JP7533816B1 - Steel plate, its manufacturing method, and steel pipe - Google Patents

Steel plate, its manufacturing method, and steel pipe Download PDF

Info

Publication number
JP7533816B1
JP7533816B1 JP2024515966A JP2024515966A JP7533816B1 JP 7533816 B1 JP7533816 B1 JP 7533816B1 JP 2024515966 A JP2024515966 A JP 2024515966A JP 2024515966 A JP2024515966 A JP 2024515966A JP 7533816 B1 JP7533816 B1 JP 7533816B1
Authority
JP
Japan
Prior art keywords
less
steel
inclusions
containing substance
addition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2024515966A
Other languages
Japanese (ja)
Inventor
大地 泉
一貴 西中
茂樹 木津谷
純二 嶋村
則親 荒牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Application granted granted Critical
Publication of JP7533816B1 publication Critical patent/JP7533816B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

耐HIC性に優れる鋼板を提供する。本発明の鋼板は、所定の成分組成を有し、鋼板の両面の各々から板厚方向に板厚の1/4の深さまでの一対の領域に、MgOを10~40質量%含む平均組成を有し、アスペクト比の平均値が2.5以下である介在物が存在し、前記介在物の円相当径の上位10%の平均値が3.5μm以下であり、前記領域におけるHIC試験後の割れ面積率CARが5.0%以下である。The present invention provides a steel sheet having excellent HIC resistance. The steel sheet has a predetermined chemical composition, and in a pair of regions extending from each of both sides of the steel sheet to a depth of ¼ of the sheet thickness in the sheet thickness direction, the steel sheet has an average composition containing 10 to 40 mass % of MgO, inclusions are present with an average aspect ratio of 2.5 or less, the top 10% of the inclusions have an average equivalent circle diameter of 3.5 μm or less, and the crack area ratio CAR after an HIC test in the regions is 5.0% or less.

Description

本発明は、原油又は天然ガスの輸送に用いられるラインパイプに供して好適な、耐水素誘起割れ性(耐HIC(Hydrogen Induced Cracking)性)に優れる鋼板及びその製造方法に関するものである。また、本発明は、上記の鋼板を用いた鋼管に関するものである。The present invention relates to a steel plate having excellent hydrogen induced cracking resistance (HIC (Hydrogen Induced Cracking) resistance) suitable for use in line pipes used for transporting crude oil or natural gas, and a manufacturing method thereof. The present invention also relates to a steel pipe using the above-mentioned steel plate.

一般に、ラインパイプは、厚板ミル又は熱延ミルによって製造された鋼板を、UOE成形、プレスベンド成形及びロール成形等によって、鋼管に成形することで製造される。Generally, line pipes are manufactured by forming steel plates produced by a plate mill or a hot rolling mill into steel pipes by UOE forming, press bending, roll forming, etc.

硫化水素を含む原油又は天然ガスの輸送に用いられるラインパイプは、強度、靭性、溶接性等の他に、耐HIC性及び耐硫化物応力腐食割れ性(耐SSCC(Sulfide Stress Corrosion Cracking)性)といった、いわゆる耐サワー性が必要とされる。中でもHICは、腐食反応により生じた水素イオンが鋼表面に吸着した後、原子状の水素として鋼内部に侵入し、鋼中のMnS等の非金属介在物又は硬い第2相組織のまわりに拡散・集積して、分子状の水素となり、その内圧により割れを生ずるものである。Line pipes used to transport crude oil or natural gas containing hydrogen sulfide are required to have so-called sour resistance, such as HIC resistance and sulfide stress corrosion cracking resistance (SSCC (Sulfide Stress Corrosion Cracking) resistance), in addition to strength, toughness, weldability, etc. In particular, HIC occurs when hydrogen ions generated by a corrosion reaction are adsorbed on the steel surface, then penetrate into the steel as atomic hydrogen, which diffuses and accumulates around non-metallic inclusions such as MnS or hard second phase structures in the steel, becoming molecular hydrogen, and the internal pressure causes cracks.

HICの起点となりやすい鋼中の非金属介在物として、熱間圧延によって延伸したMnS(硫化マンガン)が挙げられる。これに対し、溶鋼にカルシウム(Ca)を添加することで、Caを鋼中の硫黄(S)と反応させ、MnSよりも安定な硫化物であるCaS(硫化カルシウム)を生成させて、MnSの生成を抑制し、耐HIC性を向上させるという技術が知られている。添加したCaは、鋼中の酸素(O)及び脱酸生成物であるAl(酸化アルミニウム)とも反応し、CaO-Al系非金属介在物を生成する。 One example of a non-metallic inclusion in steel that is likely to be the starting point of HIC is MnS (manganese sulfide) elongated by hot rolling. In response to this, a technique is known in which calcium (Ca) is added to molten steel to react with sulfur (S) in the steel to generate CaS (calcium sulfide), a sulfide that is more stable than MnS, thereby suppressing the generation of MnS and improving HIC resistance. The added Ca also reacts with oxygen (O) in the steel and Al 2 O 3 (aluminum oxide), a deoxidation product, to generate CaO-Al 2 O 3 -based non-metallic inclusions.

よって、溶鋼中のCaが不足した場合には、鋼中のSと反応するCaが足りずに、多くのMnSが生成してしまい、中心偏析部における耐HIC性が劣化する。また、Caが過剰になった場合には、高CaO濃度のCaO-Al系非金属介在物クラスターが生成し、鋼板の表層における耐HIC性が劣化する。 Therefore, when the amount of Ca in the molten steel is insufficient, there is not enough Ca to react with S in the steel, and a lot of MnS is generated, deteriorating the HIC resistance in the center segregation area.On the other hand, when the amount of Ca is excessive, CaO- Al2O3 - based non-metallic inclusion clusters with a high CaO concentration are generated, deteriorating the HIC resistance in the surface layer of the steel sheet.

ここで、近年、マンガン(Mn)の含有量を増加させて、その他の合金成分の含有量を低下させることにより、低廉化を図った鋼板の開発が進められている。かかる鋼板の場合、耐HIC性を劣化させるMnSは、中心偏析部で、濃化したMnと濃化したSとから生成されるので、鋼板全体のS含有量を低減させたとしても、中心偏析部でのMnSの生成頻度は増加するという問題がある。In recent years, efforts have been made to develop cheaper steel sheets by increasing the manganese (Mn) content and decreasing the contents of other alloying elements. In the case of such steel sheets, MnS, which deteriorates HIC resistance, is generated from concentrated Mn and concentrated S in the central segregation area, so there is a problem that even if the S content of the entire steel sheet is reduced, the frequency of MnS generation in the central segregation area increases.

この対策として、MnSの生成を抑制するため、さらにCa添加量を増やす操業が行われると、前述したような高CaO濃度のCaO-Al系非金属介在物クラスターが生成しやすい。そして、この介在物クラスターが連続鋳造時に鋳片の表層にトラップされることで、鋼板の表層においてHICの起点となり、耐HIC性が劣化する原因となってしまう。 As a countermeasure, if an operation is carried out in which the amount of Ca added is further increased in order to suppress the formation of MnS, the above-mentioned CaO-Al 2 O 3 based non-metallic inclusion clusters with a high CaO concentration are likely to form. Then, if these inclusion clusters are trapped in the surface layer of the slab during continuous casting, they become the starting points of HIC in the surface layer of the steel plate, causing a deterioration in HIC resistance.

したがって、Mn含有量が高い鋼板の耐HIC性を向上させるためには、Caの添加量を増加させること以外の方法で、MnSの生成を抑制すると共に、介在物クラスターの生成を抑制する必要がある。Therefore, in order to improve the HIC resistance of steel plates with a high Mn content, it is necessary to suppress the formation of MnS and inclusion clusters by methods other than increasing the amount of Ca added.

上記の問題を解決する手段として、Sとの親和力が強く、硫化物形成能力が高い元素を、Caと併用する方法が考えられる。例えば、Caと同様に、MnSよりも安定な硫化物を生成し得る元素として、マグネシウム(Mg)が知られている。硫化物の安定性を熱力学的に比較すると、CaS>MgS>MnSの順なので、Mgは、Caと同等のMnSの生成抑制効果が期待できる。 One possible way to solve the above problem is to use an element that has a strong affinity for S and a high sulfide-forming ability in combination with Ca. For example, magnesium (Mg) is known to be an element that, like Ca, can form sulfides that are more stable than MnS. When comparing the stability of sulfides thermodynamically, the order is CaS > MgS > MnS, so Mg can be expected to have the same effect as Ca in suppressing the formation of MnS.

ここで、特許文献1及び特許文献2には、CaだけでなくMgも含んでいる耐サワー鋼材が開示されている。特許文献3には、耐HIC性の向上に有効な元素としてMgが含まれた耐サワー鋼材が開示されている。Here, Patent Documents 1 and 2 disclose sour-resistant steel materials that contain not only Ca but also Mg. Patent Document 3 discloses a sour-resistant steel material that contains Mg as an element that is effective in improving HIC resistance.

溶鋼へのMg添加方法として、特許文献4には、スラグ中にMgOを2~10質量%含有させることで、非金属介在物中にMgOを供給し、非金属介在物の組成を制御する方法が開示されている。As a method of adding Mg to molten steel, Patent Document 4 discloses a method in which 2 to 10 mass % of MgO is added to the slag to supply MgO to the non-metallic inclusions and control the composition of the non-metallic inclusions.

その他のMg添加方法として、特許文献5には、MgO含有耐火物を内張り耐火物の一部又は全部に使用した精錬容器中で成分調整を行う方法が開示され、特許文献6には、Ti-Mg合金を添加する方法が開示されている。As other methods of adding Mg, Patent Document 5 discloses a method of adjusting the composition in a refining vessel in which an MgO-containing refractory material is used as part or all of the lining refractory, and Patent Document 6 discloses a method of adding a Ti-Mg alloy.

Ca及びMgの添加方法として、特許文献7には、連続鋳造設備において、溶鋼鍋からタンディッシュへ注入される溶鋼流に不活性ガスとCa-Si、Mg-Siなどの添加材とを吹き付ける方法が開示されている。As a method of adding Ca and Mg, Patent Document 7 discloses a method in which inert gas and additives such as Ca-Si and Mg-Si are sprayed onto the molten steel flow injected from a molten steel ladle into a tundish in a continuous casting facility.

なお、介在物の形状については、介在物のアスペクト比(長径/短径)が大きいほど、介在物による応力集中が大きくなること、さらには、鋳造後のスラブを圧延することで介在物が変形することが知られている。すなわち、圧延で介在物のアスペクト比が大きくなると、介在物による応力集中が大きくなって、HICが発生しやすくなるため、従来の圧延方法で耐HIC性に優れた鋼板を製造することは難しい。Regarding the shape of inclusions, it is known that the larger the aspect ratio (longer diameter/shorter diameter) of the inclusions, the greater the stress concentration caused by the inclusions, and furthermore, that the inclusions are deformed by rolling the slab after casting. In other words, if the aspect ratio of the inclusions increases through rolling, the stress concentration caused by the inclusions increases, making HIC more likely to occur, and therefore it is difficult to manufacture steel sheets with excellent HIC resistance using conventional rolling methods.

特開2017-172010号公報JP 2017-172010 A 特開2017-110249号公報JP 2017-110249 A 特開2014-208891号公報JP 2014-208891 A 特開2012-188696号公報JP 2012-188696 A 特開2004-043838号公報JP 2004-043838 A 特開2002-266019号公報JP 2002-266019 A 特開2017-087229号公報JP 2017-087229 A

しかしながら、特許文献1及び特許文献2には、Mgは微細なMg系酸化物として存在し、この微細なMg系酸化物がTiNの析出核として機能し、溶接熱影響部(HAZ)の靱性の向上に効果があると記載されている。すなわち、特許文献1及び特許文献2に記載の技術では、Mg系酸化物の表面は析出したTiNによって覆われることになるため、MgはMgSの形成には寄与できない。However, Patent Documents 1 and 2 state that Mg exists as fine Mg-based oxides, and that these fine Mg-based oxides function as precipitation nuclei for TiN, and are effective in improving the toughness of the weld heat-affected zone (HAZ). In other words, in the technology described in Patent Documents 1 and 2, the surface of the Mg-based oxides is covered with precipitated TiN, so Mg cannot contribute to the formation of MgS.

特許文献4に記載の方法では、溶鋼中へ巻き込まれたスラグの還元によって生成するMgO系非金属介在物が粗大であり、逆に、HICの起点となる懸念がある。In the method described in Patent Document 4, the MgO-based non-metallic inclusions produced by the reduction of the slag entrained in the molten steel are coarse, and there is concern that they may actually become the starting point for HIC.

特許文献5及び特許文献6に記載の技術は、耐火物の補修費用及び高価なTi(チタン)を含む合金の費用を考慮すると、経済的ではない。The technologies described in Patent Documents 5 and 6 are not economical when considering the cost of repairing refractories and the cost of alloys containing expensive Ti (titanium).

特許文献7に記載の方法は、吹き込んだ不活性ガスが溶鋼流に巻き込まれ、鋳片の品質の悪化を招く懸念があり、合金添加による非金属介在物の形態制御と気泡性欠陥の抑制との両立が難しいという問題がある。The method described in Patent Document 7 has the problem that the injected inert gas may become entrained in the molten steel flow, leading to a deterioration in the quality of the cast piece, and there is also the problem that it is difficult to simultaneously control the shape of non-metallic inclusions by adding alloys and suppress cellular defects.

