MnO+CaO)質量比が0.40以下、平均CaO/MnO質量比が15.0以下であるステンレス鋼材。 By mass%, C: 0.005 to 0.10%, Si: 0.10 to 3.00%, Mn: 0.10 to 6.50%, P: 0.001 to 0.050%, S: 0.0001 to 0.0200%, Ni: 0 to 20.00%, Cr: 10.50 to 26.00, Mo: 0 to 2.50%, Cu: 0 to 3.50%, Nb: 0 to 0.50%, V: 0 to 0.50%, Zr: 0 to 0.50%, W: 0 to 0.50%, Co: 0 to 0.50, B: 0 to 0.020, N: 0.005 to 0.200%, Ti: 0 to 0.050%, Al: 0 to 0.100%, Ca: 0 to 0.0010%, Mg: 0 to 0.0010%, REM (excluding Y) Rare earth element): 0 to 0.050%, Y: 0 to 0.050%, O: 0.0030 to 0.0150%, balance Fe and unavoidable impurities. Oxide containing Mn. Material-based inclusions are present and are observed in the metallographic structure in the inclusion composition when the Si, Mn and Ca contents in the oxide-based inclusions are converted to the mass ratios of SiO 2 , MnO and CaO, respectively. A stainless steel material having an average CaO / (SiO 2 + MnO + CaO) mass ratio of 0.40 or less and an average CaO / MnO mass ratio of 15.0 or less. 請求項1に記載のステンレス鋼材からなるアーク溶接用母材。 A base material for arc welding made of the stainless steel material according to claim 1. 請求項1に記載のステンレス鋼材からなるアーク溶接造管用鋼板母材。 A steel plate base material for arc welding pipe making made of the stainless steel material according to claim 1. 請求項1に記載の鋼材を母材に用いたアーク溶接構造部材。 An arc welded structural member using the steel material according to claim 1 as a base material. 請求項1に記載の鋼材を母材に用いたアーク溶接鋼管。 An arc welded steel pipe using the steel material according to claim 1 as a base material. 請求項1に記載のステンレス鋼材を母材に用いて、溶加材を添加せずに非溶極式のアーク溶接を行う溶接構造部材の製造法。 A method for manufacturing a welded structural member using the stainless steel material according to claim 1 as a base material and performing non-melting arc welding without adding a fillering material. 請求項1に記載のステンレス鋼材である鋼板を母材に用いて、溶加材を添加せずに非溶極式のアーク溶接にて溶接鋼管とする、溶接鋼管の製造法。 A method for manufacturing a welded steel pipe, wherein a steel plate which is a stainless steel material according to claim 1 is used as a base material, and a welded steel pipe is formed by non-melting arc welding without adding a filler metal.
JP2017206555A 2017-10-25 2017-10-25 Stainless steel materials and welded structural members with excellent slag spot generation suppression ability and their manufacturing methods Active JP7042057B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017206555A JP7042057B2 (en) 2017-10-25 2017-10-25 Stainless steel materials and welded structural members with excellent slag spot generation suppression ability and their manufacturing methods
PCT/JP2018/018480 WO2019082427A1 (en) 2017-10-25 2018-05-14 Stainless steel material having excellent slag spot occurrence prevention performance, welded structural member and method for producing same
CN201880068466.1A CN112218965A (en) 2017-10-25 2018-05-14 Stainless steel material having excellent slag point generation inhibiting ability, welded structural member, and method for producing same
KR1020207014455A KR102391566B1 (en) 2017-10-25 2018-05-14 Stainless steel and welded structural member with excellent slag spot suppression ability and manufacturing method thereof
TW107118141A TWI694160B (en) 2017-10-25 2018-05-28 Stainless steel material excellent in supressing slag spots generation, welded structural member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017206555A JP7042057B2 (en) 2017-10-25 2017-10-25 Stainless steel materials and welded structural members with excellent slag spot generation suppression ability and their manufacturing methods

Publications (2)

Publication Number Publication Date
JP2019077925A JP2019077925A (en) 2019-05-23
JP7042057B2 true JP7042057B2 (en) 2022-03-25

Family

ID=66247238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017206555A Active JP7042057B2 (en) 2017-10-25 2017-10-25 Stainless steel materials and welded structural members with excellent slag spot generation suppression ability and their manufacturing methods

Country Status (5)

Country Link
JP (1) JP7042057B2 (en)
KR (1) KR102391566B1 (en)
CN (1) CN112218965A (en)
TW (1) TWI694160B (en)
WO (1) WO2019082427A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7370396B2 (en) * 2020-01-15 2023-10-27 日鉄ステンレス株式会社 Ferritic stainless steel
CN112941403A (en) * 2021-01-14 2021-06-11 上海欣冈贸易有限公司 Sulfur-free low-carbon steel metal alloy for welding and composition thereof
JP7243950B1 (en) * 2021-10-01 2023-03-22 日本製鉄株式会社 duplex stainless steel pipe
WO2023054599A1 (en) * 2021-10-01 2023-04-06 日本製鉄株式会社 Duplex stainless steel pipe
CN115466909B (en) * 2022-10-26 2023-03-24 浦项(张家港)不锈钢股份有限公司 Austenitic stainless steel, preparation process and application

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4876350B2 (en) 2001-08-30 2012-02-15 Jfeスチール株式会社 Manufacturing method of high strength steel pipe joint for oil well
WO2013005570A1 (en) 2011-07-06 2013-01-10 新日鐵住金株式会社 Austenite steel welded joint