このように、上記した従来技術には、Ca及びMgを含有する耐サワー鋼材が提案されているものの、いずれも上記の問題を有している。加えて、Ca及びMgを含有する鋼板には、以下の問題がある。As described above, the prior art proposes sour steel materials containing Ca and Mg, but all of them have the above problems. In addition, steel plates containing Ca and Mg have the following problems:

すなわち、特許文献1~3及び特許文献7には何ら記載のないCa及びMgの添加操作について、以下のような問題があった。Caの酸化物及び硫化物は、Mgの酸化物及び硫化物よりも熱力学的に安定である。よって、Caを含有する非金属介在物(酸化物、硫化物)が溶鋼中に既に形成されている場合、後から添加されたMgが非金属介在物の形態に与える影響は小さい。 In other words, the Ca and Mg addition process, which is not mentioned in Patent Documents 1 to 3 and Patent Document 7, had the following problems. Ca oxides and sulfides are more thermodynamically stable than Mg oxides and sulfides. Therefore, when non-metallic inclusions (oxides, sulfides) containing Ca have already been formed in the molten steel, the effect of Mg added later on the morphology of the non-metallic inclusions is small.

Caの酸化物及び硫化物は、Mgの酸化物及び硫化物よりも安定であるので、溶鋼中のS及びO(酸素)は、Caと反応しやすく、Mgと溶鋼中のS及びO(酸素)との反応は起こりにくい。よって、Mgの添加に伴うMgSの生成による脱硫及びMgOの生成による脱酸、並びに、非金属介在物の形態制御は期待しにくい。 Ca oxides and sulfides are more stable than Mg oxides and sulfides, so S and O (oxygen) in the molten steel react easily with Ca, while Mg does not react easily with S and O (oxygen) in the molten steel. Therefore, it is difficult to expect desulfurization through the formation of MgS and deoxidation through the formation of MgO with the addition of Mg, or morphological control of nonmetallic inclusions.

また、鋼中に生成しているCaOをMgによって効果的に還元することができないので、脱硫に寄与するCaの割合を増やすこともできない。そのため、MnSの生成抑制のためにCa添加量を減少させることは困難であり、介在物クラスターが鋳片の表層へトラップされることで、鋼板の表層の耐HIC性を十分に確保できない。 In addition, because the CaO formed in the steel cannot be effectively reduced by Mg, the proportion of Ca that contributes to desulfurization cannot be increased. Therefore, it is difficult to reduce the amount of Ca added to suppress the formation of MnS, and the inclusion clusters are trapped in the surface layer of the cast slab, making it difficult to ensure sufficient HIC resistance in the surface layer of the steel plate.

そこで本発明は、上記課題に鑑み、耐HIC性に優れる鋼板を、その有利な製造方法と共に提供することを目的とする。また、本発明は、上記耐HIC性に優れる鋼板を用いた鋼管を提供することを目的とする。In view of the above problems, the present invention aims to provide a steel plate having excellent HIC resistance, together with an advantageous manufacturing method thereof. The present invention also aims to provide a steel pipe using the above-mentioned steel plate having excellent HIC resistance.

本発明者らは、耐HIC性を向上させるべく、鋼板の成分組成及び製造条件について、数多くの実験と検討をくり返し、以下の知見を得た。 In order to improve HIC resistance, the inventors conducted numerous experiments and studies on the chemical composition and manufacturing conditions of steel plates, and obtained the following findings:

すなわち、溶鋼にMg含有物質及びCa含有物質を添加する工程に関して、溶鋼の温度とMg及びCaの供給速度とを適切に制御した上で、Mg含有物質の添加を開始した後にCa含有物質の添加を開始する、又は、Mg含有物質及びCa含有物質の添加を同時に開始する順序を採用する。これにより、溶鋼中には、溶存Caと同時に溶存Mgが適切に存在することができる。その結果、溶鋼中に存在する溶存Mgの影響を受けることで、溶鋼中酸素及び溶鋼中硫黄の活量が減少し、非金属介在物の反応の平衡がCaSの生成方向に移動する。こうしてCaSの生成が促進されることで、脱硫作用の向上が効果的に達成される。また、上記のような添加の順序を採用した結果、Mgと溶鋼中Sとの反応及びMgと溶鋼中O(酸素)との反応が進行し、粗大な介在物クラスターを生成することなくMnSの生成を抑制することが可能になる。なお、「溶存Ca」及び「溶存Mg」とは、それぞれ溶鋼中に原子状態で溶解したCa及びMgである。That is, in the process of adding the Mg-containing substance and the Ca-containing substance to the molten steel, the temperature of the molten steel and the supply rate of Mg and Ca are appropriately controlled, and then the addition of the Mg-containing substance is started after the addition of the Ca-containing substance, or the addition of the Mg-containing substance and the Ca-containing substance is started simultaneously. This allows dissolved Mg to be appropriately present in the molten steel at the same time as dissolved Ca. As a result, the activity of oxygen and sulfur in the molten steel decreases due to the influence of dissolved Mg present in the molten steel, and the equilibrium of the reaction of the non-metallic inclusions moves in the direction of the formation of CaS. In this way, the formation of CaS is promoted, and the improvement of the desulfurization action is effectively achieved. In addition, as a result of adopting the above-mentioned order of addition, the reaction between Mg and S in the molten steel and the reaction between Mg and O (oxygen) in the molten steel progress, making it possible to suppress the formation of MnS without forming coarse inclusion clusters. Note that "dissolved Ca" and "dissolved Mg" refer to Ca and Mg dissolved in the atomic state in molten steel, respectively.

さらに、上記の添加工程の最適化に加えて、鋳造条件として、Ca含有物質の添加終了から鋳造開始までの時間と鋳造時の鋳型内溶鋼の平均流速とを最適化する。これにより、鋼板の両面の各々から板厚方向に板厚の1/4の深さまでの一対の領域(以下、本明細書において「表層領域」とも称する。)に、MgOを10~40質量%含む平均組成を有し、アスペクト比の平均値が2.5以下である介在物が存在する。そして、これら介在物の円相当径の上位10%の平均値を3.5μm以下とすることができる。その結果、表層領域におけるHIC試験後の割れ面積率CARが5.0%以下という、耐HIC性に優れる鋼板を得ることができる。 In addition to optimizing the above-mentioned addition process, the casting conditions are optimized, including the time from the end of addition of the Ca-containing substance to the start of casting and the average flow rate of the molten steel in the mold during casting. As a result, in a pair of regions extending from each of both sides of the steel plate to a depth of 1/4 of the plate thickness in the plate thickness direction (hereinafter also referred to as the "surface region" in this specification), inclusions are present that have an average composition containing 10 to 40 mass% MgO and have an average aspect ratio of 2.5 or less. The average of the top 10% of the circle equivalent diameters of these inclusions can be set to 3.5 μm or less. As a result, a steel plate with excellent HIC resistance can be obtained, with a crack area ratio CAR of 5.0% or less after HIC testing in the surface region.

上記知見に基づき完成された本発明の要旨構成は、以下のとおりである。
[1]質量%で、C:0.030~0.080%、Si:0.01~0.50%、Mn:0.80~1.80%、P:0.015%以下、S:0.0015%以下、Al:0.010~0.080%、Nb:0.080%以下、N:0.0080%以下、Ca:0.0005~0.0050%、及びMg:0.0005~0.0050%を含有し、残部がFe及び不可避的不純物からなる成分組成を有し、
鋼板の両面の各々から板厚方向に板厚の1/4の深さまでの一対の領域に、MgOを10~40質量%含む平均組成を有し、アスペクト比の平均値が2.5以下である介在物が存在し、
前記介在物の円相当径の上位10%の平均値が3.5μm以下であり、
前記領域におけるHIC試験後の割れ面積率CARが5.0%以下である
ことを特徴とする鋼板。
The gist and configuration of the present invention, which has been completed based on the above findings, are as follows.
[1] In mass%, it contains C: 0.030 to 0.080%, Si: 0.01 to 0.50%, Mn: 0.80 to 1.80%, P: 0.015% or less, S: 0.0015% or less, Al: 0.010 to 0.080%, Nb: 0.080% or less, N: 0.0080% or less, Ca: 0.0005 to 0.0050%, and Mg: 0.0005 to 0.0050%, with the balance being Fe and unavoidable impurities;
inclusions having an average composition containing 10 to 40 mass% MgO and an average aspect ratio of 2.5 or less are present in a pair of regions from each of both surfaces of the steel sheet to a depth of 1/4 of the sheet thickness in the sheet thickness direction,
the average value of the top 10% of the equivalent circle diameters of the inclusions is 3.5 μm or less;
The steel plate is characterized in that the crack area ratio CAR after an HIC test in the above-mentioned region is 5.0% or less.

[2]前記成分組成が、質量%で、Cu:0.30%以下、Ni:0.30%以下、Cr:0.50%以下、Mo:0.50%以下、V:0.100%以下、Ti:0.100%以下、Zr:0.0200%以下、及びREM:0.0200%以下からなる群から選択される1種以上をさらに含有する、上記[1]に記載の鋼板。[2] The steel plate described in [1] above, wherein the composition further contains, by mass%, one or more selected from the group consisting of Cu: 0.30% or less, Ni: 0.30% or less, Cr: 0.50% or less, Mo: 0.50% or less, V: 0.100% or less, Ti: 0.100% or less, Zr: 0.0200% or less, and REM: 0.0200% or less.

[3]精錬終了後の溶鋼にMg含有物質及びCa含有物質を添加する添加工程を、
(A)該添加工程の開始時の前記溶鋼の温度が1580~1620℃の範囲にあり、
(B)前記Mg含有物質の添加を開始した後に前記Ca含有物質の添加を開始する、又は、前記Mg含有物質及び前記Ca含有物質の添加を同時に開始する態様で、
(C)Mg及びCaの供給速度がそれぞれ15~30kg/分となる
条件下にて行い、
次いで、(i)前記Ca含有物質の添加終了から鋳造開始までの時間が90分以内であり、かつ、(ii)鋳造時の鋳型内溶鋼の平均流速が0.10m/s以上である条件下にて、前記溶鋼を鋳造して鋼片を得て、
次いで、前記鋼片に熱間圧延を施して、上記[1]又は[2]に記載の鋼板を製造する
ことを特徴とする鋼板の製造方法。
[3] An addition step of adding an Mg-containing substance and a Ca-containing substance to the molten steel after the completion of refining,
(A) the temperature of the molten steel at the start of the adding step is in the range of 1580 to 1620°C;
(B) The addition of the Mg-containing substance is started after the addition of the Ca-containing substance is started, or the addition of the Mg-containing substance and the Ca-containing substance is started simultaneously,
(C) The feed rates of Mg and Ca are each 15 to 30 kg/min;
Next, the molten steel is cast to obtain a steel slab under the conditions that (i) the time from the completion of the addition of the Ca-containing substance to the start of casting is 90 minutes or less, and (ii) the average flow velocity of the molten steel in the mold during casting is 0.10 m/s or more,
Next, the steel slab is subjected to hot rolling to produce the steel plate according to the above-mentioned [1] or [2].

[4]前記熱間圧延は、前記鋼片の加熱温度が1000~1250℃であり、クロス圧延比が20以下である条件下にて行われ、
次いで、冷却開始時の鋼板表面温度が以下の式(1)により求められるAr点以上である条件下にて、前記鋼板の制御冷却を行う、
上記[3]に記載の鋼板の製造方法。
Ar点(℃)=910-310[C]-80[Mn]-20[Cu]-15[Cr]-55[Ni]-80[Mo] ・・・(1)
なお、[X]は元素Xの鋼中含有量(質量%)を意味する。
[4] The hot rolling is carried out under conditions in which the heating temperature of the steel slab is 1000 to 1250 ° C. and the cross rolling ratio is 20 or less;
Next, controlled cooling of the steel sheet is performed under conditions in which the surface temperature of the steel sheet at the start of cooling is equal to or higher than the Ar3 point calculated by the following formula (1).
The method for producing a steel sheet according to the above [3].
Ar 3 points (°C) = 910-310[C]-80[Mn]-20[Cu]-15[Cr]-55[Ni]-80[Mo]...(1)
Here, [X] means the content (mass%) of element X in the steel.

[5]上記[1]又は[2]に記載の鋼板を用いた鋼管。[5] A steel pipe using the steel plate described in [1] or [2] above.

本発明の鋼板及び鋼管は、耐HIC性に優れる。また、本発明の鋼板の製造方法によれば、耐HIC性に優れる鋼板を製造することができる。The steel plate and steel pipe of the present invention have excellent HIC resistance. Furthermore, according to the steel plate manufacturing method of the present invention, a steel plate with excellent HIC resistance can be manufactured.

(鋼板)
本発明の一実施形態による鋼板は、所定の成分組成を有し、鋼板の両面の各々から板厚方向に板厚の1/4の深さまでの一対の第1領域(表層領域)に所定の介在物を有し、当該表層領域において優れた耐HIC性を有する。なお、本明細書において、鋼板の両面の各々から板厚方向に板厚の1/4の深さの位置を単に「板厚1/4位置」と称する。
(Steel plate)
A steel plate according to an embodiment of the present invention has a predetermined chemical composition, has predetermined inclusions in a pair of first regions (surface layer regions) extending from each of both sides of the steel plate to a depth of 1/4 of the plate thickness in the plate thickness direction, and has excellent HIC resistance in the surface layer regions. In this specification, the position at a depth of 1/4 of the plate thickness from each of both sides of the steel plate in the plate thickness direction is simply referred to as the "plate thickness 1/4 position."

[成分組成]
まず、鋼板の成分組成と、その限定理由について説明する。以下の説明において、「%」で示す単位は、特に断らない限り「質量%」を意味する。
[Component composition]
First, the chemical composition of the steel sheet and the reasons for limiting it will be described. In the following description, the unit of "%" means "mass %" unless otherwise specified.

C:0.030~0.080%
Cは、鋼板の強度の向上に有効に寄与するが、C含有量が0.030%未満では十分な強度が確保できないので、C含有量は0.030%以上とし、好ましくは0.035%以上とする。他方で、C含有量が0.080%を超えると、加速冷却時に表層部及び中心偏析部の硬さが上昇するため、耐HIC性が劣化する。このため、C含有量は0.080%以下とし、好ましくは0.070%以下とする。
C: 0.030-0.080%
C effectively contributes to improving the strength of the steel sheet. However, if the C content is less than 0.030%, sufficient strength cannot be ensured. Therefore, the C content is set to 0.030% or more, and preferably 0.035%. On the other hand, if the C content exceeds 0.080%, the hardness of the surface layer and the central segregation increases during accelerated cooling, and the HIC resistance deteriorates. The content is set to 0.080% or less, and preferably to 0.070% or less.

Si:0.01~0.50%
Siは、脱酸のため添加するが、Si含有量が0.01%未満では脱酸効果が十分でないので、Si含有量は0.01%以上とし、好ましくは0.05%以上とする。他方で、Si含有量が0.50%を超えると、低温靭性が劣化したり、表面性状が劣化したりする。このため、Si含有量は0.50%以下とし、好ましくは0.45%以下とする。
Si: 0.01~0.50%
Silicon is added for deoxidation. If the silicon content is less than 0.01%, the deoxidation effect is insufficient. Therefore, the silicon content is set to 0.01% or more, and preferably 0.05% or more. On the other hand, if the Si content exceeds 0.50%, the low temperature toughness and surface properties deteriorate. Therefore, the Si content is set to 0.50% or less, and preferably 0.45% or less. The following applies.

Mn:0.80~1.80%
Mnは、冷却中のフェライトの生成を抑制するが、Mn含有量が0.80%未満ではその効果が十分に発現しない。このため、Mn含有量は0.80%以上とし、好ましくは1.00%以上とする。他方で、Mn含有量が1.80%を超えると、中心偏析を助長し、耐HIC性が劣化する。このため、Mn含有量は1.80%以下とし、好ましくは1.70%以下とする。
Mn: 0.80-1.80%
Mn suppresses the formation of ferrite during cooling, but if the Mn content is less than 0.80%, this effect is not fully manifested. Therefore, the Mn content is set to 0.80% or more, and preferably 1. On the other hand, if the Mn content exceeds 1.80%, center segregation is promoted and HIC resistance is deteriorated. Therefore, the Mn content is set to 1.80% or less, and preferably Not more than 1.70%.

P:0.015%以下
Pは、不可避的不純物元素であり、表層部及び中心偏析部の硬さを上昇させることで、耐HIC性を劣化させる。P含有量が0.015%を超えると、その傾向が顕著となるため、P含有量は0.015%以下とし、好ましくは0.008%以下とする。なお、P含有量は低いほどよいが、精錬コストの観点から、P含有量は0.001%以上とすることが好ましい。
P: 0.015% or less P is an inevitable impurity element, and increases the hardness of the surface layer and the central segregation, thereby deteriorating HIC resistance. If the P content exceeds 0.015%, this tendency becomes significant, so the P content is set to 0.015% or less, and preferably 0.008% or less. The lower the P content, the better, but from the viewpoint of refining costs, the P content is preferably set to 0.001% or more.

S:0.0015%以下
Sは、不可避的不純物元素であり、鋼中においてはMnS介在物となり耐HIC性を劣化させる。このため、S含有量は0.0015%以下とし、好ましくは0.0010%以下とする。なお、S含有量は低いほどよいが、精錬コストの観点から、S含有量は0.0002%以上とすることが好ましい。
S: 0.0015% or less S is an inevitable impurity element, and in steel, it becomes MnS inclusions, which deteriorates HIC resistance. Therefore, the S content is set to 0.0015% or less, and preferably to 0.0010% or less. The lower the S content, the better, but from the viewpoint of refining costs, the S content is preferably set to 0.0002% or more.

Al:0.010~0.080%
Alは、脱酸剤として添加するが、Al含有量が0.010%未満では、その効果が十分には発現しない。このため、Al含有量は0.010%以上とし、好ましくは0.015%以上とする。他方で、Al含有量が0.080%を超えると、連続鋳造時の浸漬ノズルのアルミナ詰りなどの問題が生じるため、Al含有量は0.080%以下とし、好ましくは0.070%以下とする。
Al: 0.010-0.080%
Al is added as a deoxidizer, but if the Al content is less than 0.010%, the effect is not fully exerted. Therefore, the Al content is set to 0.010% or more, and preferably 0.015% or more. On the other hand, if the Al content exceeds 0.080%, problems such as clogging of the submerged nozzle with alumina during continuous casting occur, so the Al content is set to 0.080% or less, and preferably 0.080% or less. .070% or less.

Nb:0.080%以下
Nbは、固溶Nbとして存在すると制御圧延時の未再結晶温度域を拡大し、低温靭性の向上に寄与する。この効果を十分に得る観点から、Nb含有量は、好ましくは0.005%以上であり、より好ましくは0.010%以上である。他方で、Nb含有量が0.080%を超えると、凝固時に粗大な炭化物を晶出するため、耐HIC性が劣化する。このため、Nb量は0.080%以下とし、好ましくは0.060%以下とする。
Nb: 0.080% or less When present as solid solution Nb, Nb expands the non-recrystallization temperature range during controlled rolling and contributes to improving low-temperature toughness. From the viewpoint of fully obtaining this effect, the Nb content is preferably 0.005% or more, more preferably 0.010% or more. On the other hand, if the Nb content exceeds 0.080%, coarse carbides are crystallized during solidification, and HIC resistance is deteriorated. For this reason, the Nb content is set to 0.080% or less, preferably 0.060% or less.

N:0.0080%以下
Nは、窒化物の生成により組織の微細化効果をもたらす。この効果を十分に得る観点から、N含有量は、好ましくは0.0010%以上であり、より好ましくは0.0015%以上である。他方で、N含有量が0.0080%を超えると、粗大な窒化物の生成により、耐HIC性や低温靭性が劣化する。このため、N含有量は0.0080%以下とし、好ましくは0.0070%以下とする。
N: 0.0080% or less N produces a refinement effect on the structure by the formation of nitrides. From the viewpoint of fully obtaining this effect, the N content is preferably 0.0010% or more, more preferably 0.0015% or more. On the other hand, if the N content exceeds 0.0080%, the HIC resistance and low-temperature toughness deteriorate due to the formation of coarse nitrides. For this reason, the N content is set to 0.0080% or less, preferably 0.0070% or less.

Ca:0.0005~0.0050%
Caは、硫化物系介在物の形態制御による耐HIC性向上に有効な元素であるが、Ca含有量が0.0005%未満では、その添加効果が十分でない。このため、Ca含有量は0.0005%以上とし、好ましくは0.0008%以上とする。他方で、Ca含有量が0.0050%を超えた場合、上述の効果が飽和するだけでなく、鋼の清浄度が低下することにより耐HIC性が劣化する。このため、Ca含有量は0.0050%以下とし、好ましくは0.0045%以下とする。
Ca: 0.0005-0.0050%
Ca is an element effective in improving HIC resistance by controlling the morphology of sulfide-based inclusions, but if the Ca content is less than 0.0005%, the effect of adding it is insufficient. On the other hand, if the Ca content exceeds 0.0050%, not only will the above-mentioned effects saturate, but the cleanliness of the steel will decrease. Therefore, the Ca content is set to 0.0050% or less, and preferably to 0.0045% or less.

Mg:0.0005~0.0050%
Mgは、脱酸作用及び脱硫作用を有する元素であり、相互作用によってCaSの生成効率を上げ、非金属介在物の脱硫作用を向上させる効果がある。また、Mgは、介在物を微細化する元素であるため、鋼板の表層における介在物のクラスター生成を抑制し、耐HIC性向上に有効である。この効果を安定して発揮させるには、Mg含有量を0.0005%以上とする。他方で、Mg含有量が増加すると、Mgの効果が飽和するので、Mg含有量は0.0050%以下とする。
Mg: 0.0005-0.0050%
Mg is an element that has deoxidizing and desulfurizing effects, and has the effect of increasing the efficiency of CaS generation through interaction and improving the desulfurization of nonmetallic inclusions. Mg also has the effect of refining the inclusions. Since Mg is an element, it is effective in suppressing the generation of clusters of inclusions in the surface layer of the steel sheet and improving HIC resistance. In order to stably exert this effect, the Mg content is set to 0.0005% or more. On the other hand, when the Mg content increases, the effect of Mg becomes saturated, so the Mg content is set to 0.0050% or less.

以上、本実施形態による鋼板の成分組成における基本成分について説明したが、当該成分組成には、鋼板の強度や靱性の一層の改善のために、Cu、Ni、Cr及びMoからなる群から選択される1種以上を、以下の範囲で任意に含有させることができる。The above describes the basic components in the composition of the steel plate according to this embodiment, but the composition may optionally contain one or more elements selected from the group consisting of Cu, Ni, Cr and Mo within the following ranges in order to further improve the strength and toughness of the steel plate.

Cu:0.30%以下
Cuは、低温靭性の改善と強度の上昇に有効な元素であり、この効果を得るには、Cu含有量は0.01%以上とすることが好ましい。他方で、Cuは中心偏析部に濃化するため、Cu含有量が0.30%を超えると、耐HIC性が劣化する。このため、Cuを含有する場合、Cu含有量は0.30%以下とし、好ましくは0.25%以下とする。
Cu: 0.30% or less Cu is an element effective in improving low-temperature toughness and increasing strength, and in order to obtain this effect, the Cu content is preferably 0.01% or more. On the other hand, since Cu is concentrated in the center segregation portion, if the Cu content exceeds 0.30%, the HIC resistance deteriorates. Therefore, when Cu is contained, the Cu content is set to 0.30% or less, preferably 0.25% or less.

Ni:0.30%以下
Niは、低温靭性の改善と強度の上昇に有効な元素であり、この効果を得るには、Ni含有量は0.01%以上とすることが好ましい。他方で、Niは中心偏析部に濃化するため、Ni含有量が0.30%を超えると、耐HIC性が劣化する。このため、Niを含有する場合、Ni含有量は0.30%以下とし、好ましくは0.25%以下とする。
Ni: 0.30% or less Ni is an element effective in improving low-temperature toughness and increasing strength, and in order to obtain this effect, the Ni content is preferably 0.01% or more. On the other hand, since Ni is concentrated in the center segregation portion, if the Ni content exceeds 0.30%, the HIC resistance deteriorates. Therefore, when Ni is contained, the Ni content is set to 0.30% or less, preferably 0.25% or less.

Cr:0.50%以下
Crは、Mnと同様、低C含有量でも十分な強度を得るために有効な元素であり、この効果を得るには、Cr含有量は0.01%以上とすることが好ましい。他方で、Cr含有量が多すぎると、中心偏析を助長し、耐HIC性が劣化する。このため、Crを含有する場合、Cr含有量は0.50%以下とし、好ましくは0.45%以下とする。
Cr: 0.50% or less Like Mn, Cr is an effective element for obtaining sufficient strength even with a low C content, and in order to obtain this effect, the Cr content is preferably 0.01% or more. On the other hand, if the Cr content is too high, it promotes center segregation and deteriorates HIC resistance. Therefore, when Cr is contained, the Cr content is set to 0.50% or less, preferably 0.45% or less.

Mo:0.50%以下
Moは、低温靭性の改善と強度の上昇に有効な元素であり、この効果を得るには、Mo含有量は0.01%以上とすることが好ましく、0.10%以上とすることがより好ましい。他方で、Mo含有量が多すぎると、溶接性が劣化する。このため、Moを含有する場合、Mo含有量は0.50%以下とし、好ましくは0.40%以下とする。
Mo: 0.50% or less Mo is an element effective in improving low-temperature toughness and increasing strength, and in order to obtain this effect, the Mo content is preferably 0.01% or more, and more preferably 0.10% or more. On the other hand, if the Mo content is too high, weldability deteriorates. Therefore, when Mo is contained, the Mo content is 0.50% or less, and preferably 0.40% or less.

本実施形態による鋼板の成分組成には、V、Ti、Zr、及びREMからなる群から選択される1種以上を、以下の範囲で任意に含有させることもできる。The chemical composition of the steel plate according to this embodiment may optionally contain one or more elements selected from the group consisting of V, Ti, Zr, and REM within the following ranges.

V:0.100%以下、Ti:0.100%以下
V及びTiは、いずれも鋼板の強度及び低温靭性を高めるために任意に含有することができる元素である。この効果を得るには、各元素の含有量は0.005%以上とすることが好ましい。他方で、各元素の含有量が0.100%を超えると、溶接部の靭性が劣化する。このため、これらの元素を含有する場合、各元素の含有量は0.100%以下とする。
V: 0.100% or less, Ti: 0.100% or less V and Ti are both elements that can be optionally contained to increase the strength and low-temperature toughness of the steel plate. To obtain this effect, the content of each element is preferably 0.005% or more. On the other hand, if the content of each element exceeds 0.100%, the toughness of the welded portion deteriorates. Therefore, when these elements are contained, the content of each element is set to 0.100% or less.

Zr:0.0200%以下、REM:0.0200%以下
Zr及びREMは、結晶粒微細化を通じて低温靭性を高めたり、介在物性状のコントロールを通して耐割れ性を高めたりするために任意に含有することができる元素である。この効果を得るには、各元素の含有量は0.0005%以上とすることが好ましい。他方で、各元素の含有量が0.0200%を超えると、その効果が飽和するので、これらの元素を含有する場合、各元素の含有量は0.0200%以下とする。
Zr: 0.0200% or less, REM: 0.0200% or less Zr and REM are elements that can be optionally contained to improve low-temperature toughness through grain refinement and to improve crack resistance through control of inclusion properties. To obtain this effect, the content of each element is preferably 0.0005% or more. On the other hand, when the content of each element exceeds 0.0200%, the effect is saturated, so when these elements are contained, the content of each element is 0.0200% or less.

なお、上記のCu、Ni、Cr、Mo、V、Ti、Zr、及びREMは任意元素であるため、各元素の含有量は0%であってもよく、0%超えであってもよいことは勿論である。 Note that since the above Cu, Ni, Cr, Mo, V, Ti, Zr, and REM are optional elements, it goes without saying that the content of each element may be 0% or may exceed 0%.