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2733252B1 (en) * 1995-04-21 1997-05-23 Ugine Savoie Sa AUSTENITIC STAINLESS STEEL FOR THE PREPARATION OF YARN IN PARTICULAR
JP3567222B2 (en) * 1995-11-09 2004-09-22 住友金属工業株式会社 High corrosion-resistant austenitic stainless steel and welding materials with excellent bead width uniformity and back bead forming ability
JP4025171B2 (en) * 2002-10-29 2007-12-19 日本冶金工業株式会社 Stainless steel having excellent corrosion resistance, weldability and surface properties and method for producing the same
JP4025170B2 (en) * 2002-10-29 2007-12-19 日本冶金工業株式会社 Stainless steel excellent in corrosion resistance, weldability and surface properties and method for producing the same
JP3966190B2 (en) * 2003-02-27 2007-08-29 愛知製鋼株式会社 Stainless steel with excellent machinability and cold workability
JP4673343B2 (en) 2007-06-06 2011-04-20 日本冶金工業株式会社 Stainless steel sheet excellent in corrosion resistance, weldability and surface properties and method for producing the same
JP5489759B2 (en) 2009-02-09 2014-05-14 新日鐵住金ステンレス株式会社 Ferritic stainless steel with few black spots
JP5793283B2 (en) 2010-08-06 2015-10-14 新日鐵住金ステンレス株式会社 Ferritic stainless steel with few black spots
EP2910659B1 (en) * 2012-10-22 2017-12-27 JFE Steel Corporation Ferrite stainless steel and manufacturing method therefor
JP5984213B2 (en) 2012-10-23 2016-09-06 日本冶金工業株式会社 Austenitic Fe-Ni-Cr alloy for cladding tubes with excellent weldability
JP6098393B2 (en) * 2013-06-25 2017-03-22 新日鐵住金株式会社 Welded joint manufacturing method and welded joint
CN103521951B (en) * 2013-11-04 2015-09-02 北京金威焊材有限公司 Stainless steel welded flux-cored wire
JP6627343B2 (en) * 2014-10-07 2020-01-08 日本製鉄株式会社 Austenitic stainless steel and equipment for high-pressure hydrogen gas or liquid hydrogen
JP6603033B2 (en) * 2015-03-31 2019-11-06 日本冶金工業株式会社 High Mn content Fe-Cr-Ni alloy and method for producing the same
JP6005234B1 (en) * 2015-09-29 2016-10-12 日新製鋼株式会社 High-strength stainless steel sheet with excellent fatigue characteristics and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4876350B2 (en) 2001-08-30 2012-02-15 Jfeスチール株式会社 Manufacturing method of high strength steel pipe joint for oil well
WO2013005570A1 (en) 2011-07-06 2013-01-10 新日鐵住金株式会社 Austenite steel welded joint

Also Published As

Publication number Publication date
KR102391566B1 (en) 2022-04-29
TW201923108A (en) 2019-06-16
WO2019082427A1 (en) 2019-05-02
JP2019077925A (en) 2019-05-23
KR20200067886A (en) 2020-06-12
CN112218965A (en) 2021-01-12
TWI694160B (en) 2020-05-21

Similar Documents

Publication Publication Date Title
JP7042057B2 (en) Stainless steel materials and welded structural members with excellent slag spot generation suppression ability and their manufacturing methods
JP4673343B2 (en) Stainless steel sheet excellent in corrosion resistance, weldability and surface properties and method for producing the same
JP6066412B2 (en) Fe-Ni-Cr alloy having excellent surface properties and method for producing the same
JP6146908B2 (en) Stainless steel with excellent surface properties and its manufacturing method
JP6869142B2 (en) Stainless steel sheet and its manufacturing method
JP4025171B2 (en) Stainless steel having excellent corrosion resistance, weldability and surface properties and method for producing the same
CN110016618B (en) High-silicon-content welding steel and preparation method thereof
JP2019178363A (en) AUSTENITIC STAINLESS STEEL WITH HIGH CONTENT OF Si, HAVING EXCELLENT MANUFACTURABILITY
JP2005264335A (en) Si killed steel having excellent fatigue strength and its production method
JP6820223B2 (en) Duplex stainless steel wire for welding rods and duplex stainless steel wire for welding rods
US20230077707A1 (en) Stainless steel, stainless steel material, and method for producing stainless steel
JP6903182B1 (en) Ni-Cr-Al-Fe alloy with excellent surface properties and its manufacturing method
JP2001254153A (en) Ferritic stainless steel excellent in weldability
CN110029276B (en) High-carbon high-silicon welding steel and preparation method thereof
JP2015155116A (en) Thickness increasing method for weld stainless steel
JP4025170B2 (en) Stainless steel excellent in corrosion resistance, weldability and surface properties and method for producing the same
JP2022163425A (en) HIGH Ni ALLOY EXCELLENT IN WELD HOT CRACKING RESISTANCE
JP4836262B2 (en) Bond flux for submerged arc welding
JP6341053B2 (en) High Si austenitic stainless steel containing composite non-metallic inclusions
JPH10152755A (en) Steel for steel sheet for can few in defect and its production
JP6288397B1 (en) Austenitic stainless steel
EP4112752A1 (en) Stainless steel exhibiting superior mirror polishability, and production method therefor
JP5815291B2 (en) Stainless steel for welding
JPH0966391A (en) Stainless steel flux cored wire
JPH05140632A (en) Production of stainless steel having ultrahigh cleanliness

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220314

R150 Certificate of patent or registration of utility model

Ref document number: 7042057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150