なお、上記した元素以外の残部は、Fe及び不可避的不純物からなる。例えば、O(酸素)は不可避的不純物元素であるが、O含有量が0.0030%以下であれば、本実施形態においては許容される。また、本発明の作用効果を害しない限り、他の微量元素の含有を妨げない。B(ホウ素)は、その含有量が0.0010%以下、好ましくは0.0005%以下であれば、本実施形態においては許容される。The remainder other than the above elements consists of Fe and unavoidable impurities. For example, O (oxygen) is an unavoidable impurity element, but if the O content is 0.0030% or less, it is permitted in this embodiment. In addition, other trace elements may be contained as long as they do not impair the effects of the present invention. B (boron) is permitted in this embodiment if its content is 0.0010% or less, preferably 0.0005% or less.

[介在物]
本実施形態による鋼板において、鋼板の両面の各々から板厚方向に板厚の1/4の深さまでの一対の領域(表層領域)に、MgOを10~40質量%含む平均組成を有し、アスペクト比の平均値が2.5以下である介在物が存在し、介在物の円相当径の上位10%の平均値が3.5μm以下であることが重要である。
[Inclusions]
In the steel sheet according to this embodiment, it is important that inclusions having an average composition containing 10 to 40 mass % MgO and an average aspect ratio of 2.5 or less are present in a pair of regions (surface layer regions) extending from each of both sides of the steel sheet to a depth of 1/4 of the sheet thickness in the sheet thickness direction, and that the average value of the top 10% of the equivalent circle diameters of the inclusions is 3.5 μm or less.

〔MgO:10~40質量%〕
表層領域に存在する介在物の平均組成において、MgOの含有量は10質量%以上とする。MgOの含有量が10質量%未満の場合、介在物クラスターの生成抑制効果が得られず、耐HIC性が劣化するからである。また、表層領域に存在する介在物の平均組成において、MgOの含有量は40質量%以下とする。MgOの含有量が40質量%超えの場合、介在物クラスターの生成抑制効果が減少し、耐HIC性が劣化するからである。
[MgO: 10-40% by mass]
In the average composition of the inclusions present in the surface layer region, the MgO content is set to 10 mass% or more. If the MgO content is less than 10 mass%, the effect of suppressing the generation of inclusion clusters cannot be obtained, and the HIC resistance is poor. In addition, the content of MgO in the average composition of the inclusions present in the surface layer region is set to 40 mass % or less. If the content of MgO exceeds 40 mass %, the formation of inclusion clusters is deteriorated. This is because the effect of suppressing the formation of fluorine is reduced and the HIC resistance is deteriorated.

表層領域に存在する介在物の平均組成におけるMgOの含有量(質量%)は、以下の方法で求める。鋼板の圧延方向に垂直な断面を観察面とし、縦:鋼板の片方の表面から当該片方の表面側の1/4位置まで、横:幅方向に10mmの矩形の評価領域と、縦:鋼板の他方の表面から当該他方の表面側の1/4位置まで、横:幅方向に10mmの矩形の評価領域を設定する。これら2つの評価領域の介在物を、粒子解析機能付きの走査型電子顕微鏡(SEM)にて観察する。2つの評価領域内の全ての介在物の各々について、Mg量(質量%)、Al量(質量%)、S量(質量%)、Ca量(質量%)、及びMn量(質量%)を測定し、以下の式(2)によりMgO(質量%)を求める。
MgO(質量%)=(MgO[g]×100)/(MgO[g]+Al[g]+CaO[g]+CaS[g]+MnS[g]) ・・・(2)
なお、式(2)中、MgO[g]、Al[g]、CaO[g]、CaS[g]、及びMnS[g]は、それぞれ、介在物に含まれるMg量(質量%)、Al量(質量%)、S量(質量%)、Ca量(質量%)、及びMn量(質量%)より算出した介在物中のMgO、Al、CaO、CaS、及びMnSの含有量を示す。この際、Mg及びAlは、それぞれ全てMgO及びAl介在物を形成し、Caは、全てCaO-CaS介在物を形成し、Mnは、全てMnSを形成すると仮定する。
なお、研磨屑のカーボン粒子など、MgO、Al、CaO、CaS、及びMnSをいずれも含まない介在物は、測定対象から除外する。また、円相当径が0.4μm未満の介在物も、本発明の効果に影響がないため、測定対象から除外する。
測定対象となる全ての介在物のMgO(質量%)の合計値を、測定対象となる介在物の数で割った平均値を、平均組成におけるMgOの含有量(質量%)とする。
The content (mass%) of MgO in the average composition of the inclusions present in the surface layer region is determined by the following method. The cross section perpendicular to the rolling direction of the steel sheet is used as the observation surface, and a rectangular evaluation region is set vertically from one surface of the steel sheet to a 1/4 position on the one surface side and horizontally 10 mm in the width direction, and vertically from the other surface of the steel sheet to a 1/4 position on the other surface side and horizontally 10 mm in the width direction. The inclusions in these two evaluation regions are observed with a scanning electron microscope (SEM) equipped with a particle analysis function. For each of all inclusions in the two evaluation regions, the Mg amount (mass%), Al amount (mass%), S amount (mass%), Ca amount (mass%), and Mn amount (mass%) are measured, and MgO (mass%) is determined by the following formula (2).
MgO (mass%) = (MgO [g] × 100) / (MgO [g] + Al 2 O 3 [g] + CaO [g] + CaS [g] + MnS [g]) ... (2)
In formula (2), MgO[g], Al2O3 [g], CaO[g], CaS[g], and MnS[g] respectively represent the contents of MgO, Al2O3 , CaO , CaS, and MnS in the inclusions calculated from the amounts of Mg (% by mass), Al (% by mass), S (% by mass), Ca (% by mass), and Mn (% by mass) contained in the inclusions. Here, it is assumed that Mg and Al all form MgO and Al2O3 inclusions, Ca all form CaO-CaS inclusions, and Mn all form MnS.
Note that inclusions not containing any of MgO, Al 2 O 3 , CaO, CaS, and MnS, such as carbon particles from grinding waste, are excluded from the measurement. Inclusions with a circle equivalent diameter of less than 0.4 μm are also excluded from the measurement because they do not affect the effects of the present invention.
The total value of MgO (mass%) of all inclusions to be measured is divided by the number of inclusions to be measured to obtain the average value, which is the MgO content (mass%) in the average composition.

表層領域における介在物の個数密度は、1.0個/mm以上が好ましく、50.0個/mm以下が好ましい。所望の耐HIC性が得られるからである。表層領域における介在物の個数密度は、以下の方法で求める。鋼板の圧延方向に垂直な断面を観察面とし、縦:鋼板の片方の表面から当該片方の表面側の1/4位置まで、横:幅方向に10mmの矩形の評価領域と、縦:鋼板の他方の表面から当該他方の表面側の1/4位置まで、横:幅方向に10mmの矩形の評価領域を設定する。これら2つの評価領域の介在物を、粒子解析機能付きの走査型電子顕微鏡(SEM)にて観察する。2つの評価領域に存在する円相当径が0.4μm以上の介在物の個数をカウントし、その個数を2つの評価領域の合計面積で除した値を求め、これを「表層領域における介在物の個数密度」として採用する。 The number density of the inclusions in the surface region is preferably 1.0 pcs/ mm2 or more, and preferably 50.0 pcs/ mm2 or less. This is because the desired HIC resistance can be obtained. The number density of the inclusions in the surface region is determined by the following method. The cross section perpendicular to the rolling direction of the steel sheet is used as the observation surface, and a rectangular evaluation region is set vertically from one surface of the steel sheet to a 1/4 position on the one surface side, and horizontally, a rectangular evaluation region is set vertically from the other surface of the steel sheet to a 1/4 position on the other surface side, and horizontally, a rectangular evaluation region is set horizontally, a rectangular evaluation region is set horizontally, a rectangular evaluation region is set horizontally, a rectangular evaluation region is set vertically from the other surface of the steel sheet to a 1/4 position on the other surface side. The inclusions in these two evaluation regions are observed with a scanning electron microscope (SEM) with a particle analysis function. The number of inclusions with a circle equivalent diameter of 0.4 μm or more present in the two evaluation regions is counted, and the value obtained by dividing the number by the total area of the two evaluation regions is adopted as the "number density of inclusions in the surface region".

〔介在物のアスペクト比の平均値:2.5以下〕
本実施形態において、表層領域に存在する介在物のアスペクト比の平均値は2.5以下とする。アスペクト比の平均値が2.5を超えると、介在物による応力集中が大きくなるため、耐HIC性が劣化するからである。アスペクト比の平均値の下限は特に限定されないが、圧延により介在物のアスペクト比が大きくなるため、アスペクト比の平均値は1.1以上であり得る。
[Average aspect ratio of inclusions: 2.5 or less]
In this embodiment, the average aspect ratio of the inclusions present in the surface layer region is set to 2.5 or less. If the average aspect ratio exceeds 2.5, the stress concentration due to the inclusions increases, and the HIC resistance deteriorates. Although there is no particular lower limit to the average aspect ratio, the average aspect ratio may be 1.1 or more, since the aspect ratio of the inclusions increases due to rolling.

表層領域に存在する介在物のアスペクト比の平均値は、以下の方法で求める。鋼板の圧延方向に垂直な断面を観察面とし、縦:鋼板の片方の表面から当該片方の表面側の1/4位置まで、横:幅方向に10mmの矩形の評価領域と、縦:鋼板の他方の表面から当該他方の表面側の1/4位置まで、横:幅方向に10mmの矩形の評価領域を設定する。これら2つの評価領域の介在物を、粒子解析機能付きの走査型電子顕微鏡(SEM)にて観察する。2つの評価領域に存在する円相当径が0.4μm以上の介在物について、アスペクト比(長径/短径)を求め、その平均値を「表層領域に存在する介在物のアスペクト比の平均値」として採用する。なお、長径は最大フェレー径を意味し、短径は最小フェレー径を意味する。The average aspect ratio of the inclusions present in the surface layer region is determined by the following method. The cross section perpendicular to the rolling direction of the steel sheet is used as the observation surface, and a rectangular evaluation region of 10 mm in width is set vertically from one surface of the steel sheet to a 1/4 position on the one surface side, and a rectangular evaluation region of 10 mm in width is set vertically from the other surface of the steel sheet to a 1/4 position on the other surface side. The inclusions in these two evaluation regions are observed with a scanning electron microscope (SEM) equipped with particle analysis function. The aspect ratio (major axis/minor axis) is determined for inclusions with a circle equivalent diameter of 0.4 μm or more present in the two evaluation regions, and the average value is adopted as the "average aspect ratio of inclusions present in the surface layer region." The major axis means the maximum Feret diameter, and the minor axis means the minimum Feret diameter.

〔介在物の円相当径の上位10%の平均値:3.5μm以下〕
本実施形態においては、表層領域に存在する介在物の円相当径の上位10%の平均値が3.5μm以下であることが重要である。ここで、「上位10%」とは、介在物の円相当径の個数分布において、円相当径が大きい方から存在個数で10%を意味する。かかる10%の介在物の円相当径の平均値を規定すると、測定範囲内の介在物の中で、HICの起点になりうる粗大な介在物を評価できるため、耐HIC性向上の指標となる。本実施形態において、表層領域に存在する介在物の円相当径の上位10%の平均値が3.5μmを超えると、表層領域での耐HIC性が劣化するため、表層領域におけるHIC試験後の割れ面積率CARが5.0%を超えてしまう。本実施形態において、表層領域に存在する介在物の円相当径の上位10%の平均値の下限は特に限定されないが、製鋼コストの上昇を抑制するため、介在物の円相当径の上位10%の平均値は1.5μm以上であることが好ましい。
[Average value of the top 10% of inclusions' equivalent circle diameters: 3.5 μm or less]
In this embodiment, it is important that the average value of the top 10% of the circle-equivalent diameters of the inclusions present in the surface layer region is 3.5 μm or less. Here, the "top 10%" means 10% of the inclusions present in the number distribution of the circle-equivalent diameters of the inclusions, in terms of the number of inclusions present in the larger circle-equivalent diameter. If the average value of the circle-equivalent diameters of the 10% of inclusions is specified, it is possible to evaluate coarse inclusions that may be the starting point of HIC among the inclusions within the measurement range, and this becomes an index of improvement of HIC resistance. In this embodiment, if the average value of the top 10% of the circle-equivalent diameters of the inclusions present in the surface layer region exceeds 3.5 μm, the HIC resistance in the surface layer region deteriorates, and the crack area ratio CAR after the HIC test in the surface layer region exceeds 5.0%. In this embodiment, the lower limit of the average value of the top 10% of the circle-equivalent diameters of the inclusions present in the surface layer region is not particularly limited, but in order to suppress an increase in steelmaking costs, it is preferable that the average value of the top 10% of the circle-equivalent diameters of the inclusions is 1.5 μm or more.

表層領域に存在する介在物の円相当径の上位10%の平均値は、以下の方法で求める。鋼板の圧延方向に垂直な断面を観察面とし、縦:鋼板の片方の表面から当該片方の表面側の1/4位置まで、横:幅方向に10mmの矩形の評価領域と、縦:鋼板の他方の表面から当該他方の表面側の1/4位置まで、横:幅方向に10mmの矩形の評価領域を設定する。これら2つの評価領域の介在物を、粒子解析機能付きの走査型電子顕微鏡(SEM)にて観察する。2つの評価領域に存在する円相当径が0.4μm以上の介在物の円相当径を測定し、このうち円相当径の上位10%の介在物について、その円相当径の平均値を求め、これを「表層領域に存在する介在物の円相当径の上位10%の平均値」として採用する。The average of the top 10% of the equivalent circle diameters of the inclusions present in the surface layer region is determined by the following method. The cross section perpendicular to the rolling direction of the steel plate is used as the observation surface, and a rectangular evaluation region is set vertically from one surface of the steel plate to a position 1/4 of the way to the one surface side, and horizontally 10 mm in the width direction, and vertically from the other surface of the steel plate to a position 1/4 of the way to the other surface side, and horizontally 10 mm in the width direction. The inclusions in these two evaluation regions are observed with a scanning electron microscope (SEM) with particle analysis function. The equivalent circle diameters of inclusions with a circle equivalent diameter of 0.4 μm or more present in the two evaluation regions are measured, and the average circle equivalent diameters of the top 10% of the inclusions in terms of circle equivalent diameter are calculated, and this is adopted as the "average of the top 10% of the equivalent circle diameters of the inclusions present in the surface layer region."

[耐HIC性]
本実施形態においては、表層領域におけるHIC試験後の割れ面積率CARが5.0%以下であるものとする。これにより、優れた耐HIC性を達成できる。本実施形態において、表層領域におけるHIC試験後の割れ面積率CARは0.0%以上であり得る。
[HIC resistance]
In this embodiment, the crack area ratio CAR in the surface layer region after the HIC test is set to 5.0% or less. This makes it possible to achieve excellent HIC resistance. In this embodiment, the crack area ratio CAR in the surface layer region after the HIC test can be 0.0% or more.

表層領域におけるHIC試験後の割れ面積率CARは、以下の方法で求める。鋼板の圧延方向・幅方向の中心位置から全厚×20mm幅×100mm長さのサンプルを採取する。NACE規格 TM0177 Solution A溶液を用い、硫化水素分圧:1barにて、サンプルを溶液に96時間浸漬するHIC試験を実施する。鋼板の表層領域におけるHIC試験後で割れ面積率(CAR)を測定する。具体的には、超音波探傷装置及び水浸型探触子(周波数:10MHz、径:0.375インチ、焦点深さ:3インチ)を用いて、鋼板の両面の各々から板厚方向に板厚の1/4の深さまでの一対の領域に対して、0.1mmピッチで超音波探傷試験を行い、底面波のエコーを100%になるように増幅度を決定し、鋼板の表層領域における欠陥エコー高さが25%以上である部分の面積率を割れ面積率(CAR)とする。The crack area ratio (CAR) after the HIC test in the surface region is determined by the following method. A sample measuring full thickness x 20 mm width x 100 mm length is taken from the center position in the rolling direction and width direction of the steel plate. An HIC test is performed using NACE standard TM0177 Solution A solution, with the sample immersed in the solution at a hydrogen sulfide partial pressure of 1 bar for 96 hours. The crack area ratio (CAR) after the HIC test in the surface region of the steel plate is measured. Specifically, an ultrasonic inspection device and a water immersion type probe (frequency: 10 MHz, diameter: 0.375 inches, focal depth: 3 inches) are used to perform ultrasonic inspection testing at 0.1 mm pitches on a pair of regions from each side of the steel plate to a depth of 1/4 of the plate thickness in the plate thickness direction, the amplification degree is determined so that the bottom wave echo becomes 100%, and the area ratio of the portion in the surface region of the steel plate where the defect echo height is 25% or more is defined as the crack area ratio (CAR).

[厚さ]
本実施形態による鋼板は、特に板厚は限定されないが、12~39mmの厚さを有することが好ましい。
[Thickness]
The steel plate according to this embodiment is not particularly limited in thickness, but preferably has a thickness of 12 to 39 mm.

(鋼板の製造方法)
以下、本実施形態による鋼板を製造するための、本発明の一実施形態による鋼板の製造方法について説明する。
(Method of manufacturing steel sheet)
Hereinafter, a method for producing a steel plate according to an embodiment of the present invention will be described.

本発明の一実施形態による鋼板の製造方法は、精錬終了後の溶鋼にMg含有物質及びCa含有物質を添加する添加工程と、次いで、溶鋼を鋳造して鋼片を得る工程と、次いで、鋼片に熱間圧延を施して鋼板を得る工程と、次いで、鋼板の制御冷却を行う工程と、を有する。A method for producing steel plate according to one embodiment of the present invention includes an addition step of adding an Mg-containing substance and a Ca-containing substance to molten steel after refining, a subsequent step of casting the molten steel to obtain a steel slab, a subsequent step of hot rolling the steel slab to obtain a steel plate, and a subsequent step of controlled cooling of the steel plate.

溶鋼の精錬工程は、従来公知の方法にて行うことができる。例えば、溶銑予備処理後、転炉による一次精錬を行い、その後、溶鋼を転炉から取鍋に出鋼して、取鍋精錬炉にて脱硫処理を行い、さらにRH真空脱ガス装置にて真空脱ガス処理を行う二次精錬を経ることによって、取鍋内の溶鋼の清浄性を高めることができる。なお、耐サワー鋼板の製造方法において、取鍋精錬炉は、溶鋼中のS含有量を0.0010%以下に脱硫処理するために使用されている。また、RH真空脱ガス装置は、溶鋼中の水素(H)を除去するとともに、溶鋼中のAlなどの酸化物系非金属介在物を分離・除去するために使用されている。 The refining process of molten steel can be carried out by a conventionally known method. For example, after hot metal pretreatment, primary refining is performed using a converter, and then the molten steel is tapped from the converter into a ladle, desulfurized in a ladle refining furnace, and then vacuum degassed in an RH vacuum degassing device. This allows the cleanliness of the molten steel in the ladle to be improved. In the manufacturing method of sour-resistant steel plates, the ladle refining furnace is used to desulfurize the molten steel to a content of S of 0.0010% or less. The RH vacuum degassing device is used to remove hydrogen (H) from the molten steel and to separate and remove oxide-based nonmetallic inclusions such as Al 2 O 3 from the molten steel.

[Mg含有物質及びCa含有物質の添加工程]
Mg含有物質及びCa含有物質の取鍋内溶鋼への添加時期は、上記した精錬工程の終了後から、鋳造を開始するまでとする。これは、強脱酸剤かつ強脱硫剤であるMg及びCaが、溶存酸素と反応したり、酸化物系非金属介在物を還元したりすることによって消費されることを抑制し、Mg及びCaを非金属介在物の形態制御に寄与させるためである。
[Step of adding Mg-containing substance and Ca-containing substance]
The timing of adding the Mg-containing substance and the Ca-containing substance to the molten steel in the ladle is from the end of the refining process described above until the start of casting, in order to prevent Mg and Ca, which are strong deoxidizing and desulfurizing agents, from being consumed by reacting with dissolved oxygen or by reducing oxide-based nonmetallic inclusions, and to allow Mg and Ca to contribute to controlling the morphology of the nonmetallic inclusions.

本実施形態では、精錬終了後の溶鋼にMg含有物質及びCa含有物質を添加する添加工程を、(A)該添加工程の開始時の前記溶鋼の温度が1580~1620℃の範囲にあり、(B)前記Mg含有物質の添加を開始した後に前記Ca含有物質の添加を開始する、又は、前記Mg含有物質及び前記Ca含有物質の添加を同時に開始する態様で、(C)Mg及びCaの供給速度がそれぞれ15~30kg/分となる条件下にて行うことが重要である。In this embodiment, it is important that the addition process for adding an Mg-containing substance and a Ca-containing substance to the molten steel after refining is performed under the following conditions: (A) the temperature of the molten steel at the start of the addition process is in the range of 1580 to 1620°C; (B) the addition of the Ca-containing substance is started after the addition of the Mg-containing substance is started, or the addition of the Mg-containing substance and the Ca-containing substance is started simultaneously; and (C) the supply rates of Mg and Ca are each 15 to 30 kg/min.

Mg及びCaは、どちらも蒸気圧の高い元素であり、通常の溶鋼温度で蒸発する。また、Mg及びCaは溶鋼のみならず空気との反応性も高い。よって、Mg及びCaの蒸発を抑制し、Mg及びCaの歩留まりを向上させるために、純金属のMg及びCaを添加することはなく、Mg含有物質及びCa含有物質を添加する。Mg含有物質は、Mgを珪素、アルミニウム等から選択される一種以上と合金化したMg合金であることが好ましい。Ca含有物質は、Caを珪素、アルミニウム等から選択される一種以上と合金化したCa合金であることが好ましい。取り扱い及び溶鋼との反応性の観点から、Mg合金のMg純分及びCa合金のCa純分は、それぞれ5~30質量%であることが好ましい。また、Mg含有物質及びCa含有物質を同時に添加することは、Mg及びCaを同時に含有する物質を添加することを含む。Both Mg and Ca are elements with high vapor pressure and evaporate at normal molten steel temperatures. In addition, Mg and Ca are highly reactive not only with molten steel but also with air. Therefore, in order to suppress the evaporation of Mg and Ca and improve the yield of Mg and Ca, Mg-containing substances and Ca-containing substances are added instead of pure metallic Mg and Ca. The Mg-containing substance is preferably an Mg alloy in which Mg is alloyed with one or more selected from silicon, aluminum, etc. The Ca-containing substance is preferably a Ca alloy in which Ca is alloyed with one or more selected from silicon, aluminum, etc. From the viewpoint of handling and reactivity with molten steel, the pure Mg content of the Mg alloy and the pure Ca content of the Ca alloy are preferably 5 to 30 mass%, respectively. In addition, adding a Mg-containing substance and a Ca-containing substance simultaneously includes adding a substance containing Mg and Ca simultaneously.

Mg含有物質は、例えば、Mg合金の粉粒体であってもよく、Mg合金の粉粒体を薄鋼板で被覆してなる鉄被覆Mgワイヤーであってもよい。Ca含有物質は、例えば、Ca合金の粉粒体であってもよく、Ca合金の粉粒体を薄鋼板で被覆してなる鉄被覆Caワイヤーであってもよい。また、Mg含有物質及びCa含有物質を同時に添加する場合には、鉄被覆Mgワイヤー及び鉄被覆Caワイヤーを個別に添加してもよいが、Mg及びCaを同時に含有する物質として、Mg合金の粉粒体及びCa合金の粉粒体を1枚の薄鋼板で被覆してなる鉄被覆Mg-Caワイヤーを添加してもよい。The Mg-containing substance may be, for example, a powder of an Mg alloy, or may be an iron-coated Mg wire made by coating Mg alloy powder with a thin steel plate. The Ca-containing substance may be, for example, a powder of a Ca alloy, or may be an iron-coated Ca wire made by coating Ca alloy powder with a thin steel plate. When the Mg-containing substance and the Ca-containing substance are added simultaneously, the iron-coated Mg wire and the iron-coated Ca wire may be added separately, but as a substance containing Mg and Ca simultaneously, an iron-coated Mg-Ca wire made by coating Mg alloy powder and Ca alloy powder with a single thin steel plate may be added.

Mg含有物質及びCa含有物質の添加方法は、上記のようなワイヤーを溶鋼に添加する方法であってもよいし、溶鋼に浸漬させたインジェクションランスからMg合金の粉粒体及びCa合金の粉粒体を吹き込む方法であってもよい。The method of adding the Mg-containing substance and the Ca-containing substance may be a method of adding a wire as described above to the molten steel, or a method of injecting Mg alloy powder and Ca alloy powder from an injection lance immersed in the molten steel.

〔添加工程の開始時の溶鋼の温度:1580~1620℃〕
添加工程の開始時の溶鋼温度が高すぎると、雰囲気中へのMg及びCaの蒸発量が増え、Mg及びCaの歩留まり(溶鋼中の溶存量)が低下する。他方で、添加工程の開始時の溶鋼温度が低すぎると、蒸発による溶鋼の攪拌が不十分となり、この場合も歩留まりが低下する。よって、Mg及びCaの歩留まりを安定化させるため、添加工程の開始時の溶鋼温度は1580~1620℃の範囲とする。
[Temperature of molten steel at the start of the addition process: 1580 to 1620°C]
If the molten steel temperature at the start of the addition process is too high, the amount of Mg and Ca evaporating into the atmosphere increases, and the yield of Mg and Ca (amount dissolved in the molten steel) decreases. On the other hand, if the molten steel temperature at the start of the addition process is too low, the stirring of the molten steel due to evaporation becomes insufficient, and in this case too, the yield decreases. Therefore, in order to stabilize the yield of Mg and Ca, the molten steel temperature at the start of the addition process is set to a range of 1580 to 1620°C.

〔Mg含有物質及びCa含有物質の添加順序〕
本実施形態では、Mg含有物質の添加を開始した後にCa含有物質の添加を開始する第1の態様、又は、Mg含有物質及びCa含有物質の添加を同時に開始する第2の態様を採用する。これにより、溶鋼中に適切な量の溶存Caと溶存Mgとを存在させることができる。適切な量の溶鋼中の溶存Mgの影響により、溶鋼中の酸素及び硫黄の活量が減少し、非金属介在物の反応の平衡がCaSの生成方向に移動する。CaSの生成が促進され、脱硫作用の向上が達成される。また、Mgと溶鋼中Sとの反応及びMgと溶鋼中O(酸素)との反応も進行する。その結果、表層領域に存在する介在物の円相当径の上位10%の平均値が3.5μm以下とすることができる。
[Order of Addition of Mg-Containing Substance and Ca-Containing Substance]
In this embodiment, the first aspect in which the addition of the Ca-containing substance is started after the addition of the Mg-containing substance is started, or the second aspect in which the addition of the Mg-containing substance and the Ca-containing substance is started simultaneously is adopted. This allows appropriate amounts of dissolved Ca and dissolved Mg to be present in the molten steel. Due to the influence of an appropriate amount of dissolved Mg in the molten steel, the activity of oxygen and sulfur in the molten steel decreases, and the equilibrium of the reaction of the nonmetallic inclusions moves toward the formation of CaS. The formation of CaS is promoted, and an improvement in the desulfurization action is achieved. In addition, the reaction between Mg and S in the molten steel and the reaction between Mg and O (oxygen) in the molten steel also progress. As a result, the average value of the top 10% of the circle equivalent diameters of the inclusions present in the surface layer region can be made 3.5 μm or less.

これに対して、Ca含有物質の添加を開始した後にMg含有物質の添加を開始する添加順序では、Mg含有物質の添加に伴うMgSの生成による脱硫及びMgOの生成による脱酸、並びに、非金属介在物の形態制御の効果は得られない。Caの酸化物及び硫化物は、Mgの酸化物及び硫化物よりも熱力学的に安定だからである。すなわち、表層領域に存在する介在物の円相当径の上位10%の平均値が3.5μm超えとなってしまう。In contrast, when the addition of the Ca-containing substance is started followed by the Mg-containing substance, the desulfurization due to the formation of MgS and the deoxidization due to the formation of MgO accompanying the addition of the Mg-containing substance, as well as the effect of controlling the shape of non-metallic inclusions, cannot be obtained. This is because Ca oxides and sulfides are more thermodynamically stable than Mg oxides and sulfides. In other words, the average circle equivalent diameter of the top 10% of the inclusions present in the surface layer region exceeds 3.5 μm.

なお、Mg含有物質の添加を開始した後にCa含有物質の添加を開始する第1の態様においては、Mg含有物質及びCa含有物質の両方が添加されている期間(すなわち、Mg含有物質の添加期間とCa含有物質の添加期間との重複期間)があってもよいし、Mg含有物質の添加が終了した後にCa含有物質の添加を開始してもよい。つまり、重複期間がなくてもよい。ただし、Mg含有物質の添加が終了した後にCa含有物質の添加を開始するには、生産性及び本発明の効果の観点から、その間隔は短い方が良く、5分以下とすることが好ましい。In the first embodiment, in which the addition of the Ca-containing substance is started after the addition of the Mg-containing substance is started, there may be a period during which both the Mg-containing substance and the Ca-containing substance are added (i.e., an overlapping period between the addition period of the Mg-containing substance and the addition period of the Ca-containing substance), or the addition of the Ca-containing substance may be started after the addition of the Mg-containing substance is completed. In other words, there may be no overlapping period. However, in order to start the addition of the Ca-containing substance after the addition of the Mg-containing substance is completed, the shorter the interval, from the viewpoint of productivity and the effect of the present invention, the better, and it is preferable for the interval to be 5 minutes or less.

また、Mg含有物質及びCa含有物質の添加を同時に開始する第2の態様の場合、Mg含有物質及びCa含有物質の添加終了も同時であることが好ましい。これを容易に実施する方法として、溶鋼に鉄被覆Mg-Caワイヤーを添加する方法が挙げられる。ただし、第2の態様であっても、鉄被覆Mgワイヤー及び鉄被覆Caワイヤーを個別に同時に添加開始する方法でもよいことは勿論である。この場合、「同時に添加開始」とは、厳密に秒単位で添加の開始が一致するということを意味するものではなく、投入機械の操業上不可避な添加の開始のずれ(例えば30秒以内)が許容されるものであることは勿論である。 In the second embodiment, in which the addition of the Mg-containing substance and the Ca-containing substance is started at the same time, it is preferable that the addition of the Mg-containing substance and the Ca-containing substance is also completed at the same time. One method for easily implementing this is to add an iron-coated Mg-Ca wire to the molten steel. However, even in the second embodiment, it is of course possible to start adding the iron-coated Mg wire and the iron-coated Ca wire individually and simultaneously. In this case, "starting addition at the same time" does not mean that the start of addition is strictly synchronized to the second, and it is of course acceptable for there to be a difference in the start of addition (for example, within 30 seconds) that is unavoidable due to the operation of the dosing machine.

〔Mg及びCaの供給速度:それぞれ15~30kg/分〕
Mg及びCaの供給速度(Mg含有物質及びCa含有物質の添加速度)が速すぎると、介在物の平均組成におけるMgO含有量が過大となり、耐HIC性が劣化する。他方で、Mg及びCaの供給速度(Mg含有物質及びCa含有物質の添加速度)が遅すぎると、介在物の平均組成におけるMgO含有量が過小となり、やはり耐HIC性が劣化する。そのため、本実施形態では、Mg純分及びCa純分の供給速度がそれぞれ15~30kg/分となるようにMg含有物質及びCa含有物質を添加する。なお、Mg純分及びCa純分の供給速度は、それぞれ、Mg含有物質及びCa含有物質を添加している期間における、1分間あたりのMg及びCaの供給量を意味する。
[Mg and Ca supply rates: 15 to 30 kg/min each]
If the supply rate of Mg and Ca (the addition rate of the Mg-containing substance and the Ca-containing substance) is too fast, the MgO content in the average composition of the inclusions becomes too high, and the HIC resistance deteriorates. On the other hand, if the supply rate of Mg and Ca (the addition rate of the Mg-containing substance and the Ca-containing substance) is too slow, the MgO content in the average composition of the inclusions becomes too low, and the HIC resistance also deteriorates. Therefore, in this embodiment, the Mg-containing substance and the Ca-containing substance are added so that the supply rates of the pure Mg and pure Ca are 15 to 30 kg/min, respectively. The supply rates of the pure Mg and pure Ca mean the amounts of Mg and Ca supplied per minute during the period in which the Mg-containing substance and the Ca-containing substance are added, respectively.

[鋳造工程]
本実施形態では、(i)Ca含有物質の添加終了から鋳造開始までの時間が90分以内であり、かつ、(ii)鋳造時の鋳型内溶鋼の平均流速が0.10m/s以上である条件下にて、溶鋼を鋳造して、スラブ、ビレット等の鋼片を得ることが重要である。鋳造工程における他の条件は常法によることができる。鋳造工程では、連続鋳造設備による連続鋳造を行うことができる。
[Casting process]
In this embodiment, it is important that (i) the time from the end of addition of the Ca-containing substance to the start of casting is within 90 minutes, and (ii) the average flow rate of the molten steel in the mold during casting is 0.10 m/s or more, and that the molten steel is cast to obtain a steel piece such as a slab or billet. Other conditions in the casting step can be the same as in the ordinary case. In the casting step, continuous casting can be performed using a continuous casting facility.

〔Ca含有物質の添加終了から鋳造開始までの時間:90分以内〕
取鍋内では、介在物が時間経過に伴って溶鋼中から浮上分離する。介在物の浮上分離は、溶鋼の清浄性向上に寄与するため、従来、Ca含有物質の添加終了から鋳造開始までの時間は100分以上が通例であった。これに対し、本実施形態では、Mg含有物質及びCa含有物質の添加により生成した介在物が、耐HIC性向上に必要である。そのため、溶鋼中から介在物が浮上分離しすぎると、耐HIC性が悪化する。したがって、Ca含有物質の添加終了から鋳造開始までの時間は90分以内とする。当該時間は、好ましくは80分以内である。当該時間の下限は特に限定されないが、清浄性を考慮すると、当該時間は40分以上とするのが好ましい。なお、本実施形態において溶鋼の清浄性は、前述したCaの添加量を満足することで、上述のような時間としても問題のないレベルとなる。
[Time from the end of addition of Ca-containing material to the start of casting: within 90 minutes]
In the ladle, the inclusions float and separate from the molten steel over time. Since the floating and separating of the inclusions contributes to improving the cleanliness of the molten steel, the time from the end of the addition of the Ca-containing substance to the start of casting was generally 100 minutes or more in the past. In contrast, in this embodiment, the inclusions generated by the addition of the Mg-containing substance and the Ca-containing substance are necessary for improving the HIC resistance. Therefore, if the inclusions float and separate too much from the molten steel, the HIC resistance deteriorates. Therefore, the time from the end of the addition of the Ca-containing substance to the start of casting is set to 90 minutes or less. The time is preferably 80 minutes or less. There is no particular limit to the lower limit of the time, but considering the cleanliness, the time is preferably 40 minutes or more. In this embodiment, the cleanliness of the molten steel is at a level that does not cause any problem even for the above-mentioned time by satisfying the above-mentioned amount of Ca added.

〔鋳造時の鋳型内溶鋼の平均流速:0.10m/s以上〕
鋳型内では、電磁撹拌によって溶鋼の流動を制御することで、凝固シェルと溶鋼との界面に介在物が凝集して粗大化することを抑制できる。このように介在物の粗大化を十分に抑制し、表層領域における耐HIC性を向上させるために、鋳型内溶鋼の平均流速は0.10m/s以上とする。鋳型内溶鋼の平均流速は、好ましくは0.20m/s以上とする。他方で、鋳型内溶鋼の平均流速が0.40m/s超の場合、介在物の粗大化を抑制する効果は飽和するため、鋳型内溶鋼の平均流速は0.40m/s以下が好ましい。
[Average flow velocity of molten steel in the mold during casting: 0.10 m/s or more]
In the mold, the flow of the molten steel can be controlled by electromagnetic stirring to prevent the inclusions from coagulating and becoming coarse at the interface between the solidified shell and the molten steel. In order to sufficiently prevent the coarsening of the inclusions and improve the HIC resistance in the surface layer region, the average flow velocity of the molten steel in the mold is set to 0.10 m/s or more. The average flow velocity of the molten steel in the mold is preferably set to 0.20 m/s or more. On the other hand, when the average flow velocity of the molten steel in the mold exceeds 0.40 m/s, the effect of preventing the coarsening of the inclusions becomes saturated, so the average flow velocity of the molten steel in the mold is preferably 0.40 m/s or less.

鋳型内溶鋼の平均流速は、鋳片表面と垂直な方向に対する1次デンドライトの傾き(デンドライト傾角)を測定し、以下の式(3)を用いて算出することができる。溶鋼流速は、鋳片の表裏各面における幅方向1/6の位置、1/3の位置、1/2の位置、2/3の位置、及び5/6の位置の計5か所(両面で計10箇所)にて測定し、その平均値を「鋳型内溶鋼の平均流速」とする。
θ={(0.35×C )/(C +0.0005)+0.65}×11.5×V -0.177×log{(5.38×10-1×V 2.08)/V} ・・・(3)
なお、θ(degree)はデンドライト傾角、C(質量%)は炭素濃度、V(m/s)は溶鋼流速、V(m/s)は凝固速度を示す。デンドライト傾角θは、以下の方法で求める。すなわち、鋳造後の鋳片から圧延方向に垂直な断面を有するサンプルを採取し、研磨後にピクリン酸飽和水溶液で腐食し、光学顕微鏡で観察する。断面における鋳片表面から深さ5mm以内の表層部分において、鋳片表面と垂直な方向に対する1次デンドライトの傾きを分度器で測定することにより、デンドライト傾角θを求める。炭素濃度Cは、鋳造前のタンディッシュから採取したサンプルを用いて固体発光分光分析装置で分析する。凝固速度Vは、凝固シェル厚の時間変化から求める。
The average flow velocity of molten steel in the mold can be calculated by measuring the inclination of primary dendrites with respect to the direction perpendicular to the slab surface (dendrite inclination angle) and using the following formula (3). The molten steel flow velocity is measured at five positions (1/6, 1/3, 1/2, 2/3, and 5/6) in the width direction on each of the front and back sides of the slab (10 positions in total on both sides), and the average value is defined as the "average flow velocity of molten steel in the mold."
θ={(0.35×C 0 2 )/(C 0 2 +0.0005)+0.65}×11.5×V F −0.177 ×log{(5.38×10 −1 ×V F 2.08 )/V} ...(3)
Here, θ (degree) is the dendrite inclination angle, C 0 (mass %) is the carbon concentration, V F (m/s) is the molten steel flow velocity, and V (m/s) is the solidification rate. The dendrite inclination angle θ is obtained by the following method. That is, a sample having a cross section perpendicular to the rolling direction is taken from the cast slab after casting, polished, corroded with a picric acid saturated aqueous solution, and observed with an optical microscope. The dendrite inclination angle θ is obtained by measuring the inclination of the primary dendrite with respect to the direction perpendicular to the slab surface in the surface layer part within a depth of 5 mm from the slab surface in the cross section with a protractor. The carbon concentration C 0 is analyzed with a solid emission spectrometer using a sample taken from the tundish before casting. The solidification rate V is obtained from the change with time of the solidified shell thickness.

[熱間圧延工程]
次いで、鋼片に熱間圧延を施して鋼板を得る。熱間圧延は、鋼片の加熱温度が1000~1250℃であり、クロス圧延比が20以下である条件下にて行われることが好ましい。熱間圧延工程における他の条件は常法によることができる。
[Hot rolling process]
The steel slab is then hot-rolled to obtain a steel sheet. The hot-rolling is preferably carried out under conditions where the heating temperature of the steel slab is 1000 to 1250° C. and the cross-rolling ratio is 20 or less. Other conditions in the hot-rolling step can be the same as those in the conventional manner.

〔鋼片の加熱温度:1000~1250℃〕
熱間圧延時の鋼片の加熱温度が1000℃未満では、Ar点以上で制御冷却を開始することができず、耐HIC性が得られない。このため、鋼片の加熱温度は1000℃以上とし、好ましくは1030℃以上とする。他方で、鋼片の加熱温度が1250℃を超えると、エネルギー消費量が増大する。このため、鋼片の加熱温度は1250℃以下とし、好ましくは1200℃以下とする。なお、この温度は加熱炉の炉内温度であり、鋼片は中心部までこの温度に加熱されるものとする。
[Heating temperature of steel piece: 1000 to 1250°C]
If the heating temperature of the steel slab during hot rolling is less than 1000°C, controlled cooling cannot be started at or above the Ar 3 point, and HIC resistance cannot be obtained. Therefore, the heating temperature of the steel slab is set to 1000°C or higher, preferably 1030°C or higher. On the other hand, if the heating temperature of the steel slab exceeds 1250°C, energy consumption increases. Therefore, the heating temperature of the steel slab is set to 1250°C or lower, preferably 1200°C or lower. Note that this temperature is the temperature inside the heating furnace, and the steel slab is heated to this temperature up to its center.

〔クロス圧延比:20以下〕
本実施形態において、以下の式(4)で定義されるクロス圧延比が20以下であることが好ましい。クロス圧延比が20以下であれば、介在物の伸長を効果的に防ぐことができ、耐HIC性がより向上する。クロス圧延比の下限は特に限定されないが、圧延設備の制約の観点から、クロス圧延比は6以上であり得る。
クロス圧延比=圧延方向の圧延比/圧延直角方向の圧延比 ・・・(4)
なお、「圧延方向の圧延比」は、熱間圧延時にクロス圧延を実施した際の、総圧延に対する圧延方向の圧延比を指す。また、「圧延直角方向の圧延比」は、熱間圧延時にクロス圧延を実施した際の、総圧延に対する圧延直角方向の圧延比を指す。
[Cross rolling ratio: 20 or less]
In this embodiment, the cross rolling ratio defined by the following formula (4) is preferably 20 or less. If the cross rolling ratio is 20 or less, the elongation of inclusions can be effectively prevented, and HIC resistance is further improved. Although the lower limit of the cross rolling ratio is not particularly limited, the cross rolling ratio may be 6 or more in view of restrictions on rolling equipment.
Cross rolling ratio=rolling ratio in the rolling direction/rolling ratio in the direction perpendicular to the rolling direction (4)
The "rolling ratio in the rolling direction" refers to the rolling ratio in the rolling direction to the total rolling when cross rolling is performed during hot rolling. Also, the "rolling ratio in the direction perpendicular to the rolling direction" refers to the rolling ratio in the direction perpendicular to the rolling direction to the total rolling when cross rolling is performed during hot rolling.

[制御冷却工程]
次いで、鋼板の制御冷却工程を行う。この工程は、冷却開始時の鋼板表面温度が以下の式(1)により求められるAr点以上である条件下にて行うことが好ましい。冷却開始時の鋼板表面温度がAr点未満の場合、冷却前にフェライトが生成して、耐HIC性が劣化する可能性がある。このため、冷却開始時の鋼板表面温度をAr点以上とすることが好ましい。ここで、Ar点とは、冷却中におけるフェライト変態開始温度を意味し、例えば、鋼の成分から以下の式(1)で求めることができる。なお、鋼板表面温度は放射温度計等で測定することができる。
Ar点(℃)=910-310[C]-80[Mn]-20[Cu]-15[Cr]-55[Ni]-80[Mo] ・・・(1)
なお、[X]は元素Xの鋼中含有量(質量%)を意味し、含有しない元素の含有量には0を代入すればよい。制御冷却工程における他の条件は常法によることができる。
[Controlled cooling process]
Next, the steel sheet is subjected to a controlled cooling process. This process is preferably performed under conditions where the surface temperature of the steel sheet at the start of cooling is equal to or higher than Ar 3 point, which is calculated by the following formula (1). If the surface temperature of the steel sheet at the start of cooling is lower than Ar 3 point, ferrite may be generated before cooling, which may deteriorate the HIC resistance. For this reason, it is preferable that the surface temperature of the steel sheet at the start of cooling is equal to or higher than Ar 3 point. Here, Ar 3 point means the ferrite transformation start temperature during cooling, and can be calculated, for example, from the components of the steel by the following formula (1). The surface temperature of the steel sheet can be measured by a radiation thermometer or the like.
Ar 3 points (°C) = 910-310[C]-80[Mn]-20[Cu]-15[Cr]-55[Ni]-80[Mo]...(1)
In addition, [X] means the content (mass%) of element X in the steel, and the content of an element that is not contained may be substituted with 0. Other conditions in the controlled cooling step may be determined by ordinary methods.

(鋼管)
本発明の一実施形態による鋼板を、プレスベンド成形、ロール成形、UOE成形等で管状に成形した後、突き合わせ部を溶接することにより、本発明の一実施形態による鋼管(UOE鋼管、電縫鋼管、スパイラル鋼管等)を製造することができる。本実施形態による鋼管は、原油又は天然ガスの輸送に好適である。
(Steel pipe)
The steel plate according to one embodiment of the present invention is formed into a tubular shape by press bending, roll forming, UOE forming, or the like, and then the butt joint is welded to produce a steel pipe according to one embodiment of the present invention (UOE steel pipe, electric resistance welded steel pipe, spiral steel pipe, etc.). The steel pipe according to this embodiment is suitable for transporting crude oil or natural gas.

例えば、UOE鋼管は、鋼板の端部を開先加工し、Cプレス、Uプレス、及びOプレスで鋼管形状に成形した後、内面溶接及び外面溶接で突き合わせ部をシーム溶接し、さらに必要に応じて拡管工程を経て製造される。また、溶接方法は十分な継手強度と継手靭性が得られる方法であれば、いずれの方法でも良いが、優れた溶接品質と製造能率の観点から、サブマージアーク溶接を用いることが好ましい。また、プレスベンド成形により鋼板を管状に成形した後、突き合せ部をシーム溶接した鋼管に対しても、拡管を実施することができる。For example, UOE steel pipes are manufactured by preparing the ends of steel plates, forming them into a steel pipe shape using a C press, U press, and O press, seam welding the butt joints using internal and external welding, and then expanding the pipe as necessary. Any welding method can be used as long as it provides sufficient joint strength and toughness, but submerged arc welding is preferred from the standpoint of excellent welding quality and manufacturing efficiency. Expanding can also be performed on steel pipes in which steel plates are formed into a tubular shape using press bending and then the butt joints are seam welded.

転炉で溶銑を脱炭精錬して溶鋼を溶製し、溶製した溶鋼を取鍋に出鋼した。転炉出鋼後に金属Alを取鍋内に添加して、溶鋼を脱酸した。The molten iron was decarburized and refined in a converter to produce molten steel, which was then tapped into a ladle. After tapping from the converter, metallic aluminum was added to the ladle to deoxidize the molten steel.

その後、取鍋に収容された溶鋼を取鍋精錬炉で脱硫処理した。この脱硫処理工程では、CaO-Al-SiO系フラックスを脱硫剤として使用した。そして、黒鉛電極からのアーク熱により、溶鋼を昇温しかつ前記脱硫剤を滓化させ、溶鋼に浸漬させた浸漬ランスから、攪拌用ガスとして100~150Nm/hの速度でアルゴンガスを吹き込み、溶鋼と脱硫剤とを攪拌して混合して、脱硫処理を行った。 The molten steel contained in the ladle was then desulfurized in a ladle refining furnace. In this desulfurization process, a CaO-Al 2 O 3 -SiO 2 flux was used as the desulfurization agent. The molten steel was heated by arc heat from a graphite electrode, and the desulfurization agent was turned into slag. Argon gas was blown into the molten steel from an immersion lance at a rate of 100 to 150 Nm 3 /h as a stirring gas, and the molten steel and the desulfurization agent were stirred and mixed to perform the desulfurization process.

さらに、RH真空脱ガス装置で真空脱ガス精錬を実施した。具体的には、脱ガス処理、溶鋼成分の調整、攪拌による非金属介在物の浮上・分離を行った。上記真空脱ガス精錬の処理時間は20分とした。 In addition, vacuum degassing refining was carried out in an RH vacuum degassing device. Specifically, degassing treatment, adjustment of the molten steel composition, and floating and separation of nonmetallic inclusions by stirring were carried out. The processing time for the above vacuum degassing refining was 20 minutes.

次いで、RH真空脱ガス装置での精錬終了後から連続鋳造設備での連続鋳造開始前までの期間に、Mg含有物質としての鉄被覆Mgワイヤー及びCa含有物質としての鉄被覆Caワイヤーを取鍋内溶鋼に添加して、表1に示す成分組成を有する鋼(鋼種A~V)を得た。各条件における、添加工程の開始時の溶鋼温度と、Mg含有物質及びCa含有物質の添加順序と、Mg及びCaの供給速度とを表2に示した。なお、表2中の「Mg,Ca添加順序」の欄において、「Mg→Ca」は、鉄被覆Mgワイヤーの添加を開始し、終了した直後に鉄被覆Caワイヤーの添加を開始することを意味し、「Ca→Mg」は、鉄被覆Caワイヤーの添加を開始し、終了した直後に鉄被覆Mgワイヤーの添加を開始することを意味し、「Mg,Ca同時」は、鉄被覆Mg-Caワイヤーを添加することを意味する。Next, during the period from the end of refining in the RH vacuum degassing device to the start of continuous casting in the continuous casting equipment, iron-coated Mg wire as the Mg-containing material and iron-coated Ca wire as the Ca-containing material were added to the molten steel in the ladle to obtain steels (steel types A to V) having the composition shown in Table 1. Table 2 shows the molten steel temperature at the start of the addition process, the order of addition of the Mg-containing material and the Ca-containing material, and the Mg and Ca supply rates for each set of conditions. Note that in the "Mg, Ca addition order" column in Table 2, "Mg → Ca" means that the addition of the iron-coated Mg wire is started and the addition of the iron-coated Ca wire is started immediately after the completion of the addition, "Ca → Mg" means that the addition of the iron-coated Ca wire is started and the addition of the iron-coated Mg wire is started immediately after the completion of the addition, and "Mg and Ca simultaneously" means that the iron-coated Mg-Ca wire is added.

次いで、連続鋳造により溶鋼を鋳造して、スラブとした。各条件における、Ca含有物質の添加終了から鋳造開始までの時間と、鋳造時の鋳型内溶鋼の平均流速とを表2に示した。なお、鋳型内溶鋼の平均流速は既述の方法で求めた。The molten steel was then cast into slabs by continuous casting. The time from the end of addition of the Ca-containing substance to the start of casting and the average flow velocity of the molten steel in the mold during casting under each set of conditions are shown in Table 2. The average flow velocity of the molten steel in the mold was determined by the method previously described.

次いで、表2に示すスラブ加熱温度にスラブを加熱し、表2に示すクロス圧延比の条件でスラブを熱間圧延して、表2に示す最終板厚の鋼板とした。次いで、表2に示す冷却開始時の鋼板表面温度にて、鋼板の制御冷却を行った。The slab was then heated to the slab heating temperature shown in Table 2, and hot rolled under the cross rolling ratio conditions shown in Table 2 to obtain a steel plate having the final plate thickness shown in Table 2. The steel plate was then subjected to controlled cooling at the steel plate surface temperature at the start of cooling shown in Table 2.

その後、鋼板の端部を開先加工し、Cプレス、Uプレス、及びOプレスで鋼管形状に成形した後、突き合わせ部を内面側及び外面側からサブマージアーク溶接でシーム溶接し、拡管工程を経て鋼管にした。なお、上記鋼種A~Vから製造された鋼板及び鋼管の成分組成は、鋼素材となった鋼種A~Vの成分組成と工業的な誤差範囲内で同一である。なお、表1中、ハイフン(-)の元素については、Ar(℃)の計算において、その含有量をゼロとして扱う。 Thereafter, the ends of the steel plates were grooved and formed into a steel pipe shape using a C press, a U press, and an O press, after which the butt joints were seam welded from the inner and outer sides by submerged arc welding, and the steel pipes were made through a pipe expansion process. The chemical compositions of the steel plates and steel pipes manufactured from the above steel types A to V are the same as the chemical compositions of the steel types A to V that became the steel materials, within the industrial tolerance range. In Table 1, the elements marked with a hyphen (-) are treated as having a content of zero in the calculation of Ar3 (°C).

[介在物の評価]
表2には、既述の方法で求めた「表層領域に存在する介在物の平均組成におけるMgOの含有量」、「表層領域における介在物の個数密度」、「表層領域に存在する介在物の円相当径の上位10%の平均値」、及び「表層領域に存在する介在物のアスペクト比の平均値」を示した。
[Evaluation of inclusions]
Table 2 shows "the MgO content in the average composition of the inclusions present in the surface layer region,""the number density of the inclusions in the surface layer region,""the average value of the top 10% of the equivalent circle diameters of the inclusions present in the surface layer region," and "the average value of the aspect ratio of the inclusions present in the surface layer region," all of which were determined by the method described above.

[耐HIC性の評価]
表2には、既述の方法で求めた「表層領域におけるHIC試験後の割れ面積率CAR」を示した。
[Evaluation of HIC resistance]
Table 2 shows the "crack area ratio CAR in the surface layer region after the HIC test" obtained by the method described above.

Figure 0007533816000001
Figure 0007533816000001

Figure 0007533816000002
Figure 0007533816000002

表2に示したように、No.1~10は、成分組成及び製造条件が本発明の適正範囲を満足する発明例である。いずれの例も、表層領域にMgOを10~40質量%含む平均組成を有し、アスペクト比の平均値が2.5以下である介在物が存在し、介在物の円相当径の上位10%の平均値が3.5μm以下であり、表層領域におけるHIC試験後の割れ面積率CARが5.0%以下であった。As shown in Table 2, Nos. 1 to 10 are invention examples whose component compositions and manufacturing conditions satisfy the appropriate ranges of the present invention. All of the examples had an average composition in the surface region containing 10 to 40 mass% MgO, had inclusions with an average aspect ratio of 2.5 or less, the average of the top 10% of the circle-equivalent diameters of the inclusions was 3.5 μm or less, and the crack area ratio CAR after the HIC test in the surface region was 5.0% or less.

これに対し、No.11~13,20~22は、鋼板の成分組成が発明範囲外であるため、中心偏析が助長され、CARが所望の値に達しなかった。In contrast, in Nos. 11 to 13 and 20 to 22, the chemical composition of the steel plate was outside the range of the invention, which promoted center segregation and resulted in the CAR not reaching the desired value.

No.14は、鋼板のS含有量が発明範囲よりも多いため、MnSが過剰に生成し、CARが所望の値に達しなかった。In No. 14, the S content of the steel plate was higher than the range specified by the invention, resulting in excessive production of MnS and a CAR that did not reach the desired value.

No.15は、鋼板のNb含有量が発明範囲よりも多いため、粗大な炭化物が晶出し、CARが所望の値に達しなかった。In No. 15, the Nb content of the steel plate was higher than the range specified by the invention, so coarse carbides crystallized and the CAR did not reach the desired value.

No.16は、鋼板のN含有量が発明範囲よりも多いため、粗大な窒化物が生成し、CARが所望の値に達しなかった。In No. 16, the N content of the steel plate was higher than the range specified by the invention, so coarse nitrides were formed and the CAR did not reach the desired value.

No.17は、添加工程の開始時の溶鋼の温度が高すぎたため、歩留まりが低下した。その結果、Ca含有量が減少し過ぎて、CARが所望の値に達しなかった。なお、歩留まりはばらつきがあり、このNo.17では、Ca含有量のみが減少した例を示した。In No. 17, the temperature of the molten steel at the start of the addition process was too high, which resulted in a low yield. As a result, the Ca content was reduced too much, and the CAR did not reach the desired value. Note that the yield varies, and No. 17 shows an example in which only the Ca content was reduced.

No.18は、鋼板のCa含有量が発明範囲よりも多いため、鋼の清浄度が低下し、CARが所望の値に達しなかった。In No. 18, the Ca content of the steel plate was higher than the range specified by the invention, which resulted in a decrease in the cleanliness of the steel and a failure of the CAR to reach the desired value.

No.19は、添加工程の開始時の溶鋼の温度が低すぎたため、歩留まりが低下した。その結果、Mg含有量が減少し過ぎて、CARが所望の値に達しなかった。なお、歩留まりはばらつきがあり、このNo.19では、Mg含有量のみが減少した例を示した。In No. 19, the temperature of the molten steel at the start of the addition process was too low, which resulted in a low yield. As a result, the Mg content was reduced too much, and the CAR did not reach the desired value. Note that the yield varies, and No. 19 shows an example in which only the Mg content was reduced.

No.23は、クロス圧延が不十分であったため、介在物のアスペクト比の平均値が大きくなり、CARが所望の値に達しなかった。In No. 23, cross rolling was insufficient, so the average aspect ratio of the inclusions was large and the CAR did not reach the desired value.

No.24は、Ca添加後にMgを添加したため、介在物の円相当径の上位10%の平均値が大きくなり過ぎて、CARが所望の値に達しなかった。In No. 24, Mg was added after Ca was added, so the average value of the top 10% of the circle equivalent diameters of the inclusions became too large, and the CAR did not reach the desired value.

No.25は、ワイヤーの添加速度が遅すぎた結果、介在物のMgO含有量が少なくなり過ぎて、CARが所望の値に達しなかった。In No. 25, the wire addition rate was too slow, resulting in too little MgO in the inclusions and the CAR not reaching the desired value.

No.26は、ワイヤーの添加速度が速すぎた結果、介在物のMgO含有量が多くなり過ぎて、CARが所望の値に達しなかった。In No. 26, the wire was added too quickly, resulting in an inclusion with too much MgO content, and the CAR did not reach the desired value.

No.27は、Ca添加終了後から鋳造開始までの時間が長かったため、介在物の円相当径の上位10%の平均値が大きくなり過ぎて、CARが所望の値に達しなかった。In No. 27, the time between the end of Ca addition and the start of casting was long, so the average value of the top 10% of the circle equivalent diameters of the inclusions became too large, and the CAR did not reach the desired value.

No.28は、鋳型内溶鋼の平均流速が遅かったため、介在物の円相当径の上位10%の平均値が大きくなり過ぎて、CARが所望の値に達しなかった。In No. 28, the average flow velocity of the molten steel in the mold was slow, so the average value of the top 10% of the circle equivalent diameters of the inclusions became too large, and the CAR did not reach the desired value.

本発明によれば、耐HIC性に優れる鋼板及び鋼管を提供することができる。
According to the present invention, it is possible to provide a steel plate and a steel pipe having excellent HIC resistance.

Claims (5)

質量%で、C:0.030~0.080%、Si:0.01~0.50%、Mn:0.80~1.80%、P:0.015%以下、S:0.0015%以下、Al:0.010~0.080%、Nb:0.080%以下、N:0.0080%以下、Ca:0.0005~0.0050%、及びMg:0.0005~0.0050%を含有し、残部がFe及び不可避的不純物からなる成分組成を有し、
鋼板の両面の各々から板厚方向に板厚の1/4の深さまでの一対の領域に、MgOを10~40質量%含む平均組成を有し、アスペクト比の平均値が2.5以下である介在物が存在し、
前記介在物の円相当径の上位10%の平均値が3.5μm以下であり、
前記領域におけるHIC試験後の割れ面積率CARが5.0%以下である
ことを特徴とする鋼板。
The composition contains, in mass%, C: 0.030 to 0.080%, Si: 0.01 to 0.50%, Mn: 0.80 to 1.80%, P: 0.015% or less, S: 0.0015% or less, Al: 0.010 to 0.080%, Nb: 0.080% or less, N: 0.0080% or less, Ca: 0.0005 to 0.0050%, and Mg: 0.0005 to 0.0050%, with the balance being Fe and unavoidable impurities;
inclusions having an average composition containing 10 to 40 mass% MgO and an average aspect ratio of 2.5 or less are present in a pair of regions from each of both surfaces of the steel sheet to a depth of 1/4 of the sheet thickness in the sheet thickness direction,
the average value of the top 10% of the equivalent circle diameters of the inclusions is 3.5 μm or less;
The steel plate is characterized in that the crack area ratio CAR after an HIC test in the above-mentioned region is 5.0% or less.
前記成分組成が、質量%で、Cu:0.30%以下、Ni:0.30%以下、Cr:0.50%以下、Mo:0.50%以下、V:0.100%以下、Ti:0.100%以下、Zr:0.0200%以下、及びREM:0.0200%以下からなる群から選択される1種以上をさらに含有する、請求項1に記載の鋼板。 The steel plate according to claim 1, wherein the composition further contains, in mass%, one or more selected from the group consisting of Cu: 0.30% or less, Ni: 0.30% or less, Cr: 0.50% or less, Mo: 0.50% or less, V: 0.100% or less, Ti: 0.100% or less, Zr: 0.0200% or less, and REM: 0.0200% or less. 精錬終了後の溶鋼にMg含有物質及びCa含有物質を添加する添加工程を、
(A)該添加工程の開始時の前記溶鋼の温度が1580~1620℃の範囲にあり、
(B)前記Mg含有物質の添加を開始した後に前記Ca含有物質の添加を開始する、又は、前記Mg含有物質及び前記Ca含有物質の添加を同時に開始する態様で、
(C)Mg及びCaの供給速度がそれぞれ15~30kg/分となる
条件下にて行い、
次いで、(i)前記Ca含有物質の添加終了から鋳造開始までの時間が90分以内であり、かつ、(ii)鋳造時の鋳型内溶鋼の平均流速が0.10m/s以上である条件下にて、前記溶鋼を鋳造して鋼片を得て、
次いで、前記鋼片に熱間圧延を施して、請求項1又は2に記載の鋼板を製造する
ことを特徴とする鋼板の製造方法。
an adding step of adding an Mg-containing substance and a Ca-containing substance to the molten steel after completion of refining,
(A) the temperature of the molten steel at the start of the adding step is in the range of 1580 to 1620°C;
(B) The addition of the Mg-containing substance is started after the addition of the Ca-containing substance is started, or the addition of the Mg-containing substance and the Ca-containing substance is started simultaneously,
(C) The feed rates of Mg and Ca are each 15 to 30 kg/min,
Next, the molten steel is cast to obtain a steel slab under the conditions that (i) the time from the completion of the addition of the Ca-containing substance to the start of casting is 90 minutes or less, and (ii) the average flow velocity of the molten steel in the mold during casting is 0.10 m/s or more,
The steel plate according to claim 1 or 2 is then produced by hot rolling the slab.
前記熱間圧延は、前記鋼片の加熱温度が1000~1250℃であり、クロス圧延比が20以下である条件下にて行われ、
次いで、冷却開始時の鋼板表面温度が以下の式(1)により求められるAr点以上である条件下にて、前記鋼板の制御冷却を行う、
請求項3に記載の鋼板の製造方法。
Ar点(℃)=910-310[C]-80[Mn]-20[Cu]-15[Cr]-55[Ni]-80[Mo] ・・・(1)
なお、[X]は元素Xの鋼中含有量(質量%)を意味する。
The hot rolling is carried out under conditions in which the heating temperature of the steel slab is 1000 to 1250° C. and the cross rolling ratio is 20 or less;
Next, controlled cooling of the steel sheet is performed under conditions in which the surface temperature of the steel sheet at the start of cooling is equal to or higher than the Ar3 point calculated by the following formula (1).
The method for producing the steel sheet according to claim 3.
Ar 3 points (°C) = 910-310[C]-80[Mn]-20[Cu]-15[Cr]-55[Ni]-80[Mo]...(1)
Here, [X] means the content (mass%) of element X in the steel.
請求項1又は2に記載の鋼板を用いた鋼管。
A steel pipe using the steel plate according to claim 1 or 2.
JP2024515966A 2022-11-29 2023-11-27 Steel plate, its manufacturing method, and steel pipe Active JP7533816B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2022190778 2022-11-29
JP2022190778 2022-11-29
PCT/JP2023/042386 WO2024117083A1 (en) 2022-11-29 2023-11-27 Steel sheet, method for producing same, and steel pipe

Publications (1)

Publication Number Publication Date
JP7533816B1 true JP7533816B1 (en) 2024-08-14

Family

ID=91324045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2024515966A Active JP7533816B1 (en) 2022-11-29 2023-11-27 Steel plate, its manufacturing method, and steel pipe

Country Status (2)

Country Link
JP (1) JP7533816B1 (en)
WO (1) WO2024117083A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506044A (en) 2006-10-06 2010-02-25 エクソンモービル アップストリーム リサーチ カンパニー Low yield ratio dual phase steel line tube with excellent strain aging resistance
JP2010077492A (en) 2008-09-26 2010-04-08 Jfe Steel Corp Steel pipe for line pipe and method of producing the same
WO2015012317A1 (en) 2013-07-25 2015-01-29 新日鐵住金株式会社 Steel plate for line pipe, and line pipe
WO2016104528A1 (en) 2014-12-26 2016-06-30 株式会社神戸製鋼所 Steel plate having excellent toughness and resistance to hydrogen-induced cracking, and steel pipe for line pipe
CN112226699A (en) 2020-10-28 2021-01-15 湖南华菱湘潭钢铁有限公司 Production method of acid-resistant pipeline steel
CN113564464A (en) 2021-06-29 2021-10-29 武汉钢铁有限公司 25.4mm hot continuous rolling limit specification pipeline steel plate coil and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506044A (en) 2006-10-06 2010-02-25 エクソンモービル アップストリーム リサーチ カンパニー Low yield ratio dual phase steel line tube with excellent strain aging resistance
JP2010077492A (en) 2008-09-26 2010-04-08 Jfe Steel Corp Steel pipe for line pipe and method of producing the same
WO2015012317A1 (en) 2013-07-25 2015-01-29 新日鐵住金株式会社 Steel plate for line pipe, and line pipe
WO2016104528A1 (en) 2014-12-26 2016-06-30 株式会社神戸製鋼所 Steel plate having excellent toughness and resistance to hydrogen-induced cracking, and steel pipe for line pipe
CN112226699A (en) 2020-10-28 2021-01-15 湖南华菱湘潭钢铁有限公司 Production method of acid-resistant pipeline steel
CN113564464A (en) 2021-06-29 2021-10-29 武汉钢铁有限公司 25.4mm hot continuous rolling limit specification pipeline steel plate coil and manufacturing method thereof

Also Published As

Publication number Publication date
WO2024117083A1 (en) 2024-06-06

Similar Documents

Publication Publication Date Title
JP5262075B2 (en) Method for producing steel for pipes with excellent sour resistance
JP4673343B2 (en) Stainless steel sheet excellent in corrosion resistance, weldability and surface properties and method for producing the same
JP6990337B1 (en) Ni-based alloy with excellent surface properties and its manufacturing method
JP2016222970A (en) Superclean steel and method of refining the same
JP6565719B2 (en) Thick steel plate with excellent weld heat affected zone toughness
TWI752837B (en) Stainless steel, stainless steel material, and method for manufacturing stainless steel
JP5708349B2 (en) Steel with excellent weld heat affected zone toughness
JP4656007B2 (en) Method of processing molten iron by adding Nd and Ca
JP7533816B1 (en) Steel plate, its manufacturing method, and steel pipe
JP7533817B1 (en) Steel plate, its manufacturing method, and steel pipe
JP7533815B1 (en) Steel plate, its manufacturing method, and steel pipe
JP2010507021A (en) Ferritic stainless steel excellent in workability of welds and corrosion resistance of steel materials and method for producing the same
CN111321322A (en) Ni-Cr-Nb-Fe alloy having excellent internal quality and hot workability, and method for producing same
JP2020033579A (en) Stainless steel sheet excellent in surface quality and manufacturing method therefor
JP3156523B2 (en) Method of manufacturing steel for hydrogen-induced cracking
JP7207199B2 (en) Steel material and its manufacturing method
JP7031634B2 (en) Manufacturing method of sour resistant steel
RU2747083C1 (en) Method for production of electro-welded pipe made of low-carbon steel, resistant to hydrogen cracking (options)
JP2020084250A (en) Steel material for seamless steel pipe
JP6600968B2 (en) Finish refining method for chromium-containing molten steel
TWI748883B (en) Stainless steel with excellent mirror polishing property and its manufacturing method
JP7282246B1 (en) Ni--Cr--Fe--Mo alloy with excellent surface properties and method for producing the same
JP7369266B1 (en) Fe-Cr-Ni alloy with excellent surface properties and its manufacturing method
JP7530447B2 (en) Precipitation hardening martensitic stainless steel with excellent fatigue resistance
JP7469632B2 (en) Steel material and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240312

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20240312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240715

R150 Certificate of patent or registration of utility model

Ref document number: 7533816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150